tree.c 126.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/ftrace_event.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73

74 75 76 77 78 79 80 81
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
82 83
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
84
static char sname##_varname[] = #sname; \
85 86 87 88 89 90 91 92 93
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
94
struct rcu_state sname##_state = { \
95
	.level = { &sname##_state.node[0] }, \
96
	.call = cr, \
97
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
98 99
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
100
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 102
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
103
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104
	.name = RCU_STATE_NAME(sname), \
105
	.abbr = sabbr, \
106
}; \
107
DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data)
108

109 110
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
111

112
static struct rcu_state *rcu_state_p;
113
LIST_HEAD(rcu_struct_flavors);
114

115 116
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
117
module_param(rcu_fanout_leaf, int, 0444);
118 119 120 121 122 123 124 125 126 127
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

128 129 130 131
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
132
 * optimize synchronize_sched() to a simple barrier().  When this variable
133 134 135 136
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
137 138 139
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

154 155
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
156
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
157 158
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
159

160 161 162 163
/* rcuc/rcub kthread realtime priority */
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
module_param(kthread_prio, int, 0644);

164 165 166 167 168 169
/* Delay in jiffies for grace-period initialization delays. */
static int gp_init_delay = IS_ENABLED(CONFIG_RCU_TORTURE_TEST_SLOW_INIT)
				? CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY
				: 0;
module_param(gp_init_delay, int, 0644);

170 171 172 173 174 175 176 177 178 179 180 181
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

182 183 184 185 186 187 188 189 190 191 192
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
	return ACCESS_ONCE(rnp->qsmaskinitnext);
}

193 194 195 196 197 198 199 200 201 202
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

203
/*
204
 * Note a quiescent state.  Because we do not need to know
205
 * how many quiescent states passed, just if there was at least
206
 * one since the start of the grace period, this just sets a flag.
207
 * The caller must have disabled preemption.
208
 */
209
void rcu_sched_qs(void)
210
{
211 212 213 214 215 216
	if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_sched"),
				       __this_cpu_read(rcu_sched_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_sched_data.passed_quiesce, 1);
	}
217 218
}

219
void rcu_bh_qs(void)
220
{
221 222 223 224 225 226
	if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_bh_data.passed_quiesce, 1);
	}
227
}
228

229 230 231 232 233 234 235 236 237 238 239
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

240 241 242
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
 */
static void rcu_momentary_dyntick_idle(void)
{
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	local_irq_save(flags);

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
		if (ACCESS_ONCE(rdp->mynode->completed) !=
		    ACCESS_ONCE(rdp->cond_resched_completed))
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
	local_irq_restore(flags);
}

296 297 298
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
299
 * The caller must have disabled preemption.
300
 */
301
void rcu_note_context_switch(void)
302
{
303
	trace_rcu_utilization(TPS("Start context switch"));
304
	rcu_sched_qs();
305
	rcu_preempt_note_context_switch();
306 307
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
308
	trace_rcu_utilization(TPS("End context switch"));
309
}
310
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
311

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * Register a quiesecent state for all RCU flavors.  If there is an
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
 * RCU flavors in desparate need of a quiescent state, which will normally
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
 */
void rcu_all_qs(void)
{
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
	this_cpu_inc(rcu_qs_ctr);
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
328 329 330
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
331

E
Eric Dumazet 已提交
332 333 334
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
335

336 337
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
338 339 340 341

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

342 343 344 345 346 347 348
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

349
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
350
				  struct rcu_data *rdp);
351 352 353 354
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
355
static void force_quiescent_state(struct rcu_state *rsp);
356
static int rcu_pending(void);
357 358

/*
359
 * Return the number of RCU batches started thus far for debug & stats.
360
 */
361 362 363 364 365 366 367 368
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
369
 */
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
396
 */
397
unsigned long rcu_batches_completed_sched(void)
398
{
399
	return rcu_sched_state.completed;
400
}
401
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
402 403

/*
404
 * Return the number of RCU BH batches completed thus far for debug & stats.
405
 */
406
unsigned long rcu_batches_completed_bh(void)
407 408 409 410 411
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

412 413 414 415 416
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
417
	force_quiescent_state(rcu_state_p);
418 419 420
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

421 422 423 424 425
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
426
	force_quiescent_state(&rcu_bh_state);
427 428 429
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

445 446 447 448 449 450 451 452 453 454 455 456 457 458
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

459 460 461 462 463 464 465 466 467 468
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
469
		rsp = rcu_state_p;
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
		*flags = ACCESS_ONCE(rsp->gp_flags);
		*gpnum = ACCESS_ONCE(rsp->gpnum);
		*completed = ACCESS_ONCE(rsp->completed);
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

492 493 494 495 496 497 498 499 500 501 502
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

503 504 505 506 507
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
508
	force_quiescent_state(&rcu_sched_state);
509 510 511
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

512 513 514 515 516 517
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
518 519
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
520 521
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
	int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
	int *fp = &rnp->need_future_gp[idx];

	return ACCESS_ONCE(*fp);
}

544
/*
545 546 547
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
548 549 550 551
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
552
	int i;
P
Paul E. McKenney 已提交
553

554 555
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
556
	if (rcu_future_needs_gp(rsp))
557
		return 1;  /* Yes, a no-CBs CPU needs one. */
558 559 560 561 562 563 564 565 566 567
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
568 569
}

570
/*
571
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
572 573 574 575 576
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
577
static void rcu_eqs_enter_common(long long oldval, bool user)
578
{
579 580
	struct rcu_state *rsp;
	struct rcu_data *rdp;
581
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
582

583
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
584
	if (!user && !is_idle_task(current)) {
585 586
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
587

588
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
589
		ftrace_dump(DUMP_ORIG);
590 591 592
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
593
	}
594 595 596 597
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
598
	rcu_prepare_for_idle();
599
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
600
	smp_mb__before_atomic();  /* See above. */
601
	atomic_inc(&rdtp->dynticks);
602
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
603
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
604
	rcu_dynticks_task_enter();
605 606

	/*
607
	 * It is illegal to enter an extended quiescent state while
608 609 610 611 612 613 614 615
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
616
}
617

618 619 620
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
621
 */
622
static void rcu_eqs_enter(bool user)
623
{
624
	long long oldval;
625 626
	struct rcu_dynticks *rdtp;

627
	rdtp = this_cpu_ptr(&rcu_dynticks);
628
	oldval = rdtp->dynticks_nesting;
629
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
630
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
631
		rdtp->dynticks_nesting = 0;
632
		rcu_eqs_enter_common(oldval, user);
633
	} else {
634
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
635
	}
636
}
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
652 653 654
	unsigned long flags;

	local_irq_save(flags);
655
	rcu_eqs_enter(false);
656
	rcu_sysidle_enter(0);
657
	local_irq_restore(flags);
658
}
659
EXPORT_SYMBOL_GPL(rcu_idle_enter);
660

661
#ifdef CONFIG_RCU_USER_QS
662 663 664 665 666 667 668 669 670 671
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
672
	rcu_eqs_enter(1);
673
}
674
#endif /* CONFIG_RCU_USER_QS */
675

676 677 678 679 680 681
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
682
 *
683 684 685 686 687 688 689 690
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
691
 */
692
void rcu_irq_exit(void)
693 694
{
	unsigned long flags;
695
	long long oldval;
696 697 698
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
699
	rdtp = this_cpu_ptr(&rcu_dynticks);
700
	oldval = rdtp->dynticks_nesting;
701 702
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
703
	if (rdtp->dynticks_nesting)
704
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
705
	else
706 707
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
708 709 710 711
	local_irq_restore(flags);
}

/*
712
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
713 714 715 716 717
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
718
static void rcu_eqs_exit_common(long long oldval, int user)
719
{
720 721
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

722
	rcu_dynticks_task_exit();
723
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
724 725
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
726
	smp_mb__after_atomic();  /* See above. */
727
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
728
	rcu_cleanup_after_idle();
729
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
730
	if (!user && !is_idle_task(current)) {
731 732
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
733

734
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
735
				  oldval, rdtp->dynticks_nesting);
736
		ftrace_dump(DUMP_ORIG);
737 738 739
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
740 741 742
	}
}

743 744 745
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
746
 */
747
static void rcu_eqs_exit(bool user)
748 749 750 751
{
	struct rcu_dynticks *rdtp;
	long long oldval;

752
	rdtp = this_cpu_ptr(&rcu_dynticks);
753
	oldval = rdtp->dynticks_nesting;
754
	WARN_ON_ONCE(oldval < 0);
755
	if (oldval & DYNTICK_TASK_NEST_MASK) {
756
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
757
	} else {
758
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
759
		rcu_eqs_exit_common(oldval, user);
760
	}
761
}
762 763 764 765 766 767 768 769 770 771 772 773 774 775

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
776 777 778
	unsigned long flags;

	local_irq_save(flags);
779
	rcu_eqs_exit(false);
780
	rcu_sysidle_exit(0);
781
	local_irq_restore(flags);
782
}
783
EXPORT_SYMBOL_GPL(rcu_idle_exit);
784

785
#ifdef CONFIG_RCU_USER_QS
786 787 788 789 790 791 792 793
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
794
	rcu_eqs_exit(1);
795
}
796
#endif /* CONFIG_RCU_USER_QS */
797

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
824
	rdtp = this_cpu_ptr(&rcu_dynticks);
825 826 827
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
828
	if (oldval)
829
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
830
	else
831 832
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
833 834 835 836 837 838
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
839 840 841 842 843
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
844 845 846
 */
void rcu_nmi_enter(void)
{
847
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
848
	int incby = 2;
849

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
871 872 873 874 875
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
876 877 878 879
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
880 881 882
 */
void rcu_nmi_exit(void)
{
883
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
884

885 886 887 888 889 890 891 892 893 894 895 896 897 898
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
899
		return;
900 901 902 903
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
904
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
905
	smp_mb__before_atomic();  /* See above. */
906
	atomic_inc(&rdtp->dynticks);
907
	smp_mb__after_atomic();  /* Force delay to next write. */
908
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
909 910 911
}

/**
912 913 914 915 916 917 918
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
919
bool notrace __rcu_is_watching(void)
920 921 922 923 924 925
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
926
 *
927
 * If the current CPU is in its idle loop and is neither in an interrupt
928
 * or NMI handler, return true.
929
 */
930
bool notrace rcu_is_watching(void)
931
{
932
	bool ret;
933 934

	preempt_disable();
935
	ret = __rcu_is_watching();
936 937
	preempt_enable();
	return ret;
938
}
939
EXPORT_SYMBOL_GPL(rcu_is_watching);
940

941
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
942 943 944 945 946 947 948

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
949 950 951 952 953 954 955 956 957 958 959
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
960 961 962 963 964 965
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
966 967
	struct rcu_data *rdp;
	struct rcu_node *rnp;
968 969 970
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
971
		return true;
972
	preempt_disable();
973
	rdp = this_cpu_ptr(&rcu_sched_data);
974
	rnp = rdp->mynode;
975
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
976 977 978 979 980 981
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

982
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
983

984
/**
985
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
986
 *
987 988 989
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
990
 */
991
static int rcu_is_cpu_rrupt_from_idle(void)
992
{
993
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
994 995 996 997 998
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
999
 * is in dynticks idle mode, which is an extended quiescent state.
1000
 */
1001 1002
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1003
{
1004
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1005
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1006 1007 1008 1009
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
		return 1;
	} else {
1010 1011 1012
		if (ULONG_CMP_LT(ACCESS_ONCE(rdp->gpnum) + ULONG_MAX / 4,
				 rdp->mynode->gpnum))
			ACCESS_ONCE(rdp->gpwrap) = true;
1013 1014
		return 0;
	}
1015 1016 1017 1018 1019 1020
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1021
 * for this same CPU, or by virtue of having been offline.
1022
 */
1023 1024
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1025
{
1026
	unsigned int curr;
1027
	int *rcrmp;
1028
	unsigned int snap;
1029

1030 1031
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
1032 1033 1034 1035 1036 1037 1038 1039 1040

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1041
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1042
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1043 1044 1045 1046
		rdp->dynticks_fqs++;
		return 1;
	}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
1062
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1063 1064 1065
		rdp->offline_fqs++;
		return 1;
	}
1066 1067

	/*
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1087
	 */
1088 1089 1090
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1091
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
		if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			ACCESS_ONCE(rdp->cond_resched_completed) =
				ACCESS_ONCE(rdp->mynode->completed);
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
			ACCESS_ONCE(*rcrmp) =
				ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
			/* Time to beat on that CPU again! */
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
		}
1105 1106
	}

1107
	return 0;
1108 1109 1110 1111
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1112
	unsigned long j = jiffies;
1113
	unsigned long j1;
1114 1115 1116

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1117
	j1 = rcu_jiffies_till_stall_check();
1118
	ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
1119
	rsp->jiffies_resched = j + j1 / 2;
1120
	rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs);
1121 1122
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
	gpa = ACCESS_ONCE(rsp->gp_activity);
	if (j - gpa > 2 * HZ)
		pr_err("%s kthread starved for %ld jiffies!\n",
		       rsp->name, j - gpa);
1136 1137
}

1138
/*
1139
 * Dump stacks of all tasks running on stalled CPUs.
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

1158
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1159 1160 1161 1162
{
	int cpu;
	long delta;
	unsigned long flags;
1163 1164
	unsigned long gpa;
	unsigned long j;
1165
	int ndetected = 0;
1166
	struct rcu_node *rnp = rcu_get_root(rsp);
1167
	long totqlen = 0;
1168 1169 1170

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
1171
	raw_spin_lock_irqsave(&rnp->lock, flags);
1172
	delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
1173
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1174
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1175 1176
		return;
	}
1177
	ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
1178
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1179

1180 1181 1182 1183 1184
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1185
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1186
	       rsp->name);
1187
	print_cpu_stall_info_begin();
1188
	rcu_for_each_leaf_node(rsp, rnp) {
1189
		raw_spin_lock_irqsave(&rnp->lock, flags);
1190
		ndetected += rcu_print_task_stall(rnp);
1191 1192 1193 1194 1195 1196 1197 1198
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
1199
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1200
	}
1201 1202

	print_cpu_stall_info_end();
1203 1204
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1205
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1206
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1207
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1208
	if (ndetected) {
1209
		rcu_dump_cpu_stacks(rsp);
1210 1211 1212 1213 1214 1215 1216
	} else {
		if (ACCESS_ONCE(rsp->gpnum) != gpnum ||
		    ACCESS_ONCE(rsp->completed) == gpnum) {
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
			gpa = ACCESS_ONCE(rsp->gp_activity);
1217
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1218
			       rsp->name, j - gpa, j, gpa,
1219 1220
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1221 1222 1223 1224
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1225

1226
	/* Complain about tasks blocking the grace period. */
1227 1228
	rcu_print_detail_task_stall(rsp);

1229 1230
	rcu_check_gp_kthread_starvation(rsp);

1231
	force_quiescent_state(rsp);  /* Kick them all. */
1232 1233 1234 1235
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1236
	int cpu;
1237 1238
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1239
	long totqlen = 0;
1240

1241 1242 1243 1244 1245
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1246
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1247 1248 1249
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1250 1251
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1252 1253 1254
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1255 1256 1257

	rcu_check_gp_kthread_starvation(rsp);

1258
	rcu_dump_cpu_stacks(rsp);
1259

P
Paul E. McKenney 已提交
1260
	raw_spin_lock_irqsave(&rnp->lock, flags);
1261 1262
	if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
		ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1263
				     3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
1264
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1265

1266 1267 1268 1269 1270 1271 1272 1273
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1274 1275 1276 1277
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1278 1279 1280
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1281 1282
	unsigned long j;
	unsigned long js;
1283 1284
	struct rcu_node *rnp;

1285
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1286
		return;
1287
	j = jiffies;
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
	gpnum = ACCESS_ONCE(rsp->gpnum);
	smp_rmb(); /* Pick up ->gpnum first... */
1308
	js = ACCESS_ONCE(rsp->jiffies_stall);
1309 1310 1311 1312 1313 1314 1315 1316
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
	gps = ACCESS_ONCE(rsp->gp_start);
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
	completed = ACCESS_ONCE(rsp->completed);
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1317
	rnp = rdp->mynode;
1318
	if (rcu_gp_in_progress(rsp) &&
1319
	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1320 1321 1322 1323

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1324 1325
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1326

1327
		/* They had a few time units to dump stack, so complain. */
1328
		print_other_cpu_stall(rsp, gpnum);
1329 1330 1331
	}
}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1343 1344 1345
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1346
		ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1347 1348
}

1349 1350 1351 1352 1353 1354 1355
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

1356 1357
	if (init_nocb_callback_list(rdp))
		return;
1358 1359 1360 1361 1362
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1392 1393 1394 1395 1396
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1397
				unsigned long c, const char *s)
1398 1399 1400 1401 1402 1403 1404 1405 1406
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1407 1408
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1409 1410 1411
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1412 1413 1414
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1415 1416 1417
{
	unsigned long c;
	int i;
1418
	bool ret = false;
1419 1420 1421 1422 1423 1424 1425
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1426
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1427
	if (rnp->need_future_gp[c & 0x1]) {
1428
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1429
		goto out;
1430 1431 1432 1433 1434 1435 1436
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1437 1438 1439 1440 1441 1442 1443
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1444 1445
	 */
	if (rnp->gpnum != rnp->completed ||
1446
	    ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
1447
		rnp->need_future_gp[c & 0x1]++;
1448
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1449
		goto out;
1450 1451 1452 1453 1454 1455 1456
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1457
	if (rnp != rnp_root) {
1458
		raw_spin_lock(&rnp_root->lock);
1459 1460
		smp_mb__after_unlock_lock();
	}
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1478
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1479 1480 1481 1482 1483 1484 1485 1486
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1487
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1488
	} else {
1489
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1490
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1491 1492 1493 1494
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
1495 1496 1497 1498
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1516 1517
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1518 1519 1520
	return needmore;
}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
	    !ACCESS_ONCE(rsp->gp_flags) ||
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1537 1538 1539 1540 1541 1542 1543
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1544 1545
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1546 1547 1548
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1549
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1550 1551 1552 1553
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1554
	bool ret;
1555 1556 1557

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1558
		return false;
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1587
		return false;
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1598
	/* Record any needed additional grace periods. */
1599
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1600 1601 1602

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1603
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1604
	else
1605
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1606
	return ret;
1607 1608 1609 1610 1611 1612 1613 1614
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1615
 * Returns true if the RCU grace-period kthread needs to be awakened.
1616 1617 1618
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1619
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1620 1621 1622 1623 1624 1625
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1626
		return false;
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1650
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1651 1652
}

1653
/*
1654 1655 1656
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1657
 * Returns true if the grace-period kthread needs to be awakened.
1658
 */
1659 1660
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1661
{
1662 1663
	bool ret;

1664
	/* Handle the ends of any preceding grace periods first. */
1665 1666
	if (rdp->completed == rnp->completed &&
	    !unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1667

1668
		/* No grace period end, so just accelerate recent callbacks. */
1669
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1670

1671 1672 1673
	} else {

		/* Advance callbacks. */
1674
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1675 1676 1677

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1678
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1679
	}
1680

1681
	if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) {
1682 1683 1684 1685 1686 1687
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1688
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1689
		rdp->passed_quiesce = 0;
1690
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1691 1692
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
		zero_cpu_stall_ticks(rdp);
1693
		ACCESS_ONCE(rdp->gpwrap) = false;
1694
	}
1695
	return ret;
1696 1697
}

1698
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1699 1700
{
	unsigned long flags;
1701
	bool needwake;
1702 1703 1704 1705
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1706
	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1707 1708
	     rdp->completed == ACCESS_ONCE(rnp->completed) &&
	     !unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */
1709 1710 1711 1712
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1713
	smp_mb__after_unlock_lock();
1714
	needwake = __note_gp_changes(rsp, rnp, rdp);
1715
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1716 1717
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1718 1719
}

1720
/*
1721
 * Initialize a new grace period.  Return 0 if no grace period required.
1722
 */
1723
static int rcu_gp_init(struct rcu_state *rsp)
1724
{
1725
	unsigned long oldmask;
1726
	struct rcu_data *rdp;
1727
	struct rcu_node *rnp = rcu_get_root(rsp);
1728

1729
	ACCESS_ONCE(rsp->gp_activity) = jiffies;
1730
	rcu_bind_gp_kthread();
1731
	raw_spin_lock_irq(&rnp->lock);
1732
	smp_mb__after_unlock_lock();
1733
	if (!ACCESS_ONCE(rsp->gp_flags)) {
1734 1735 1736 1737
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1738
	ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1739

1740 1741 1742 1743 1744
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1745 1746 1747 1748 1749
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1750
	record_gp_stall_check_time(rsp);
1751 1752
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1753
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1754 1755
	raw_spin_unlock_irq(&rnp->lock);

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irq(&rnp->lock);
		smp_mb__after_unlock_lock();
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
			raw_spin_unlock_irq(&rnp->lock);
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

		raw_spin_unlock_irq(&rnp->lock);
	}

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1819
		raw_spin_lock_irq(&rnp->lock);
1820
		smp_mb__after_unlock_lock();
1821
		rdp = this_cpu_ptr(rsp->rda);
1822 1823
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1824
		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1825
		WARN_ON_ONCE(rnp->completed != rsp->completed);
1826
		ACCESS_ONCE(rnp->completed) = rsp->completed;
1827
		if (rnp == rdp->mynode)
1828
			(void)__note_gp_changes(rsp, rnp, rdp);
1829 1830 1831 1832 1833
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1834
		cond_resched_rcu_qs();
1835
		ACCESS_ONCE(rsp->gp_activity) = jiffies;
1836 1837 1838 1839
		if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_SLOW_INIT) &&
		    gp_init_delay > 0 &&
		    !(rsp->gpnum % (rcu_num_nodes * 10)))
			schedule_timeout_uninterruptible(gp_init_delay);
1840
	}
1841

1842 1843
	return 1;
}
1844

1845 1846 1847
/*
 * Do one round of quiescent-state forcing.
 */
1848
static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1849 1850
{
	int fqs_state = fqs_state_in;
1851 1852
	bool isidle = false;
	unsigned long maxj;
1853 1854
	struct rcu_node *rnp = rcu_get_root(rsp);

1855
	ACCESS_ONCE(rsp->gp_activity) = jiffies;
1856 1857 1858
	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
1859
		if (is_sysidle_rcu_state(rsp)) {
1860
			isidle = true;
1861 1862
			maxj = jiffies - ULONG_MAX / 4;
		}
1863 1864
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1865
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1866 1867 1868
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1869
		isidle = false;
1870
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1871 1872 1873 1874
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
1875
		smp_mb__after_unlock_lock();
1876 1877
		ACCESS_ONCE(rsp->gp_flags) =
			ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
1878 1879 1880 1881 1882
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1883 1884 1885
/*
 * Clean up after the old grace period.
 */
1886
static void rcu_gp_cleanup(struct rcu_state *rsp)
1887 1888
{
	unsigned long gp_duration;
1889
	bool needgp = false;
1890
	int nocb = 0;
1891 1892
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1893

1894
	ACCESS_ONCE(rsp->gp_activity) = jiffies;
1895
	raw_spin_lock_irq(&rnp->lock);
1896
	smp_mb__after_unlock_lock();
1897 1898 1899
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1900

1901 1902 1903 1904 1905 1906 1907 1908
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1909
	raw_spin_unlock_irq(&rnp->lock);
1910

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1921
		raw_spin_lock_irq(&rnp->lock);
1922
		smp_mb__after_unlock_lock();
1923 1924
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
1925
		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1926 1927
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
1928
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1929
		/* smp_mb() provided by prior unlock-lock pair. */
1930
		nocb += rcu_future_gp_cleanup(rsp, rnp);
1931
		raw_spin_unlock_irq(&rnp->lock);
1932
		cond_resched_rcu_qs();
1933
		ACCESS_ONCE(rsp->gp_activity) = jiffies;
1934
	}
1935 1936
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1937
	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1938
	rcu_nocb_gp_set(rnp, nocb);
1939

1940 1941
	/* Declare grace period done. */
	ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1942
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1943
	rsp->fqs_state = RCU_GP_IDLE;
1944
	rdp = this_cpu_ptr(rsp->rda);
1945 1946 1947
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1948
		ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1949 1950 1951 1952
		trace_rcu_grace_period(rsp->name,
				       ACCESS_ONCE(rsp->gpnum),
				       TPS("newreq"));
	}
1953 1954 1955 1956 1957 1958 1959 1960
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1961
	int fqs_state;
1962
	int gf;
1963
	unsigned long j;
1964
	int ret;
1965 1966 1967 1968 1969 1970 1971
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1972 1973 1974
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwait"));
1975
			rsp->gp_state = RCU_GP_WAIT_GPS;
1976
			wait_event_interruptible(rsp->gp_wq,
1977
						 ACCESS_ONCE(rsp->gp_flags) &
1978
						 RCU_GP_FLAG_INIT);
1979
			/* Locking provides needed memory barrier. */
1980
			if (rcu_gp_init(rsp))
1981
				break;
1982
			cond_resched_rcu_qs();
1983
			ACCESS_ONCE(rsp->gp_activity) = jiffies;
1984
			WARN_ON(signal_pending(current));
1985 1986 1987
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwaitsig"));
1988
		}
1989

1990 1991
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1992 1993 1994 1995 1996
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1997
		ret = 0;
1998
		for (;;) {
1999 2000
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
2001 2002 2003
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("fqswait"));
2004
			rsp->gp_state = RCU_GP_WAIT_FQS;
2005
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
2006 2007
					((gf = ACCESS_ONCE(rsp->gp_flags)) &
					 RCU_GP_FLAG_FQS) ||
2008 2009
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
2010
					j);
2011
			/* Locking provides needed memory barriers. */
2012
			/* If grace period done, leave loop. */
2013
			if (!ACCESS_ONCE(rnp->qsmask) &&
2014
			    !rcu_preempt_blocked_readers_cgp(rnp))
2015
				break;
2016
			/* If time for quiescent-state forcing, do it. */
2017 2018
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2019 2020 2021
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsstart"));
2022
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
2023 2024 2025
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsend"));
2026
				cond_resched_rcu_qs();
2027
				ACCESS_ONCE(rsp->gp_activity) = jiffies;
2028 2029
			} else {
				/* Deal with stray signal. */
2030
				cond_resched_rcu_qs();
2031
				ACCESS_ONCE(rsp->gp_activity) = jiffies;
2032
				WARN_ON(signal_pending(current));
2033 2034 2035
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqswaitsig"));
2036
			}
2037 2038 2039 2040 2041 2042 2043 2044
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
2045
		}
2046 2047 2048

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
2049 2050 2051
	}
}

2052 2053 2054
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2055
 * the root node's ->lock and hard irqs must be disabled.
2056 2057 2058 2059
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2060 2061
 *
 * Returns true if the grace-period kthread must be awakened.
2062
 */
2063
static bool
2064 2065
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2066
{
2067
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2068
		/*
2069
		 * Either we have not yet spawned the grace-period
2070 2071
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2072
		 * Either way, don't start a new grace period.
2073
		 */
2074
		return false;
2075
	}
2076
	ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
2077 2078
	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
			       TPS("newreq"));
2079

2080 2081
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2082
	 * could cause possible deadlocks with the rq->lock. Defer
2083
	 * the wakeup to our caller.
2084
	 */
2085
	return true;
2086 2087
}

2088 2089 2090 2091 2092 2093
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2094 2095
 *
 * Returns true if the grace-period kthread needs to be awakened.
2096
 */
2097
static bool rcu_start_gp(struct rcu_state *rsp)
2098 2099 2100
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2101
	bool ret = false;
2102 2103 2104 2105 2106 2107 2108 2109 2110

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2111 2112 2113
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2114 2115
}

2116
/*
P
Paul E. McKenney 已提交
2117 2118 2119
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
2120 2121
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
2122
 */
P
Paul E. McKenney 已提交
2123
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2124
	__releases(rcu_get_root(rsp)->lock)
2125
{
2126
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2127
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2128
	rcu_gp_kthread_wake(rsp);
2129 2130
}

2131
/*
P
Paul E. McKenney 已提交
2132 2133 2134 2135 2136 2137
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
2138 2139
 */
static void
P
Paul E. McKenney 已提交
2140 2141
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
2142 2143
	__releases(rnp->lock)
{
2144 2145
	struct rcu_node *rnp_c;

2146 2147 2148 2149 2150
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
2151
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2152 2153 2154
			return;
		}
		rnp->qsmask &= ~mask;
2155 2156 2157 2158
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2159
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2160 2161

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
2162
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2163 2164 2165 2166 2167 2168 2169 2170 2171
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
2172
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2173
		rnp_c = rnp;
2174
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
2175
		raw_spin_lock_irqsave(&rnp->lock, flags);
2176
		smp_mb__after_unlock_lock();
2177
		WARN_ON_ONCE(rnp_c->qsmask);
2178 2179 2180 2181
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2182
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2183
	 * to clean up and start the next grace period if one is needed.
2184
	 */
P
Paul E. McKenney 已提交
2185
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2186 2187
}

2188 2189 2190 2191 2192 2193 2194
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2195
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
	unsigned long mask;
	struct rcu_node *rnp_p;

	WARN_ON_ONCE(rsp == &rcu_bh_state || rsp == &rcu_sched_state);
	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
		 * Either there is only one rcu_node in the tree,
		 * or tasks were kicked up to root rcu_node due to
		 * CPUs going offline.
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

	/* Report up the rest of the hierarchy. */
	mask = rnp->grpmask;
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
	smp_mb__after_unlock_lock();
	rcu_report_qs_rnp(mask, rsp, rnp_p, flags);
}

2227
/*
P
Paul E. McKenney 已提交
2228 2229 2230 2231 2232 2233 2234
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
2235 2236
 */
static void
2237
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2238 2239 2240
{
	unsigned long flags;
	unsigned long mask;
2241
	bool needwake;
2242 2243 2244
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
2245
	raw_spin_lock_irqsave(&rnp->lock, flags);
2246
	smp_mb__after_unlock_lock();
2247 2248 2249 2250
	if ((rdp->passed_quiesce == 0 &&
	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
	    rdp->gpwrap) {
2251 2252

		/*
2253 2254 2255 2256
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2257
		 */
2258
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
2259
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
P
Paul E. McKenney 已提交
2260
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2261 2262 2263 2264
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
2265
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2266 2267 2268 2269 2270 2271 2272
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2273
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2274

P
Paul E. McKenney 已提交
2275
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
2276 2277
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2290 2291
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2304 2305
	if (!rdp->passed_quiesce &&
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2306 2307
		return;

P
Paul E. McKenney 已提交
2308 2309 2310 2311
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2312
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2313 2314 2315 2316
}

#ifdef CONFIG_HOTPLUG_CPU

2317
/*
2318 2319
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2320
 * ->orphan_lock.
2321
 */
2322 2323 2324
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2325
{
P
Paul E. McKenney 已提交
2326
	/* No-CBs CPUs do not have orphanable callbacks. */
2327
	if (rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2328 2329
		return;

2330 2331
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2332 2333
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2334
	 */
2335
	if (rdp->nxtlist != NULL) {
2336 2337 2338
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2339
		rdp->qlen_lazy = 0;
2340
		ACCESS_ONCE(rdp->qlen) = 0;
2341 2342 2343
	}

	/*
2344 2345 2346 2347 2348 2349 2350
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2351
	 */
2352 2353 2354 2355
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2356 2357 2358
	}

	/*
2359 2360 2361
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2362
	 */
2363
	if (rdp->nxtlist != NULL) {
2364 2365
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2366
	}
2367

2368 2369 2370 2371
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2372
	init_callback_list(rdp);
2373
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2374 2375 2376 2377
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2378
 * orphanage.  The caller must hold the ->orphan_lock.
2379
 */
2380
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2381 2382
{
	int i;
2383
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2384

P
Paul E. McKenney 已提交
2385
	/* No-CBs CPUs are handled specially. */
2386
	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2387 2388
		return;

2389 2390 2391 2392
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2393 2394
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
2434 2435
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2436
			       TPS("cpuofl"));
2437 2438
}

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
		smp_mb__after_unlock_lock(); /* GP memory ordering. */
		rnp->qsmaskinit &= ~mask;
2471
		rnp->qsmask &= ~mask;
2472 2473 2474 2475 2476 2477 2478 2479
		if (rnp->qsmaskinit) {
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			return;
		}
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
	}
}

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
/*
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();	/* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

2500
/*
2501
 * The CPU has been completely removed, and some other CPU is reporting
2502 2503
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2504 2505
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2506
 */
2507
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2508
{
2509
	unsigned long flags;
2510
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2511
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2512

2513
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2514
	rcu_boost_kthread_setaffinity(rnp, -1);
2515

2516
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2517
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2518
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2519
	rcu_adopt_orphan_cbs(rsp, flags);
2520
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2521

2522 2523 2524
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2525 2526 2527 2528
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

2529
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2530 2531 2532
{
}

2533 2534 2535 2536
static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
}

2537 2538 2539 2540
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
}

2541
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2542 2543 2544 2545 2546 2547 2548 2549 2550
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2551
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2552 2553 2554
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2555 2556
	long bl, count, count_lazy;
	int i;
2557

2558
	/* If no callbacks are ready, just return. */
2559
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2560
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2561 2562 2563
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2564
		return;
2565
	}
2566 2567 2568 2569 2570 2571

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2572
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2573
	bl = rdp->blimit;
2574
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2575 2576 2577 2578
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2579 2580 2581
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2582 2583 2584
	local_irq_restore(flags);

	/* Invoke callbacks. */
2585
	count = count_lazy = 0;
2586 2587 2588
	while (list) {
		next = list->next;
		prefetch(next);
2589
		debug_rcu_head_unqueue(list);
2590 2591
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2592
		list = next;
2593 2594 2595 2596
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2597 2598 2599 2600
			break;
	}

	local_irq_save(flags);
2601 2602 2603
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2604 2605 2606 2607 2608

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2609 2610 2611
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2612 2613 2614
			else
				break;
	}
2615 2616
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2617
	ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
2618
	rdp->n_cbs_invoked += count;
2619 2620 2621 2622 2623

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2624 2625 2626 2627 2628 2629
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2630
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2631

2632 2633
	local_irq_restore(flags);

2634
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2635
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2636
		invoke_rcu_core();
2637 2638 2639 2640 2641
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2642
 * Also schedule RCU core processing.
2643
 *
2644
 * This function must be called from hardirq context.  It is normally
2645 2646 2647
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2648
void rcu_check_callbacks(int user)
2649
{
2650
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2651
	increment_cpu_stall_ticks();
2652
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2653 2654 2655 2656 2657

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2658
		 * a quiescent state, so note it.
2659 2660
		 *
		 * No memory barrier is required here because both
2661 2662 2663
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2664 2665
		 */

2666 2667
		rcu_sched_qs();
		rcu_bh_qs();
2668 2669 2670 2671 2672 2673 2674

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2675
		 * critical section, so note it.
2676 2677
		 */

2678
		rcu_bh_qs();
2679
	}
2680
	rcu_preempt_check_callbacks();
2681
	if (rcu_pending())
2682
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2683 2684
	if (user)
		rcu_note_voluntary_context_switch(current);
2685
	trace_rcu_utilization(TPS("End scheduler-tick"));
2686 2687 2688 2689 2690
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2691 2692
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2693
 * The caller must have suppressed start of new grace periods.
2694
 */
2695 2696 2697 2698
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2699 2700 2701 2702 2703
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2704
	struct rcu_node *rnp;
2705

2706
	rcu_for_each_leaf_node(rsp, rnp) {
2707
		cond_resched_rcu_qs();
2708
		mask = 0;
P
Paul E. McKenney 已提交
2709
		raw_spin_lock_irqsave(&rnp->lock, flags);
2710
		smp_mb__after_unlock_lock();
2711
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
2712
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2713
			return;
2714
		}
2715
		if (rnp->qsmask == 0) {
2716
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2717 2718
			continue;
		}
2719
		cpu = rnp->grplo;
2720
		bit = 1;
2721
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2722 2723
			if ((rnp->qsmask & bit) != 0) {
				if ((rnp->qsmaskinit & bit) != 0)
2724
					*isidle = false;
2725 2726 2727
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2728
		}
2729
		if (mask != 0) {
2730
			/* Idle/offline CPUs, report. */
P
Paul E. McKenney 已提交
2731
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
		} else if (rnp->parent &&
			 list_empty(&rnp->blkd_tasks) &&
			 !rnp->qsmask &&
			 (rnp->parent->qsmask & rnp->grpmask)) {
			/*
			 * Race between grace-period initialization and task
			 * existing RCU read-side critical section, report.
			 */
			rcu_report_unblock_qs_rnp(rsp, rnp, flags);
		} else {
			/* Nothing to do here, so just drop the lock. */
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2744 2745 2746 2747 2748 2749 2750 2751
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2752
static void force_quiescent_state(struct rcu_state *rsp)
2753 2754
{
	unsigned long flags;
2755 2756 2757 2758 2759
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2760
	rnp = __this_cpu_read(rsp->rda->mynode);
2761 2762 2763 2764 2765 2766
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2767
			rsp->n_force_qs_lh++;
2768 2769 2770 2771 2772
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2773

2774 2775
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2776
	smp_mb__after_unlock_lock();
2777 2778
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2779
		rsp->n_force_qs_lh++;
2780
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2781
		return;  /* Someone beat us to it. */
2782
	}
2783 2784
	ACCESS_ONCE(rsp->gp_flags) =
		ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
2785
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2786
	rcu_gp_kthread_wake(rsp);
2787 2788 2789
}

/*
2790 2791 2792
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2793 2794
 */
static void
2795
__rcu_process_callbacks(struct rcu_state *rsp)
2796 2797
{
	unsigned long flags;
2798
	bool needwake;
2799
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2800

2801 2802
	WARN_ON_ONCE(rdp->beenonline == 0);

2803 2804 2805 2806
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2807
	local_irq_save(flags);
2808
	if (cpu_needs_another_gp(rsp, rdp)) {
2809
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2810
		needwake = rcu_start_gp(rsp);
2811
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2812 2813
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2814 2815
	} else {
		local_irq_restore(flags);
2816 2817 2818
	}

	/* If there are callbacks ready, invoke them. */
2819
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2820
		invoke_rcu_callbacks(rsp, rdp);
2821 2822 2823

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2824 2825
}

2826
/*
2827
 * Do RCU core processing for the current CPU.
2828
 */
2829
static void rcu_process_callbacks(struct softirq_action *unused)
2830
{
2831 2832
	struct rcu_state *rsp;

2833 2834
	if (cpu_is_offline(smp_processor_id()))
		return;
2835
	trace_rcu_utilization(TPS("Start RCU core"));
2836 2837
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2838
	trace_rcu_utilization(TPS("End RCU core"));
2839 2840
}

2841
/*
2842 2843 2844
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2845
 * are running on the current CPU with softirqs disabled, the
2846
 * rcu_cpu_kthread_task cannot disappear out from under us.
2847
 */
2848
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2849
{
2850 2851
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
2852 2853
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2854 2855
		return;
	}
2856
	invoke_rcu_callbacks_kthread();
2857 2858
}

2859
static void invoke_rcu_core(void)
2860
{
2861 2862
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2863 2864
}

2865 2866 2867 2868 2869
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2870
{
2871 2872
	bool needwake;

2873 2874 2875 2876
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2877
	if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2878 2879
		invoke_rcu_core();

2880
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2881
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2882
		return;
2883

2884 2885 2886 2887 2888 2889 2890
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2891
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2892 2893

		/* Are we ignoring a completed grace period? */
2894
		note_gp_changes(rsp, rdp);
2895 2896 2897 2898 2899

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2900
			raw_spin_lock(&rnp_root->lock);
2901
			smp_mb__after_unlock_lock();
2902
			needwake = rcu_start_gp(rsp);
2903
			raw_spin_unlock(&rnp_root->lock);
2904 2905
			if (needwake)
				rcu_gp_kthread_wake(rsp);
2906 2907 2908 2909 2910
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2911
				force_quiescent_state(rsp);
2912 2913 2914
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2915
	}
2916 2917
}

2918 2919 2920 2921 2922 2923 2924
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
2925 2926 2927 2928 2929 2930
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
2931 2932
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
2933
	   struct rcu_state *rsp, int cpu, bool lazy)
2934 2935 2936 2937
{
	unsigned long flags;
	struct rcu_data *rdp;

2938
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2939 2940 2941 2942 2943 2944
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
		ACCESS_ONCE(head->func) = rcu_leak_callback;
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
2955
	rdp = this_cpu_ptr(rsp->rda);
2956 2957

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
2958 2959 2960 2961 2962
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
2963
		offline = !__call_rcu_nocb(rdp, head, lazy, flags);
P
Paul E. McKenney 已提交
2964
		WARN_ON_ONCE(offline);
2965 2966 2967 2968
		/* _call_rcu() is illegal on offline CPU; leak the callback. */
		local_irq_restore(flags);
		return;
	}
2969
	ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
2970 2971
	if (lazy)
		rdp->qlen_lazy++;
2972 2973
	else
		rcu_idle_count_callbacks_posted();
2974 2975 2976
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2977

2978 2979
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2980
					 rdp->qlen_lazy, rdp->qlen);
2981
	else
2982
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2983

2984 2985
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2986 2987 2988 2989
	local_irq_restore(flags);
}

/*
2990
 * Queue an RCU-sched callback for invocation after a grace period.
2991
 */
2992
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2993
{
P
Paul E. McKenney 已提交
2994
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2995
}
2996
EXPORT_SYMBOL_GPL(call_rcu_sched);
2997 2998

/*
2999
 * Queue an RCU callback for invocation after a quicker grace period.
3000 3001 3002
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
3003
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3004 3005 3006
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
3017
	__call_rcu(head, func, rcu_state_p, -1, 1);
3018 3019 3020
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3032 3033
	int ret;

3034
	might_sleep();  /* Check for RCU read-side critical section. */
3035 3036 3037 3038
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3039 3040
}

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3075 3076 3077 3078 3079 3080 3081 3082 3083
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3084 3085 3086 3087
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
3088 3089
	if (rcu_blocking_is_gp())
		return;
3090 3091 3092 3093
	if (rcu_expedited)
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3105 3106 3107
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3108 3109 3110
 */
void synchronize_rcu_bh(void)
{
3111 3112 3113 3114
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3115 3116
	if (rcu_blocking_is_gp())
		return;
3117 3118 3119 3120
	if (rcu_expedited)
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3121 3122 3123
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3144
	return smp_load_acquire(&rcu_state_p->gpnum);
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3170
	newstate = smp_load_acquire(&rcu_state_p->completed);
3171 3172 3173 3174 3175
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
3227 3228 3229
	cpumask_var_t cm;
	bool cma = false;
	int cpu;
3230 3231
	long firstsnap, s, snap;
	int trycount = 0;
3232
	struct rcu_state *rsp = &rcu_sched_state;
3233

3234 3235 3236 3237 3238 3239 3240 3241
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
3242 3243
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
3244 3245
			 ULONG_MAX / 8)) {
		synchronize_sched();
3246
		atomic_long_inc(&rsp->expedited_wrap);
3247 3248
		return;
	}
3249

3250 3251 3252 3253
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
3254
	snap = atomic_long_inc_return(&rsp->expedited_start);
3255
	firstsnap = snap;
3256 3257 3258 3259 3260 3261
	if (!try_get_online_cpus()) {
		/* CPU hotplug operation in flight, fall back to normal GP. */
		wait_rcu_gp(call_rcu_sched);
		atomic_long_inc(&rsp->expedited_normal);
		return;
	}
3262
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3263

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
	/* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
	cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
	if (cma) {
		cpumask_copy(cm, cpu_online_mask);
		cpumask_clear_cpu(raw_smp_processor_id(), cm);
		for_each_cpu(cpu, cm) {
			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

			if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
				cpumask_clear_cpu(cpu, cm);
		}
		if (cpumask_weight(cm) == 0)
			goto all_cpus_idle;
	}

3279 3280 3281 3282
	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
3283
	while (try_stop_cpus(cma ? cm : cpu_online_mask,
3284 3285 3286
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
3287
		atomic_long_inc(&rsp->expedited_tryfail);
3288

3289
		/* Check to see if someone else did our work for us. */
3290
		s = atomic_long_read(&rsp->expedited_done);
3291
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3292
			/* ensure test happens before caller kfree */
3293
			smp_mb__before_atomic(); /* ^^^ */
3294
			atomic_long_inc(&rsp->expedited_workdone1);
3295
			free_cpumask_var(cm);
3296 3297
			return;
		}
3298 3299

		/* No joy, try again later.  Or just synchronize_sched(). */
3300
		if (trycount++ < 10) {
3301
			udelay(trycount * num_online_cpus());
3302
		} else {
3303
			wait_rcu_gp(call_rcu_sched);
3304
			atomic_long_inc(&rsp->expedited_normal);
3305
			free_cpumask_var(cm);
3306 3307 3308
			return;
		}

3309
		/* Recheck to see if someone else did our work for us. */
3310
		s = atomic_long_read(&rsp->expedited_done);
3311
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3312
			/* ensure test happens before caller kfree */
3313
			smp_mb__before_atomic(); /* ^^^ */
3314
			atomic_long_inc(&rsp->expedited_workdone2);
3315
			free_cpumask_var(cm);
3316 3317 3318 3319 3320
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
3321 3322 3323 3324
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
3325
		 */
3326 3327 3328 3329
		if (!try_get_online_cpus()) {
			/* CPU hotplug operation in flight, use normal GP. */
			wait_rcu_gp(call_rcu_sched);
			atomic_long_inc(&rsp->expedited_normal);
3330
			free_cpumask_var(cm);
3331 3332
			return;
		}
3333
		snap = atomic_long_read(&rsp->expedited_start);
3334 3335
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
3336
	atomic_long_inc(&rsp->expedited_stoppedcpus);
3337

3338 3339 3340
all_cpus_idle:
	free_cpumask_var(cm);

3341 3342 3343 3344
	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
3345
	 * than we did already did their update.
3346 3347
	 */
	do {
3348
		atomic_long_inc(&rsp->expedited_done_tries);
3349
		s = atomic_long_read(&rsp->expedited_done);
3350
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3351
			/* ensure test happens before caller kfree */
3352
			smp_mb__before_atomic(); /* ^^^ */
3353
			atomic_long_inc(&rsp->expedited_done_lost);
3354 3355
			break;
		}
3356
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3357
	atomic_long_inc(&rsp->expedited_done_exit);
3358 3359 3360 3361 3362

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3363 3364 3365 3366 3367 3368 3369 3370 3371
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3372 3373
	struct rcu_node *rnp = rdp->mynode;

3374 3375 3376 3377 3378
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3379 3380 3381 3382
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3383
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3384
	if (rcu_scheduler_fully_active &&
3385 3386
	    rdp->qs_pending && !rdp->passed_quiesce &&
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3387
		rdp->n_rp_qs_pending++;
3388 3389 3390
	} else if (rdp->qs_pending &&
		   (rdp->passed_quiesce ||
		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3391
		rdp->n_rp_report_qs++;
3392
		return 1;
3393
	}
3394 3395

	/* Does this CPU have callbacks ready to invoke? */
3396 3397
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3398
		return 1;
3399
	}
3400 3401

	/* Has RCU gone idle with this CPU needing another grace period? */
3402 3403
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3404
		return 1;
3405
	}
3406 3407

	/* Has another RCU grace period completed?  */
3408
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3409
		rdp->n_rp_gp_completed++;
3410
		return 1;
3411
	}
3412 3413

	/* Has a new RCU grace period started? */
3414 3415
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(ACCESS_ONCE(rdp->gpwrap))) { /* outside lock */
3416
		rdp->n_rp_gp_started++;
3417
		return 1;
3418
	}
3419

3420 3421 3422 3423 3424 3425
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3426
	/* nothing to do */
3427
	rdp->n_rp_need_nothing++;
3428 3429 3430 3431 3432 3433 3434 3435
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3436
static int rcu_pending(void)
3437
{
3438 3439 3440
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3441
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3442 3443
			return 1;
	return 0;
3444 3445 3446
}

/*
3447 3448 3449
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3450
 */
3451
static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3452
{
3453 3454 3455
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3456 3457
	struct rcu_state *rsp;

3458
	for_each_rcu_flavor(rsp) {
3459
		rdp = this_cpu_ptr(rsp->rda);
3460 3461 3462 3463
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3464
			al = false;
3465 3466
			break;
		}
3467 3468 3469 3470
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3471 3472
}

3473 3474 3475 3476
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3477
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3478 3479 3480 3481 3482 3483
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3484 3485 3486 3487
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3488
static void rcu_barrier_callback(struct rcu_head *rhp)
3489
{
3490 3491 3492
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3493 3494
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3495
		complete(&rsp->barrier_completion);
3496 3497 3498
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
3499 3500 3501 3502 3503 3504 3505
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3506
	struct rcu_state *rsp = type;
3507
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3508

3509
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3510
	atomic_inc(&rsp->barrier_cpu_count);
3511
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3512 3513 3514 3515 3516 3517
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3518
static void _rcu_barrier(struct rcu_state *rsp)
3519
{
3520 3521
	int cpu;
	struct rcu_data *rdp;
3522 3523
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
3524

3525
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3526

3527
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3528
	mutex_lock(&rsp->barrier_mutex);
3529

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
3542
	snap_done = rsp->n_barrier_done;
3543
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555

	/*
	 * If the value in snap is odd, we needed to wait for the current
	 * rcu_barrier() to complete, then wait for the next one, in other
	 * words, we need the value of snap_done to be three larger than
	 * the value of snap.  On the other hand, if the value in snap is
	 * even, we only had to wait for the next rcu_barrier() to complete,
	 * in other words, we need the value of snap_done to be only two
	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
	 * this for us (thank you, Linus!).
	 */
	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3556
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
3567
	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3568
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3569
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3570
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3571

3572
	/*
3573 3574
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3575 3576
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3577
	 */
3578
	init_completion(&rsp->barrier_completion);
3579
	atomic_set(&rsp->barrier_cpu_count, 1);
3580
	get_online_cpus();
3581 3582

	/*
3583 3584 3585
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3586
	 */
P
Paul E. McKenney 已提交
3587
	for_each_possible_cpu(cpu) {
3588
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3589
			continue;
3590
		rdp = per_cpu_ptr(rsp->rda, cpu);
3591
		if (rcu_is_nocb_cpu(cpu)) {
3592 3593 3594 3595 3596 3597
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
						   rsp->n_barrier_done);
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
						   rsp->n_barrier_done);
3598
				smp_mb__before_atomic();
3599 3600 3601 3602
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
P
Paul E. McKenney 已提交
3603
		} else if (ACCESS_ONCE(rdp->qlen)) {
3604 3605
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
3606
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3607
		} else {
3608 3609
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
3610 3611
		}
	}
3612
	put_online_cpus();
3613 3614 3615 3616 3617

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3618
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3619
		complete(&rsp->barrier_completion);
3620

3621 3622
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
3623
	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3624
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3625
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3626 3627
	smp_mb(); /* Keep increment before caller's subsequent code. */

3628
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3629
	wait_for_completion(&rsp->barrier_completion);
3630 3631

	/* Other rcu_barrier() invocations can now safely proceed. */
3632
	mutex_unlock(&rsp->barrier_mutex);
3633 3634 3635 3636 3637 3638 3639
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3640
	_rcu_barrier(&rcu_bh_state);
3641 3642 3643 3644 3645 3646 3647 3648
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3649
	_rcu_barrier(&rcu_sched_state);
3650 3651 3652
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
		raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
		rnp->qsmaskinit |= mask;
		raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
	}
}

3675
/*
3676
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3677
 */
3678 3679
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3680 3681
{
	unsigned long flags;
3682
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3683 3684 3685
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3686
	raw_spin_lock_irqsave(&rnp->lock, flags);
3687 3688
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3689
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3690
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3691
	rdp->cpu = cpu;
3692
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3693
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
3694
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3695 3696 3697 3698 3699 3700 3701
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3702
 */
3703
static void
3704
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3705 3706 3707
{
	unsigned long flags;
	unsigned long mask;
3708
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3709 3710 3711
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3712
	raw_spin_lock_irqsave(&rnp->lock, flags);
3713
	rdp->beenonline = 1;	 /* We have now been online. */
3714 3715
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3716
	rdp->blimit = blimit;
3717
	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3718
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3719
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3720 3721
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
3722
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3723

3724 3725 3726 3727 3728
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
3729 3730
	rnp = rdp->mynode;
	mask = rdp->grpmask;
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
	smp_mb__after_unlock_lock();
	rnp->qsmaskinitnext |= mask;
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
	rdp->passed_quiesce = false;
	rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
	rdp->qs_pending = false;
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3741 3742
}

3743
static void rcu_prepare_cpu(int cpu)
3744
{
3745 3746 3747
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3748
		rcu_init_percpu_data(cpu, rsp);
3749 3750 3751
}

/*
3752
 * Handle CPU online/offline notification events.
3753
 */
3754 3755
int rcu_cpu_notify(struct notifier_block *self,
		   unsigned long action, void *hcpu)
3756 3757
{
	long cpu = (long)hcpu;
3758
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3759
	struct rcu_node *rnp = rdp->mynode;
3760
	struct rcu_state *rsp;
3761 3762 3763 3764

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
3765 3766
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
3767
		rcu_spawn_all_nocb_kthreads(cpu);
3768 3769
		break;
	case CPU_ONLINE:
3770
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
3771
		rcu_boost_kthread_setaffinity(rnp, -1);
3772 3773
		break;
	case CPU_DOWN_PREPARE:
3774
		rcu_boost_kthread_setaffinity(rnp, cpu);
3775
		break;
3776 3777
	case CPU_DYING:
	case CPU_DYING_FROZEN:
3778 3779
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
3780
		break;
3781 3782 3783 3784 3785
	case CPU_DYING_IDLE:
		for_each_rcu_flavor(rsp) {
			rcu_cleanup_dying_idle_cpu(cpu, rsp);
		}
		break;
3786 3787 3788 3789
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
3790
		for_each_rcu_flavor(rsp) {
3791
			rcu_cleanup_dead_cpu(cpu, rsp);
3792 3793
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
3794 3795 3796 3797
		break;
	default:
		break;
	}
3798
	return NOTIFY_OK;
3799 3800
}

3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_expedited = 1;
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
		rcu_expedited = 0;
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3820
/*
3821
 * Spawn the kthreads that handle each RCU flavor's grace periods.
3822 3823 3824 3825
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
3826
	int kthread_prio_in = kthread_prio;
3827 3828
	struct rcu_node *rnp;
	struct rcu_state *rsp;
3829
	struct sched_param sp;
3830 3831
	struct task_struct *t;

3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

3843
	rcu_scheduler_fully_active = 1;
3844
	for_each_rcu_flavor(rsp) {
3845
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3846 3847 3848 3849
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
3850 3851 3852 3853 3854
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
		wake_up_process(t);
3855 3856
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
3857
	rcu_spawn_nocb_kthreads();
3858
	rcu_spawn_boost_kthreads();
3859 3860 3861 3862
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

3878 3879 3880 3881 3882 3883 3884 3885 3886
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

3887 3888
	rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
	for (i = rcu_num_lvls - 2; i >= 0; i--)
3889 3890 3891 3892 3893 3894 3895 3896 3897
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

3898
	cprv = nr_cpu_ids;
3899
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3910 3911
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3912
{
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
	static const char * const buf[] = {
		"rcu_node_0",
		"rcu_node_1",
		"rcu_node_2",
		"rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static const char * const fqs[] = {
		"rcu_node_fqs_0",
		"rcu_node_fqs_1",
		"rcu_node_fqs_2",
		"rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3923
	static u8 fl_mask = 0x1;
3924 3925 3926 3927 3928
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

3929 3930
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

3931 3932 3933 3934
	/* Silence gcc 4.8 warning about array index out of range. */
	if (rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls overflow");

3935 3936
	/* Initialize the level-tracking arrays. */

3937 3938 3939
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
3940 3941
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);
3942 3943
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
3944 3945 3946

	/* Initialize the elements themselves, starting from the leaves. */

3947
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3948 3949 3950
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
3951
			raw_spin_lock_init(&rnp->lock);
3952 3953
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
3954 3955 3956
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
3957 3958
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
3959 3960 3961 3962
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
3963 3964
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
3976
			INIT_LIST_HEAD(&rnp->blkd_tasks);
3977
			rcu_init_one_nocb(rnp);
3978 3979
		}
	}
3980

3981
	rsp->rda = rda;
3982
	init_waitqueue_head(&rsp->gp_wq);
3983
	rnp = rsp->level[rcu_num_lvls - 1];
3984
	for_each_possible_cpu(i) {
3985
		while (i > rnp->grphi)
3986
			rnp++;
3987
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3988 3989
		rcu_boot_init_percpu_data(i, rsp);
	}
3990
	list_add(&rsp->flavors, &rcu_struct_flavors);
3991 3992
}

3993 3994
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3995
 * replace the definitions in tree.h because those are needed to size
3996 3997 3998 3999
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4000
	ulong d;
4001 4002
	int i;
	int j;
4003
	int n = nr_cpu_ids;
4004 4005
	int rcu_capacity[MAX_RCU_LVLS + 1];

4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4019
	/* If the compile-time values are accurate, just leave. */
4020 4021
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
4022
		return;
4023 4024
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

4070
void __init rcu_init(void)
4071
{
P
Paul E. McKenney 已提交
4072
	int cpu;
4073

4074
	rcu_bootup_announce();
4075
	rcu_init_geometry();
4076
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4077
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4078
	__rcu_init_preempt();
J
Jiang Fang 已提交
4079
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4080 4081 4082 4083 4084 4085 4086

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
4087
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
4088 4089
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4090 4091

	rcu_early_boot_tests();
4092 4093
}

4094
#include "tree_plugin.h"