tree.c 133.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
35
#include <linux/rcupdate_wait.h>
36 37
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/sched/debug.h>
39
#include <linux/nmi.h>
40
#include <linux/atomic.h>
41
#include <linux/bitops.h>
42
#include <linux/export.h>
43 44 45 46 47 48 49
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <uapi/linux/sched/types.h>
54
#include <linux/prefetch.h>
55 56
#include <linux/delay.h>
#include <linux/stop_machine.h>
57
#include <linux/random.h>
58
#include <linux/trace_events.h>
59
#include <linux/suspend.h>
60

61
#include "tree.h"
62
#include "rcu.h"
63

64 65 66 67 68
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71 72 73 74 75 76 77 78
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
79 80
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
81
static char sname##_varname[] = #sname; \
82 83 84 85 86 87 88 89 90
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
91
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92
struct rcu_state sname##_state = { \
93
	.level = { &sname##_state.node[0] }, \
94
	.rda = &sname##_data, \
95
	.call = cr, \
96
	.gp_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
97 98
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
99
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 101
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
102
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103
	.name = RCU_STATE_NAME(sname), \
104
	.abbr = sabbr, \
105
	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106
	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107
}
108

109 110
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
111

112
static struct rcu_state *const rcu_state_p;
113
LIST_HEAD(rcu_struct_flavors);
114

115 116 117
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
118 119 120
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
121 122
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
123
module_param(rcu_fanout_leaf, int, 0444);
124
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
125 126
/* Number of rcu_nodes at specified level. */
static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
127
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128 129
/* panic() on RCU Stall sysctl. */
int sysctl_panic_on_rcu_stall __read_mostly;
130

131
/*
132 133 134 135
 * The rcu_scheduler_active variable is initialized to the value
 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 * RCU can assume that there is but one task, allowing RCU to (for example)
136
 * optimize synchronize_rcu() to a simple barrier().  When this variable
137 138 139 140 141
 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 * to detect real grace periods.  This variable is also used to suppress
 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 * is fully initialized, including all of its kthreads having been spawned.
142
 */
143 144 145
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

160 161
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
162
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
163 164
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
165 166
static void rcu_report_exp_rdp(struct rcu_state *rsp,
			       struct rcu_data *rdp, bool wake);
167
static void sync_sched_exp_online_cleanup(int cpu);
168

169
/* rcuc/rcub kthread realtime priority */
170
#ifdef CONFIG_RCU_KTHREAD_PRIO
171
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
172 173 174
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
175 176
module_param(kthread_prio, int, 0644);

177
/* Delay in jiffies for grace-period initialization delays, debug only. */
178 179 180 181 182 183 184 185

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

186 187
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
188
module_param(gp_init_delay, int, 0644);
189 190 191
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
192

193 194 195 196 197 198 199
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

200 201 202 203 204 205 206 207 208 209
/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
210

211 212 213 214 215 216 217 218 219 220 221 222
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

223 224 225 226 227 228 229 230
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
231
	return READ_ONCE(rnp->qsmaskinitnext);
232 233
}

234
/*
235
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
236 237 238 239 240
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
241
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
242 243
}

244
/*
245
 * Note a quiescent state.  Because we do not need to know
246
 * how many quiescent states passed, just if there was at least
247
 * one since the start of the grace period, this just sets a flag.
248
 * The caller must have disabled preemption.
249
 */
250
void rcu_sched_qs(void)
251
{
252 253 254 255 256 257 258 259
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
		return;
	trace_rcu_grace_period(TPS("rcu_sched"),
			       __this_cpu_read(rcu_sched_data.gpnum),
			       TPS("cpuqs"));
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
260 261 262
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(&rcu_sched_data), true);
263 264
}

265
void rcu_bh_qs(void)
266
{
267
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
268 269 270
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
271
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
272
	}
273
}
274

275 276 277 278 279 280 281 282 283 284
/*
 * Steal a bit from the bottom of ->dynticks for idle entry/exit
 * control.  Initially this is for TLB flushing.
 */
#define RCU_DYNTICK_CTRL_MASK 0x1
#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
#ifndef rcu_eqs_special_exit
#define rcu_eqs_special_exit() do { } while (0)
#endif

285 286
static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
287
	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
288 289 290 291 292 293
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

294 295 296 297 298 299 300
/*
 * Record entry into an extended quiescent state.  This is only to be
 * called when not already in an extended quiescent state.
 */
static void rcu_dynticks_eqs_enter(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
301
	int seq;
302 303

	/*
304
	 * CPUs seeing atomic_add_return() must see prior RCU read-side
305 306 307
	 * critical sections, and we also must force ordering with the
	 * next idle sojourn.
	 */
308 309 310 311 312 313 314
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
	/* Better be in an extended quiescent state! */
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (seq & RCU_DYNTICK_CTRL_CTR));
	/* Better not have special action (TLB flush) pending! */
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (seq & RCU_DYNTICK_CTRL_MASK));
315 316 317 318 319 320 321 322 323
}

/*
 * Record exit from an extended quiescent state.  This is only to be
 * called from an extended quiescent state.
 */
static void rcu_dynticks_eqs_exit(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
324
	int seq;
325 326

	/*
327
	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
328 329 330
	 * and we also must force ordering with the next RCU read-side
	 * critical section.
	 */
331 332 333 334 335 336 337 338 339
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(seq & RCU_DYNTICK_CTRL_CTR));
	if (seq & RCU_DYNTICK_CTRL_MASK) {
		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
		smp_mb__after_atomic(); /* _exit after clearing mask. */
		/* Prefer duplicate flushes to losing a flush. */
		rcu_eqs_special_exit();
	}
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
}

/*
 * Reset the current CPU's ->dynticks counter to indicate that the
 * newly onlined CPU is no longer in an extended quiescent state.
 * This will either leave the counter unchanged, or increment it
 * to the next non-quiescent value.
 *
 * The non-atomic test/increment sequence works because the upper bits
 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 * or when the corresponding CPU is offline.
 */
static void rcu_dynticks_eqs_online(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

356
	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
357
		return;
358
	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
359 360
}

361 362 363 364 365 366 367 368 369
/*
 * Is the current CPU in an extended quiescent state?
 *
 * No ordering, as we are sampling CPU-local information.
 */
bool rcu_dynticks_curr_cpu_in_eqs(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

370
	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
371 372
}

373 374 375 376
/*
 * Snapshot the ->dynticks counter with full ordering so as to allow
 * stable comparison of this counter with past and future snapshots.
 */
377
int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
378 379 380
{
	int snap = atomic_add_return(0, &rdtp->dynticks);

381
	return snap & ~RCU_DYNTICK_CTRL_MASK;
382 383
}

384 385 386 387 388 389
/*
 * Return true if the snapshot returned from rcu_dynticks_snap()
 * indicates that RCU is in an extended quiescent state.
 */
static bool rcu_dynticks_in_eqs(int snap)
{
390
	return !(snap & RCU_DYNTICK_CTRL_CTR);
391 392 393 394 395 396 397 398 399 400 401 402
}

/*
 * Return true if the CPU corresponding to the specified rcu_dynticks
 * structure has spent some time in an extended quiescent state since
 * rcu_dynticks_snap() returned the specified snapshot.
 */
static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
{
	return snap != rcu_dynticks_snap(rdtp);
}

403 404 405 406 407 408 409
/*
 * Do a double-increment of the ->dynticks counter to emulate a
 * momentary idle-CPU quiescent state.
 */
static void rcu_dynticks_momentary_idle(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
410 411
	int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
					&rdtp->dynticks);
412 413

	/* It is illegal to call this from idle state. */
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
}

/*
 * Set the special (bottom) bit of the specified CPU so that it
 * will take special action (such as flushing its TLB) on the
 * next exit from an extended quiescent state.  Returns true if
 * the bit was successfully set, or false if the CPU was not in
 * an extended quiescent state.
 */
bool rcu_eqs_special_set(int cpu)
{
	int old;
	int new;
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

	do {
		old = atomic_read(&rdtp->dynticks);
		if (old & RCU_DYNTICK_CTRL_CTR)
			return false;
		new = old | RCU_DYNTICK_CTRL_MASK;
	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
	return true;
437 438
}

439 440 441 442 443 444 445
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
446
 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
447 448
 *
 * The caller must have disabled interrupts.
449 450 451
 */
static void rcu_momentary_dyntick_idle(void)
{
452 453
	raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
	rcu_dynticks_momentary_idle();
454 455
}

456 457 458
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
459
 * The caller must have disabled interrupts.
460
 */
461
void rcu_note_context_switch(void)
462
{
463
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
464
	trace_rcu_utilization(TPS("Start context switch"));
465
	rcu_sched_qs();
466
	rcu_preempt_note_context_switch();
467
	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
468
		rcu_momentary_dyntick_idle();
469
	trace_rcu_utilization(TPS("End context switch"));
470
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
471
}
472
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
473

474
/*
475
 * Register a quiescent state for all RCU flavors.  If there is an
476 477
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
478
 * RCU flavors in desperate need of a quiescent state, which will normally
479 480
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
481 482 483 484 485
 *
 * The barrier() calls are redundant in the common case when this is
 * called externally, but just in case this is called from within this
 * file.
 *
486 487 488
 */
void rcu_all_qs(void)
{
489 490
	unsigned long flags;

491
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
492
	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
493
		local_irq_save(flags);
494
		rcu_momentary_dyntick_idle();
495 496
		local_irq_restore(flags);
	}
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
		/*
		 * Yes, we just checked a per-CPU variable with preemption
		 * enabled, so we might be migrated to some other CPU at
		 * this point.  That is OK because in that case, the
		 * migration will supply the needed quiescent state.
		 * We might end up needlessly disabling preemption and
		 * invoking rcu_sched_qs() on the destination CPU, but
		 * the probability and cost are both quite low, so this
		 * should not be a problem in practice.
		 */
		preempt_disable();
		rcu_sched_qs();
		preempt_enable();
	}
512
	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
513
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
514 515 516
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
517 518 519
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
520

E
Eric Dumazet 已提交
521 522 523
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
524

525 526
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
527
static bool rcu_kick_kthreads;
528 529 530

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);
531
module_param(rcu_kick_kthreads, bool, 0644);
532

533 534 535 536 537 538 539
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

540
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
541
				  struct rcu_data *rdp);
542 543 544 545
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
546
static void force_quiescent_state(struct rcu_state *rsp);
547
static int rcu_pending(void);
548 549

/*
550
 * Return the number of RCU batches started thus far for debug & stats.
551
 */
552 553 554 555 556 557 558 559
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
560
 */
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
587
 */
588
unsigned long rcu_batches_completed_sched(void)
589
{
590
	return rcu_sched_state.completed;
591
}
592
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
593 594

/*
595
 * Return the number of RCU BH batches completed thus far for debug & stats.
596
 */
597
unsigned long rcu_batches_completed_bh(void)
598 599 600 601 602
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
/*
 * Return the number of RCU expedited batches completed thus far for
 * debug & stats.  Odd numbers mean that a batch is in progress, even
 * numbers mean idle.  The value returned will thus be roughly double
 * the cumulative batches since boot.
 */
unsigned long rcu_exp_batches_completed(void)
{
	return rcu_state_p->expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);

/*
 * Return the number of RCU-sched expedited batches completed thus far
 * for debug & stats.  Similar to rcu_exp_batches_completed().
 */
unsigned long rcu_exp_batches_completed_sched(void)
{
	return rcu_sched_state.expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);

625 626 627 628 629
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
630
	force_quiescent_state(rcu_state_p);
631 632 633
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

634 635 636 637 638
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
639
	force_quiescent_state(&rcu_bh_state);
640 641 642
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

643 644 645 646 647 648 649 650 651
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

667 668 669 670 671 672 673 674 675 676 677 678 679 680
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

681 682 683 684 685 686 687 688 689 690
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
691
		rsp = rcu_state_p;
692 693 694 695 696 697 698 699 700 701 702
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
703 704 705
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
706 707 708 709 710 711 712 713
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

714 715 716 717 718 719 720 721 722 723 724
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

725 726 727 728 729 730
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
731
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
732
	       rdp->nxttail[RCU_NEXT_TAIL] != NULL;
733 734
}

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
751
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
752 753
	int *fp = &rnp->need_future_gp[idx];

754
	return READ_ONCE(*fp);
755 756
}

757
/*
758 759 760
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
761
 */
762
static bool
763 764
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
765
	int i;
P
Paul E. McKenney 已提交
766

767
	if (rcu_gp_in_progress(rsp))
768
		return false;  /* No, a grace period is already in progress. */
769
	if (rcu_future_needs_gp(rsp))
770
		return true;  /* Yes, a no-CBs CPU needs one. */
771
	if (!rdp->nxttail[RCU_NEXT_TAIL])
772
		return false;  /* No, this is a no-CBs (or offline) CPU. */
773
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
774
		return true;  /* Yes, CPU has newly registered callbacks. */
775 776
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
777
		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
778
				 rdp->nxtcompleted[i]))
779 780
			return true;  /* Yes, CBs for future grace period. */
	return false; /* No grace period needed. */
781 782
}

783
/*
784
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
785 786 787 788 789
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
790
static void rcu_eqs_enter_common(long long oldval, bool user)
791
{
792 793
	struct rcu_state *rsp;
	struct rcu_data *rdp;
794
	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
795

796
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
797 798
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
799 800
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
801

802
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
803
		rcu_ftrace_dump(DUMP_ORIG);
804 805 806
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
807
	}
808 809 810 811
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
812
	rcu_prepare_for_idle();
813
	rcu_dynticks_eqs_enter();
814
	rcu_dynticks_task_enter();
815 816

	/*
817
	 * It is illegal to enter an extended quiescent state while
818 819
	 * in an RCU read-side critical section.
	 */
820 821 822 823 824 825
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal idle entry in RCU read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
			 "Illegal idle entry in RCU-bh read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
			 "Illegal idle entry in RCU-sched read-side critical section.");
826
}
827

828 829 830
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
831
 */
832
static void rcu_eqs_enter(bool user)
833
{
834
	long long oldval;
835 836
	struct rcu_dynticks *rdtp;

837
	rdtp = this_cpu_ptr(&rcu_dynticks);
838
	oldval = rdtp->dynticks_nesting;
839 840
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
841
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
842
		rdtp->dynticks_nesting = 0;
843
		rcu_eqs_enter_common(oldval, user);
844
	} else {
845
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
846
	}
847
}
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
863 864 865
	unsigned long flags;

	local_irq_save(flags);
866
	rcu_eqs_enter(false);
867
	rcu_sysidle_enter(0);
868
	local_irq_restore(flags);
869
}
870
EXPORT_SYMBOL_GPL(rcu_idle_enter);
871

872
#ifdef CONFIG_NO_HZ_FULL
873 874 875 876 877 878 879 880 881 882
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
883
	rcu_eqs_enter(1);
884
}
885
#endif /* CONFIG_NO_HZ_FULL */
886

887 888 889 890 891
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
892
 * sections can occur.  The caller must have disabled interrupts.
893
 *
894 895 896 897 898 899 900 901
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
902
 */
903
void rcu_irq_exit(void)
904
{
905
	long long oldval;
906 907
	struct rcu_dynticks *rdtp;

908
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
909
	rdtp = this_cpu_ptr(&rcu_dynticks);
910
	oldval = rdtp->dynticks_nesting;
911
	rdtp->dynticks_nesting--;
912 913
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting < 0);
914
	if (rdtp->dynticks_nesting)
915
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
916
	else
917 918
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
919 920 921 922 923 924 925 926 927 928 929
}

/*
 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 */
void rcu_irq_exit_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_exit();
930 931 932 933
	local_irq_restore(flags);
}

/*
934
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
935 936 937 938 939
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
940
static void rcu_eqs_exit_common(long long oldval, int user)
941
{
942
	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
943

944
	rcu_dynticks_task_exit();
945
	rcu_dynticks_eqs_exit();
946
	rcu_cleanup_after_idle();
947
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
948 949
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
950 951
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
952

953
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
954
				  oldval, rdtp->dynticks_nesting);
955
		rcu_ftrace_dump(DUMP_ORIG);
956 957 958
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
959 960 961
	}
}

962 963 964
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
965
 */
966
static void rcu_eqs_exit(bool user)
967 968 969 970
{
	struct rcu_dynticks *rdtp;
	long long oldval;

971
	rdtp = this_cpu_ptr(&rcu_dynticks);
972
	oldval = rdtp->dynticks_nesting;
973
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
974
	if (oldval & DYNTICK_TASK_NEST_MASK) {
975
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
976
	} else {
977
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
978
		rcu_eqs_exit_common(oldval, user);
979
	}
980
}
981 982 983 984 985 986 987 988 989 990 991 992 993 994

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
995 996 997
	unsigned long flags;

	local_irq_save(flags);
998
	rcu_eqs_exit(false);
999
	rcu_sysidle_exit(0);
1000
	local_irq_restore(flags);
1001
}
1002
EXPORT_SYMBOL_GPL(rcu_idle_exit);
1003

1004
#ifdef CONFIG_NO_HZ_FULL
1005 1006 1007 1008 1009 1010 1011 1012
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
1013
	rcu_eqs_exit(1);
1014
}
1015
#endif /* CONFIG_NO_HZ_FULL */
1016

1017 1018 1019 1020 1021
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
1022
 * sections can occur.  The caller must have disabled interrupts.
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	struct rcu_dynticks *rdtp;
	long long oldval;

1041
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1042
	rdtp = this_cpu_ptr(&rcu_dynticks);
1043 1044
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
1045 1046
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
1047
	if (oldval)
1048
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1049
	else
1050 1051
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
}

/*
 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 */
void rcu_irq_enter_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_enter();
1063 1064 1065 1066 1067 1068
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
1069 1070 1071 1072 1073
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
1074 1075 1076
 */
void rcu_nmi_enter(void)
{
1077
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1078
	int incby = 2;
1079

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
1091
	if (rcu_dynticks_curr_cpu_in_eqs()) {
1092
		rcu_dynticks_eqs_exit();
1093 1094 1095 1096
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
1097 1098 1099 1100 1101
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
1102 1103 1104 1105
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
1106 1107 1108
 */
void rcu_nmi_exit(void)
{
1109
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1110

1111 1112 1113 1114 1115 1116
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1117
	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1118 1119 1120 1121 1122 1123 1124

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
1125
		return;
1126 1127 1128 1129
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
1130
	rcu_dynticks_eqs_enter();
1131 1132 1133
}

/**
1134 1135 1136 1137 1138 1139 1140
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
1141
bool notrace __rcu_is_watching(void)
1142
{
1143
	return !rcu_dynticks_curr_cpu_in_eqs();
1144 1145 1146 1147
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1148
 *
1149
 * If the current CPU is in its idle loop and is neither in an interrupt
1150
 * or NMI handler, return true.
1151
 */
1152
bool notrace rcu_is_watching(void)
1153
{
1154
	bool ret;
1155

1156
	preempt_disable_notrace();
1157
	ret = __rcu_is_watching();
1158
	preempt_enable_notrace();
1159
	return ret;
1160
}
1161
EXPORT_SYMBOL_GPL(rcu_is_watching);
1162

1163
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1164 1165 1166 1167 1168 1169 1170

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
1171 1172 1173 1174 1175 1176
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
1177 1178
 * the fact that a CPU enters the scheduler after completing the teardown
 * of the CPU.
1179
 *
1180 1181
 * This is also why RCU internally marks CPUs online during in the
 * preparation phase and offline after the CPU has been taken down.
1182 1183 1184 1185 1186 1187
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1188 1189
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1190 1191 1192
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1193
		return true;
1194
	preempt_disable();
1195
	rdp = this_cpu_ptr(&rcu_sched_data);
1196
	rnp = rdp->mynode;
1197
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1198 1199 1200 1201 1202 1203
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1204
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1205

1206
/**
1207
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1208
 *
1209 1210 1211
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1212
 */
1213
static int rcu_is_cpu_rrupt_from_idle(void)
1214
{
1215
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1216 1217 1218 1219 1220
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1221
 * is in dynticks idle mode, which is an extended quiescent state.
1222
 */
1223 1224
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1225
{
1226
	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1227
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1228
	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1229
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1230
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1231
				 rdp->mynode->gpnum))
1232
			WRITE_ONCE(rdp->gpwrap, true);
1233
		return 1;
1234
	}
1235
	return 0;
1236 1237 1238 1239 1240 1241
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1242
 * for this same CPU, or by virtue of having been offline.
1243
 */
1244 1245
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1246
{
1247
	unsigned long jtsq;
1248
	bool *rnhqp;
1249 1250
	unsigned long rjtsc;
	struct rcu_node *rnp;
1251 1252 1253 1254 1255 1256 1257 1258 1259

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1260
	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1261
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1262 1263 1264 1265
		rdp->dynticks_fqs++;
		return 1;
	}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	/* Compute and saturate jiffies_till_sched_qs. */
	jtsq = jiffies_till_sched_qs;
	rjtsc = rcu_jiffies_till_stall_check();
	if (jtsq > rjtsc / 2) {
		WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
		jtsq = rjtsc / 2;
	} else if (jtsq < 1) {
		WRITE_ONCE(jiffies_till_sched_qs, 1);
		jtsq = 1;
	}

1277
	/*
1278 1279 1280 1281
	 * Has this CPU encountered a cond_resched_rcu_qs() since the
	 * beginning of the grace period?  For this to be the case,
	 * the CPU has to have noticed the current grace period.  This
	 * might not be the case for nohz_full CPUs looping in the kernel.
1282
	 */
1283 1284
	rnp = rdp->mynode;
	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1285
	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1286 1287 1288 1289 1290
	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
		return 1;
	}

1291 1292
	/* Check for the CPU being offline. */
	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1293
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1294 1295 1296
		rdp->offline_fqs++;
		return 1;
	}
1297 1298

	/*
1299 1300 1301 1302 1303 1304
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
1305
	 * rcu_need_heavy_qs variable are safe.  Yes, setting of
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1318
	 */
1319 1320 1321 1322 1323
	rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
	if (!READ_ONCE(*rnhqp) &&
	    (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
	     time_after(jiffies, rdp->rsp->jiffies_resched))) {
		WRITE_ONCE(*rnhqp, true);
1324
		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1325 1326
	}

1327 1328 1329 1330 1331 1332
	/*
	 * If more than halfway to RCU CPU stall-warning time, do
	 * a resched_cpu() to try to loosen things up a bit.
	 */
	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
		resched_cpu(rdp->cpu);
1333

1334
	return 0;
1335 1336 1337 1338
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1339
	unsigned long j = jiffies;
1340
	unsigned long j1;
1341 1342 1343

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1344
	j1 = rcu_jiffies_till_stall_check();
1345
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1346
	rsp->jiffies_resched = j + j1 / 2;
1347
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1348 1349
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
/*
 * Convert a ->gp_state value to a character string.
 */
static const char *gp_state_getname(short gs)
{
	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
		return "???";
	return gp_state_names[gs];
}

1360 1361 1362 1363 1364 1365 1366 1367 1368
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1369
	gpa = READ_ONCE(rsp->gp_activity);
1370
	if (j - gpa > 2 * HZ) {
1371
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1372
		       rsp->name, j - gpa,
1373
		       rsp->gpnum, rsp->completed,
1374 1375
		       rsp->gp_flags,
		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1376
		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1377
		if (rsp->gp_kthread) {
1378
			sched_show_task(rsp->gp_kthread);
1379 1380
			wake_up_process(rsp->gp_kthread);
		}
1381
	}
1382 1383
}

1384
/*
1385 1386 1387 1388
 * Dump stacks of all tasks running on stalled CPUs.  First try using
 * NMIs, but fall back to manual remote stack tracing on architectures
 * that don't support NMI-based stack dumps.  The NMI-triggered stack
 * traces are more accurate because they are printed by the target CPU.
1389 1390 1391 1392 1393 1394 1395 1396
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
1397
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1398 1399 1400
		for_each_leaf_node_possible_cpu(rnp, cpu)
			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
				if (!trigger_single_cpu_backtrace(cpu))
1401
					dump_cpu_task(cpu);
B
Boqun Feng 已提交
1402
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1403 1404 1405
	}
}

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
/*
 * If too much time has passed in the current grace period, and if
 * so configured, go kick the relevant kthreads.
 */
static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
{
	unsigned long j;

	if (!rcu_kick_kthreads)
		return;
	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1417 1418
	if (time_after(jiffies, j) && rsp->gp_kthread &&
	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1419
		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1420
		rcu_ftrace_dump(DUMP_ALL);
1421 1422 1423 1424 1425
		wake_up_process(rsp->gp_kthread);
		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
	}
}

1426 1427 1428 1429 1430 1431
static inline void panic_on_rcu_stall(void)
{
	if (sysctl_panic_on_rcu_stall)
		panic("RCU Stall\n");
}

1432
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1433 1434 1435 1436
{
	int cpu;
	long delta;
	unsigned long flags;
1437 1438
	unsigned long gpa;
	unsigned long j;
1439
	int ndetected = 0;
1440
	struct rcu_node *rnp = rcu_get_root(rsp);
1441
	long totqlen = 0;
1442

1443 1444 1445 1446 1447
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1448 1449
	/* Only let one CPU complain about others per time interval. */

1450
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1451
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1452
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
B
Boqun Feng 已提交
1453
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1454 1455
		return;
	}
1456 1457
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1458
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1459

1460 1461 1462 1463 1464
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1465
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1466
	       rsp->name);
1467
	print_cpu_stall_info_begin();
1468
	rcu_for_each_leaf_node(rsp, rnp) {
1469
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1470
		ndetected += rcu_print_task_stall(rnp);
1471
		if (rnp->qsmask != 0) {
1472 1473 1474
			for_each_leaf_node_possible_cpu(rnp, cpu)
				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
					print_cpu_stall_info(rsp, cpu);
1475 1476 1477
					ndetected++;
				}
		}
B
Boqun Feng 已提交
1478
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1479
	}
1480 1481

	print_cpu_stall_info_end();
1482 1483
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1484
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1485
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1486
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1487
	if (ndetected) {
1488
		rcu_dump_cpu_stacks(rsp);
1489 1490 1491

		/* Complain about tasks blocking the grace period. */
		rcu_print_detail_task_stall(rsp);
1492
	} else {
1493 1494
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1495 1496 1497
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1498
			gpa = READ_ONCE(rsp->gp_activity);
1499
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1500
			       rsp->name, j - gpa, j, gpa,
1501 1502
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1503 1504 1505 1506
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1507

1508 1509
	rcu_check_gp_kthread_starvation(rsp);

1510 1511
	panic_on_rcu_stall();

1512
	force_quiescent_state(rsp);  /* Kick them all. */
1513 1514 1515 1516
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1517
	int cpu;
1518 1519
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1520
	long totqlen = 0;
1521

1522 1523 1524 1525 1526
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1527 1528 1529 1530 1531
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1532
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1533 1534 1535
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1536 1537
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1538 1539 1540
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1541 1542 1543

	rcu_check_gp_kthread_starvation(rsp);

1544
	rcu_dump_cpu_stacks(rsp);
1545

1546
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1547 1548 1549
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1550
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1551

1552 1553
	panic_on_rcu_stall();

1554 1555 1556 1557 1558 1559 1560 1561
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1562 1563 1564 1565
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1566 1567 1568
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1569 1570
	unsigned long j;
	unsigned long js;
1571 1572
	struct rcu_node *rnp;

1573 1574
	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
	    !rcu_gp_in_progress(rsp))
1575
		return;
1576
	rcu_stall_kick_kthreads(rsp);
1577
	j = jiffies;
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1596
	gpnum = READ_ONCE(rsp->gpnum);
1597
	smp_rmb(); /* Pick up ->gpnum first... */
1598
	js = READ_ONCE(rsp->jiffies_stall);
1599
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1600
	gps = READ_ONCE(rsp->gp_start);
1601
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1602
	completed = READ_ONCE(rsp->completed);
1603 1604 1605 1606
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1607
	rnp = rdp->mynode;
1608
	if (rcu_gp_in_progress(rsp) &&
1609
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1610 1611 1612 1613

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1614 1615
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1616

1617
		/* They had a few time units to dump stack, so complain. */
1618
		print_other_cpu_stall(rsp, gpnum);
1619 1620 1621
	}
}

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1633 1634 1635
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1636
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1637 1638
}

1639
/*
1640 1641 1642
 * Initialize the specified rcu_data structure's default callback list
 * to empty.  The default callback list is the one that is not used by
 * no-callbacks CPUs.
1643
 */
1644
static void init_default_callback_list(struct rcu_data *rdp)
1645 1646 1647 1648 1649 1650 1651 1652
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	if (init_nocb_callback_list(rdp))
		return;
	init_default_callback_list(rdp);
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1692 1693 1694 1695 1696
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1697
				unsigned long c, const char *s)
1698 1699 1700 1701 1702 1703 1704 1705 1706
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1707 1708
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1709 1710 1711
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1712 1713 1714
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1715 1716 1717
{
	unsigned long c;
	int i;
1718
	bool ret = false;
1719 1720 1721 1722 1723 1724 1725
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1726
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1727
	if (rnp->need_future_gp[c & 0x1]) {
1728
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1729
		goto out;
1730 1731 1732 1733 1734 1735 1736
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1737 1738 1739 1740 1741 1742 1743
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1744 1745
	 */
	if (rnp->gpnum != rnp->completed ||
1746
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1747
		rnp->need_future_gp[c & 0x1]++;
1748
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1749
		goto out;
1750 1751 1752 1753 1754 1755 1756
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1757 1758
	if (rnp != rnp_root)
		raw_spin_lock_rcu_node(rnp_root);
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1776
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1777 1778 1779 1780 1781 1782 1783 1784
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1785
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1786
	} else {
1787
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1788
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1789 1790 1791
	}
unlock_out:
	if (rnp != rnp_root)
B
Boqun Feng 已提交
1792
		raw_spin_unlock_rcu_node(rnp_root);
1793 1794 1795 1796
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1813 1814
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1815 1816 1817
	return needmore;
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1828
	    !READ_ONCE(rsp->gp_flags) ||
1829 1830
	    !rsp->gp_kthread)
		return;
1831
	swake_up(&rsp->gp_wq);
1832 1833
}

1834 1835 1836 1837 1838 1839 1840
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1841 1842
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1843 1844 1845
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1846
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1847 1848 1849 1850
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1851
	bool ret;
1852 1853 1854

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1855
		return false;
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1884
		return false;
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1895
	/* Record any needed additional grace periods. */
1896
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1897 1898 1899

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1900
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1901
	else
1902
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1903
	return ret;
1904 1905 1906 1907 1908 1909 1910 1911
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1912
 * Returns true if the RCU grace-period kthread needs to be awakened.
1913 1914 1915
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1916
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1917 1918 1919 1920 1921 1922
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1923
		return false;
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1947
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1948 1949
}

1950
/*
1951 1952 1953
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1954
 * Returns true if the grace-period kthread needs to be awakened.
1955
 */
1956 1957
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1958
{
1959
	bool ret;
1960
	bool need_gp;
1961

1962
	/* Handle the ends of any preceding grace periods first. */
1963
	if (rdp->completed == rnp->completed &&
1964
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1965

1966
		/* No grace period end, so just accelerate recent callbacks. */
1967
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1968

1969 1970 1971
	} else {

		/* Advance callbacks. */
1972
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1973 1974 1975

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1976
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1977
	}
1978

1979
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1980 1981 1982 1983 1984 1985
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1986
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1987 1988
		need_gp = !!(rnp->qsmask & rdp->grpmask);
		rdp->cpu_no_qs.b.norm = need_gp;
1989
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1990
		rdp->core_needs_qs = need_gp;
1991
		zero_cpu_stall_ticks(rdp);
1992
		WRITE_ONCE(rdp->gpwrap, false);
1993
	}
1994
	return ret;
1995 1996
}

1997
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1998 1999
{
	unsigned long flags;
2000
	bool needwake;
2001 2002 2003 2004
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
2005 2006 2007
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2008
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
2009 2010 2011
		local_irq_restore(flags);
		return;
	}
2012
	needwake = __note_gp_changes(rsp, rnp, rdp);
B
Boqun Feng 已提交
2013
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2014 2015
	if (needwake)
		rcu_gp_kthread_wake(rsp);
2016 2017
}

2018 2019 2020 2021 2022 2023 2024
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

2025
/*
2026
 * Initialize a new grace period.  Return false if no grace period required.
2027
 */
2028
static bool rcu_gp_init(struct rcu_state *rsp)
2029
{
2030
	unsigned long oldmask;
2031
	struct rcu_data *rdp;
2032
	struct rcu_node *rnp = rcu_get_root(rsp);
2033

2034
	WRITE_ONCE(rsp->gp_activity, jiffies);
2035
	raw_spin_lock_irq_rcu_node(rnp);
2036
	if (!READ_ONCE(rsp->gp_flags)) {
2037
		/* Spurious wakeup, tell caller to go back to sleep.  */
B
Boqun Feng 已提交
2038
		raw_spin_unlock_irq_rcu_node(rnp);
2039
		return false;
2040
	}
2041
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
2042

2043 2044 2045 2046 2047
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
B
Boqun Feng 已提交
2048
		raw_spin_unlock_irq_rcu_node(rnp);
2049
		return false;
2050 2051 2052
	}

	/* Advance to a new grace period and initialize state. */
2053
	record_gp_stall_check_time(rsp);
2054 2055
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
2056
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
B
Boqun Feng 已提交
2057
	raw_spin_unlock_irq_rcu_node(rnp);
2058

2059 2060 2061 2062 2063 2064 2065
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
2066
		rcu_gp_slow(rsp, gp_preinit_delay);
2067
		raw_spin_lock_irq_rcu_node(rnp);
2068 2069 2070
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
B
Boqun Feng 已提交
2071
			raw_spin_unlock_irq_rcu_node(rnp);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

B
Boqun Feng 已提交
2105
		raw_spin_unlock_irq_rcu_node(rnp);
2106
	}
2107 2108 2109 2110 2111 2112 2113 2114

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
2115
	 * leaf node has been initialized.
2116 2117 2118 2119 2120
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2121
		rcu_gp_slow(rsp, gp_init_delay);
2122
		raw_spin_lock_irq_rcu_node(rnp);
2123
		rdp = this_cpu_ptr(rsp->rda);
2124 2125
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
2126
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2127
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2128
			WRITE_ONCE(rnp->completed, rsp->completed);
2129
		if (rnp == rdp->mynode)
2130
			(void)__note_gp_changes(rsp, rnp, rdp);
2131 2132 2133 2134
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
B
Boqun Feng 已提交
2135
		raw_spin_unlock_irq_rcu_node(rnp);
2136
		cond_resched_rcu_qs();
2137
		WRITE_ONCE(rsp->gp_activity, jiffies);
2138
	}
2139

2140
	return true;
2141
}
2142

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
/*
 * Helper function for wait_event_interruptible_timeout() wakeup
 * at force-quiescent-state time.
 */
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rsp->gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

2163 2164 2165
/*
 * Do one round of quiescent-state forcing.
 */
2166
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2167
{
2168 2169
	bool isidle = false;
	unsigned long maxj;
2170 2171
	struct rcu_node *rnp = rcu_get_root(rsp);

2172
	WRITE_ONCE(rsp->gp_activity, jiffies);
2173
	rsp->n_force_qs++;
2174
	if (first_time) {
2175
		/* Collect dyntick-idle snapshots. */
2176
		if (is_sysidle_rcu_state(rsp)) {
2177
			isidle = true;
2178 2179
			maxj = jiffies - ULONG_MAX / 4;
		}
2180 2181
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
2182
		rcu_sysidle_report_gp(rsp, isidle, maxj);
2183 2184
	} else {
		/* Handle dyntick-idle and offline CPUs. */
2185
		isidle = true;
2186
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2187 2188
	}
	/* Clear flag to prevent immediate re-entry. */
2189
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2190
		raw_spin_lock_irq_rcu_node(rnp);
2191 2192
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2193
		raw_spin_unlock_irq_rcu_node(rnp);
2194 2195 2196
	}
}

2197 2198 2199
/*
 * Clean up after the old grace period.
 */
2200
static void rcu_gp_cleanup(struct rcu_state *rsp)
2201 2202
{
	unsigned long gp_duration;
2203
	bool needgp = false;
2204
	int nocb = 0;
2205 2206
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
2207
	struct swait_queue_head *sq;
2208

2209
	WRITE_ONCE(rsp->gp_activity, jiffies);
2210
	raw_spin_lock_irq_rcu_node(rnp);
2211 2212 2213
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
2214

2215 2216 2217 2218 2219 2220 2221 2222
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
B
Boqun Feng 已提交
2223
	raw_spin_unlock_irq_rcu_node(rnp);
2224

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2235
		raw_spin_lock_irq_rcu_node(rnp);
2236 2237
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
2238
		WRITE_ONCE(rnp->completed, rsp->gpnum);
2239 2240
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
2241
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2242
		/* smp_mb() provided by prior unlock-lock pair. */
2243
		nocb += rcu_future_gp_cleanup(rsp, rnp);
2244
		sq = rcu_nocb_gp_get(rnp);
B
Boqun Feng 已提交
2245
		raw_spin_unlock_irq_rcu_node(rnp);
2246
		rcu_nocb_gp_cleanup(sq);
2247
		cond_resched_rcu_qs();
2248
		WRITE_ONCE(rsp->gp_activity, jiffies);
2249
		rcu_gp_slow(rsp, gp_cleanup_delay);
2250
	}
2251
	rnp = rcu_get_root(rsp);
2252
	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2253
	rcu_nocb_gp_set(rnp, nocb);
2254

2255
	/* Declare grace period done. */
2256
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2257
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2258
	rsp->gp_state = RCU_GP_IDLE;
2259
	rdp = this_cpu_ptr(rsp->rda);
2260 2261 2262
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2263
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2264
		trace_rcu_grace_period(rsp->name,
2265
				       READ_ONCE(rsp->gpnum),
2266 2267
				       TPS("newreq"));
	}
B
Boqun Feng 已提交
2268
	raw_spin_unlock_irq_rcu_node(rnp);
2269 2270 2271 2272 2273 2274 2275
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2276
	bool first_gp_fqs;
2277
	int gf;
2278
	unsigned long j;
2279
	int ret;
2280 2281 2282
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2283
	rcu_bind_gp_kthread();
2284 2285 2286 2287
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2288
			trace_rcu_grace_period(rsp->name,
2289
					       READ_ONCE(rsp->gpnum),
2290
					       TPS("reqwait"));
2291
			rsp->gp_state = RCU_GP_WAIT_GPS;
2292
			swait_event_interruptible(rsp->gp_wq,
2293
						 READ_ONCE(rsp->gp_flags) &
2294
						 RCU_GP_FLAG_INIT);
2295
			rsp->gp_state = RCU_GP_DONE_GPS;
2296
			/* Locking provides needed memory barrier. */
2297
			if (rcu_gp_init(rsp))
2298
				break;
2299
			cond_resched_rcu_qs();
2300
			WRITE_ONCE(rsp->gp_activity, jiffies);
2301
			WARN_ON(signal_pending(current));
2302
			trace_rcu_grace_period(rsp->name,
2303
					       READ_ONCE(rsp->gpnum),
2304
					       TPS("reqwaitsig"));
2305
		}
2306

2307
		/* Handle quiescent-state forcing. */
2308
		first_gp_fqs = true;
2309 2310 2311 2312 2313
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2314
		ret = 0;
2315
		for (;;) {
2316
			if (!ret) {
2317
				rsp->jiffies_force_qs = jiffies + j;
2318 2319 2320
				WRITE_ONCE(rsp->jiffies_kick_kthreads,
					   jiffies + 3 * j);
			}
2321
			trace_rcu_grace_period(rsp->name,
2322
					       READ_ONCE(rsp->gpnum),
2323
					       TPS("fqswait"));
2324
			rsp->gp_state = RCU_GP_WAIT_FQS;
2325
			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2326
					rcu_gp_fqs_check_wake(rsp, &gf), j);
2327
			rsp->gp_state = RCU_GP_DOING_FQS;
2328
			/* Locking provides needed memory barriers. */
2329
			/* If grace period done, leave loop. */
2330
			if (!READ_ONCE(rnp->qsmask) &&
2331
			    !rcu_preempt_blocked_readers_cgp(rnp))
2332
				break;
2333
			/* If time for quiescent-state forcing, do it. */
2334 2335
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2336
				trace_rcu_grace_period(rsp->name,
2337
						       READ_ONCE(rsp->gpnum),
2338
						       TPS("fqsstart"));
2339 2340
				rcu_gp_fqs(rsp, first_gp_fqs);
				first_gp_fqs = false;
2341
				trace_rcu_grace_period(rsp->name,
2342
						       READ_ONCE(rsp->gpnum),
2343
						       TPS("fqsend"));
2344
				cond_resched_rcu_qs();
2345
				WRITE_ONCE(rsp->gp_activity, jiffies);
2346 2347 2348 2349 2350 2351 2352 2353 2354
				ret = 0; /* Force full wait till next FQS. */
				j = jiffies_till_next_fqs;
				if (j > HZ) {
					j = HZ;
					jiffies_till_next_fqs = HZ;
				} else if (j < 1) {
					j = 1;
					jiffies_till_next_fqs = 1;
				}
2355 2356
			} else {
				/* Deal with stray signal. */
2357
				cond_resched_rcu_qs();
2358
				WRITE_ONCE(rsp->gp_activity, jiffies);
2359
				WARN_ON(signal_pending(current));
2360
				trace_rcu_grace_period(rsp->name,
2361
						       READ_ONCE(rsp->gpnum),
2362
						       TPS("fqswaitsig"));
2363 2364 2365 2366 2367 2368
				ret = 1; /* Keep old FQS timing. */
				j = jiffies;
				if (time_after(jiffies, rsp->jiffies_force_qs))
					j = 1;
				else
					j = rsp->jiffies_force_qs - j;
2369
			}
2370
		}
2371 2372

		/* Handle grace-period end. */
2373
		rsp->gp_state = RCU_GP_CLEANUP;
2374
		rcu_gp_cleanup(rsp);
2375
		rsp->gp_state = RCU_GP_CLEANED;
2376 2377 2378
	}
}

2379 2380 2381
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2382
 * the root node's ->lock and hard irqs must be disabled.
2383 2384 2385 2386
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2387 2388
 *
 * Returns true if the grace-period kthread must be awakened.
2389
 */
2390
static bool
2391 2392
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2393
{
2394
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2395
		/*
2396
		 * Either we have not yet spawned the grace-period
2397 2398
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2399
		 * Either way, don't start a new grace period.
2400
		 */
2401
		return false;
2402
	}
2403 2404
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2405
			       TPS("newreq"));
2406

2407 2408
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2409
	 * could cause possible deadlocks with the rq->lock. Defer
2410
	 * the wakeup to our caller.
2411
	 */
2412
	return true;
2413 2414
}

2415 2416 2417 2418 2419 2420
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2421 2422
 *
 * Returns true if the grace-period kthread needs to be awakened.
2423
 */
2424
static bool rcu_start_gp(struct rcu_state *rsp)
2425 2426 2427
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2428
	bool ret = false;
2429 2430 2431 2432 2433 2434 2435 2436 2437

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2438 2439 2440
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2441 2442
}

2443
/*
2444 2445 2446 2447 2448 2449 2450
 * Report a full set of quiescent states to the specified rcu_state data
 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
 * kthread if another grace period is required.  Whether we wake
 * the grace-period kthread or it awakens itself for the next round
 * of quiescent-state forcing, that kthread will clean up after the
 * just-completed grace period.  Note that the caller must hold rnp->lock,
 * which is released before return.
2451
 */
P
Paul E. McKenney 已提交
2452
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2453
	__releases(rcu_get_root(rsp)->lock)
2454
{
2455
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2456
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2457
	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2458
	rcu_gp_kthread_wake(rsp);
2459 2460
}

2461
/*
P
Paul E. McKenney 已提交
2462 2463 2464
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2465 2466 2467 2468 2469
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2470 2471
 */
static void
P
Paul E. McKenney 已提交
2472
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2473
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2474 2475
	__releases(rnp->lock)
{
2476
	unsigned long oldmask = 0;
2477 2478
	struct rcu_node *rnp_c;

2479 2480
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2481
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2482

2483 2484 2485 2486
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
B
Boqun Feng 已提交
2487
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2488 2489
			return;
		}
2490
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2491
		rnp->qsmask &= ~mask;
2492 2493 2494 2495
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2496
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2497 2498

			/* Other bits still set at this level, so done. */
B
Boqun Feng 已提交
2499
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2500 2501 2502 2503 2504 2505 2506 2507 2508
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
B
Boqun Feng 已提交
2509
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2510
		rnp_c = rnp;
2511
		rnp = rnp->parent;
2512
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2513
		oldmask = rnp_c->qsmask;
2514 2515 2516 2517
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2518
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2519
	 * to clean up and start the next grace period if one is needed.
2520
	 */
P
Paul E. McKenney 已提交
2521
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2522 2523
}

2524 2525 2526 2527 2528 2529 2530
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2531
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2532 2533 2534
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2535
	unsigned long gps;
2536 2537 2538
	unsigned long mask;
	struct rcu_node *rnp_p;

2539 2540
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
B
Boqun Feng 已提交
2541
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2542 2543 2544 2545 2546 2547
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2548 2549
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2550 2551 2552 2553 2554
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2555 2556
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2557
	mask = rnp->grpmask;
B
Boqun Feng 已提交
2558
	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2559
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2560
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2561 2562
}

2563
/*
P
Paul E. McKenney 已提交
2564
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2565
 * structure.  This must be called from the specified CPU.
2566 2567
 */
static void
2568
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2569 2570 2571
{
	unsigned long flags;
	unsigned long mask;
2572
	bool needwake;
2573 2574 2575
	struct rcu_node *rnp;

	rnp = rdp->mynode;
2576
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2577 2578
	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2579 2580

		/*
2581 2582 2583 2584
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2585
		 */
2586
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2587
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
B
Boqun Feng 已提交
2588
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2589 2590 2591 2592
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
B
Boqun Feng 已提交
2593
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2594
	} else {
2595
		rdp->core_needs_qs = false;
2596 2597 2598 2599 2600

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2601
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2602

2603 2604
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2605 2606
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2619 2620
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2621 2622 2623 2624 2625

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
2626
	if (!rdp->core_needs_qs)
2627 2628 2629 2630 2631 2632
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2633
	if (rdp->cpu_no_qs.b.norm)
2634 2635
		return;

P
Paul E. McKenney 已提交
2636 2637 2638 2639
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2640
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2641 2642
}

2643
/*
2644 2645
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2646
 * ->orphan_lock.
2647
 */
2648 2649 2650
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2651
{
P
Paul E. McKenney 已提交
2652
	/* No-CBs CPUs do not have orphanable callbacks. */
2653
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2654 2655
		return;

2656 2657
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2658 2659
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2660
	 */
2661
	if (rdp->nxtlist != NULL) {
2662 2663 2664
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2665
		rdp->qlen_lazy = 0;
2666
		WRITE_ONCE(rdp->qlen, 0);
2667 2668 2669
	}

	/*
2670 2671 2672 2673 2674 2675 2676
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2677
	 */
2678 2679 2680 2681
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2682 2683 2684
	}

	/*
2685 2686 2687
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2688
	 */
2689
	if (rdp->nxtlist != NULL) {
2690 2691
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2692
	}
2693

2694 2695 2696 2697
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2698
	init_callback_list(rdp);
2699
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2700 2701 2702 2703
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2704
 * orphanage.  The caller must hold the ->orphan_lock.
2705
 */
2706
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2707 2708
{
	int i;
2709
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2710

P
Paul E. McKenney 已提交
2711
	/* No-CBs CPUs are handled specially. */
2712 2713
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2714 2715
		return;

2716 2717 2718 2719
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2720 2721
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
2756 2757 2758
	RCU_TRACE(unsigned long mask;)
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2759

2760 2761 2762
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2763
	RCU_TRACE(mask = rdp->grpmask;)
2764 2765
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2766
			       TPS("cpuofl"));
2767 2768
}

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2791 2792
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2793 2794 2795 2796 2797 2798
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
2799
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2800
		rnp->qsmaskinit &= ~mask;
2801
		rnp->qsmask &= ~mask;
2802
		if (rnp->qsmaskinit) {
B
Boqun Feng 已提交
2803 2804
			raw_spin_unlock_rcu_node(rnp);
			/* irqs remain disabled. */
2805 2806
			return;
		}
B
Boqun Feng 已提交
2807
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2808 2809 2810
	}
}

2811
/*
2812
 * The CPU has been completely removed, and some other CPU is reporting
2813 2814
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2815 2816
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2817
 */
2818
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2819
{
2820
	unsigned long flags;
2821
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2822
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2823

2824 2825 2826
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2827
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2828
	rcu_boost_kthread_setaffinity(rnp, -1);
2829

2830
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2831
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2832
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2833
	rcu_adopt_orphan_cbs(rsp, flags);
2834
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2835

2836 2837 2838
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2839 2840 2841 2842 2843 2844
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2845
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2846 2847 2848
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2849 2850
	long bl, count, count_lazy;
	int i;
2851

2852
	/* If no callbacks are ready, just return. */
2853
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2854
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2855
		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2856 2857
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2858
		return;
2859
	}
2860 2861 2862 2863 2864 2865

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2866
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2867
	bl = rdp->blimit;
2868
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2869 2870 2871 2872
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2873 2874 2875
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2876 2877 2878
	local_irq_restore(flags);

	/* Invoke callbacks. */
2879
	count = count_lazy = 0;
2880 2881 2882
	while (list) {
		next = list->next;
		prefetch(next);
2883
		debug_rcu_head_unqueue(list);
2884 2885
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2886
		list = next;
2887 2888 2889 2890
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2891 2892 2893 2894
			break;
	}

	local_irq_save(flags);
2895 2896 2897
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2898 2899 2900 2901 2902

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2903 2904 2905
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2906 2907 2908
			else
				break;
	}
2909 2910
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2911
	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2912
	rdp->n_cbs_invoked += count;
2913 2914 2915 2916 2917

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2918 2919 2920 2921 2922 2923
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2924
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2925

2926 2927
	local_irq_restore(flags);

2928
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2929
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2930
		invoke_rcu_core();
2931 2932 2933 2934 2935
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2936
 * Also schedule RCU core processing.
2937
 *
2938
 * This function must be called from hardirq context.  It is normally
2939
 * invoked from the scheduling-clock interrupt.
2940
 */
2941
void rcu_check_callbacks(int user)
2942
{
2943
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2944
	increment_cpu_stall_ticks();
2945
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2946 2947 2948 2949 2950

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2951
		 * a quiescent state, so note it.
2952 2953
		 *
		 * No memory barrier is required here because both
2954 2955 2956
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2957 2958
		 */

2959 2960
		rcu_sched_qs();
		rcu_bh_qs();
2961 2962 2963 2964 2965 2966 2967

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2968
		 * critical section, so note it.
2969 2970
		 */

2971
		rcu_bh_qs();
2972
	}
2973
	rcu_preempt_check_callbacks();
2974
	if (rcu_pending())
2975
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2976 2977
	if (user)
		rcu_note_voluntary_context_switch(current);
2978
	trace_rcu_utilization(TPS("End scheduler-tick"));
2979 2980 2981 2982 2983
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2984 2985
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2986
 * The caller must have suppressed start of new grace periods.
2987
 */
2988 2989 2990 2991
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2992 2993 2994 2995
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
2996
	struct rcu_node *rnp;
2997

2998
	rcu_for_each_leaf_node(rsp, rnp) {
2999
		cond_resched_rcu_qs();
3000
		mask = 0;
3001
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3002
		if (rnp->qsmask == 0) {
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
3026
		}
3027 3028
		for_each_leaf_node_possible_cpu(rnp, cpu) {
			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
3029 3030 3031 3032
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
3033
		}
3034
		if (mask != 0) {
3035 3036
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
3037 3038
		} else {
			/* Nothing to do here, so just drop the lock. */
B
Boqun Feng 已提交
3039
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3040 3041 3042 3043 3044 3045 3046 3047
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
3048
static void force_quiescent_state(struct rcu_state *rsp)
3049 3050
{
	unsigned long flags;
3051 3052 3053 3054 3055
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
3056
	rnp = __this_cpu_read(rsp->rda->mynode);
3057
	for (; rnp != NULL; rnp = rnp->parent) {
3058
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
3059 3060 3061 3062
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
3063
			rsp->n_force_qs_lh++;
3064 3065 3066 3067 3068
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
3069

3070
	/* Reached the root of the rcu_node tree, acquire lock. */
3071
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
3072
	raw_spin_unlock(&rnp_old->fqslock);
3073
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
3074
		rsp->n_force_qs_lh++;
B
Boqun Feng 已提交
3075
		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3076
		return;  /* Someone beat us to it. */
3077
	}
3078
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
3079
	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3080
	rcu_gp_kthread_wake(rsp);
3081 3082 3083
}

/*
3084 3085 3086
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
3087 3088
 */
static void
3089
__rcu_process_callbacks(struct rcu_state *rsp)
3090 3091
{
	unsigned long flags;
3092
	bool needwake;
3093
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3094

3095 3096
	WARN_ON_ONCE(rdp->beenonline == 0);

3097 3098 3099 3100
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
3101
	local_irq_save(flags);
3102
	if (cpu_needs_another_gp(rsp, rdp)) {
3103
		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3104
		needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3105
		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3106 3107
		if (needwake)
			rcu_gp_kthread_wake(rsp);
3108 3109
	} else {
		local_irq_restore(flags);
3110 3111 3112
	}

	/* If there are callbacks ready, invoke them. */
3113
	if (cpu_has_callbacks_ready_to_invoke(rdp))
3114
		invoke_rcu_callbacks(rsp, rdp);
3115 3116 3117

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
3118 3119
}

3120
/*
3121
 * Do RCU core processing for the current CPU.
3122
 */
3123
static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3124
{
3125 3126
	struct rcu_state *rsp;

3127 3128
	if (cpu_is_offline(smp_processor_id()))
		return;
3129
	trace_rcu_utilization(TPS("Start RCU core"));
3130 3131
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
3132
	trace_rcu_utilization(TPS("End RCU core"));
3133 3134
}

3135
/*
3136 3137 3138
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
3139
 * are running on the current CPU with softirqs disabled, the
3140
 * rcu_cpu_kthread_task cannot disappear out from under us.
3141
 */
3142
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3143
{
3144
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3145
		return;
3146 3147
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
3148 3149
		return;
	}
3150
	invoke_rcu_callbacks_kthread();
3151 3152
}

3153
static void invoke_rcu_core(void)
3154
{
3155 3156
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
3157 3158
}

3159 3160 3161 3162 3163
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
3164
{
3165 3166
	bool needwake;

3167 3168 3169 3170
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
3171
	if (!rcu_is_watching())
3172 3173
		invoke_rcu_core();

3174
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3175
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3176
		return;
3177

3178 3179 3180 3181 3182 3183 3184
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
3185
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3186 3187

		/* Are we ignoring a completed grace period? */
3188
		note_gp_changes(rsp, rdp);
3189 3190 3191 3192 3193

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

3194
			raw_spin_lock_rcu_node(rnp_root);
3195
			needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3196
			raw_spin_unlock_rcu_node(rnp_root);
3197 3198
			if (needwake)
				rcu_gp_kthread_wake(rsp);
3199 3200 3201 3202 3203
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3204
				force_quiescent_state(rsp);
3205 3206 3207
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
3208
	}
3209 3210
}

3211 3212 3213 3214 3215 3216 3217
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3218 3219 3220 3221 3222 3223
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3224
static void
3225
__call_rcu(struct rcu_head *head, rcu_callback_t func,
P
Paul E. McKenney 已提交
3226
	   struct rcu_state *rsp, int cpu, bool lazy)
3227 3228 3229 3230
{
	unsigned long flags;
	struct rcu_data *rdp;

3231 3232 3233
	/* Misaligned rcu_head! */
	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));

3234 3235
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3236
		WRITE_ONCE(head->func, rcu_leak_callback);
3237 3238 3239
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3240 3241 3242
	head->func = func;
	head->next = NULL;
	local_irq_save(flags);
3243
	rdp = this_cpu_ptr(rsp->rda);
3244 3245

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
3246 3247 3248 3249 3250
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3264
		WARN_ON_ONCE(!rcu_is_watching());
3265 3266
		if (!likely(rdp->nxtlist))
			init_default_callback_list(rdp);
3267
	}
3268
	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3269 3270
	if (lazy)
		rdp->qlen_lazy++;
3271 3272
	else
		rcu_idle_count_callbacks_posted();
3273 3274 3275
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3276

3277 3278
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3279
					 rdp->qlen_lazy, rdp->qlen);
3280
	else
3281
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3282

3283 3284
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3285 3286 3287 3288
	local_irq_restore(flags);
}

/*
3289
 * Queue an RCU-sched callback for invocation after a grace period.
3290
 */
3291
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3292
{
P
Paul E. McKenney 已提交
3293
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3294
}
3295
EXPORT_SYMBOL_GPL(call_rcu_sched);
3296 3297

/*
3298
 * Queue an RCU callback for invocation after a quicker grace period.
3299
 */
3300
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3301
{
P
Paul E. McKenney 已提交
3302
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3303 3304 3305
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3306 3307 3308 3309 3310 3311 3312 3313
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
3314
		    rcu_callback_t func)
3315
{
3316
	__call_rcu(head, func, rcu_state_p, -1, 1);
3317 3318 3319
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3331 3332
	int ret;

3333
	might_sleep();  /* Check for RCU read-side critical section. */
3334 3335 3336 3337
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3338 3339
}

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3374 3375 3376 3377 3378 3379 3380 3381 3382
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3383 3384 3385 3386
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3387 3388
	if (rcu_blocking_is_gp())
		return;
3389
	if (rcu_gp_is_expedited())
3390 3391 3392
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3404 3405 3406
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3407 3408 3409
 */
void synchronize_rcu_bh(void)
{
3410 3411 3412 3413
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3414 3415
	if (rcu_blocking_is_gp())
		return;
3416
	if (rcu_gp_is_expedited())
3417 3418 3419
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3420 3421 3422
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3443
	return smp_load_acquire(&rcu_state_p->gpnum);
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3469
	newstate = smp_load_acquire(&rcu_state_p->completed);
3470 3471 3472 3473 3474
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
/**
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_sched(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_sched()
	 * and cond_synchronize_sched().
	 */
	return smp_load_acquire(&rcu_sched_state.gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);

/**
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 *
 * If a full RCU-sched grace period has elapsed since the earlier call to
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 * synchronize_sched() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_sched(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_sched_state.completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(cond_synchronize_sched);

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
/* Adjust sequence number for start of update-side operation. */
static void rcu_seq_start(unsigned long *sp)
{
	WRITE_ONCE(*sp, *sp + 1);
	smp_mb(); /* Ensure update-side operation after counter increment. */
	WARN_ON_ONCE(!(*sp & 0x1));
}

/* Adjust sequence number for end of update-side operation. */
static void rcu_seq_end(unsigned long *sp)
{
	smp_mb(); /* Ensure update-side operation before counter increment. */
	WRITE_ONCE(*sp, *sp + 1);
	WARN_ON_ONCE(*sp & 0x1);
}

/* Take a snapshot of the update side's sequence number. */
static unsigned long rcu_seq_snap(unsigned long *sp)
{
	unsigned long s;

	s = (READ_ONCE(*sp) + 3) & ~0x1;
	smp_mb(); /* Above access must not bleed into critical section. */
	return s;
}

/*
 * Given a snapshot from rcu_seq_snap(), determine whether or not a
 * full update-side operation has occurred.
 */
static bool rcu_seq_done(unsigned long *sp, unsigned long s)
{
	return ULONG_CMP_GE(READ_ONCE(*sp), s);
}

3562 3563 3564 3565 3566 3567 3568 3569 3570
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3571 3572
	struct rcu_node *rnp = rdp->mynode;

3573 3574 3575 3576 3577
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3578 3579 3580 3581
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3582
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3583
	if (rcu_scheduler_fully_active &&
3584
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3585
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3586
		rdp->n_rp_core_needs_qs++;
3587
	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3588
		rdp->n_rp_report_qs++;
3589
		return 1;
3590
	}
3591 3592

	/* Does this CPU have callbacks ready to invoke? */
3593 3594
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3595
		return 1;
3596
	}
3597 3598

	/* Has RCU gone idle with this CPU needing another grace period? */
3599 3600
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3601
		return 1;
3602
	}
3603 3604

	/* Has another RCU grace period completed?  */
3605
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3606
		rdp->n_rp_gp_completed++;
3607
		return 1;
3608
	}
3609 3610

	/* Has a new RCU grace period started? */
3611 3612
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3613
		rdp->n_rp_gp_started++;
3614
		return 1;
3615
	}
3616

3617 3618 3619 3620 3621 3622
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3623
	/* nothing to do */
3624
	rdp->n_rp_need_nothing++;
3625 3626 3627 3628 3629 3630 3631 3632
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3633
static int rcu_pending(void)
3634
{
3635 3636 3637
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3638
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3639 3640
			return 1;
	return 0;
3641 3642 3643
}

/*
3644 3645 3646
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3647
 */
3648
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3649
{
3650 3651 3652
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3653 3654
	struct rcu_state *rsp;

3655
	for_each_rcu_flavor(rsp) {
3656
		rdp = this_cpu_ptr(rsp->rda);
3657 3658 3659 3660
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3661
			al = false;
3662 3663
			break;
		}
3664 3665 3666 3667
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3668 3669
}

3670 3671 3672 3673
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3674
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3675 3676 3677 3678 3679 3680
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3681 3682 3683 3684
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3685
static void rcu_barrier_callback(struct rcu_head *rhp)
3686
{
3687 3688 3689
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3690
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3691
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3692
		complete(&rsp->barrier_completion);
3693
	} else {
3694
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3695
	}
3696 3697 3698 3699 3700 3701 3702
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3703
	struct rcu_state *rsp = type;
3704
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3705

3706
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3707
	atomic_inc(&rsp->barrier_cpu_count);
3708
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3709 3710 3711 3712 3713 3714
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3715
static void _rcu_barrier(struct rcu_state *rsp)
3716
{
3717 3718
	int cpu;
	struct rcu_data *rdp;
3719
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3720

3721
	_rcu_barrier_trace(rsp, "Begin", -1, s);
3722

3723
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3724
	mutex_lock(&rsp->barrier_mutex);
3725

3726 3727 3728
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3729 3730 3731 3732 3733
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

3734 3735 3736
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3737

3738
	/*
3739 3740
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3741 3742
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3743
	 */
3744
	init_completion(&rsp->barrier_completion);
3745
	atomic_set(&rsp->barrier_cpu_count, 1);
3746
	get_online_cpus();
3747 3748

	/*
3749 3750 3751
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3752
	 */
P
Paul E. McKenney 已提交
3753
	for_each_possible_cpu(cpu) {
3754
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3755
			continue;
3756
		rdp = per_cpu_ptr(rsp->rda, cpu);
3757
		if (rcu_is_nocb_cpu(cpu)) {
3758 3759
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3760
						   rsp->barrier_sequence);
3761 3762
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3763
						   rsp->barrier_sequence);
3764
				smp_mb__before_atomic();
3765 3766 3767 3768
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
3769
		} else if (READ_ONCE(rdp->qlen)) {
3770
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3771
					   rsp->barrier_sequence);
3772
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3773
		} else {
3774
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3775
					   rsp->barrier_sequence);
3776 3777
		}
	}
3778
	put_online_cpus();
3779 3780 3781 3782 3783

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3784
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3785
		complete(&rsp->barrier_completion);
3786 3787

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3788
	wait_for_completion(&rsp->barrier_completion);
3789

3790 3791 3792 3793
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

3794
	/* Other rcu_barrier() invocations can now safely proceed. */
3795
	mutex_unlock(&rsp->barrier_mutex);
3796 3797 3798 3799 3800 3801 3802
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3803
	_rcu_barrier(&rcu_bh_state);
3804 3805 3806 3807 3808 3809 3810 3811
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3812
	_rcu_barrier(&rcu_sched_state);
3813 3814 3815
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
3832
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3833
		rnp->qsmaskinit |= mask;
B
Boqun Feng 已提交
3834
		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3835 3836 3837
	}
}

3838
/*
3839
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3840
 */
3841 3842
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3843 3844
{
	unsigned long flags;
3845
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3846 3847 3848
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3849
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3850
	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3851
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3852
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3853
	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3854
	rdp->cpu = cpu;
3855
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3856
	rcu_boot_init_nocb_percpu_data(rdp);
B
Boqun Feng 已提交
3857
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3858 3859 3860 3861 3862 3863 3864
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3865
 */
3866
static void
3867
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3868 3869
{
	unsigned long flags;
3870
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3871 3872 3873
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3874
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3875 3876
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3877
	rdp->blimit = blimit;
3878 3879
	if (!rdp->nxtlist)
		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3880
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3881
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3882
	rcu_dynticks_eqs_online();
B
Boqun Feng 已提交
3883
	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3884

3885 3886 3887 3888 3889
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
3890
	rnp = rdp->mynode;
3891
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3892 3893 3894
	if (!rdp->beenonline)
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
	rdp->beenonline = true;	 /* We have now been online. */
3895 3896
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
3897
	rdp->cpu_no_qs.b.norm = true;
3898
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3899
	rdp->core_needs_qs = false;
3900
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
B
Boqun Feng 已提交
3901
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3902 3903
}

3904
int rcutree_prepare_cpu(unsigned int cpu)
3905
{
3906 3907 3908
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3909
		rcu_init_percpu_data(cpu, rsp);
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955

	rcu_prepare_kthreads(cpu);
	rcu_spawn_all_nocb_kthreads(cpu);

	return 0;
}

static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);

	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
}

int rcutree_online_cpu(unsigned int cpu)
{
	sync_sched_exp_online_cleanup(cpu);
	rcutree_affinity_setting(cpu, -1);
	return 0;
}

int rcutree_offline_cpu(unsigned int cpu)
{
	rcutree_affinity_setting(cpu, cpu);
	return 0;
}


int rcutree_dying_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_cpu(rsp);
	return 0;
}

int rcutree_dead_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		rcu_cleanup_dead_cpu(cpu, rsp);
		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
	}
	return 0;
3956 3957
}

3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
/*
 * Mark the specified CPU as being online so that subsequent grace periods
 * (both expedited and normal) will wait on it.  Note that this means that
 * incoming CPUs are not allowed to use RCU read-side critical sections
 * until this function is called.  Failing to observe this restriction
 * will result in lockdep splats.
 */
void rcu_cpu_starting(unsigned int cpu)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
3974
		rdp = per_cpu_ptr(rsp->rda, cpu);
3975 3976 3977 3978 3979 3980 3981 3982 3983
		rnp = rdp->mynode;
		mask = rdp->grpmask;
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
		rnp->qsmaskinitnext |= mask;
		rnp->expmaskinitnext |= mask;
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	}
}

3984 3985
#ifdef CONFIG_HOTPLUG_CPU
/*
3986 3987 3988
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
4004
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
}

void rcu_report_dead(unsigned int cpu)
{
	struct rcu_state *rsp;

	/* QS for any half-done expedited RCU-sched GP. */
	preempt_disable();
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(rcu_sched_state.rda), true);
	preempt_enable();
	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_idle_cpu(cpu, rsp);
}
#endif

4021 4022 4023 4024 4025 4026 4027
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4028
			rcu_expedite_gp();
4029 4030 4031
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
4032 4033
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
4034 4035 4036 4037 4038 4039 4040
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

4041
/*
4042
 * Spawn the kthreads that handle each RCU flavor's grace periods.
4043 4044 4045 4046
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
4047
	int kthread_prio_in = kthread_prio;
4048 4049
	struct rcu_node *rnp;
	struct rcu_state *rsp;
4050
	struct sched_param sp;
4051 4052
	struct task_struct *t;

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

4064
	rcu_scheduler_fully_active = 1;
4065
	for_each_rcu_flavor(rsp) {
4066
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4067 4068
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
4069
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4070
		rsp->gp_kthread = t;
4071 4072 4073 4074
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
B
Boqun Feng 已提交
4075
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4076
		wake_up_process(t);
4077
	}
4078
	rcu_spawn_nocb_kthreads();
4079
	rcu_spawn_boost_kthreads();
4080 4081 4082 4083
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

4084
/*
4085 4086 4087 4088 4089 4090 4091 4092
 * This function is invoked towards the end of the scheduler's
 * initialization process.  Before this is called, the idle task might
 * contain synchronous grace-period primitives (during which time, this idle
 * task is booting the system, and such primitives are no-ops).  After this
 * function is called, any synchronous grace-period primitives are run as
 * expedited, with the requesting task driving the grace period forward.
 * A later core_initcall() rcu_exp_runtime_mode() will switch to full
 * runtime RCU functionality.
4093 4094 4095 4096 4097
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
4098 4099 4100
	rcu_test_sync_prims();
	rcu_scheduler_active = RCU_SCHEDULER_INIT;
	rcu_test_sync_prims();
4101 4102
}

4103 4104
/*
 * Compute the per-level fanout, either using the exact fanout specified
4105
 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4106
 */
4107
static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4108 4109 4110
{
	int i;

4111
	if (rcu_fanout_exact) {
4112
		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4113
		for (i = rcu_num_lvls - 2; i >= 0; i--)
4114
			levelspread[i] = RCU_FANOUT;
4115 4116 4117 4118 4119 4120
	} else {
		int ccur;
		int cprv;

		cprv = nr_cpu_ids;
		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4121 4122
			ccur = levelcnt[i];
			levelspread[i] = (cprv + ccur - 1) / ccur;
4123 4124
			cprv = ccur;
		}
4125 4126 4127 4128 4129 4130
	}
}

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
4131
static void __init rcu_init_one(struct rcu_state *rsp)
4132
{
4133 4134
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4135 4136
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4137 4138 4139

	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4140 4141 4142 4143 4144
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4145
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4146

4147 4148 4149
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4150

4151 4152
	/* Initialize the level-tracking arrays. */

4153
	for (i = 0; i < rcu_num_lvls; i++)
4154
		levelcnt[i] = num_rcu_lvl[i];
4155
	for (i = 1; i < rcu_num_lvls; i++)
4156 4157
		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
	rcu_init_levelspread(levelspread, levelcnt);
4158 4159 4160

	/* Initialize the elements themselves, starting from the leaves. */

4161
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4162
		cpustride *= levelspread[i];
4163
		rnp = rsp->level[i];
4164
		for (j = 0; j < levelcnt[i]; j++, rnp++) {
B
Boqun Feng 已提交
4165 4166
			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4167
						   &rcu_node_class[i], buf[i]);
4168 4169 4170
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4171 4172
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4173 4174 4175 4176
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4177 4178
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4179 4180 4181 4182 4183
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4184
				rnp->grpnum = j % levelspread[i - 1];
4185 4186
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4187
					      j / levelspread[i - 1];
4188 4189
			}
			rnp->level = i;
4190
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4191
			rcu_init_one_nocb(rnp);
4192 4193
			init_waitqueue_head(&rnp->exp_wq[0]);
			init_waitqueue_head(&rnp->exp_wq[1]);
4194 4195
			init_waitqueue_head(&rnp->exp_wq[2]);
			init_waitqueue_head(&rnp->exp_wq[3]);
4196
			spin_lock_init(&rnp->exp_lock);
4197 4198
		}
	}
4199

4200 4201
	init_swait_queue_head(&rsp->gp_wq);
	init_swait_queue_head(&rsp->expedited_wq);
4202
	rnp = rsp->level[rcu_num_lvls - 1];
4203
	for_each_possible_cpu(i) {
4204
		while (i > rnp->grphi)
4205
			rnp++;
4206
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4207 4208
		rcu_boot_init_percpu_data(i, rsp);
	}
4209
	list_add(&rsp->flavors, &rcu_struct_flavors);
4210 4211
}

4212 4213
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4214
 * replace the definitions in tree.h because those are needed to size
4215 4216 4217 4218
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4219
	ulong d;
4220
	int i;
4221
	int rcu_capacity[RCU_NUM_LVLS];
4222

4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4236
	/* If the compile-time values are accurate, just leave. */
4237
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4238
	    nr_cpu_ids == NR_CPUS)
4239
		return;
4240 4241
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4242 4243

	/*
4244 4245 4246 4247
	 * The boot-time rcu_fanout_leaf parameter must be at least two
	 * and cannot exceed the number of bits in the rcu_node masks.
	 * Complain and fall back to the compile-time values if this
	 * limit is exceeded.
4248
	 */
4249
	if (rcu_fanout_leaf < 2 ||
4250
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4251
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4252 4253 4254 4255 4256 4257
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4258
	 * with the given number of levels.
4259
	 */
4260
	rcu_capacity[0] = rcu_fanout_leaf;
4261
	for (i = 1; i < RCU_NUM_LVLS; i++)
4262
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4263 4264

	/*
4265
	 * The tree must be able to accommodate the configured number of CPUs.
4266
	 * If this limit is exceeded, fall back to the compile-time values.
4267
	 */
4268 4269 4270 4271 4272
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}
4273

4274
	/* Calculate the number of levels in the tree. */
4275
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4276
	}
4277
	rcu_num_lvls = i + 1;
4278

4279
	/* Calculate the number of rcu_nodes at each level of the tree. */
4280
	for (i = 0; i < rcu_num_lvls; i++) {
4281
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4282 4283
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4284 4285 4286

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4287
	for (i = 0; i < rcu_num_lvls; i++)
4288 4289 4290
		rcu_num_nodes += num_rcu_lvl[i];
}

4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4313
void __init rcu_init(void)
4314
{
P
Paul E. McKenney 已提交
4315
	int cpu;
4316

4317 4318
	rcu_early_boot_tests();

4319
	rcu_bootup_announce();
4320
	rcu_init_geometry();
4321 4322
	rcu_init_one(&rcu_bh_state);
	rcu_init_one(&rcu_sched_state);
4323 4324
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4325
	__rcu_init_preempt();
J
Jiang Fang 已提交
4326
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4327 4328 4329 4330 4331 4332

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
4333
	pm_notifier(rcu_pm_notify, 0);
4334
	for_each_online_cpu(cpu) {
4335
		rcutree_prepare_cpu(cpu);
4336 4337
		rcu_cpu_starting(cpu);
	}
4338 4339
}

4340
#include "tree_exp.h"
4341
#include "tree_plugin.h"