tree.c 130.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/ftrace_event.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73

74 75 76 77 78 79 80 81
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
82 83
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
84
static char sname##_varname[] = #sname; \
85 86 87 88 89 90 91 92 93
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
94
DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
95
struct rcu_state sname##_state = { \
96
	.level = { &sname##_state.node[0] }, \
97
	.rda = &sname##_data, \
98
	.call = cr, \
99
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
100 101
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
102
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
103 104
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
105
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
106
	.name = RCU_STATE_NAME(sname), \
107
	.abbr = sabbr, \
108
}
109

110 111
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112

113
static struct rcu_state *rcu_state_p;
114
LIST_HEAD(rcu_struct_flavors);
115

116 117 118
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
119 120 121
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
122 123
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
124
module_param(rcu_fanout_leaf, int, 0444);
125 126 127 128 129 130 131 132 133 134
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

135 136 137 138
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
139
 * optimize synchronize_sched() to a simple barrier().  When this variable
140 141 142 143
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
144 145 146
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

147 148 149 150 151 152 153 154 155 156 157 158 159 160
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

161 162
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
163
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
164 165
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
166

167 168 169 170
/* rcuc/rcub kthread realtime priority */
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
module_param(kthread_prio, int, 0644);

171
/* Delay in jiffies for grace-period initialization delays, debug only. */
172 173 174 175 176 177 178 179

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

180 181
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
182
module_param(gp_init_delay, int, 0644);
183 184 185
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
186

187 188 189 190 191 192 193
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

194 195 196 197 198 199 200 201 202 203
/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
204

205 206 207 208 209 210 211 212 213 214 215 216
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

217 218 219 220 221 222 223 224
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
225
	return READ_ONCE(rnp->qsmaskinitnext);
226 227
}

228
/*
229
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
230 231 232 233 234
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
235
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
236 237
}

238
/*
239
 * Note a quiescent state.  Because we do not need to know
240
 * how many quiescent states passed, just if there was at least
241
 * one since the start of the grace period, this just sets a flag.
242
 * The caller must have disabled preemption.
243
 */
244
void rcu_sched_qs(void)
245
{
246 247 248 249 250 251
	if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_sched"),
				       __this_cpu_read(rcu_sched_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_sched_data.passed_quiesce, 1);
	}
252 253
}

254
void rcu_bh_qs(void)
255
{
256 257 258 259 260 261
	if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_bh_data.passed_quiesce, 1);
	}
262
}
263

264 265 266 267 268 269 270 271 272 273 274
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

275 276 277
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
 */
static void rcu_momentary_dyntick_idle(void)
{
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	local_irq_save(flags);

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
312 313
		if (READ_ONCE(rdp->mynode->completed) !=
		    READ_ONCE(rdp->cond_resched_completed))
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
	local_irq_restore(flags);
}

331 332 333
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
334
 * The caller must have disabled preemption.
335
 */
336
void rcu_note_context_switch(void)
337
{
338
	trace_rcu_utilization(TPS("Start context switch"));
339
	rcu_sched_qs();
340
	rcu_preempt_note_context_switch();
341 342
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
343
	trace_rcu_utilization(TPS("End context switch"));
344
}
345
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
346

347
/*
348
 * Register a quiescent state for all RCU flavors.  If there is an
349 350
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
351
 * RCU flavors in desperate need of a quiescent state, which will normally
352 353 354 355 356 357 358 359 360 361 362
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
 */
void rcu_all_qs(void)
{
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
	this_cpu_inc(rcu_qs_ctr);
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
363 364 365
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
366

E
Eric Dumazet 已提交
367 368 369
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
370

371 372
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
373 374 375 376

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

377 378 379 380 381 382 383
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

384
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
385
				  struct rcu_data *rdp);
386 387 388 389
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
390
static void force_quiescent_state(struct rcu_state *rsp);
391
static int rcu_pending(void);
392 393

/*
394
 * Return the number of RCU batches started thus far for debug & stats.
395
 */
396 397 398 399 400 401 402 403
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
404
 */
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
431
 */
432
unsigned long rcu_batches_completed_sched(void)
433
{
434
	return rcu_sched_state.completed;
435
}
436
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
437 438

/*
439
 * Return the number of RCU BH batches completed thus far for debug & stats.
440
 */
441
unsigned long rcu_batches_completed_bh(void)
442 443 444 445 446
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

447 448 449 450 451
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
452
	force_quiescent_state(rcu_state_p);
453 454 455
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

456 457 458 459 460
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
461
	force_quiescent_state(&rcu_bh_state);
462 463 464
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

465 466 467 468 469 470 471 472 473
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

489 490 491 492 493 494 495 496 497 498 499 500 501 502
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

503 504 505 506 507 508 509 510 511 512
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
513
		rsp = rcu_state_p;
514 515 516 517 518 519 520 521 522 523 524
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
525 526 527
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
528 529 530 531 532 533 534 535
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

536 537 538 539 540 541 542 543 544 545 546
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

547 548 549 550 551 552
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
553 554
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
555 556
}

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
573
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
574 575
	int *fp = &rnp->need_future_gp[idx];

576
	return READ_ONCE(*fp);
577 578
}

579
/*
580 581 582
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
583 584 585 586
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
587
	int i;
P
Paul E. McKenney 已提交
588

589 590
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
591
	if (rcu_future_needs_gp(rsp))
592
		return 1;  /* Yes, a no-CBs CPU needs one. */
593 594 595 596 597 598
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
599
		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
600 601 602
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
603 604
}

605
/*
606
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
607 608 609 610 611
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
612
static void rcu_eqs_enter_common(long long oldval, bool user)
613
{
614 615
	struct rcu_state *rsp;
	struct rcu_data *rdp;
616
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
617

618
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
619
	if (!user && !is_idle_task(current)) {
620 621
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
622

623
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
624
		ftrace_dump(DUMP_ORIG);
625 626 627
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
628
	}
629 630 631 632
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
633
	rcu_prepare_for_idle();
634
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
635
	smp_mb__before_atomic();  /* See above. */
636
	atomic_inc(&rdtp->dynticks);
637
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
638
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
639
	rcu_dynticks_task_enter();
640 641

	/*
642
	 * It is illegal to enter an extended quiescent state while
643 644 645 646 647 648 649 650
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
651
}
652

653 654 655
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
656
 */
657
static void rcu_eqs_enter(bool user)
658
{
659
	long long oldval;
660 661
	struct rcu_dynticks *rdtp;

662
	rdtp = this_cpu_ptr(&rcu_dynticks);
663
	oldval = rdtp->dynticks_nesting;
664
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
665
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
666
		rdtp->dynticks_nesting = 0;
667
		rcu_eqs_enter_common(oldval, user);
668
	} else {
669
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
670
	}
671
}
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
687 688 689
	unsigned long flags;

	local_irq_save(flags);
690
	rcu_eqs_enter(false);
691
	rcu_sysidle_enter(0);
692
	local_irq_restore(flags);
693
}
694
EXPORT_SYMBOL_GPL(rcu_idle_enter);
695

696
#ifdef CONFIG_RCU_USER_QS
697 698 699 700 701 702 703 704 705 706
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
707
	rcu_eqs_enter(1);
708
}
709
#endif /* CONFIG_RCU_USER_QS */
710

711 712 713 714 715 716
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
717
 *
718 719 720 721 722 723 724 725
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
726
 */
727
void rcu_irq_exit(void)
728 729
{
	unsigned long flags;
730
	long long oldval;
731 732 733
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
734
	rdtp = this_cpu_ptr(&rcu_dynticks);
735
	oldval = rdtp->dynticks_nesting;
736 737
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
738
	if (rdtp->dynticks_nesting)
739
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
740
	else
741 742
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
743 744 745 746
	local_irq_restore(flags);
}

/*
747
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
748 749 750 751 752
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
753
static void rcu_eqs_exit_common(long long oldval, int user)
754
{
755 756
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

757
	rcu_dynticks_task_exit();
758
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
759 760
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
761
	smp_mb__after_atomic();  /* See above. */
762
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
763
	rcu_cleanup_after_idle();
764
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
765
	if (!user && !is_idle_task(current)) {
766 767
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
768

769
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
770
				  oldval, rdtp->dynticks_nesting);
771
		ftrace_dump(DUMP_ORIG);
772 773 774
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
775 776 777
	}
}

778 779 780
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
781
 */
782
static void rcu_eqs_exit(bool user)
783 784 785 786
{
	struct rcu_dynticks *rdtp;
	long long oldval;

787
	rdtp = this_cpu_ptr(&rcu_dynticks);
788
	oldval = rdtp->dynticks_nesting;
789
	WARN_ON_ONCE(oldval < 0);
790
	if (oldval & DYNTICK_TASK_NEST_MASK) {
791
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
792
	} else {
793
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
794
		rcu_eqs_exit_common(oldval, user);
795
	}
796
}
797 798 799 800 801 802 803 804 805 806 807 808 809 810

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
811 812 813
	unsigned long flags;

	local_irq_save(flags);
814
	rcu_eqs_exit(false);
815
	rcu_sysidle_exit(0);
816
	local_irq_restore(flags);
817
}
818
EXPORT_SYMBOL_GPL(rcu_idle_exit);
819

820
#ifdef CONFIG_RCU_USER_QS
821 822 823 824 825 826 827 828
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
829
	rcu_eqs_exit(1);
830
}
831
#endif /* CONFIG_RCU_USER_QS */
832

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
859
	rdtp = this_cpu_ptr(&rcu_dynticks);
860 861 862
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
863
	if (oldval)
864
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
865
	else
866 867
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
868 869 870 871 872 873
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
874 875 876 877 878
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
879 880 881
 */
void rcu_nmi_enter(void)
{
882
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
883
	int incby = 2;
884

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
906 907 908 909 910
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
911 912 913 914
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
915 916 917
 */
void rcu_nmi_exit(void)
{
918
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
919

920 921 922 923 924 925 926 927 928 929 930 931 932 933
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
934
		return;
935 936 937 938
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
939
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
940
	smp_mb__before_atomic();  /* See above. */
941
	atomic_inc(&rdtp->dynticks);
942
	smp_mb__after_atomic();  /* Force delay to next write. */
943
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
944 945 946
}

/**
947 948 949 950 951 952 953
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
954
bool notrace __rcu_is_watching(void)
955 956 957 958 959 960
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
961
 *
962
 * If the current CPU is in its idle loop and is neither in an interrupt
963
 * or NMI handler, return true.
964
 */
965
bool notrace rcu_is_watching(void)
966
{
967
	bool ret;
968 969

	preempt_disable();
970
	ret = __rcu_is_watching();
971 972
	preempt_enable();
	return ret;
973
}
974
EXPORT_SYMBOL_GPL(rcu_is_watching);
975

976
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
977 978 979 980 981 982 983

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
984 985 986 987 988 989 990 991 992 993 994
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
995 996 997 998 999 1000
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1001 1002
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1003 1004 1005
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1006
		return true;
1007
	preempt_disable();
1008
	rdp = this_cpu_ptr(&rcu_sched_data);
1009
	rnp = rdp->mynode;
1010
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1011 1012 1013 1014 1015 1016
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1017
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1018

1019
/**
1020
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1021
 *
1022 1023 1024
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1025
 */
1026
static int rcu_is_cpu_rrupt_from_idle(void)
1027
{
1028
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1029 1030 1031 1032 1033
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1034
 * is in dynticks idle mode, which is an extended quiescent state.
1035
 */
1036 1037
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1038
{
1039
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1040
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1041 1042 1043 1044
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
		return 1;
	} else {
1045
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1046
				 rdp->mynode->gpnum))
1047
			WRITE_ONCE(rdp->gpwrap, true);
1048 1049
		return 0;
	}
1050 1051 1052 1053 1054 1055
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1056
 * for this same CPU, or by virtue of having been offline.
1057
 */
1058 1059
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1060
{
1061
	unsigned int curr;
1062
	int *rcrmp;
1063
	unsigned int snap;
1064

1065 1066
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
1067 1068 1069 1070 1071 1072 1073 1074 1075

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1076
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1077
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1078 1079 1080 1081
		rdp->dynticks_fqs++;
		return 1;
	}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
1097
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1098 1099 1100
		rdp->offline_fqs++;
		return 1;
	}
1101 1102

	/*
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1122
	 */
1123 1124 1125
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1126
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1127 1128 1129
		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			WRITE_ONCE(rdp->cond_resched_completed,
				   READ_ONCE(rdp->mynode->completed));
1130
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1131 1132
			WRITE_ONCE(*rcrmp,
				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1133 1134 1135 1136 1137 1138 1139
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
			/* Time to beat on that CPU again! */
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
		}
1140 1141
	}

1142
	return 0;
1143 1144 1145 1146
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1147
	unsigned long j = jiffies;
1148
	unsigned long j1;
1149 1150 1151

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1152
	j1 = rcu_jiffies_till_stall_check();
1153
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1154
	rsp->jiffies_resched = j + j1 / 2;
1155
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1156 1157
}

1158 1159 1160 1161 1162 1163 1164 1165 1166
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1167
	gpa = READ_ONCE(rsp->gp_activity);
1168 1169 1170
	if (j - gpa > 2 * HZ)
		pr_err("%s kthread starved for %ld jiffies!\n",
		       rsp->name, j - gpa);
1171 1172
}

1173
/*
1174
 * Dump stacks of all tasks running on stalled CPUs.
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

1193
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1194 1195 1196 1197
{
	int cpu;
	long delta;
	unsigned long flags;
1198 1199
	unsigned long gpa;
	unsigned long j;
1200
	int ndetected = 0;
1201
	struct rcu_node *rnp = rcu_get_root(rsp);
1202
	long totqlen = 0;
1203 1204 1205

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
1206
	raw_spin_lock_irqsave(&rnp->lock, flags);
1207
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1208
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1209
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1210 1211
		return;
	}
1212 1213
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1214
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1215

1216 1217 1218 1219 1220
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1221
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1222
	       rsp->name);
1223
	print_cpu_stall_info_begin();
1224
	rcu_for_each_leaf_node(rsp, rnp) {
1225
		raw_spin_lock_irqsave(&rnp->lock, flags);
1226
		ndetected += rcu_print_task_stall(rnp);
1227 1228 1229 1230 1231 1232 1233 1234
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
1235
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1236
	}
1237 1238

	print_cpu_stall_info_end();
1239 1240
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1241
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1242
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1243
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1244
	if (ndetected) {
1245
		rcu_dump_cpu_stacks(rsp);
1246
	} else {
1247 1248
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1249 1250 1251
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1252
			gpa = READ_ONCE(rsp->gp_activity);
1253
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1254
			       rsp->name, j - gpa, j, gpa,
1255 1256
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1257 1258 1259 1260
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1261

1262
	/* Complain about tasks blocking the grace period. */
1263 1264
	rcu_print_detail_task_stall(rsp);

1265 1266
	rcu_check_gp_kthread_starvation(rsp);

1267
	force_quiescent_state(rsp);  /* Kick them all. */
1268 1269 1270 1271
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1272
	int cpu;
1273 1274
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1275
	long totqlen = 0;
1276

1277 1278 1279 1280 1281
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1282
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1283 1284 1285
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1286 1287
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1288 1289 1290
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1291 1292 1293

	rcu_check_gp_kthread_starvation(rsp);

1294
	rcu_dump_cpu_stacks(rsp);
1295

P
Paul E. McKenney 已提交
1296
	raw_spin_lock_irqsave(&rnp->lock, flags);
1297 1298 1299
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1300
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1301

1302 1303 1304 1305 1306 1307 1308 1309
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1310 1311 1312 1313
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1314 1315 1316
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1317 1318
	unsigned long j;
	unsigned long js;
1319 1320
	struct rcu_node *rnp;

1321
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1322
		return;
1323
	j = jiffies;
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1342
	gpnum = READ_ONCE(rsp->gpnum);
1343
	smp_rmb(); /* Pick up ->gpnum first... */
1344
	js = READ_ONCE(rsp->jiffies_stall);
1345
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1346
	gps = READ_ONCE(rsp->gp_start);
1347
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1348
	completed = READ_ONCE(rsp->completed);
1349 1350 1351 1352
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1353
	rnp = rdp->mynode;
1354
	if (rcu_gp_in_progress(rsp) &&
1355
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1356 1357 1358 1359

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1360 1361
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1362

1363
		/* They had a few time units to dump stack, so complain. */
1364
		print_other_cpu_stall(rsp, gpnum);
1365 1366 1367
	}
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1379 1380 1381
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1382
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1383 1384
}

1385
/*
1386 1387 1388
 * Initialize the specified rcu_data structure's default callback list
 * to empty.  The default callback list is the one that is not used by
 * no-callbacks CPUs.
1389
 */
1390
static void init_default_callback_list(struct rcu_data *rdp)
1391 1392 1393 1394 1395 1396 1397 1398
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	if (init_nocb_callback_list(rdp))
		return;
	init_default_callback_list(rdp);
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1438 1439 1440 1441 1442
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1443
				unsigned long c, const char *s)
1444 1445 1446 1447 1448 1449 1450 1451 1452
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1453 1454
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1455 1456 1457
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1458 1459 1460
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1461 1462 1463
{
	unsigned long c;
	int i;
1464
	bool ret = false;
1465 1466 1467 1468 1469 1470 1471
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1472
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1473
	if (rnp->need_future_gp[c & 0x1]) {
1474
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1475
		goto out;
1476 1477 1478 1479 1480 1481 1482
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1483 1484 1485 1486 1487 1488 1489
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1490 1491
	 */
	if (rnp->gpnum != rnp->completed ||
1492
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1493
		rnp->need_future_gp[c & 0x1]++;
1494
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1495
		goto out;
1496 1497 1498 1499 1500 1501 1502
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1503
	if (rnp != rnp_root) {
1504
		raw_spin_lock(&rnp_root->lock);
1505 1506
		smp_mb__after_unlock_lock();
	}
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1524
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1525 1526 1527 1528 1529 1530 1531 1532
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1533
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1534
	} else {
1535
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1536
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1537 1538 1539 1540
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
1541 1542 1543 1544
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1562 1563
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1564 1565 1566
	return needmore;
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1577
	    !READ_ONCE(rsp->gp_flags) ||
1578 1579 1580 1581 1582
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1583 1584 1585 1586 1587 1588 1589
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1590 1591
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1592 1593 1594
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1595
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1596 1597 1598 1599
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1600
	bool ret;
1601 1602 1603

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1604
		return false;
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1633
		return false;
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1644
	/* Record any needed additional grace periods. */
1645
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1646 1647 1648

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1649
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1650
	else
1651
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1652
	return ret;
1653 1654 1655 1656 1657 1658 1659 1660
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1661
 * Returns true if the RCU grace-period kthread needs to be awakened.
1662 1663 1664
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1665
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1666 1667 1668 1669 1670 1671
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1672
		return false;
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1696
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1697 1698
}

1699
/*
1700 1701 1702
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1703
 * Returns true if the grace-period kthread needs to be awakened.
1704
 */
1705 1706
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1707
{
1708 1709
	bool ret;

1710
	/* Handle the ends of any preceding grace periods first. */
1711
	if (rdp->completed == rnp->completed &&
1712
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1713

1714
		/* No grace period end, so just accelerate recent callbacks. */
1715
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1716

1717 1718 1719
	} else {

		/* Advance callbacks. */
1720
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1721 1722 1723

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1724
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1725
	}
1726

1727
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1728 1729 1730 1731 1732 1733
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1734
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1735
		rdp->passed_quiesce = 0;
1736
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1737 1738
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
		zero_cpu_stall_ticks(rdp);
1739
		WRITE_ONCE(rdp->gpwrap, false);
1740
	}
1741
	return ret;
1742 1743
}

1744
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1745 1746
{
	unsigned long flags;
1747
	bool needwake;
1748 1749 1750 1751
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1752 1753 1754
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1755 1756 1757 1758
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1759
	smp_mb__after_unlock_lock();
1760
	needwake = __note_gp_changes(rsp, rnp, rdp);
1761
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1762 1763
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1764 1765
}

1766 1767 1768 1769 1770 1771 1772
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

1773
/*
1774
 * Initialize a new grace period.  Return 0 if no grace period required.
1775
 */
1776
static int rcu_gp_init(struct rcu_state *rsp)
1777
{
1778
	unsigned long oldmask;
1779
	struct rcu_data *rdp;
1780
	struct rcu_node *rnp = rcu_get_root(rsp);
1781

1782
	WRITE_ONCE(rsp->gp_activity, jiffies);
1783
	raw_spin_lock_irq(&rnp->lock);
1784
	smp_mb__after_unlock_lock();
1785
	if (!READ_ONCE(rsp->gp_flags)) {
1786 1787 1788 1789
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1790
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1791

1792 1793 1794 1795 1796
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1797 1798 1799 1800 1801
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1802
	record_gp_stall_check_time(rsp);
1803 1804
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1805
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1806 1807
	raw_spin_unlock_irq(&rnp->lock);

1808 1809 1810 1811 1812 1813 1814
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
1815
		rcu_gp_slow(rsp, gp_preinit_delay);
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
		raw_spin_lock_irq(&rnp->lock);
		smp_mb__after_unlock_lock();
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
			raw_spin_unlock_irq(&rnp->lock);
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

		raw_spin_unlock_irq(&rnp->lock);
	}
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1872
		rcu_gp_slow(rsp, gp_init_delay);
1873
		raw_spin_lock_irq(&rnp->lock);
1874
		smp_mb__after_unlock_lock();
1875
		rdp = this_cpu_ptr(rsp->rda);
1876 1877
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1878
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1879
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1880
			WRITE_ONCE(rnp->completed, rsp->completed);
1881
		if (rnp == rdp->mynode)
1882
			(void)__note_gp_changes(rsp, rnp, rdp);
1883 1884 1885 1886 1887
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1888
		cond_resched_rcu_qs();
1889
		WRITE_ONCE(rsp->gp_activity, jiffies);
1890
	}
1891

1892 1893
	return 1;
}
1894

1895 1896 1897
/*
 * Do one round of quiescent-state forcing.
 */
1898
static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1899 1900
{
	int fqs_state = fqs_state_in;
1901 1902
	bool isidle = false;
	unsigned long maxj;
1903 1904
	struct rcu_node *rnp = rcu_get_root(rsp);

1905
	WRITE_ONCE(rsp->gp_activity, jiffies);
1906 1907 1908
	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
1909
		if (is_sysidle_rcu_state(rsp)) {
1910
			isidle = true;
1911 1912
			maxj = jiffies - ULONG_MAX / 4;
		}
1913 1914
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1915
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1916 1917 1918
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1919
		isidle = true;
1920
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1921 1922
	}
	/* Clear flag to prevent immediate re-entry. */
1923
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1924
		raw_spin_lock_irq(&rnp->lock);
1925
		smp_mb__after_unlock_lock();
1926 1927
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1928 1929 1930 1931 1932
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1933 1934 1935
/*
 * Clean up after the old grace period.
 */
1936
static void rcu_gp_cleanup(struct rcu_state *rsp)
1937 1938
{
	unsigned long gp_duration;
1939
	bool needgp = false;
1940
	int nocb = 0;
1941 1942
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1943

1944
	WRITE_ONCE(rsp->gp_activity, jiffies);
1945
	raw_spin_lock_irq(&rnp->lock);
1946
	smp_mb__after_unlock_lock();
1947 1948 1949
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1950

1951 1952 1953 1954 1955 1956 1957 1958
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1959
	raw_spin_unlock_irq(&rnp->lock);
1960

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1971
		raw_spin_lock_irq(&rnp->lock);
1972
		smp_mb__after_unlock_lock();
1973 1974
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
1975
		WRITE_ONCE(rnp->completed, rsp->gpnum);
1976 1977
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
1978
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1979
		/* smp_mb() provided by prior unlock-lock pair. */
1980
		nocb += rcu_future_gp_cleanup(rsp, rnp);
1981
		raw_spin_unlock_irq(&rnp->lock);
1982
		cond_resched_rcu_qs();
1983
		WRITE_ONCE(rsp->gp_activity, jiffies);
1984
		rcu_gp_slow(rsp, gp_cleanup_delay);
1985
	}
1986 1987
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1988
	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1989
	rcu_nocb_gp_set(rnp, nocb);
1990

1991
	/* Declare grace period done. */
1992
	WRITE_ONCE(rsp->completed, rsp->gpnum);
1993
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1994
	rsp->fqs_state = RCU_GP_IDLE;
1995
	rdp = this_cpu_ptr(rsp->rda);
1996 1997 1998
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1999
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2000
		trace_rcu_grace_period(rsp->name,
2001
				       READ_ONCE(rsp->gpnum),
2002 2003
				       TPS("newreq"));
	}
2004 2005 2006 2007 2008 2009 2010 2011
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2012
	int fqs_state;
2013
	int gf;
2014
	unsigned long j;
2015
	int ret;
2016 2017 2018
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2019
	rcu_bind_gp_kthread();
2020 2021 2022 2023
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2024
			trace_rcu_grace_period(rsp->name,
2025
					       READ_ONCE(rsp->gpnum),
2026
					       TPS("reqwait"));
2027
			rsp->gp_state = RCU_GP_WAIT_GPS;
2028
			wait_event_interruptible(rsp->gp_wq,
2029
						 READ_ONCE(rsp->gp_flags) &
2030
						 RCU_GP_FLAG_INIT);
2031
			/* Locking provides needed memory barrier. */
2032
			if (rcu_gp_init(rsp))
2033
				break;
2034
			cond_resched_rcu_qs();
2035
			WRITE_ONCE(rsp->gp_activity, jiffies);
2036
			WARN_ON(signal_pending(current));
2037
			trace_rcu_grace_period(rsp->name,
2038
					       READ_ONCE(rsp->gpnum),
2039
					       TPS("reqwaitsig"));
2040
		}
2041

2042 2043
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
2044 2045 2046 2047 2048
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2049
		ret = 0;
2050
		for (;;) {
2051 2052
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
2053
			trace_rcu_grace_period(rsp->name,
2054
					       READ_ONCE(rsp->gpnum),
2055
					       TPS("fqswait"));
2056
			rsp->gp_state = RCU_GP_WAIT_FQS;
2057
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
2058
					((gf = READ_ONCE(rsp->gp_flags)) &
2059
					 RCU_GP_FLAG_FQS) ||
2060
					(!READ_ONCE(rnp->qsmask) &&
2061
					 !rcu_preempt_blocked_readers_cgp(rnp)),
2062
					j);
2063
			/* Locking provides needed memory barriers. */
2064
			/* If grace period done, leave loop. */
2065
			if (!READ_ONCE(rnp->qsmask) &&
2066
			    !rcu_preempt_blocked_readers_cgp(rnp))
2067
				break;
2068
			/* If time for quiescent-state forcing, do it. */
2069 2070
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2071
				trace_rcu_grace_period(rsp->name,
2072
						       READ_ONCE(rsp->gpnum),
2073
						       TPS("fqsstart"));
2074
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
2075
				trace_rcu_grace_period(rsp->name,
2076
						       READ_ONCE(rsp->gpnum),
2077
						       TPS("fqsend"));
2078
				cond_resched_rcu_qs();
2079
				WRITE_ONCE(rsp->gp_activity, jiffies);
2080 2081
			} else {
				/* Deal with stray signal. */
2082
				cond_resched_rcu_qs();
2083
				WRITE_ONCE(rsp->gp_activity, jiffies);
2084
				WARN_ON(signal_pending(current));
2085
				trace_rcu_grace_period(rsp->name,
2086
						       READ_ONCE(rsp->gpnum),
2087
						       TPS("fqswaitsig"));
2088
			}
2089 2090 2091 2092 2093 2094 2095 2096
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
2097
		}
2098 2099 2100

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
2101 2102 2103
	}
}

2104 2105 2106
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2107
 * the root node's ->lock and hard irqs must be disabled.
2108 2109 2110 2111
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2112 2113
 *
 * Returns true if the grace-period kthread must be awakened.
2114
 */
2115
static bool
2116 2117
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2118
{
2119
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2120
		/*
2121
		 * Either we have not yet spawned the grace-period
2122 2123
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2124
		 * Either way, don't start a new grace period.
2125
		 */
2126
		return false;
2127
	}
2128 2129
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2130
			       TPS("newreq"));
2131

2132 2133
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2134
	 * could cause possible deadlocks with the rq->lock. Defer
2135
	 * the wakeup to our caller.
2136
	 */
2137
	return true;
2138 2139
}

2140 2141 2142 2143 2144 2145
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2146 2147
 *
 * Returns true if the grace-period kthread needs to be awakened.
2148
 */
2149
static bool rcu_start_gp(struct rcu_state *rsp)
2150 2151 2152
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2153
	bool ret = false;
2154 2155 2156 2157 2158 2159 2160 2161 2162

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2163 2164 2165
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2166 2167
}

2168
/*
P
Paul E. McKenney 已提交
2169 2170 2171
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
2172 2173
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
2174
 */
P
Paul E. McKenney 已提交
2175
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2176
	__releases(rcu_get_root(rsp)->lock)
2177
{
2178
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2179
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2180
	rcu_gp_kthread_wake(rsp);
2181 2182
}

2183
/*
P
Paul E. McKenney 已提交
2184 2185 2186
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2187 2188 2189 2190 2191
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2192 2193
 */
static void
P
Paul E. McKenney 已提交
2194
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2195
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2196 2197
	__releases(rnp->lock)
{
2198
	unsigned long oldmask = 0;
2199 2200
	struct rcu_node *rnp_c;

2201 2202
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2203
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2204

2205 2206 2207 2208
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
P
Paul E. McKenney 已提交
2209
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2210 2211
			return;
		}
2212
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2213
		rnp->qsmask &= ~mask;
2214 2215 2216 2217
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2218
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2219 2220

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
2221
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2222 2223 2224 2225 2226 2227 2228 2229 2230
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
2231
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2232
		rnp_c = rnp;
2233
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
2234
		raw_spin_lock_irqsave(&rnp->lock, flags);
2235
		smp_mb__after_unlock_lock();
2236
		oldmask = rnp_c->qsmask;
2237 2238 2239 2240
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2241
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2242
	 * to clean up and start the next grace period if one is needed.
2243
	 */
P
Paul E. McKenney 已提交
2244
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2245 2246
}

2247 2248 2249 2250 2251 2252 2253
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2254
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2255 2256 2257
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2258
	unsigned long gps;
2259 2260 2261
	unsigned long mask;
	struct rcu_node *rnp_p;

2262 2263
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2264 2265 2266 2267 2268 2269 2270
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2271 2272
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2273 2274 2275 2276 2277
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2278 2279
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2280 2281 2282 2283
	mask = rnp->grpmask;
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
	smp_mb__after_unlock_lock();
2284
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2285 2286
}

2287
/*
P
Paul E. McKenney 已提交
2288 2289 2290 2291 2292 2293 2294
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
2295 2296
 */
static void
2297
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2298 2299 2300
{
	unsigned long flags;
	unsigned long mask;
2301
	bool needwake;
2302 2303 2304
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
2305
	raw_spin_lock_irqsave(&rnp->lock, flags);
2306
	smp_mb__after_unlock_lock();
2307 2308 2309 2310
	if ((rdp->passed_quiesce == 0 &&
	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
	    rdp->gpwrap) {
2311 2312

		/*
2313 2314 2315 2316
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2317
		 */
2318
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
2319
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
P
Paul E. McKenney 已提交
2320
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2321 2322 2323 2324
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
2325
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2326 2327 2328 2329 2330 2331 2332
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2333
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2334

2335 2336
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2337 2338
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2351 2352
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2365 2366
	if (!rdp->passed_quiesce &&
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2367 2368
		return;

P
Paul E. McKenney 已提交
2369 2370 2371 2372
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2373
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2374 2375 2376 2377
}

#ifdef CONFIG_HOTPLUG_CPU

2378
/*
2379 2380
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2381
 * ->orphan_lock.
2382
 */
2383 2384 2385
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2386
{
P
Paul E. McKenney 已提交
2387
	/* No-CBs CPUs do not have orphanable callbacks. */
2388
	if (rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2389 2390
		return;

2391 2392
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2393 2394
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2395
	 */
2396
	if (rdp->nxtlist != NULL) {
2397 2398 2399
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2400
		rdp->qlen_lazy = 0;
2401
		WRITE_ONCE(rdp->qlen, 0);
2402 2403 2404
	}

	/*
2405 2406 2407 2408 2409 2410 2411
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2412
	 */
2413 2414 2415 2416
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2417 2418 2419
	}

	/*
2420 2421 2422
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2423
	 */
2424
	if (rdp->nxtlist != NULL) {
2425 2426
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2427
	}
2428

2429 2430 2431 2432
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2433
	init_callback_list(rdp);
2434
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2435 2436 2437 2438
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2439
 * orphanage.  The caller must hold the ->orphan_lock.
2440
 */
2441
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2442 2443
{
	int i;
2444
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2445

P
Paul E. McKenney 已提交
2446
	/* No-CBs CPUs are handled specially. */
2447
	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2448 2449
		return;

2450 2451 2452 2453
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2454 2455
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
2495 2496
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2497
			       TPS("cpuofl"));
2498 2499
}

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
		smp_mb__after_unlock_lock(); /* GP memory ordering. */
		rnp->qsmaskinit &= ~mask;
2532
		rnp->qsmask &= ~mask;
2533 2534 2535 2536 2537 2538 2539 2540
		if (rnp->qsmaskinit) {
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			return;
		}
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
	}
}

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
/*
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();	/* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

2561
/*
2562
 * The CPU has been completely removed, and some other CPU is reporting
2563 2564
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2565 2566
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2567
 */
2568
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2569
{
2570
	unsigned long flags;
2571
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2572
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2573

2574
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2575
	rcu_boost_kthread_setaffinity(rnp, -1);
2576

2577
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2578
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2579
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2580
	rcu_adopt_orphan_cbs(rsp, flags);
2581
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2582

2583 2584 2585
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2586 2587 2588 2589
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

2590
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2591 2592 2593
{
}

2594 2595 2596 2597
static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
}

2598 2599 2600 2601
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
}

2602
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2603 2604 2605 2606 2607 2608 2609 2610 2611
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2612
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2613 2614 2615
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2616 2617
	long bl, count, count_lazy;
	int i;
2618

2619
	/* If no callbacks are ready, just return. */
2620
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2621
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2622
		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2623 2624
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2625
		return;
2626
	}
2627 2628 2629 2630 2631 2632

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2633
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2634
	bl = rdp->blimit;
2635
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2636 2637 2638 2639
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2640 2641 2642
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2643 2644 2645
	local_irq_restore(flags);

	/* Invoke callbacks. */
2646
	count = count_lazy = 0;
2647 2648 2649
	while (list) {
		next = list->next;
		prefetch(next);
2650
		debug_rcu_head_unqueue(list);
2651 2652
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2653
		list = next;
2654 2655 2656 2657
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2658 2659 2660 2661
			break;
	}

	local_irq_save(flags);
2662 2663 2664
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2665 2666 2667 2668 2669

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2670 2671 2672
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2673 2674 2675
			else
				break;
	}
2676 2677
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2678
	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2679
	rdp->n_cbs_invoked += count;
2680 2681 2682 2683 2684

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2685 2686 2687 2688 2689 2690
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2691
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2692

2693 2694
	local_irq_restore(flags);

2695
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2696
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2697
		invoke_rcu_core();
2698 2699 2700 2701 2702
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2703
 * Also schedule RCU core processing.
2704
 *
2705
 * This function must be called from hardirq context.  It is normally
2706 2707 2708
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2709
void rcu_check_callbacks(int user)
2710
{
2711
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2712
	increment_cpu_stall_ticks();
2713
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2714 2715 2716 2717 2718

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2719
		 * a quiescent state, so note it.
2720 2721
		 *
		 * No memory barrier is required here because both
2722 2723 2724
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2725 2726
		 */

2727 2728
		rcu_sched_qs();
		rcu_bh_qs();
2729 2730 2731 2732 2733 2734 2735

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2736
		 * critical section, so note it.
2737 2738
		 */

2739
		rcu_bh_qs();
2740
	}
2741
	rcu_preempt_check_callbacks();
2742
	if (rcu_pending())
2743
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2744 2745
	if (user)
		rcu_note_voluntary_context_switch(current);
2746
	trace_rcu_utilization(TPS("End scheduler-tick"));
2747 2748 2749 2750 2751
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2752 2753
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2754
 * The caller must have suppressed start of new grace periods.
2755
 */
2756 2757 2758 2759
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2760 2761 2762 2763 2764
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2765
	struct rcu_node *rnp;
2766

2767
	rcu_for_each_leaf_node(rsp, rnp) {
2768
		cond_resched_rcu_qs();
2769
		mask = 0;
P
Paul E. McKenney 已提交
2770
		raw_spin_lock_irqsave(&rnp->lock, flags);
2771
		smp_mb__after_unlock_lock();
2772
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
2773
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2774
			return;
2775
		}
2776
		if (rnp->qsmask == 0) {
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2800
		}
2801
		cpu = rnp->grplo;
2802
		bit = 1;
2803
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2804
			if ((rnp->qsmask & bit) != 0) {
2805 2806
				if ((rnp->qsmaskinit & bit) == 0)
					*isidle = false; /* Pending hotplug. */
2807 2808 2809
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2810
		}
2811
		if (mask != 0) {
2812 2813
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2814 2815 2816
		} else {
			/* Nothing to do here, so just drop the lock. */
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2817 2818 2819 2820 2821 2822 2823 2824
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2825
static void force_quiescent_state(struct rcu_state *rsp)
2826 2827
{
	unsigned long flags;
2828 2829 2830 2831 2832
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2833
	rnp = __this_cpu_read(rsp->rda->mynode);
2834
	for (; rnp != NULL; rnp = rnp->parent) {
2835
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2836 2837 2838 2839
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2840
			rsp->n_force_qs_lh++;
2841 2842 2843 2844 2845
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2846

2847 2848
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2849
	smp_mb__after_unlock_lock();
2850
	raw_spin_unlock(&rnp_old->fqslock);
2851
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2852
		rsp->n_force_qs_lh++;
2853
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2854
		return;  /* Someone beat us to it. */
2855
	}
2856
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2857
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2858
	rcu_gp_kthread_wake(rsp);
2859 2860 2861
}

/*
2862 2863 2864
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2865 2866
 */
static void
2867
__rcu_process_callbacks(struct rcu_state *rsp)
2868 2869
{
	unsigned long flags;
2870
	bool needwake;
2871
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2872

2873 2874
	WARN_ON_ONCE(rdp->beenonline == 0);

2875 2876 2877 2878
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2879
	local_irq_save(flags);
2880
	if (cpu_needs_another_gp(rsp, rdp)) {
2881
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2882
		needwake = rcu_start_gp(rsp);
2883
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2884 2885
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2886 2887
	} else {
		local_irq_restore(flags);
2888 2889 2890
	}

	/* If there are callbacks ready, invoke them. */
2891
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2892
		invoke_rcu_callbacks(rsp, rdp);
2893 2894 2895

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2896 2897
}

2898
/*
2899
 * Do RCU core processing for the current CPU.
2900
 */
2901
static void rcu_process_callbacks(struct softirq_action *unused)
2902
{
2903 2904
	struct rcu_state *rsp;

2905 2906
	if (cpu_is_offline(smp_processor_id()))
		return;
2907
	trace_rcu_utilization(TPS("Start RCU core"));
2908 2909
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2910
	trace_rcu_utilization(TPS("End RCU core"));
2911 2912
}

2913
/*
2914 2915 2916
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2917
 * are running on the current CPU with softirqs disabled, the
2918
 * rcu_cpu_kthread_task cannot disappear out from under us.
2919
 */
2920
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2921
{
2922
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2923
		return;
2924 2925
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2926 2927
		return;
	}
2928
	invoke_rcu_callbacks_kthread();
2929 2930
}

2931
static void invoke_rcu_core(void)
2932
{
2933 2934
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2935 2936
}

2937 2938 2939 2940 2941
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2942
{
2943 2944
	bool needwake;

2945 2946 2947 2948
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2949
	if (!rcu_is_watching())
2950 2951
		invoke_rcu_core();

2952
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2953
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2954
		return;
2955

2956 2957 2958 2959 2960 2961 2962
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2963
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2964 2965

		/* Are we ignoring a completed grace period? */
2966
		note_gp_changes(rsp, rdp);
2967 2968 2969 2970 2971

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2972
			raw_spin_lock(&rnp_root->lock);
2973
			smp_mb__after_unlock_lock();
2974
			needwake = rcu_start_gp(rsp);
2975
			raw_spin_unlock(&rnp_root->lock);
2976 2977
			if (needwake)
				rcu_gp_kthread_wake(rsp);
2978 2979 2980 2981 2982
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2983
				force_quiescent_state(rsp);
2984 2985 2986
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2987
	}
2988 2989
}

2990 2991 2992 2993 2994 2995 2996
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
2997 2998 2999 3000 3001 3002
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3003 3004
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
3005
	   struct rcu_state *rsp, int cpu, bool lazy)
3006 3007 3008 3009
{
	unsigned long flags;
	struct rcu_data *rdp;

3010
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3011 3012
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3013
		WRITE_ONCE(head->func, rcu_leak_callback);
3014 3015 3016
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
3027
	rdp = this_cpu_ptr(rsp->rda);
3028 3029

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
3030 3031 3032 3033 3034
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3048
		WARN_ON_ONCE(!rcu_is_watching());
3049 3050
		if (!likely(rdp->nxtlist))
			init_default_callback_list(rdp);
3051
	}
3052
	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3053 3054
	if (lazy)
		rdp->qlen_lazy++;
3055 3056
	else
		rcu_idle_count_callbacks_posted();
3057 3058 3059
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3060

3061 3062
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3063
					 rdp->qlen_lazy, rdp->qlen);
3064
	else
3065
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3066

3067 3068
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3069 3070 3071 3072
	local_irq_restore(flags);
}

/*
3073
 * Queue an RCU-sched callback for invocation after a grace period.
3074
 */
3075
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3076
{
P
Paul E. McKenney 已提交
3077
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3078
}
3079
EXPORT_SYMBOL_GPL(call_rcu_sched);
3080 3081

/*
3082
 * Queue an RCU callback for invocation after a quicker grace period.
3083 3084 3085
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
3086
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3087 3088 3089
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
3100
	__call_rcu(head, func, rcu_state_p, -1, 1);
3101 3102 3103
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3115 3116
	int ret;

3117
	might_sleep();  /* Check for RCU read-side critical section. */
3118 3119 3120 3121
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3122 3123
}

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3158 3159 3160 3161 3162 3163 3164 3165 3166
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3167 3168 3169 3170
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
3171 3172
	if (rcu_blocking_is_gp())
		return;
3173
	if (rcu_gp_is_expedited())
3174 3175 3176
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3188 3189 3190
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3191 3192 3193
 */
void synchronize_rcu_bh(void)
{
3194 3195 3196 3197
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3198 3199
	if (rcu_blocking_is_gp())
		return;
3200
	if (rcu_gp_is_expedited())
3201 3202 3203
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3204 3205 3206
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3227
	return smp_load_acquire(&rcu_state_p->gpnum);
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3253
	newstate = smp_load_acquire(&rcu_state_p->completed);
3254 3255 3256 3257 3258
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
3310 3311 3312
	cpumask_var_t cm;
	bool cma = false;
	int cpu;
3313 3314
	long firstsnap, s, snap;
	int trycount = 0;
3315
	struct rcu_state *rsp = &rcu_sched_state;
3316

3317 3318 3319 3320 3321 3322 3323 3324
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
3325 3326
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
3327 3328
			 ULONG_MAX / 8)) {
		synchronize_sched();
3329
		atomic_long_inc(&rsp->expedited_wrap);
3330 3331
		return;
	}
3332

3333 3334 3335 3336
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
3337
	snap = atomic_long_inc_return(&rsp->expedited_start);
3338
	firstsnap = snap;
3339 3340 3341 3342 3343 3344
	if (!try_get_online_cpus()) {
		/* CPU hotplug operation in flight, fall back to normal GP. */
		wait_rcu_gp(call_rcu_sched);
		atomic_long_inc(&rsp->expedited_normal);
		return;
	}
3345
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3346

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
	/* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
	cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
	if (cma) {
		cpumask_copy(cm, cpu_online_mask);
		cpumask_clear_cpu(raw_smp_processor_id(), cm);
		for_each_cpu(cpu, cm) {
			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

			if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
				cpumask_clear_cpu(cpu, cm);
		}
		if (cpumask_weight(cm) == 0)
			goto all_cpus_idle;
	}

3362 3363 3364 3365
	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
3366
	while (try_stop_cpus(cma ? cm : cpu_online_mask,
3367 3368 3369
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
3370
		atomic_long_inc(&rsp->expedited_tryfail);
3371

3372
		/* Check to see if someone else did our work for us. */
3373
		s = atomic_long_read(&rsp->expedited_done);
3374
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3375
			/* ensure test happens before caller kfree */
3376
			smp_mb__before_atomic(); /* ^^^ */
3377
			atomic_long_inc(&rsp->expedited_workdone1);
3378
			free_cpumask_var(cm);
3379 3380
			return;
		}
3381 3382

		/* No joy, try again later.  Or just synchronize_sched(). */
3383
		if (trycount++ < 10) {
3384
			udelay(trycount * num_online_cpus());
3385
		} else {
3386
			wait_rcu_gp(call_rcu_sched);
3387
			atomic_long_inc(&rsp->expedited_normal);
3388
			free_cpumask_var(cm);
3389 3390 3391
			return;
		}

3392
		/* Recheck to see if someone else did our work for us. */
3393
		s = atomic_long_read(&rsp->expedited_done);
3394
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3395
			/* ensure test happens before caller kfree */
3396
			smp_mb__before_atomic(); /* ^^^ */
3397
			atomic_long_inc(&rsp->expedited_workdone2);
3398
			free_cpumask_var(cm);
3399 3400 3401 3402 3403
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
3404 3405 3406 3407
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
3408
		 */
3409 3410 3411 3412
		if (!try_get_online_cpus()) {
			/* CPU hotplug operation in flight, use normal GP. */
			wait_rcu_gp(call_rcu_sched);
			atomic_long_inc(&rsp->expedited_normal);
3413
			free_cpumask_var(cm);
3414 3415
			return;
		}
3416
		snap = atomic_long_read(&rsp->expedited_start);
3417 3418
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
3419
	atomic_long_inc(&rsp->expedited_stoppedcpus);
3420

3421 3422 3423
all_cpus_idle:
	free_cpumask_var(cm);

3424 3425 3426 3427
	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
3428
	 * than we did already did their update.
3429 3430
	 */
	do {
3431
		atomic_long_inc(&rsp->expedited_done_tries);
3432
		s = atomic_long_read(&rsp->expedited_done);
3433
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3434
			/* ensure test happens before caller kfree */
3435
			smp_mb__before_atomic(); /* ^^^ */
3436
			atomic_long_inc(&rsp->expedited_done_lost);
3437 3438
			break;
		}
3439
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3440
	atomic_long_inc(&rsp->expedited_done_exit);
3441 3442 3443 3444 3445

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3446 3447 3448 3449 3450 3451 3452 3453 3454
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3455 3456
	struct rcu_node *rnp = rdp->mynode;

3457 3458 3459 3460 3461
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3462 3463 3464 3465
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3466
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3467
	if (rcu_scheduler_fully_active &&
3468 3469
	    rdp->qs_pending && !rdp->passed_quiesce &&
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3470
		rdp->n_rp_qs_pending++;
3471 3472 3473
	} else if (rdp->qs_pending &&
		   (rdp->passed_quiesce ||
		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3474
		rdp->n_rp_report_qs++;
3475
		return 1;
3476
	}
3477 3478

	/* Does this CPU have callbacks ready to invoke? */
3479 3480
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3481
		return 1;
3482
	}
3483 3484

	/* Has RCU gone idle with this CPU needing another grace period? */
3485 3486
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3487
		return 1;
3488
	}
3489 3490

	/* Has another RCU grace period completed?  */
3491
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3492
		rdp->n_rp_gp_completed++;
3493
		return 1;
3494
	}
3495 3496

	/* Has a new RCU grace period started? */
3497 3498
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3499
		rdp->n_rp_gp_started++;
3500
		return 1;
3501
	}
3502

3503 3504 3505 3506 3507 3508
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3509
	/* nothing to do */
3510
	rdp->n_rp_need_nothing++;
3511 3512 3513 3514 3515 3516 3517 3518
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3519
static int rcu_pending(void)
3520
{
3521 3522 3523
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3524
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3525 3526
			return 1;
	return 0;
3527 3528 3529
}

/*
3530 3531 3532
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3533
 */
3534
static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3535
{
3536 3537 3538
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3539 3540
	struct rcu_state *rsp;

3541
	for_each_rcu_flavor(rsp) {
3542
		rdp = this_cpu_ptr(rsp->rda);
3543 3544 3545 3546
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3547
			al = false;
3548 3549
			break;
		}
3550 3551 3552 3553
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3554 3555
}

3556 3557 3558 3559
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3560
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3561 3562 3563 3564 3565 3566
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3567 3568 3569 3570
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3571
static void rcu_barrier_callback(struct rcu_head *rhp)
3572
{
3573 3574 3575
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3576 3577
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3578
		complete(&rsp->barrier_completion);
3579 3580 3581
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
3582 3583 3584 3585 3586 3587 3588
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3589
	struct rcu_state *rsp = type;
3590
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3591

3592
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3593
	atomic_inc(&rsp->barrier_cpu_count);
3594
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3595 3596 3597 3598 3599 3600
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3601
static void _rcu_barrier(struct rcu_state *rsp)
3602
{
3603 3604
	int cpu;
	struct rcu_data *rdp;
3605
	unsigned long snap = READ_ONCE(rsp->n_barrier_done);
3606
	unsigned long snap_done;
3607

3608
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3609

3610
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3611
	mutex_lock(&rsp->barrier_mutex);
3612

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
3625
	snap_done = rsp->n_barrier_done;
3626
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638

	/*
	 * If the value in snap is odd, we needed to wait for the current
	 * rcu_barrier() to complete, then wait for the next one, in other
	 * words, we need the value of snap_done to be three larger than
	 * the value of snap.  On the other hand, if the value in snap is
	 * even, we only had to wait for the next rcu_barrier() to complete,
	 * in other words, we need the value of snap_done to be only two
	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
	 * this for us (thank you, Linus!).
	 */
	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3639
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3640 3641 3642 3643 3644 3645 3646
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
3647
	 * WRITE_ONCE() to prevent the compiler from speculating
3648 3649
	 * the increment to precede the early-exit check.
	 */
3650
	WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3651
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3652
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3653
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3654

3655
	/*
3656 3657
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3658 3659
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3660
	 */
3661
	init_completion(&rsp->barrier_completion);
3662
	atomic_set(&rsp->barrier_cpu_count, 1);
3663
	get_online_cpus();
3664 3665

	/*
3666 3667 3668
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3669
	 */
P
Paul E. McKenney 已提交
3670
	for_each_possible_cpu(cpu) {
3671
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3672
			continue;
3673
		rdp = per_cpu_ptr(rsp->rda, cpu);
3674
		if (rcu_is_nocb_cpu(cpu)) {
3675 3676 3677 3678 3679 3680
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
						   rsp->n_barrier_done);
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
						   rsp->n_barrier_done);
3681
				smp_mb__before_atomic();
3682 3683 3684 3685
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
3686
		} else if (READ_ONCE(rdp->qlen)) {
3687 3688
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
3689
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3690
		} else {
3691 3692
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
3693 3694
		}
	}
3695
	put_online_cpus();
3696 3697 3698 3699 3700

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3701
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3702
		complete(&rsp->barrier_completion);
3703

3704 3705
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
3706
	WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3707
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3708
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3709 3710
	smp_mb(); /* Keep increment before caller's subsequent code. */

3711
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3712
	wait_for_completion(&rsp->barrier_completion);
3713 3714

	/* Other rcu_barrier() invocations can now safely proceed. */
3715
	mutex_unlock(&rsp->barrier_mutex);
3716 3717 3718 3719 3720 3721 3722
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3723
	_rcu_barrier(&rcu_bh_state);
3724 3725 3726 3727 3728 3729 3730 3731
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3732
	_rcu_barrier(&rcu_sched_state);
3733 3734 3735
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
		raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
		rnp->qsmaskinit |= mask;
		raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
	}
}

3758
/*
3759
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3760
 */
3761 3762
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3763 3764
{
	unsigned long flags;
3765
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3766 3767 3768
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3769
	raw_spin_lock_irqsave(&rnp->lock, flags);
3770 3771
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3772
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3773
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3774
	rdp->cpu = cpu;
3775
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3776
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
3777
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3778 3779 3780 3781 3782 3783 3784
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3785
 */
3786
static void
3787
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3788 3789 3790
{
	unsigned long flags;
	unsigned long mask;
3791
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3792 3793 3794
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3795
	raw_spin_lock_irqsave(&rnp->lock, flags);
3796
	rdp->beenonline = 1;	 /* We have now been online. */
3797 3798
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3799
	rdp->blimit = blimit;
3800 3801
	if (!rdp->nxtlist)
		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3802
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3803
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3804 3805
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
3806
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3807

3808 3809 3810 3811 3812
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
3813 3814
	rnp = rdp->mynode;
	mask = rdp->grpmask;
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
	smp_mb__after_unlock_lock();
	rnp->qsmaskinitnext |= mask;
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
	rdp->passed_quiesce = false;
	rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
	rdp->qs_pending = false;
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3825 3826
}

3827
static void rcu_prepare_cpu(int cpu)
3828
{
3829 3830 3831
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3832
		rcu_init_percpu_data(cpu, rsp);
3833 3834 3835
}

/*
3836
 * Handle CPU online/offline notification events.
3837
 */
3838 3839
int rcu_cpu_notify(struct notifier_block *self,
		   unsigned long action, void *hcpu)
3840 3841
{
	long cpu = (long)hcpu;
3842
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3843
	struct rcu_node *rnp = rdp->mynode;
3844
	struct rcu_state *rsp;
3845 3846 3847 3848

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
3849 3850
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
3851
		rcu_spawn_all_nocb_kthreads(cpu);
3852 3853
		break;
	case CPU_ONLINE:
3854
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
3855
		rcu_boost_kthread_setaffinity(rnp, -1);
3856 3857
		break;
	case CPU_DOWN_PREPARE:
3858
		rcu_boost_kthread_setaffinity(rnp, cpu);
3859
		break;
3860 3861
	case CPU_DYING:
	case CPU_DYING_FROZEN:
3862 3863
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
3864
		break;
3865 3866 3867 3868 3869
	case CPU_DYING_IDLE:
		for_each_rcu_flavor(rsp) {
			rcu_cleanup_dying_idle_cpu(cpu, rsp);
		}
		break;
3870 3871 3872 3873
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
3874
		for_each_rcu_flavor(rsp) {
3875
			rcu_cleanup_dead_cpu(cpu, rsp);
3876 3877
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
3878 3879 3880 3881
		break;
	default:
		break;
	}
3882
	return NOTIFY_OK;
3883 3884
}

3885 3886 3887 3888 3889 3890 3891
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3892
			rcu_expedite_gp();
3893 3894 3895
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
3896 3897
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
3898 3899 3900 3901 3902 3903 3904
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3905
/*
3906
 * Spawn the kthreads that handle each RCU flavor's grace periods.
3907 3908 3909 3910
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
3911
	int kthread_prio_in = kthread_prio;
3912 3913
	struct rcu_node *rnp;
	struct rcu_state *rsp;
3914
	struct sched_param sp;
3915 3916
	struct task_struct *t;

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

3928
	rcu_scheduler_fully_active = 1;
3929
	for_each_rcu_flavor(rsp) {
3930
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3931 3932 3933 3934
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
3935 3936 3937 3938 3939
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
		wake_up_process(t);
3940 3941
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
3942
	rcu_spawn_nocb_kthreads();
3943
	rcu_spawn_boost_kthreads();
3944 3945 3946 3947
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

3963 3964
/*
 * Compute the per-level fanout, either using the exact fanout specified
3965
 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
3966 3967 3968 3969 3970
 */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

3971
	if (rcu_fanout_exact) {
3972 3973
		rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
		for (i = rcu_num_lvls - 2; i >= 0; i--)
3974
			rsp->levelspread[i] = RCU_FANOUT;
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
	} else {
		int ccur;
		int cprv;

		cprv = nr_cpu_ids;
		for (i = rcu_num_lvls - 1; i >= 0; i--) {
			ccur = rsp->levelcnt[i];
			rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
			cprv = ccur;
		}
3985 3986 3987 3988 3989 3990
	}
}

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3991 3992
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3993
{
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
	static const char * const buf[] = {
		"rcu_node_0",
		"rcu_node_1",
		"rcu_node_2",
		"rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static const char * const fqs[] = {
		"rcu_node_fqs_0",
		"rcu_node_fqs_1",
		"rcu_node_fqs_2",
		"rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
4004
	static u8 fl_mask = 0x1;
4005 4006 4007 4008 4009
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4010 4011
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

4012 4013 4014
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4015

4016 4017
	/* Initialize the level-tracking arrays. */

4018 4019 4020
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
4021 4022
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);
4023 4024
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
4025 4026 4027

	/* Initialize the elements themselves, starting from the leaves. */

4028
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4029 4030 4031
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
4032
			raw_spin_lock_init(&rnp->lock);
4033 4034
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
4035 4036 4037
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4038 4039
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4040 4041 4042 4043
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4044 4045
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
4057
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4058
			rcu_init_one_nocb(rnp);
4059 4060
		}
	}
4061

4062
	init_waitqueue_head(&rsp->gp_wq);
4063
	rnp = rsp->level[rcu_num_lvls - 1];
4064
	for_each_possible_cpu(i) {
4065
		while (i > rnp->grphi)
4066
			rnp++;
4067
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4068 4069
		rcu_boot_init_percpu_data(i, rsp);
	}
4070
	list_add(&rsp->flavors, &rcu_struct_flavors);
4071 4072
}

4073 4074
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4075
 * replace the definitions in tree.h because those are needed to size
4076 4077 4078 4079
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4080
	ulong d;
4081 4082
	int i;
	int j;
4083
	int n = nr_cpu_ids;
4084 4085
	int rcu_capacity[MAX_RCU_LVLS + 1];

4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4099
	/* If the compile-time values are accurate, just leave. */
4100
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4101
	    nr_cpu_ids == NR_CPUS)
4102
		return;
4103 4104
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4105 4106 4107 4108 4109 4110 4111 4112 4113

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
4114
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4115 4116 4117 4118 4119 4120 4121 4122 4123

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
4124
	if (rcu_fanout_leaf < RCU_FANOUT_LEAF ||
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4172
void __init rcu_init(void)
4173
{
P
Paul E. McKenney 已提交
4174
	int cpu;
4175

4176 4177
	rcu_early_boot_tests();

4178
	rcu_bootup_announce();
4179
	rcu_init_geometry();
4180
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4181
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4182 4183
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4184
	__rcu_init_preempt();
J
Jiang Fang 已提交
4185
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4186 4187 4188 4189 4190 4191 4192

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
4193
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
4194 4195
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4196 4197
}

4198
#include "tree_plugin.h"