tree.c 130.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
35
#include <linux/rcupdate_wait.h>
36 37
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/sched/debug.h>
39
#include <linux/nmi.h>
40
#include <linux/atomic.h>
41
#include <linux/bitops.h>
42
#include <linux/export.h>
43 44 45 46 47 48 49
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <uapi/linux/sched/types.h>
54
#include <linux/prefetch.h>
55 56
#include <linux/delay.h>
#include <linux/stop_machine.h>
57
#include <linux/random.h>
58
#include <linux/trace_events.h>
59
#include <linux/suspend.h>
60

61
#include "tree.h"
62
#include "rcu.h"
63

64 65 66 67 68
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71 72 73 74 75 76 77 78
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
79 80
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
81
static char sname##_varname[] = #sname; \
82 83 84 85 86 87 88 89 90
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
91
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92
struct rcu_state sname##_state = { \
93
	.level = { &sname##_state.node[0] }, \
94
	.rda = &sname##_data, \
95
	.call = cr, \
96
	.gp_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
97 98
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
99
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 101
	.orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
	.orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
102
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103
	.name = RCU_STATE_NAME(sname), \
104
	.abbr = sabbr, \
105
	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106
	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107
}
108

109 110
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
111

112
static struct rcu_state *const rcu_state_p;
113
LIST_HEAD(rcu_struct_flavors);
114

115 116 117
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
118 119 120
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
121 122
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
123
module_param(rcu_fanout_leaf, int, 0444);
124
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
125
/* Number of rcu_nodes at specified level. */
126
int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
127
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128 129
/* panic() on RCU Stall sysctl. */
int sysctl_panic_on_rcu_stall __read_mostly;
130

131
/*
132 133 134 135
 * The rcu_scheduler_active variable is initialized to the value
 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 * RCU can assume that there is but one task, allowing RCU to (for example)
136
 * optimize synchronize_rcu() to a simple barrier().  When this variable
137 138 139 140 141
 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 * to detect real grace periods.  This variable is also used to suppress
 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 * is fully initialized, including all of its kthreads having been spawned.
142
 */
143 144 145
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

160 161
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
162
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
163 164
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
165 166
static void rcu_report_exp_rdp(struct rcu_state *rsp,
			       struct rcu_data *rdp, bool wake);
167
static void sync_sched_exp_online_cleanup(int cpu);
168

169
/* rcuc/rcub kthread realtime priority */
170
#ifdef CONFIG_RCU_KTHREAD_PRIO
171
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
172 173 174
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
175 176
module_param(kthread_prio, int, 0644);

177
/* Delay in jiffies for grace-period initialization delays, debug only. */
178 179 180 181 182 183 184 185

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

186 187
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
188
module_param(gp_init_delay, int, 0644);
189 190 191
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
192

193 194 195 196 197 198 199
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

200 201
/*
 * Number of grace periods between delays, normalized by the duration of
202
 * the delay.  The longer the delay, the more the grace periods between
203 204 205 206 207 208 209
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
210

211 212 213 214 215 216 217 218 219 220 221 222
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

223 224 225 226 227 228 229 230
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
231
	return READ_ONCE(rnp->qsmaskinitnext);
232 233
}

234
/*
235
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
236 237 238 239 240
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
241
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
242 243
}

244
/*
245
 * Note a quiescent state.  Because we do not need to know
246
 * how many quiescent states passed, just if there was at least
247
 * one since the start of the grace period, this just sets a flag.
248
 * The caller must have disabled preemption.
249
 */
250
void rcu_sched_qs(void)
251
{
252 253 254 255 256 257 258 259
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
		return;
	trace_rcu_grace_period(TPS("rcu_sched"),
			       __this_cpu_read(rcu_sched_data.gpnum),
			       TPS("cpuqs"));
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
260 261 262
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(&rcu_sched_data), true);
263 264
}

265
void rcu_bh_qs(void)
266
{
267
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
268 269 270
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
271
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
272
	}
273
}
274

275 276 277 278 279 280 281 282 283
/*
 * Steal a bit from the bottom of ->dynticks for idle entry/exit
 * control.  Initially this is for TLB flushing.
 */
#define RCU_DYNTICK_CTRL_MASK 0x1
#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
#ifndef rcu_eqs_special_exit
#define rcu_eqs_special_exit() do { } while (0)
#endif
284 285 286

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
287
	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
288 289 290 291 292 293
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

294 295 296 297 298 299 300
/*
 * Record entry into an extended quiescent state.  This is only to be
 * called when not already in an extended quiescent state.
 */
static void rcu_dynticks_eqs_enter(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
301
	int seq;
302 303

	/*
304
	 * CPUs seeing atomic_add_return() must see prior RCU read-side
305 306 307
	 * critical sections, and we also must force ordering with the
	 * next idle sojourn.
	 */
308 309 310 311 312 313 314
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
	/* Better be in an extended quiescent state! */
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (seq & RCU_DYNTICK_CTRL_CTR));
	/* Better not have special action (TLB flush) pending! */
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (seq & RCU_DYNTICK_CTRL_MASK));
315 316 317 318 319 320 321 322 323
}

/*
 * Record exit from an extended quiescent state.  This is only to be
 * called from an extended quiescent state.
 */
static void rcu_dynticks_eqs_exit(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
324
	int seq;
325 326

	/*
327
	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
328 329 330
	 * and we also must force ordering with the next RCU read-side
	 * critical section.
	 */
331 332 333 334 335 336 337 338 339
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(seq & RCU_DYNTICK_CTRL_CTR));
	if (seq & RCU_DYNTICK_CTRL_MASK) {
		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
		smp_mb__after_atomic(); /* _exit after clearing mask. */
		/* Prefer duplicate flushes to losing a flush. */
		rcu_eqs_special_exit();
	}
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
}

/*
 * Reset the current CPU's ->dynticks counter to indicate that the
 * newly onlined CPU is no longer in an extended quiescent state.
 * This will either leave the counter unchanged, or increment it
 * to the next non-quiescent value.
 *
 * The non-atomic test/increment sequence works because the upper bits
 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 * or when the corresponding CPU is offline.
 */
static void rcu_dynticks_eqs_online(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

356
	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
357
		return;
358
	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
359 360
}

361 362 363 364 365 366 367 368 369
/*
 * Is the current CPU in an extended quiescent state?
 *
 * No ordering, as we are sampling CPU-local information.
 */
bool rcu_dynticks_curr_cpu_in_eqs(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

370
	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
371 372
}

373 374 375 376
/*
 * Snapshot the ->dynticks counter with full ordering so as to allow
 * stable comparison of this counter with past and future snapshots.
 */
377
int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
378 379 380
{
	int snap = atomic_add_return(0, &rdtp->dynticks);

381
	return snap & ~RCU_DYNTICK_CTRL_MASK;
382 383
}

384 385 386 387 388 389
/*
 * Return true if the snapshot returned from rcu_dynticks_snap()
 * indicates that RCU is in an extended quiescent state.
 */
static bool rcu_dynticks_in_eqs(int snap)
{
390
	return !(snap & RCU_DYNTICK_CTRL_CTR);
391 392 393 394 395 396 397 398 399 400 401 402
}

/*
 * Return true if the CPU corresponding to the specified rcu_dynticks
 * structure has spent some time in an extended quiescent state since
 * rcu_dynticks_snap() returned the specified snapshot.
 */
static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
{
	return snap != rcu_dynticks_snap(rdtp);
}

403 404 405 406 407 408 409
/*
 * Do a double-increment of the ->dynticks counter to emulate a
 * momentary idle-CPU quiescent state.
 */
static void rcu_dynticks_momentary_idle(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
410 411
	int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
					&rdtp->dynticks);
412 413

	/* It is illegal to call this from idle state. */
414
	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
415 416
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
/*
 * Set the special (bottom) bit of the specified CPU so that it
 * will take special action (such as flushing its TLB) on the
 * next exit from an extended quiescent state.  Returns true if
 * the bit was successfully set, or false if the CPU was not in
 * an extended quiescent state.
 */
bool rcu_eqs_special_set(int cpu)
{
	int old;
	int new;
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

	do {
		old = atomic_read(&rdtp->dynticks);
		if (old & RCU_DYNTICK_CTRL_CTR)
			return false;
		new = old | RCU_DYNTICK_CTRL_MASK;
	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
	return true;
437
}
438

439 440 441 442 443 444 445
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
446
 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
447 448
 *
 * The caller must have disabled interrupts.
449 450 451
 */
static void rcu_momentary_dyntick_idle(void)
{
452 453
	raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
	rcu_dynticks_momentary_idle();
454 455
}

456 457 458
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
459
 * The caller must have disabled interrupts.
460
 */
461
void rcu_note_context_switch(bool preempt)
462
{
463
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
464
	trace_rcu_utilization(TPS("Start context switch"));
465
	rcu_sched_qs();
466
	rcu_preempt_note_context_switch();
467 468 469 470
	/* Load rcu_urgent_qs before other flags. */
	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
		goto out;
	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
471
	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
472
		rcu_momentary_dyntick_idle();
473
	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
474 475
	if (!preempt)
		rcu_note_voluntary_context_switch_lite(current);
476
out:
477
	trace_rcu_utilization(TPS("End context switch"));
478
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
479
}
480
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
481

482
/*
483
 * Register a quiescent state for all RCU flavors.  If there is an
484 485
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
486
 * RCU flavors in desperate need of a quiescent state, which will normally
487 488
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
489 490 491 492 493
 *
 * The barrier() calls are redundant in the common case when this is
 * called externally, but just in case this is called from within this
 * file.
 *
494 495 496
 */
void rcu_all_qs(void)
{
497 498
	unsigned long flags;

499 500 501 502 503 504 505 506 507
	if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
		return;
	preempt_disable();
	/* Load rcu_urgent_qs before other flags. */
	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
		preempt_enable();
		return;
	}
	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
508
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
509
	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
510
		local_irq_save(flags);
511
		rcu_momentary_dyntick_idle();
512 513
		local_irq_restore(flags);
	}
514
	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
515
		rcu_sched_qs();
516
	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
517
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
518
	preempt_enable();
519 520 521
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
522 523 524
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
525

E
Eric Dumazet 已提交
526 527 528
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
529

530 531
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
532
static bool rcu_kick_kthreads;
533 534 535

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);
536
module_param(rcu_kick_kthreads, bool, 0644);
537

538 539 540 541 542 543 544
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

545
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
546
				  struct rcu_data *rdp);
547 548 549 550
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
551
static void force_quiescent_state(struct rcu_state *rsp);
552
static int rcu_pending(void);
553 554

/*
555
 * Return the number of RCU batches started thus far for debug & stats.
556
 */
557 558 559 560 561 562 563 564
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
565
 */
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
592
 */
593
unsigned long rcu_batches_completed_sched(void)
594
{
595
	return rcu_sched_state.completed;
596
}
597
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
598 599

/*
600
 * Return the number of RCU BH batches completed thus far for debug & stats.
601
 */
602
unsigned long rcu_batches_completed_bh(void)
603 604 605 606 607
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/*
 * Return the number of RCU expedited batches completed thus far for
 * debug & stats.  Odd numbers mean that a batch is in progress, even
 * numbers mean idle.  The value returned will thus be roughly double
 * the cumulative batches since boot.
 */
unsigned long rcu_exp_batches_completed(void)
{
	return rcu_state_p->expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);

/*
 * Return the number of RCU-sched expedited batches completed thus far
 * for debug & stats.  Similar to rcu_exp_batches_completed().
 */
unsigned long rcu_exp_batches_completed_sched(void)
{
	return rcu_sched_state.expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);

630 631 632 633 634
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
635
	force_quiescent_state(rcu_state_p);
636 637 638
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

639 640 641 642 643
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
644
	force_quiescent_state(&rcu_bh_state);
645 646 647
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

648 649 650 651 652 653 654 655 656
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

672 673 674 675 676 677 678 679 680 681 682 683 684 685
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

686 687 688 689 690 691 692 693 694 695
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
696
		rsp = rcu_state_p;
697 698 699 700 701 702 703 704 705 706
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
707
	if (rsp == NULL)
708
		return;
709 710 711
	*flags = READ_ONCE(rsp->gp_flags);
	*gpnum = READ_ONCE(rsp->gpnum);
	*completed = READ_ONCE(rsp->completed);
712 713 714
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

715 716 717 718 719 720 721 722 723 724 725
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
742
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
743 744
	int *fp = &rnp->need_future_gp[idx];

745
	return READ_ONCE(*fp);
746 747
}

748
/*
749 750 751
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
752
 */
753
static bool
754 755
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
756
	if (rcu_gp_in_progress(rsp))
757
		return false;  /* No, a grace period is already in progress. */
758
	if (rcu_future_needs_gp(rsp))
759
		return true;  /* Yes, a no-CBs CPU needs one. */
760
	if (!rcu_segcblist_is_enabled(&rdp->cblist))
761
		return false;  /* No, this is a no-CBs (or offline) CPU. */
762
	if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
763
		return true;  /* Yes, CPU has newly registered callbacks. */
764 765 766
	if (rcu_segcblist_future_gp_needed(&rdp->cblist,
					   READ_ONCE(rsp->completed)))
		return true;  /* Yes, CBs for future grace period. */
767
	return false; /* No grace period needed. */
768 769
}

770
/*
771
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
772 773 774 775 776
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
777
static void rcu_eqs_enter_common(long long oldval, bool user)
778
{
779 780
	struct rcu_state *rsp;
	struct rcu_data *rdp;
781
	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
782

783
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
784 785
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
786 787
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
788

789
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
790
		rcu_ftrace_dump(DUMP_ORIG);
791 792 793
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
794
	}
795 796 797 798
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
799
	rcu_prepare_for_idle();
800
	rcu_dynticks_eqs_enter();
801
	rcu_dynticks_task_enter();
802 803

	/*
804
	 * It is illegal to enter an extended quiescent state while
805 806
	 * in an RCU read-side critical section.
	 */
807 808 809 810 811 812
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal idle entry in RCU read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
			 "Illegal idle entry in RCU-bh read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
			 "Illegal idle entry in RCU-sched read-side critical section.");
813
}
814

815 816 817
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
818
 */
819
static void rcu_eqs_enter(bool user)
820
{
821
	long long oldval;
822 823
	struct rcu_dynticks *rdtp;

824
	rdtp = this_cpu_ptr(&rcu_dynticks);
825
	oldval = rdtp->dynticks_nesting;
826 827
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
828
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
829
		rdtp->dynticks_nesting = 0;
830
		rcu_eqs_enter_common(oldval, user);
831
	} else {
832
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
833
	}
834
}
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
850 851 852
	unsigned long flags;

	local_irq_save(flags);
853
	rcu_eqs_enter(false);
854
	rcu_sysidle_enter(0);
855
	local_irq_restore(flags);
856
}
857
EXPORT_SYMBOL_GPL(rcu_idle_enter);
858

859
#ifdef CONFIG_NO_HZ_FULL
860 861 862 863 864 865 866 867 868 869
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
870
	rcu_eqs_enter(1);
871
}
872
#endif /* CONFIG_NO_HZ_FULL */
873

874 875 876 877 878
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
879
 * sections can occur.  The caller must have disabled interrupts.
880
 *
881 882 883 884 885 886 887 888
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
889
 */
890
void rcu_irq_exit(void)
891
{
892
	long long oldval;
893 894
	struct rcu_dynticks *rdtp;

895
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
896
	rdtp = this_cpu_ptr(&rcu_dynticks);
897
	oldval = rdtp->dynticks_nesting;
898
	rdtp->dynticks_nesting--;
899 900
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting < 0);
901
	if (rdtp->dynticks_nesting)
902
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
903
	else
904 905
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
906 907 908 909 910 911 912 913 914 915 916
}

/*
 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 */
void rcu_irq_exit_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_exit();
917 918 919 920
	local_irq_restore(flags);
}

/*
921
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
922 923 924 925 926
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
927
static void rcu_eqs_exit_common(long long oldval, int user)
928
{
929
	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
930

931
	rcu_dynticks_task_exit();
932
	rcu_dynticks_eqs_exit();
933
	rcu_cleanup_after_idle();
934
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
935 936
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
937 938
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
939

940
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
941
				  oldval, rdtp->dynticks_nesting);
942
		rcu_ftrace_dump(DUMP_ORIG);
943 944 945
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
946 947 948
	}
}

949 950 951
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
952
 */
953
static void rcu_eqs_exit(bool user)
954 955 956 957
{
	struct rcu_dynticks *rdtp;
	long long oldval;

958
	rdtp = this_cpu_ptr(&rcu_dynticks);
959
	oldval = rdtp->dynticks_nesting;
960
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
961
	if (oldval & DYNTICK_TASK_NEST_MASK) {
962
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
963
	} else {
964
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
965
		rcu_eqs_exit_common(oldval, user);
966
	}
967
}
968 969 970 971 972 973 974 975 976 977 978 979 980 981

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
982 983 984
	unsigned long flags;

	local_irq_save(flags);
985
	rcu_eqs_exit(false);
986
	rcu_sysidle_exit(0);
987
	local_irq_restore(flags);
988
}
989
EXPORT_SYMBOL_GPL(rcu_idle_exit);
990

991
#ifdef CONFIG_NO_HZ_FULL
992 993 994 995 996 997 998 999
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
1000
	rcu_eqs_exit(1);
1001
}
1002
#endif /* CONFIG_NO_HZ_FULL */
1003

1004 1005 1006 1007 1008
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
1009
 * sections can occur.  The caller must have disabled interrupts.
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	struct rcu_dynticks *rdtp;
	long long oldval;

1028
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1029
	rdtp = this_cpu_ptr(&rcu_dynticks);
1030 1031
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
1032 1033
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
1034
	if (oldval)
1035
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1036
	else
1037 1038
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
}

/*
 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 */
void rcu_irq_enter_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_enter();
1050 1051 1052 1053 1054 1055
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
1056 1057 1058 1059 1060
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
1061 1062 1063
 */
void rcu_nmi_enter(void)
{
1064
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1065
	int incby = 2;
1066

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
1078
	if (rcu_dynticks_curr_cpu_in_eqs()) {
1079
		rcu_dynticks_eqs_exit();
1080 1081 1082 1083
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
1084 1085 1086 1087 1088
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
1089 1090 1091 1092
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
1093 1094 1095
 */
void rcu_nmi_exit(void)
{
1096
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1097

1098 1099 1100 1101 1102 1103
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1104
	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1105 1106 1107 1108 1109 1110 1111

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
1112
		return;
1113 1114 1115 1116
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
1117
	rcu_dynticks_eqs_enter();
1118 1119 1120
}

/**
1121 1122 1123 1124 1125 1126 1127
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
1128
bool notrace __rcu_is_watching(void)
1129
{
1130
	return !rcu_dynticks_curr_cpu_in_eqs();
1131 1132 1133 1134
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1135
 *
1136
 * If the current CPU is in its idle loop and is neither in an interrupt
1137
 * or NMI handler, return true.
1138
 */
1139
bool notrace rcu_is_watching(void)
1140
{
1141
	bool ret;
1142

1143
	preempt_disable_notrace();
1144
	ret = __rcu_is_watching();
1145
	preempt_enable_notrace();
1146
	return ret;
1147
}
1148
EXPORT_SYMBOL_GPL(rcu_is_watching);
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
/*
 * If a holdout task is actually running, request an urgent quiescent
 * state from its CPU.  This is unsynchronized, so migrations can cause
 * the request to go to the wrong CPU.  Which is OK, all that will happen
 * is that the CPU's next context switch will be a bit slower and next
 * time around this task will generate another request.
 */
void rcu_request_urgent_qs_task(struct task_struct *t)
{
	int cpu;

	barrier();
	cpu = task_cpu(t);
	if (!task_curr(t))
		return; /* This task is not running on that CPU. */
	smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
}

1168
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1169 1170 1171 1172 1173 1174 1175

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
1176 1177 1178 1179 1180 1181
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
1182 1183
 * the fact that a CPU enters the scheduler after completing the teardown
 * of the CPU.
1184
 *
1185 1186
 * This is also why RCU internally marks CPUs online during in the
 * preparation phase and offline after the CPU has been taken down.
1187 1188 1189 1190 1191 1192
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1193 1194
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1195 1196 1197
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1198
		return true;
1199
	preempt_disable();
1200
	rdp = this_cpu_ptr(&rcu_sched_data);
1201
	rnp = rdp->mynode;
1202
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1203 1204 1205 1206 1207 1208
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1209
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1210

1211
/**
1212
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1213
 *
1214 1215 1216
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1217
 */
1218
static int rcu_is_cpu_rrupt_from_idle(void)
1219
{
1220
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1221 1222 1223 1224 1225
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1226
 * is in dynticks idle mode, which is an extended quiescent state.
1227
 */
1228 1229
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1230
{
1231
	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1232
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1233
	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1234
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1235
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1236
				 rdp->mynode->gpnum))
1237
			WRITE_ONCE(rdp->gpwrap, true);
1238
		return 1;
1239
	}
1240
	return 0;
1241 1242 1243 1244 1245 1246
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1247
 * for this same CPU, or by virtue of having been offline.
1248
 */
1249 1250
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1251
{
1252
	unsigned long jtsq;
1253
	bool *rnhqp;
1254
	bool *ruqp;
1255 1256
	unsigned long rjtsc;
	struct rcu_node *rnp;
1257 1258 1259 1260 1261 1262 1263 1264 1265

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1266
	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1267
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1268 1269 1270 1271
		rdp->dynticks_fqs++;
		return 1;
	}

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	/* Compute and saturate jiffies_till_sched_qs. */
	jtsq = jiffies_till_sched_qs;
	rjtsc = rcu_jiffies_till_stall_check();
	if (jtsq > rjtsc / 2) {
		WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
		jtsq = rjtsc / 2;
	} else if (jtsq < 1) {
		WRITE_ONCE(jiffies_till_sched_qs, 1);
		jtsq = 1;
	}

1283
	/*
1284 1285 1286 1287
	 * Has this CPU encountered a cond_resched_rcu_qs() since the
	 * beginning of the grace period?  For this to be the case,
	 * the CPU has to have noticed the current grace period.  This
	 * might not be the case for nohz_full CPUs looping in the kernel.
1288
	 */
1289
	rnp = rdp->mynode;
1290
	ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1291
	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1292
	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1293 1294 1295
	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
		return 1;
1296 1297 1298
	} else {
		/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
		smp_store_release(ruqp, true);
1299 1300
	}

1301 1302
	/* Check for the CPU being offline. */
	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1303
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1304 1305 1306
		rdp->offline_fqs++;
		return 1;
	}
1307 1308

	/*
1309 1310 1311 1312 1313 1314
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
1315
	 * rcu_need_heavy_qs variable are safe.  Yes, setting of
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1328
	 */
1329 1330 1331 1332 1333
	rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
	if (!READ_ONCE(*rnhqp) &&
	    (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
	     time_after(jiffies, rdp->rsp->jiffies_resched))) {
		WRITE_ONCE(*rnhqp, true);
1334 1335
		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
		smp_store_release(ruqp, true);
1336
		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1337 1338
	}

1339 1340 1341 1342 1343 1344
	/*
	 * If more than halfway to RCU CPU stall-warning time, do
	 * a resched_cpu() to try to loosen things up a bit.
	 */
	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
		resched_cpu(rdp->cpu);
1345

1346
	return 0;
1347 1348 1349 1350
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1351
	unsigned long j = jiffies;
1352
	unsigned long j1;
1353 1354 1355

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1356
	j1 = rcu_jiffies_till_stall_check();
1357
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1358
	rsp->jiffies_resched = j + j1 / 2;
1359
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1360 1361
}

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/*
 * Convert a ->gp_state value to a character string.
 */
static const char *gp_state_getname(short gs)
{
	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
		return "???";
	return gp_state_names[gs];
}

1372 1373 1374 1375 1376 1377 1378 1379 1380
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1381
	gpa = READ_ONCE(rsp->gp_activity);
1382
	if (j - gpa > 2 * HZ) {
1383
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1384
		       rsp->name, j - gpa,
1385
		       rsp->gpnum, rsp->completed,
1386 1387
		       rsp->gp_flags,
		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1388
		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1389
		if (rsp->gp_kthread) {
1390
			sched_show_task(rsp->gp_kthread);
1391 1392
			wake_up_process(rsp->gp_kthread);
		}
1393
	}
1394 1395
}

1396
/*
1397 1398 1399 1400
 * Dump stacks of all tasks running on stalled CPUs.  First try using
 * NMIs, but fall back to manual remote stack tracing on architectures
 * that don't support NMI-based stack dumps.  The NMI-triggered stack
 * traces are more accurate because they are printed by the target CPU.
1401 1402 1403 1404 1405 1406 1407 1408
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
1409
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1410 1411 1412
		for_each_leaf_node_possible_cpu(rnp, cpu)
			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
				if (!trigger_single_cpu_backtrace(cpu))
1413
					dump_cpu_task(cpu);
B
Boqun Feng 已提交
1414
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1415 1416 1417
	}
}

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
/*
 * If too much time has passed in the current grace period, and if
 * so configured, go kick the relevant kthreads.
 */
static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
{
	unsigned long j;

	if (!rcu_kick_kthreads)
		return;
	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1429 1430
	if (time_after(jiffies, j) && rsp->gp_kthread &&
	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1431
		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1432
		rcu_ftrace_dump(DUMP_ALL);
1433 1434 1435 1436 1437
		wake_up_process(rsp->gp_kthread);
		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
	}
}

1438 1439 1440 1441 1442 1443
static inline void panic_on_rcu_stall(void)
{
	if (sysctl_panic_on_rcu_stall)
		panic("RCU Stall\n");
}

1444
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1445 1446 1447 1448
{
	int cpu;
	long delta;
	unsigned long flags;
1449 1450
	unsigned long gpa;
	unsigned long j;
1451
	int ndetected = 0;
1452
	struct rcu_node *rnp = rcu_get_root(rsp);
1453
	long totqlen = 0;
1454

1455 1456 1457 1458 1459
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1460 1461
	/* Only let one CPU complain about others per time interval. */

1462
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1463
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1464
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
B
Boqun Feng 已提交
1465
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1466 1467
		return;
	}
1468 1469
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1470
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1471

1472 1473 1474 1475 1476
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1477
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1478
	       rsp->name);
1479
	print_cpu_stall_info_begin();
1480
	rcu_for_each_leaf_node(rsp, rnp) {
1481
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1482
		ndetected += rcu_print_task_stall(rnp);
1483
		if (rnp->qsmask != 0) {
1484 1485 1486
			for_each_leaf_node_possible_cpu(rnp, cpu)
				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
					print_cpu_stall_info(rsp, cpu);
1487 1488 1489
					ndetected++;
				}
		}
B
Boqun Feng 已提交
1490
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1491
	}
1492 1493

	print_cpu_stall_info_end();
1494
	for_each_possible_cpu(cpu)
1495 1496
		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
							    cpu)->cblist);
1497
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1498
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1499
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1500
	if (ndetected) {
1501
		rcu_dump_cpu_stacks(rsp);
1502 1503 1504

		/* Complain about tasks blocking the grace period. */
		rcu_print_detail_task_stall(rsp);
1505
	} else {
1506 1507
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1508 1509 1510
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1511
			gpa = READ_ONCE(rsp->gp_activity);
1512
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1513
			       rsp->name, j - gpa, j, gpa,
1514 1515
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1516 1517 1518 1519
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1520

1521 1522
	rcu_check_gp_kthread_starvation(rsp);

1523 1524
	panic_on_rcu_stall();

1525
	force_quiescent_state(rsp);  /* Kick them all. */
1526 1527 1528 1529
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1530
	int cpu;
1531 1532
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1533
	long totqlen = 0;
1534

1535 1536 1537 1538 1539
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1540 1541 1542 1543 1544
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1545
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1546 1547 1548
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1549
	for_each_possible_cpu(cpu)
1550 1551
		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
							    cpu)->cblist);
1552 1553 1554
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1555 1556 1557

	rcu_check_gp_kthread_starvation(rsp);

1558
	rcu_dump_cpu_stacks(rsp);
1559

1560
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1561 1562 1563
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1564
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1565

1566 1567
	panic_on_rcu_stall();

1568 1569 1570 1571 1572 1573 1574 1575
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1576 1577 1578 1579
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1580 1581 1582
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1583 1584
	unsigned long j;
	unsigned long js;
1585 1586
	struct rcu_node *rnp;

1587 1588
	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
	    !rcu_gp_in_progress(rsp))
1589
		return;
1590
	rcu_stall_kick_kthreads(rsp);
1591
	j = jiffies;
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1610
	gpnum = READ_ONCE(rsp->gpnum);
1611
	smp_rmb(); /* Pick up ->gpnum first... */
1612
	js = READ_ONCE(rsp->jiffies_stall);
1613
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1614
	gps = READ_ONCE(rsp->gp_start);
1615
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1616
	completed = READ_ONCE(rsp->completed);
1617 1618 1619 1620
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1621
	rnp = rdp->mynode;
1622
	if (rcu_gp_in_progress(rsp) &&
1623
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1624 1625 1626 1627

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1628 1629
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1630

1631
		/* They had a few time units to dump stack, so complain. */
1632
		print_other_cpu_stall(rsp, gpnum);
1633 1634 1635
	}
}

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1647 1648 1649
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1650
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1651 1652
}

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1682 1683 1684 1685 1686
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1687
				unsigned long c, const char *s)
1688 1689 1690 1691 1692 1693 1694 1695 1696
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1697 1698
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1699 1700 1701
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1702 1703 1704
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1705 1706
{
	unsigned long c;
1707
	bool ret = false;
1708 1709 1710 1711 1712 1713 1714
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1715
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1716
	if (rnp->need_future_gp[c & 0x1]) {
1717
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1718
		goto out;
1719 1720 1721 1722 1723 1724 1725
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1726 1727 1728 1729 1730 1731 1732
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1733 1734
	 */
	if (rnp->gpnum != rnp->completed ||
1735
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1736
		rnp->need_future_gp[c & 0x1]++;
1737
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1738
		goto out;
1739 1740 1741 1742 1743 1744 1745
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1746 1747
	if (rnp != rnp_root)
		raw_spin_lock_rcu_node(rnp_root);
1748 1749 1750 1751

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
1752
	 * earlier.  Adjust callbacks as needed.
1753 1754
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1755 1756
	if (!rcu_is_nocb_cpu(rdp->cpu))
		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1757 1758 1759 1760 1761 1762

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1763
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1764 1765 1766 1767 1768 1769 1770 1771
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1772
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1773
	} else {
1774
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1775
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1776 1777 1778
	}
unlock_out:
	if (rnp != rnp_root)
B
Boqun Feng 已提交
1779
		raw_spin_unlock_rcu_node(rnp_root);
1780 1781 1782 1783
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1784 1785 1786 1787
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
1788
 * whether any additional grace periods have been requested.
1789 1790 1791 1792 1793 1794 1795 1796 1797
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1798 1799
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1800 1801 1802
	return needmore;
}

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1813
	    !READ_ONCE(rsp->gp_flags) ||
1814 1815
	    !rsp->gp_kthread)
		return;
1816
	swake_up(&rsp->gp_wq);
1817 1818
}

1819 1820 1821 1822 1823 1824 1825
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1826 1827
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1828 1829 1830
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1831
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1832 1833
			       struct rcu_data *rdp)
{
1834
	bool ret = false;
1835

1836 1837
	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1838
		return false;
1839 1840

	/*
1841 1842 1843 1844 1845 1846 1847 1848
	 * Callbacks are often registered with incomplete grace-period
	 * information.  Something about the fact that getting exact
	 * information requires acquiring a global lock...  RCU therefore
	 * makes a conservative estimate of the grace period number at which
	 * a given callback will become ready to invoke.	The following
	 * code checks this estimate and improves it when possible, thus
	 * accelerating callback invocation to an earlier grace-period
	 * number.
1849
	 */
1850 1851
	if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
		ret = rcu_start_future_gp(rnp, rdp, NULL);
1852 1853

	/* Trace depending on how much we were able to accelerate. */
1854
	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1855
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1856
	else
1857
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1858
	return ret;
1859 1860 1861 1862 1863 1864 1865 1866
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1867
 * Returns true if the RCU grace-period kthread needs to be awakened.
1868 1869 1870
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1871
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1872 1873
			    struct rcu_data *rdp)
{
1874 1875
	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1876
		return false;
1877 1878 1879 1880 1881

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
1882
	rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1883 1884

	/* Classify any remaining callbacks. */
1885
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1886 1887
}

1888
/*
1889 1890 1891
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1892
 * Returns true if the grace-period kthread needs to be awakened.
1893
 */
1894 1895
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1896
{
1897
	bool ret;
1898
	bool need_gp;
1899

1900
	/* Handle the ends of any preceding grace periods first. */
1901
	if (rdp->completed == rnp->completed &&
1902
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1903

1904
		/* No grace period end, so just accelerate recent callbacks. */
1905
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1906

1907 1908 1909
	} else {

		/* Advance callbacks. */
1910
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1911 1912 1913

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1914
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1915
	}
1916

1917
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1918 1919 1920 1921 1922 1923
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1924
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1925 1926
		need_gp = !!(rnp->qsmask & rdp->grpmask);
		rdp->cpu_no_qs.b.norm = need_gp;
1927
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1928
		rdp->core_needs_qs = need_gp;
1929
		zero_cpu_stall_ticks(rdp);
1930
		WRITE_ONCE(rdp->gpwrap, false);
1931
	}
1932
	return ret;
1933 1934
}

1935
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1936 1937
{
	unsigned long flags;
1938
	bool needwake;
1939 1940 1941 1942
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1943 1944 1945
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1946
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1947 1948 1949
		local_irq_restore(flags);
		return;
	}
1950
	needwake = __note_gp_changes(rsp, rnp, rdp);
B
Boqun Feng 已提交
1951
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1952 1953
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1954 1955
}

1956 1957 1958 1959 1960 1961 1962
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

1963
/*
1964
 * Initialize a new grace period.  Return false if no grace period required.
1965
 */
1966
static bool rcu_gp_init(struct rcu_state *rsp)
1967
{
1968
	unsigned long oldmask;
1969
	struct rcu_data *rdp;
1970
	struct rcu_node *rnp = rcu_get_root(rsp);
1971

1972
	WRITE_ONCE(rsp->gp_activity, jiffies);
1973
	raw_spin_lock_irq_rcu_node(rnp);
1974
	if (!READ_ONCE(rsp->gp_flags)) {
1975
		/* Spurious wakeup, tell caller to go back to sleep.  */
B
Boqun Feng 已提交
1976
		raw_spin_unlock_irq_rcu_node(rnp);
1977
		return false;
1978
	}
1979
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1980

1981 1982 1983 1984 1985
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
B
Boqun Feng 已提交
1986
		raw_spin_unlock_irq_rcu_node(rnp);
1987
		return false;
1988 1989 1990
	}

	/* Advance to a new grace period and initialize state. */
1991
	record_gp_stall_check_time(rsp);
1992 1993
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1994
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
B
Boqun Feng 已提交
1995
	raw_spin_unlock_irq_rcu_node(rnp);
1996

1997 1998 1999 2000 2001 2002 2003
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
2004
		rcu_gp_slow(rsp, gp_preinit_delay);
2005
		raw_spin_lock_irq_rcu_node(rnp);
2006 2007 2008
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
B
Boqun Feng 已提交
2009
			raw_spin_unlock_irq_rcu_node(rnp);
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

B
Boqun Feng 已提交
2043
		raw_spin_unlock_irq_rcu_node(rnp);
2044
	}
2045 2046 2047 2048 2049 2050 2051 2052

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
2053
	 * leaf node has been initialized.
2054 2055 2056 2057 2058
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2059
		rcu_gp_slow(rsp, gp_init_delay);
2060
		raw_spin_lock_irq_rcu_node(rnp);
2061
		rdp = this_cpu_ptr(rsp->rda);
2062 2063
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
2064
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2065
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2066
			WRITE_ONCE(rnp->completed, rsp->completed);
2067
		if (rnp == rdp->mynode)
2068
			(void)__note_gp_changes(rsp, rnp, rdp);
2069 2070 2071 2072
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
B
Boqun Feng 已提交
2073
		raw_spin_unlock_irq_rcu_node(rnp);
2074
		cond_resched_rcu_qs();
2075
		WRITE_ONCE(rsp->gp_activity, jiffies);
2076
	}
2077

2078
	return true;
2079
}
2080

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
/*
 * Helper function for wait_event_interruptible_timeout() wakeup
 * at force-quiescent-state time.
 */
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rsp->gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

2101 2102 2103
/*
 * Do one round of quiescent-state forcing.
 */
2104
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2105
{
2106 2107
	bool isidle = false;
	unsigned long maxj;
2108 2109
	struct rcu_node *rnp = rcu_get_root(rsp);

2110
	WRITE_ONCE(rsp->gp_activity, jiffies);
2111
	rsp->n_force_qs++;
2112
	if (first_time) {
2113
		/* Collect dyntick-idle snapshots. */
2114
		if (is_sysidle_rcu_state(rsp)) {
2115
			isidle = true;
2116 2117
			maxj = jiffies - ULONG_MAX / 4;
		}
2118 2119
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
2120
		rcu_sysidle_report_gp(rsp, isidle, maxj);
2121 2122
	} else {
		/* Handle dyntick-idle and offline CPUs. */
2123
		isidle = true;
2124
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2125 2126
	}
	/* Clear flag to prevent immediate re-entry. */
2127
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2128
		raw_spin_lock_irq_rcu_node(rnp);
2129 2130
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2131
		raw_spin_unlock_irq_rcu_node(rnp);
2132 2133 2134
	}
}

2135 2136 2137
/*
 * Clean up after the old grace period.
 */
2138
static void rcu_gp_cleanup(struct rcu_state *rsp)
2139 2140
{
	unsigned long gp_duration;
2141
	bool needgp = false;
2142
	int nocb = 0;
2143 2144
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
2145
	struct swait_queue_head *sq;
2146

2147
	WRITE_ONCE(rsp->gp_activity, jiffies);
2148
	raw_spin_lock_irq_rcu_node(rnp);
2149 2150 2151
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
2152

2153 2154 2155 2156 2157 2158 2159 2160
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
B
Boqun Feng 已提交
2161
	raw_spin_unlock_irq_rcu_node(rnp);
2162

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2173
		raw_spin_lock_irq_rcu_node(rnp);
2174 2175
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
2176
		WRITE_ONCE(rnp->completed, rsp->gpnum);
2177 2178
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
2179
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2180
		/* smp_mb() provided by prior unlock-lock pair. */
2181
		nocb += rcu_future_gp_cleanup(rsp, rnp);
2182
		sq = rcu_nocb_gp_get(rnp);
B
Boqun Feng 已提交
2183
		raw_spin_unlock_irq_rcu_node(rnp);
2184
		rcu_nocb_gp_cleanup(sq);
2185
		cond_resched_rcu_qs();
2186
		WRITE_ONCE(rsp->gp_activity, jiffies);
2187
		rcu_gp_slow(rsp, gp_cleanup_delay);
2188
	}
2189
	rnp = rcu_get_root(rsp);
2190
	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2191
	rcu_nocb_gp_set(rnp, nocb);
2192

2193
	/* Declare grace period done. */
2194
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2195
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2196
	rsp->gp_state = RCU_GP_IDLE;
2197
	rdp = this_cpu_ptr(rsp->rda);
2198 2199 2200
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2201
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2202
		trace_rcu_grace_period(rsp->name,
2203
				       READ_ONCE(rsp->gpnum),
2204 2205
				       TPS("newreq"));
	}
B
Boqun Feng 已提交
2206
	raw_spin_unlock_irq_rcu_node(rnp);
2207 2208 2209 2210 2211 2212 2213
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2214
	bool first_gp_fqs;
2215
	int gf;
2216
	unsigned long j;
2217
	int ret;
2218 2219 2220
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2221
	rcu_bind_gp_kthread();
2222 2223 2224 2225
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2226
			trace_rcu_grace_period(rsp->name,
2227
					       READ_ONCE(rsp->gpnum),
2228
					       TPS("reqwait"));
2229
			rsp->gp_state = RCU_GP_WAIT_GPS;
2230
			swait_event_interruptible(rsp->gp_wq,
2231
						 READ_ONCE(rsp->gp_flags) &
2232
						 RCU_GP_FLAG_INIT);
2233
			rsp->gp_state = RCU_GP_DONE_GPS;
2234
			/* Locking provides needed memory barrier. */
2235
			if (rcu_gp_init(rsp))
2236
				break;
2237
			cond_resched_rcu_qs();
2238
			WRITE_ONCE(rsp->gp_activity, jiffies);
2239
			WARN_ON(signal_pending(current));
2240
			trace_rcu_grace_period(rsp->name,
2241
					       READ_ONCE(rsp->gpnum),
2242
					       TPS("reqwaitsig"));
2243
		}
2244

2245
		/* Handle quiescent-state forcing. */
2246
		first_gp_fqs = true;
2247 2248 2249 2250 2251
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2252
		ret = 0;
2253
		for (;;) {
2254
			if (!ret) {
2255
				rsp->jiffies_force_qs = jiffies + j;
2256 2257 2258
				WRITE_ONCE(rsp->jiffies_kick_kthreads,
					   jiffies + 3 * j);
			}
2259
			trace_rcu_grace_period(rsp->name,
2260
					       READ_ONCE(rsp->gpnum),
2261
					       TPS("fqswait"));
2262
			rsp->gp_state = RCU_GP_WAIT_FQS;
2263
			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2264
					rcu_gp_fqs_check_wake(rsp, &gf), j);
2265
			rsp->gp_state = RCU_GP_DOING_FQS;
2266
			/* Locking provides needed memory barriers. */
2267
			/* If grace period done, leave loop. */
2268
			if (!READ_ONCE(rnp->qsmask) &&
2269
			    !rcu_preempt_blocked_readers_cgp(rnp))
2270
				break;
2271
			/* If time for quiescent-state forcing, do it. */
2272 2273
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2274
				trace_rcu_grace_period(rsp->name,
2275
						       READ_ONCE(rsp->gpnum),
2276
						       TPS("fqsstart"));
2277 2278
				rcu_gp_fqs(rsp, first_gp_fqs);
				first_gp_fqs = false;
2279
				trace_rcu_grace_period(rsp->name,
2280
						       READ_ONCE(rsp->gpnum),
2281
						       TPS("fqsend"));
2282
				cond_resched_rcu_qs();
2283
				WRITE_ONCE(rsp->gp_activity, jiffies);
2284 2285 2286 2287 2288 2289 2290 2291 2292
				ret = 0; /* Force full wait till next FQS. */
				j = jiffies_till_next_fqs;
				if (j > HZ) {
					j = HZ;
					jiffies_till_next_fqs = HZ;
				} else if (j < 1) {
					j = 1;
					jiffies_till_next_fqs = 1;
				}
2293 2294
			} else {
				/* Deal with stray signal. */
2295
				cond_resched_rcu_qs();
2296
				WRITE_ONCE(rsp->gp_activity, jiffies);
2297
				WARN_ON(signal_pending(current));
2298
				trace_rcu_grace_period(rsp->name,
2299
						       READ_ONCE(rsp->gpnum),
2300
						       TPS("fqswaitsig"));
2301 2302 2303 2304 2305 2306
				ret = 1; /* Keep old FQS timing. */
				j = jiffies;
				if (time_after(jiffies, rsp->jiffies_force_qs))
					j = 1;
				else
					j = rsp->jiffies_force_qs - j;
2307
			}
2308
		}
2309 2310

		/* Handle grace-period end. */
2311
		rsp->gp_state = RCU_GP_CLEANUP;
2312
		rcu_gp_cleanup(rsp);
2313
		rsp->gp_state = RCU_GP_CLEANED;
2314 2315 2316
	}
}

2317 2318 2319
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2320
 * the root node's ->lock and hard irqs must be disabled.
2321 2322 2323 2324
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2325 2326
 *
 * Returns true if the grace-period kthread must be awakened.
2327
 */
2328
static bool
2329 2330
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2331
{
2332
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2333
		/*
2334
		 * Either we have not yet spawned the grace-period
2335 2336
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2337
		 * Either way, don't start a new grace period.
2338
		 */
2339
		return false;
2340
	}
2341 2342
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2343
			       TPS("newreq"));
2344

2345 2346
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2347
	 * could cause possible deadlocks with the rq->lock. Defer
2348
	 * the wakeup to our caller.
2349
	 */
2350
	return true;
2351 2352
}

2353 2354 2355 2356 2357 2358
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2359 2360
 *
 * Returns true if the grace-period kthread needs to be awakened.
2361
 */
2362
static bool rcu_start_gp(struct rcu_state *rsp)
2363 2364 2365
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2366
	bool ret = false;
2367 2368 2369 2370 2371 2372 2373 2374 2375

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2376 2377 2378
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2379 2380
}

2381
/*
2382 2383 2384 2385 2386 2387 2388
 * Report a full set of quiescent states to the specified rcu_state data
 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
 * kthread if another grace period is required.  Whether we wake
 * the grace-period kthread or it awakens itself for the next round
 * of quiescent-state forcing, that kthread will clean up after the
 * just-completed grace period.  Note that the caller must hold rnp->lock,
 * which is released before return.
2389
 */
P
Paul E. McKenney 已提交
2390
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2391
	__releases(rcu_get_root(rsp)->lock)
2392
{
2393
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2394
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2395
	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2396
	rcu_gp_kthread_wake(rsp);
2397 2398
}

2399
/*
P
Paul E. McKenney 已提交
2400 2401 2402
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2403 2404 2405 2406 2407
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2408 2409
 */
static void
P
Paul E. McKenney 已提交
2410
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2411
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2412 2413
	__releases(rnp->lock)
{
2414
	unsigned long oldmask = 0;
2415 2416
	struct rcu_node *rnp_c;

2417 2418
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2419
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2420

2421 2422 2423 2424
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
B
Boqun Feng 已提交
2425
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2426 2427
			return;
		}
2428
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2429
		rnp->qsmask &= ~mask;
2430 2431 2432 2433
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2434
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2435 2436

			/* Other bits still set at this level, so done. */
B
Boqun Feng 已提交
2437
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2438 2439 2440 2441 2442 2443 2444 2445 2446
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
B
Boqun Feng 已提交
2447
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2448
		rnp_c = rnp;
2449
		rnp = rnp->parent;
2450
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2451
		oldmask = rnp_c->qsmask;
2452 2453 2454 2455
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2456
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2457
	 * to clean up and start the next grace period if one is needed.
2458
	 */
P
Paul E. McKenney 已提交
2459
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2460 2461
}

2462 2463 2464 2465 2466 2467 2468
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2469
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2470 2471 2472
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2473
	unsigned long gps;
2474 2475 2476
	unsigned long mask;
	struct rcu_node *rnp_p;

2477 2478
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
B
Boqun Feng 已提交
2479
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2480 2481 2482 2483 2484 2485
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2486 2487
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2488 2489 2490 2491 2492
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2493 2494
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2495
	mask = rnp->grpmask;
B
Boqun Feng 已提交
2496
	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2497
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2498
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2499 2500
}

2501
/*
P
Paul E. McKenney 已提交
2502
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2503
 * structure.  This must be called from the specified CPU.
2504 2505
 */
static void
2506
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2507 2508 2509
{
	unsigned long flags;
	unsigned long mask;
2510
	bool needwake;
2511 2512 2513
	struct rcu_node *rnp;

	rnp = rdp->mynode;
2514
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2515 2516
	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2517 2518

		/*
2519 2520 2521 2522
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2523
		 */
2524
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2525
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
B
Boqun Feng 已提交
2526
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2527 2528 2529 2530
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
B
Boqun Feng 已提交
2531
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2532
	} else {
2533
		rdp->core_needs_qs = false;
2534 2535 2536 2537 2538

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2539
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2540

2541 2542
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2543 2544
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2557 2558
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2559 2560 2561 2562 2563

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
2564
	if (!rdp->core_needs_qs)
2565 2566 2567 2568 2569 2570
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2571
	if (rdp->cpu_no_qs.b.norm)
2572 2573
		return;

P
Paul E. McKenney 已提交
2574 2575 2576 2577
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2578
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2579 2580
}

2581
/*
2582 2583
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2584
 * ->orphan_lock.
2585
 */
2586 2587 2588
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2589
{
P
Paul E. McKenney 已提交
2590
	/* No-CBs CPUs do not have orphanable callbacks. */
2591
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2592 2593
		return;

2594 2595
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2596 2597
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2598
	 */
2599 2600
	rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
	rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
2601 2602

	/*
2603 2604 2605 2606 2607
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
2608
	 */
2609
	rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2610 2611

	/*
2612 2613 2614
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2615
	 */
2616
	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
2617

2618 2619
	/* Finally, disallow further callbacks on this CPU.  */
	rcu_segcblist_disable(&rdp->cblist);
2620 2621 2622 2623
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2624
 * orphanage.  The caller must hold the ->orphan_lock.
2625
 */
2626
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2627
{
2628
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2629

P
Paul E. McKenney 已提交
2630
	/* No-CBs CPUs are handled specially. */
2631 2632
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2633 2634
		return;

2635
	/* Do the accounting first. */
2636 2637
	rdp->n_cbs_adopted += rsp->orphan_done.len;
	if (rcu_cblist_n_lazy_cbs(&rsp->orphan_done) != rsp->orphan_done.len)
2638
		rcu_idle_count_callbacks_posted();
2639
	rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
2640 2641 2642 2643 2644 2645 2646

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

2647 2648
	/* First adopt the ready-to-invoke callbacks, then the done ones. */
	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
2649
	WARN_ON_ONCE(rsp->orphan_done.head);
2650
	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2651
	WARN_ON_ONCE(rsp->orphan_pend.head);
2652 2653
	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
		     !rcu_segcblist_n_cbs(&rdp->cblist));
2654 2655 2656 2657 2658 2659 2660
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
2661 2662 2663
	RCU_TRACE(unsigned long mask;)
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2664

2665 2666 2667
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2668
	RCU_TRACE(mask = rdp->grpmask;)
2669 2670
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2671
			       TPS("cpuofl"));
2672 2673
}

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2696 2697
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2698 2699 2700 2701 2702 2703
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
2704
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2705
		rnp->qsmaskinit &= ~mask;
2706
		rnp->qsmask &= ~mask;
2707
		if (rnp->qsmaskinit) {
B
Boqun Feng 已提交
2708 2709
			raw_spin_unlock_rcu_node(rnp);
			/* irqs remain disabled. */
2710 2711
			return;
		}
B
Boqun Feng 已提交
2712
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2713 2714 2715
	}
}

2716
/*
2717
 * The CPU has been completely removed, and some other CPU is reporting
2718 2719
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2720 2721
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2722
 */
2723
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2724
{
2725
	unsigned long flags;
2726
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2727
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2728

2729 2730 2731
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2732
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2733
	rcu_boost_kthread_setaffinity(rnp, -1);
2734

2735
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2736
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2737
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2738
	rcu_adopt_orphan_cbs(rsp, flags);
2739
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2740

2741 2742 2743 2744 2745
	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
		  !rcu_segcblist_empty(&rdp->cblist),
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
		  rcu_segcblist_first_cb(&rdp->cblist));
2746 2747 2748 2749 2750 2751
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2752
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2753 2754
{
	unsigned long flags;
2755 2756 2757
	struct rcu_head *rhp;
	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
	long bl, count;
2758

2759
	/* If no callbacks are ready, just return. */
2760 2761 2762 2763 2764 2765
	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
		trace_rcu_batch_start(rsp->name,
				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
		trace_rcu_batch_end(rsp->name, 0,
				    !rcu_segcblist_empty(&rdp->cblist),
2766 2767
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2768
		return;
2769
	}
2770 2771 2772

	/*
	 * Extract the list of ready callbacks, disabling to prevent
2773 2774
	 * races with call_rcu() from interrupt handlers.  Leave the
	 * callback counts, as rcu_barrier() needs to be conservative.
2775 2776
	 */
	local_irq_save(flags);
2777
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2778
	bl = rdp->blimit;
2779 2780 2781
	trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2782 2783 2784
	local_irq_restore(flags);

	/* Invoke callbacks. */
2785 2786 2787 2788 2789 2790 2791 2792 2793
	rhp = rcu_cblist_dequeue(&rcl);
	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
		debug_rcu_head_unqueue(rhp);
		if (__rcu_reclaim(rsp->name, rhp))
			rcu_cblist_dequeued_lazy(&rcl);
		/*
		 * Stop only if limit reached and CPU has something to do.
		 * Note: The rcl structure counts down from zero.
		 */
2794
		if (-rcl.len >= bl &&
2795 2796
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2797 2798 2799 2800
			break;
	}

	local_irq_save(flags);
2801
	count = -rcl.len;
2802 2803
	trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
			    is_idle_task(current), rcu_is_callbacks_kthread());
2804

2805 2806
	/* Update counts and requeue any remaining callbacks. */
	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2807 2808
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->n_cbs_invoked += count;
2809
	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2810 2811

	/* Reinstate batch limit if we have worked down the excess. */
2812 2813
	count = rcu_segcblist_n_cbs(&rdp->cblist);
	if (rdp->blimit == LONG_MAX && count <= qlowmark)
2814 2815
		rdp->blimit = blimit;

2816
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2817
	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2818 2819
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
2820 2821 2822
	} else if (count < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = count;
	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2823

2824 2825
	local_irq_restore(flags);

2826
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2827
	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2828
		invoke_rcu_core();
2829 2830 2831 2832 2833
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2834
 * Also schedule RCU core processing.
2835
 *
2836
 * This function must be called from hardirq context.  It is normally
2837
 * invoked from the scheduling-clock interrupt.
2838
 */
2839
void rcu_check_callbacks(int user)
2840
{
2841
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2842
	increment_cpu_stall_ticks();
2843
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2844 2845 2846 2847 2848

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2849
		 * a quiescent state, so note it.
2850 2851
		 *
		 * No memory barrier is required here because both
2852 2853 2854
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2855 2856
		 */

2857 2858
		rcu_sched_qs();
		rcu_bh_qs();
2859 2860 2861 2862 2863 2864 2865

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2866
		 * critical section, so note it.
2867 2868
		 */

2869
		rcu_bh_qs();
2870
	}
2871
	rcu_preempt_check_callbacks();
2872
	if (rcu_pending())
2873
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2874 2875
	if (user)
		rcu_note_voluntary_context_switch(current);
2876
	trace_rcu_utilization(TPS("End scheduler-tick"));
2877 2878 2879 2880 2881
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2882 2883
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2884
 * The caller must have suppressed start of new grace periods.
2885
 */
2886 2887 2888 2889
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2890 2891 2892 2893
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
2894
	struct rcu_node *rnp;
2895

2896
	rcu_for_each_leaf_node(rsp, rnp) {
2897
		cond_resched_rcu_qs();
2898
		mask = 0;
2899
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2900
		if (rnp->qsmask == 0) {
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2924
		}
2925 2926
		for_each_leaf_node_possible_cpu(rnp, cpu) {
			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2927 2928 2929 2930
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2931
		}
2932
		if (mask != 0) {
2933 2934
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2935 2936
		} else {
			/* Nothing to do here, so just drop the lock. */
B
Boqun Feng 已提交
2937
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2938 2939 2940 2941 2942 2943 2944 2945
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2946
static void force_quiescent_state(struct rcu_state *rsp)
2947 2948
{
	unsigned long flags;
2949 2950 2951 2952 2953
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2954
	rnp = __this_cpu_read(rsp->rda->mynode);
2955
	for (; rnp != NULL; rnp = rnp->parent) {
2956
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2957 2958 2959 2960
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2961
			rsp->n_force_qs_lh++;
2962 2963 2964 2965 2966
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2967

2968
	/* Reached the root of the rcu_node tree, acquire lock. */
2969
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2970
	raw_spin_unlock(&rnp_old->fqslock);
2971
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2972
		rsp->n_force_qs_lh++;
B
Boqun Feng 已提交
2973
		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2974
		return;  /* Someone beat us to it. */
2975
	}
2976
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2977
	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2978
	rcu_gp_kthread_wake(rsp);
2979 2980 2981
}

/*
2982 2983 2984
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2985 2986
 */
static void
2987
__rcu_process_callbacks(struct rcu_state *rsp)
2988 2989
{
	unsigned long flags;
2990
	bool needwake;
2991
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2992

N
Nicholas Mc Guire 已提交
2993
	WARN_ON_ONCE(!rdp->beenonline);
2994

2995 2996 2997 2998
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2999
	local_irq_save(flags);
3000
	if (cpu_needs_another_gp(rsp, rdp)) {
3001
		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3002
		needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3003
		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3004 3005
		if (needwake)
			rcu_gp_kthread_wake(rsp);
3006 3007
	} else {
		local_irq_restore(flags);
3008 3009 3010
	}

	/* If there are callbacks ready, invoke them. */
3011
	if (rcu_segcblist_ready_cbs(&rdp->cblist))
3012
		invoke_rcu_callbacks(rsp, rdp);
3013 3014 3015

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
3016 3017
}

3018
/*
3019
 * Do RCU core processing for the current CPU.
3020
 */
3021
static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3022
{
3023 3024
	struct rcu_state *rsp;

3025 3026
	if (cpu_is_offline(smp_processor_id()))
		return;
3027
	trace_rcu_utilization(TPS("Start RCU core"));
3028 3029
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
3030
	trace_rcu_utilization(TPS("End RCU core"));
3031 3032
}

3033
/*
3034 3035 3036
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
3037
 * are running on the current CPU with softirqs disabled, the
3038
 * rcu_cpu_kthread_task cannot disappear out from under us.
3039
 */
3040
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3041
{
3042
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3043
		return;
3044 3045
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
3046 3047
		return;
	}
3048
	invoke_rcu_callbacks_kthread();
3049 3050
}

3051
static void invoke_rcu_core(void)
3052
{
3053 3054
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
3055 3056
}

3057 3058 3059 3060 3061
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
3062
{
3063 3064
	bool needwake;

3065 3066 3067 3068
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
3069
	if (!rcu_is_watching())
3070 3071
		invoke_rcu_core();

3072
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3073
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3074
		return;
3075

3076 3077 3078 3079 3080 3081 3082
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
3083 3084
	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
		     rdp->qlen_last_fqs_check + qhimark)) {
3085 3086

		/* Are we ignoring a completed grace period? */
3087
		note_gp_changes(rsp, rdp);
3088 3089 3090 3091 3092

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

3093
			raw_spin_lock_rcu_node(rnp_root);
3094
			needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3095
			raw_spin_unlock_rcu_node(rnp_root);
3096 3097
			if (needwake)
				rcu_gp_kthread_wake(rsp);
3098 3099 3100 3101
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3102
			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3103
				force_quiescent_state(rsp);
3104
			rdp->n_force_qs_snap = rsp->n_force_qs;
3105
			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3106
		}
3107
	}
3108 3109
}

3110 3111 3112 3113 3114 3115 3116
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3117 3118 3119 3120 3121 3122
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3123
static void
3124
__call_rcu(struct rcu_head *head, rcu_callback_t func,
P
Paul E. McKenney 已提交
3125
	   struct rcu_state *rsp, int cpu, bool lazy)
3126 3127 3128 3129
{
	unsigned long flags;
	struct rcu_data *rdp;

3130 3131 3132
	/* Misaligned rcu_head! */
	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));

3133 3134
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3135
		WRITE_ONCE(head->func, rcu_leak_callback);
3136 3137 3138
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3139 3140 3141
	head->func = func;
	head->next = NULL;
	local_irq_save(flags);
3142
	rdp = this_cpu_ptr(rsp->rda);
3143 3144

	/* Add the callback to our list. */
3145
	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
P
Paul E. McKenney 已提交
3146 3147 3148 3149
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3163
		WARN_ON_ONCE(!rcu_is_watching());
3164 3165
		if (rcu_segcblist_empty(&rdp->cblist))
			rcu_segcblist_init(&rdp->cblist);
3166
	}
3167 3168
	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
	if (!lazy)
3169
		rcu_idle_count_callbacks_posted();
3170

3171 3172
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3173 3174
					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
					 rcu_segcblist_n_cbs(&rdp->cblist));
3175
	else
3176 3177 3178
		trace_rcu_callback(rsp->name, head,
				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
				   rcu_segcblist_n_cbs(&rdp->cblist));
3179

3180 3181
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3182 3183 3184 3185
	local_irq_restore(flags);
}

/*
3186
 * Queue an RCU-sched callback for invocation after a grace period.
3187
 */
3188
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3189
{
P
Paul E. McKenney 已提交
3190
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3191
}
3192
EXPORT_SYMBOL_GPL(call_rcu_sched);
3193 3194

/*
3195
 * Queue an RCU callback for invocation after a quicker grace period.
3196
 */
3197
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3198
{
P
Paul E. McKenney 已提交
3199
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3200 3201 3202
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3203 3204 3205 3206 3207 3208 3209 3210
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
3211
		    rcu_callback_t func)
3212
{
3213
	__call_rcu(head, func, rcu_state_p, -1, 1);
3214 3215 3216
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3228 3229
	int ret;

3230
	might_sleep();  /* Check for RCU read-side critical section. */
3231 3232 3233 3234
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3235 3236
}

3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3271 3272 3273 3274 3275 3276 3277 3278 3279
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3280 3281 3282 3283
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3284 3285
	if (rcu_blocking_is_gp())
		return;
3286
	if (rcu_gp_is_expedited())
3287 3288 3289
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3301 3302 3303
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3304 3305 3306
 */
void synchronize_rcu_bh(void)
{
3307 3308 3309 3310
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3311 3312
	if (rcu_blocking_is_gp())
		return;
3313
	if (rcu_gp_is_expedited())
3314 3315 3316
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3317 3318 3319
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3340
	return smp_load_acquire(&rcu_state_p->gpnum);
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3366
	newstate = smp_load_acquire(&rcu_state_p->completed);
3367 3368 3369 3370 3371
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
/**
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_sched(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_sched()
	 * and cond_synchronize_sched().
	 */
	return smp_load_acquire(&rcu_sched_state.gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);

/**
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 *
 * If a full RCU-sched grace period has elapsed since the earlier call to
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 * synchronize_sched() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_sched(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_sched_state.completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(cond_synchronize_sched);

3424 3425 3426 3427 3428 3429 3430 3431 3432
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3433 3434
	struct rcu_node *rnp = rdp->mynode;

3435 3436 3437 3438 3439
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3440 3441 3442 3443
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3444
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3445
	if (rcu_scheduler_fully_active &&
3446
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3447
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3448
		rdp->n_rp_core_needs_qs++;
3449
	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3450
		rdp->n_rp_report_qs++;
3451
		return 1;
3452
	}
3453 3454

	/* Does this CPU have callbacks ready to invoke? */
3455
	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3456
		rdp->n_rp_cb_ready++;
3457
		return 1;
3458
	}
3459 3460

	/* Has RCU gone idle with this CPU needing another grace period? */
3461 3462
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3463
		return 1;
3464
	}
3465 3466

	/* Has another RCU grace period completed?  */
3467
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3468
		rdp->n_rp_gp_completed++;
3469
		return 1;
3470
	}
3471 3472

	/* Has a new RCU grace period started? */
3473 3474
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3475
		rdp->n_rp_gp_started++;
3476
		return 1;
3477
	}
3478

3479 3480 3481 3482 3483 3484
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3485
	/* nothing to do */
3486
	rdp->n_rp_need_nothing++;
3487 3488 3489 3490 3491 3492 3493 3494
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3495
static int rcu_pending(void)
3496
{
3497 3498 3499
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3500
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3501 3502
			return 1;
	return 0;
3503 3504 3505
}

/*
3506 3507 3508
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3509
 */
3510
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3511
{
3512 3513 3514
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3515 3516
	struct rcu_state *rsp;

3517
	for_each_rcu_flavor(rsp) {
3518
		rdp = this_cpu_ptr(rsp->rda);
3519
		if (rcu_segcblist_empty(&rdp->cblist))
3520 3521
			continue;
		hc = true;
3522
		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3523
			al = false;
3524 3525
			break;
		}
3526 3527 3528 3529
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3530 3531
}

3532 3533 3534 3535
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3536
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3537 3538 3539 3540 3541 3542
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3543 3544 3545 3546
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3547
static void rcu_barrier_callback(struct rcu_head *rhp)
3548
{
3549 3550 3551
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3552
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3553
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3554
		complete(&rsp->barrier_completion);
3555
	} else {
3556
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3557
	}
3558 3559 3560 3561 3562 3563 3564
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3565
	struct rcu_state *rsp = type;
3566
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3567

3568
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3569
	atomic_inc(&rsp->barrier_cpu_count);
3570
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3571 3572 3573 3574 3575 3576
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3577
static void _rcu_barrier(struct rcu_state *rsp)
3578
{
3579 3580
	int cpu;
	struct rcu_data *rdp;
3581
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3582

3583
	_rcu_barrier_trace(rsp, "Begin", -1, s);
3584

3585
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3586
	mutex_lock(&rsp->barrier_mutex);
3587

3588 3589 3590
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3591 3592 3593 3594 3595
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

3596 3597 3598
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3599

3600
	/*
3601 3602
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3603 3604
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3605
	 */
3606
	init_completion(&rsp->barrier_completion);
3607
	atomic_set(&rsp->barrier_cpu_count, 1);
3608
	get_online_cpus();
3609 3610

	/*
3611 3612 3613
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3614
	 */
P
Paul E. McKenney 已提交
3615
	for_each_possible_cpu(cpu) {
3616
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3617
			continue;
3618
		rdp = per_cpu_ptr(rsp->rda, cpu);
3619
		if (rcu_is_nocb_cpu(cpu)) {
3620 3621
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3622
						   rsp->barrier_sequence);
3623 3624
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3625
						   rsp->barrier_sequence);
3626
				smp_mb__before_atomic();
3627 3628 3629 3630
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
3631
		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3632
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3633
					   rsp->barrier_sequence);
3634
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3635
		} else {
3636
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3637
					   rsp->barrier_sequence);
3638 3639
		}
	}
3640
	put_online_cpus();
3641 3642 3643 3644 3645

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3646
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3647
		complete(&rsp->barrier_completion);
3648 3649

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3650
	wait_for_completion(&rsp->barrier_completion);
3651

3652 3653 3654 3655
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

3656
	/* Other rcu_barrier() invocations can now safely proceed. */
3657
	mutex_unlock(&rsp->barrier_mutex);
3658 3659 3660 3661 3662 3663 3664
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3665
	_rcu_barrier(&rcu_bh_state);
3666 3667 3668 3669 3670 3671 3672 3673
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3674
	_rcu_barrier(&rcu_sched_state);
3675 3676 3677
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
3694
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3695
		rnp->qsmaskinit |= mask;
B
Boqun Feng 已提交
3696
		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3697 3698 3699
	}
}

3700
/*
3701
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3702
 */
3703 3704
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3705 3706
{
	unsigned long flags;
3707
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3708 3709 3710
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3711
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3712
	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3713
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3714
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3715
	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3716
	rdp->cpu = cpu;
3717
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3718
	rcu_boot_init_nocb_percpu_data(rdp);
B
Boqun Feng 已提交
3719
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3720 3721 3722 3723 3724 3725 3726
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3727
 */
3728
static void
3729
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3730 3731
{
	unsigned long flags;
3732
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3733 3734 3735
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3736
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3737 3738
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3739
	rdp->blimit = blimit;
3740 3741 3742
	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
	    !init_nocb_callback_list(rdp))
		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3743
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3744
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3745
	rcu_dynticks_eqs_online();
B
Boqun Feng 已提交
3746
	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3747

3748 3749 3750 3751 3752
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
3753
	rnp = rdp->mynode;
3754
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3755 3756 3757
	if (!rdp->beenonline)
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
	rdp->beenonline = true;	 /* We have now been online. */
3758 3759
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
3760
	rdp->cpu_no_qs.b.norm = true;
3761
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3762
	rdp->core_needs_qs = false;
3763
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
B
Boqun Feng 已提交
3764
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3765 3766
}

3767 3768 3769 3770
/*
 * Invoked early in the CPU-online process, when pretty much all
 * services are available.  The incoming CPU is not present.
 */
3771
int rcutree_prepare_cpu(unsigned int cpu)
3772
{
3773 3774 3775
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3776
		rcu_init_percpu_data(cpu, rsp);
3777 3778 3779 3780 3781 3782 3783

	rcu_prepare_kthreads(cpu);
	rcu_spawn_all_nocb_kthreads(cpu);

	return 0;
}

3784 3785 3786
/*
 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
 */
3787 3788 3789 3790 3791 3792 3793
static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);

	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
}

3794 3795 3796 3797
/*
 * Near the end of the CPU-online process.  Pretty much all services
 * enabled, and the CPU is now very much alive.
 */
3798 3799 3800 3801
int rcutree_online_cpu(unsigned int cpu)
{
	sync_sched_exp_online_cleanup(cpu);
	rcutree_affinity_setting(cpu, -1);
3802 3803
	if (IS_ENABLED(CONFIG_TREE_SRCU))
		srcu_online_cpu(cpu);
3804 3805 3806
	return 0;
}

3807 3808 3809 3810
/*
 * Near the beginning of the process.  The CPU is still very much alive
 * with pretty much all services enabled.
 */
3811 3812 3813
int rcutree_offline_cpu(unsigned int cpu)
{
	rcutree_affinity_setting(cpu, cpu);
3814 3815
	if (IS_ENABLED(CONFIG_TREE_SRCU))
		srcu_offline_cpu(cpu);
3816 3817 3818
	return 0;
}

3819 3820 3821
/*
 * Near the end of the offline process.  We do only tracing here.
 */
3822 3823 3824 3825 3826 3827 3828 3829 3830
int rcutree_dying_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_cpu(rsp);
	return 0;
}

3831 3832 3833
/*
 * The outgoing CPU is gone and we are running elsewhere.
 */
3834 3835 3836 3837 3838 3839 3840 3841 3842
int rcutree_dead_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		rcu_cleanup_dead_cpu(cpu, rsp);
		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
	}
	return 0;
3843 3844
}

3845 3846 3847 3848 3849 3850
/*
 * Mark the specified CPU as being online so that subsequent grace periods
 * (both expedited and normal) will wait on it.  Note that this means that
 * incoming CPUs are not allowed to use RCU read-side critical sections
 * until this function is called.  Failing to observe this restriction
 * will result in lockdep splats.
3851 3852 3853 3854
 *
 * Note that this function is special in that it is invoked directly
 * from the incoming CPU rather than from the cpuhp_step mechanism.
 * This is because this function must be invoked at a precise location.
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
 */
void rcu_cpu_starting(unsigned int cpu)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
3865
		rdp = per_cpu_ptr(rsp->rda, cpu);
3866 3867 3868 3869 3870 3871 3872 3873 3874
		rnp = rdp->mynode;
		mask = rdp->grpmask;
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
		rnp->qsmaskinitnext |= mask;
		rnp->expmaskinitnext |= mask;
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	}
}

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
#ifdef CONFIG_HOTPLUG_CPU
/*
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
3892
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3893 3894
}

3895 3896 3897 3898 3899 3900 3901 3902
/*
 * The outgoing function has no further need of RCU, so remove it from
 * the list of CPUs that RCU must track.
 *
 * Note that this function is special in that it is invoked directly
 * from the outgoing CPU rather than from the cpuhp_step mechanism.
 * This is because this function must be invoked at a precise location.
 */
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
void rcu_report_dead(unsigned int cpu)
{
	struct rcu_state *rsp;

	/* QS for any half-done expedited RCU-sched GP. */
	preempt_disable();
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(rcu_sched_state.rda), true);
	preempt_enable();
	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_idle_cpu(cpu, rsp);
}
#endif

3917 3918 3919 3920
/*
 * On non-huge systems, use expedited RCU grace periods to make suspend
 * and hibernation run faster.
 */
3921 3922 3923 3924 3925 3926 3927
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3928
			rcu_expedite_gp();
3929 3930 3931
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
3932 3933
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
3934 3935 3936 3937 3938 3939 3940
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3941
/*
3942
 * Spawn the kthreads that handle each RCU flavor's grace periods.
3943 3944 3945 3946
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
3947
	int kthread_prio_in = kthread_prio;
3948 3949
	struct rcu_node *rnp;
	struct rcu_state *rsp;
3950
	struct sched_param sp;
3951 3952
	struct task_struct *t;

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

3964
	rcu_scheduler_fully_active = 1;
3965
	for_each_rcu_flavor(rsp) {
3966
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3967 3968
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
3969
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3970
		rsp->gp_kthread = t;
3971 3972 3973 3974
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
B
Boqun Feng 已提交
3975
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3976
		wake_up_process(t);
3977
	}
3978
	rcu_spawn_nocb_kthreads();
3979
	rcu_spawn_boost_kthreads();
3980 3981 3982 3983
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3984
/*
3985 3986 3987 3988 3989 3990
 * This function is invoked towards the end of the scheduler's
 * initialization process.  Before this is called, the idle task might
 * contain synchronous grace-period primitives (during which time, this idle
 * task is booting the system, and such primitives are no-ops).  After this
 * function is called, any synchronous grace-period primitives are run as
 * expedited, with the requesting task driving the grace period forward.
3991
 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3992
 * runtime RCU functionality.
3993 3994 3995 3996 3997
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
3998 3999 4000
	rcu_test_sync_prims();
	rcu_scheduler_active = RCU_SCHEDULER_INIT;
	rcu_test_sync_prims();
4001 4002
}

4003 4004 4005
/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
4006
static void __init rcu_init_one(struct rcu_state *rsp)
4007
{
4008 4009
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4010 4011
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4012 4013

	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4014 4015 4016 4017 4018
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4019
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4020

4021 4022 4023
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4024

4025 4026
	/* Initialize the level-tracking arrays. */

4027
	for (i = 1; i < rcu_num_lvls; i++)
4028 4029
		rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
	rcu_init_levelspread(levelspread, num_rcu_lvl);
4030 4031 4032

	/* Initialize the elements themselves, starting from the leaves. */

4033
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4034
		cpustride *= levelspread[i];
4035
		rnp = rsp->level[i];
4036
		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
B
Boqun Feng 已提交
4037 4038
			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4039
						   &rcu_node_class[i], buf[i]);
4040 4041 4042
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4043 4044
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4045 4046 4047 4048
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4049 4050
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4051 4052 4053 4054 4055
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4056
				rnp->grpnum = j % levelspread[i - 1];
4057 4058
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4059
					      j / levelspread[i - 1];
4060 4061
			}
			rnp->level = i;
4062
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4063
			rcu_init_one_nocb(rnp);
4064 4065
			init_waitqueue_head(&rnp->exp_wq[0]);
			init_waitqueue_head(&rnp->exp_wq[1]);
4066 4067
			init_waitqueue_head(&rnp->exp_wq[2]);
			init_waitqueue_head(&rnp->exp_wq[3]);
4068
			spin_lock_init(&rnp->exp_lock);
4069 4070
		}
	}
4071

4072 4073
	init_swait_queue_head(&rsp->gp_wq);
	init_swait_queue_head(&rsp->expedited_wq);
4074
	rnp = rsp->level[rcu_num_lvls - 1];
4075
	for_each_possible_cpu(i) {
4076
		while (i > rnp->grphi)
4077
			rnp++;
4078
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4079 4080
		rcu_boot_init_percpu_data(i, rsp);
	}
4081
	list_add(&rsp->flavors, &rcu_struct_flavors);
4082 4083
}

4084 4085
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4086
 * replace the definitions in tree.h because those are needed to size
4087 4088 4089 4090
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4091
	ulong d;
4092
	int i;
4093
	int rcu_capacity[RCU_NUM_LVLS];
4094

4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4108
	/* If the compile-time values are accurate, just leave. */
4109
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4110
	    nr_cpu_ids == NR_CPUS)
4111
		return;
4112 4113
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4114 4115

	/*
4116 4117 4118 4119
	 * The boot-time rcu_fanout_leaf parameter must be at least two
	 * and cannot exceed the number of bits in the rcu_node masks.
	 * Complain and fall back to the compile-time values if this
	 * limit is exceeded.
4120
	 */
4121
	if (rcu_fanout_leaf < 2 ||
4122
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4123
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4124 4125 4126 4127 4128 4129
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4130
	 * with the given number of levels.
4131
	 */
4132
	rcu_capacity[0] = rcu_fanout_leaf;
4133
	for (i = 1; i < RCU_NUM_LVLS; i++)
4134
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4135 4136

	/*
4137
	 * The tree must be able to accommodate the configured number of CPUs.
4138
	 * If this limit is exceeded, fall back to the compile-time values.
4139
	 */
4140 4141 4142 4143 4144
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}
4145

4146
	/* Calculate the number of levels in the tree. */
4147
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4148
	}
4149
	rcu_num_lvls = i + 1;
4150

4151
	/* Calculate the number of rcu_nodes at each level of the tree. */
4152
	for (i = 0; i < rcu_num_lvls; i++) {
4153
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4154 4155
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4156 4157 4158

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4159
	for (i = 0; i < rcu_num_lvls; i++)
4160 4161 4162
		rcu_num_nodes += num_rcu_lvl[i];
}

4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4185
void __init rcu_init(void)
4186
{
P
Paul E. McKenney 已提交
4187
	int cpu;
4188

4189 4190
	rcu_early_boot_tests();

4191
	rcu_bootup_announce();
4192
	rcu_init_geometry();
4193 4194
	rcu_init_one(&rcu_bh_state);
	rcu_init_one(&rcu_sched_state);
4195 4196
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4197
	__rcu_init_preempt();
J
Jiang Fang 已提交
4198
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4199 4200 4201 4202 4203 4204

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
4205
	pm_notifier(rcu_pm_notify, 0);
4206
	for_each_online_cpu(cpu) {
4207
		rcutree_prepare_cpu(cpu);
4208
		rcu_cpu_starting(cpu);
4209 4210
		if (IS_ENABLED(CONFIG_TREE_SRCU))
			srcu_online_cpu(cpu);
4211
	}
4212 4213
}

4214
#include "tree_exp.h"
4215
#include "tree_plugin.h"