tree.c 130.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
35
#include <linux/rcupdate_wait.h>
36 37
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/sched/debug.h>
39
#include <linux/nmi.h>
40
#include <linux/atomic.h>
41
#include <linux/bitops.h>
42
#include <linux/export.h>
43 44 45 46 47 48 49
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <uapi/linux/sched/types.h>
54
#include <linux/prefetch.h>
55 56
#include <linux/delay.h>
#include <linux/stop_machine.h>
57
#include <linux/random.h>
58
#include <linux/trace_events.h>
59
#include <linux/suspend.h>
P
Paul E. McKenney 已提交
60
#include <linux/ftrace.h>
61

62
#include "tree.h"
63
#include "rcu.h"
64

65 66 67 68 69
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

70 71
/* Data structures. */

72 73 74 75 76 77 78 79
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
80 81
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
82
static char sname##_varname[] = #sname; \
83 84 85 86 87 88 89 90 91
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
92
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
93
struct rcu_state sname##_state = { \
94
	.level = { &sname##_state.node[0] }, \
95
	.rda = &sname##_data, \
96
	.call = cr, \
97
	.gp_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
98 99
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
100
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 102
	.orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
	.orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
103
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104
	.name = RCU_STATE_NAME(sname), \
105
	.abbr = sabbr, \
106
	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
107
	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
108
}
109

110 111
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112

113
static struct rcu_state *const rcu_state_p;
114
LIST_HEAD(rcu_struct_flavors);
115

116 117 118
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
119 120 121
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
122 123
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
124
module_param(rcu_fanout_leaf, int, 0444);
125
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
126
/* Number of rcu_nodes at specified level. */
127
int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
128
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
129 130
/* panic() on RCU Stall sysctl. */
int sysctl_panic_on_rcu_stall __read_mostly;
131

132
/*
133 134 135 136
 * The rcu_scheduler_active variable is initialized to the value
 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 * RCU can assume that there is but one task, allowing RCU to (for example)
137
 * optimize synchronize_rcu() to a simple barrier().  When this variable
138 139 140 141 142
 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 * to detect real grace periods.  This variable is also used to suppress
 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 * is fully initialized, including all of its kthreads having been spawned.
143
 */
144 145 146
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

147 148 149 150 151 152 153 154 155 156 157 158 159 160
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

161 162
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
163
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
164 165
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
166 167
static void rcu_report_exp_rdp(struct rcu_state *rsp,
			       struct rcu_data *rdp, bool wake);
168
static void sync_sched_exp_online_cleanup(int cpu);
169

170
/* rcuc/rcub kthread realtime priority */
171
#ifdef CONFIG_RCU_KTHREAD_PRIO
172
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
173 174 175
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
176 177
module_param(kthread_prio, int, 0644);

178
/* Delay in jiffies for grace-period initialization delays, debug only. */
179 180 181 182 183 184 185 186

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

187 188
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
189
module_param(gp_init_delay, int, 0644);
190 191 192
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
193

194 195 196 197 198 199 200
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

201 202
/*
 * Number of grace periods between delays, normalized by the duration of
203
 * the delay.  The longer the delay, the more the grace periods between
204 205 206 207 208 209 210
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
211

212 213 214 215 216 217 218 219 220 221 222 223
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

224 225 226 227 228 229 230 231
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
232
	return READ_ONCE(rnp->qsmaskinitnext);
233 234
}

235
/*
236
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
237 238 239 240 241
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
242
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
243 244
}

245
/*
246
 * Note a quiescent state.  Because we do not need to know
247
 * how many quiescent states passed, just if there was at least
248
 * one since the start of the grace period, this just sets a flag.
249
 * The caller must have disabled preemption.
250
 */
251
void rcu_sched_qs(void)
252
{
253 254 255 256 257 258 259 260
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
		return;
	trace_rcu_grace_period(TPS("rcu_sched"),
			       __this_cpu_read(rcu_sched_data.gpnum),
			       TPS("cpuqs"));
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
261 262 263
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(&rcu_sched_data), true);
264 265
}

266
void rcu_bh_qs(void)
267
{
268
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
269 270 271
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
272
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
273
	}
274
}
275

276 277 278 279 280 281 282 283 284
/*
 * Steal a bit from the bottom of ->dynticks for idle entry/exit
 * control.  Initially this is for TLB flushing.
 */
#define RCU_DYNTICK_CTRL_MASK 0x1
#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
#ifndef rcu_eqs_special_exit
#define rcu_eqs_special_exit() do { } while (0)
#endif
285 286 287

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
288
	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
289 290 291 292 293 294
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

295 296 297 298 299 300 301 302 303 304 305 306 307 308
/*
 * There's a few places, currently just in the tracing infrastructure,
 * that uses rcu_irq_enter() to make sure RCU is watching. But there's
 * a small location where that will not even work. In those cases
 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
 * can be called.
 */
static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);

bool rcu_irq_enter_disabled(void)
{
	return this_cpu_read(disable_rcu_irq_enter);
}

309 310 311 312 313 314 315
/*
 * Record entry into an extended quiescent state.  This is only to be
 * called when not already in an extended quiescent state.
 */
static void rcu_dynticks_eqs_enter(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
316
	int seq;
317 318

	/*
319
	 * CPUs seeing atomic_add_return() must see prior RCU read-side
320 321 322
	 * critical sections, and we also must force ordering with the
	 * next idle sojourn.
	 */
323 324 325 326 327 328 329
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
	/* Better be in an extended quiescent state! */
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (seq & RCU_DYNTICK_CTRL_CTR));
	/* Better not have special action (TLB flush) pending! */
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (seq & RCU_DYNTICK_CTRL_MASK));
330 331 332 333 334 335 336 337 338
}

/*
 * Record exit from an extended quiescent state.  This is only to be
 * called from an extended quiescent state.
 */
static void rcu_dynticks_eqs_exit(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
339
	int seq;
340 341

	/*
342
	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
343 344 345
	 * and we also must force ordering with the next RCU read-side
	 * critical section.
	 */
346 347 348 349 350 351 352 353 354
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(seq & RCU_DYNTICK_CTRL_CTR));
	if (seq & RCU_DYNTICK_CTRL_MASK) {
		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
		smp_mb__after_atomic(); /* _exit after clearing mask. */
		/* Prefer duplicate flushes to losing a flush. */
		rcu_eqs_special_exit();
	}
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
}

/*
 * Reset the current CPU's ->dynticks counter to indicate that the
 * newly onlined CPU is no longer in an extended quiescent state.
 * This will either leave the counter unchanged, or increment it
 * to the next non-quiescent value.
 *
 * The non-atomic test/increment sequence works because the upper bits
 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 * or when the corresponding CPU is offline.
 */
static void rcu_dynticks_eqs_online(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

371
	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
372
		return;
373
	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
374 375
}

376 377 378 379 380 381 382 383 384
/*
 * Is the current CPU in an extended quiescent state?
 *
 * No ordering, as we are sampling CPU-local information.
 */
bool rcu_dynticks_curr_cpu_in_eqs(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

385
	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
386 387
}

388 389 390 391
/*
 * Snapshot the ->dynticks counter with full ordering so as to allow
 * stable comparison of this counter with past and future snapshots.
 */
392
int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
393 394 395
{
	int snap = atomic_add_return(0, &rdtp->dynticks);

396
	return snap & ~RCU_DYNTICK_CTRL_MASK;
397 398
}

399 400 401 402 403 404
/*
 * Return true if the snapshot returned from rcu_dynticks_snap()
 * indicates that RCU is in an extended quiescent state.
 */
static bool rcu_dynticks_in_eqs(int snap)
{
405
	return !(snap & RCU_DYNTICK_CTRL_CTR);
406 407 408 409 410 411 412 413 414 415 416 417
}

/*
 * Return true if the CPU corresponding to the specified rcu_dynticks
 * structure has spent some time in an extended quiescent state since
 * rcu_dynticks_snap() returned the specified snapshot.
 */
static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
{
	return snap != rcu_dynticks_snap(rdtp);
}

418 419 420 421 422 423 424
/*
 * Do a double-increment of the ->dynticks counter to emulate a
 * momentary idle-CPU quiescent state.
 */
static void rcu_dynticks_momentary_idle(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
425 426
	int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
					&rdtp->dynticks);
427 428

	/* It is illegal to call this from idle state. */
429
	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
430 431
}

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
/*
 * Set the special (bottom) bit of the specified CPU so that it
 * will take special action (such as flushing its TLB) on the
 * next exit from an extended quiescent state.  Returns true if
 * the bit was successfully set, or false if the CPU was not in
 * an extended quiescent state.
 */
bool rcu_eqs_special_set(int cpu)
{
	int old;
	int new;
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

	do {
		old = atomic_read(&rdtp->dynticks);
		if (old & RCU_DYNTICK_CTRL_CTR)
			return false;
		new = old | RCU_DYNTICK_CTRL_MASK;
	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
	return true;
452
}
453

454 455 456 457 458 459 460
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
461
 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
462 463
 *
 * The caller must have disabled interrupts.
464 465 466
 */
static void rcu_momentary_dyntick_idle(void)
{
467 468
	raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
	rcu_dynticks_momentary_idle();
469 470
}

471 472 473
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
474
 * The caller must have disabled interrupts.
475
 */
476
void rcu_note_context_switch(bool preempt)
477
{
478
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
479
	trace_rcu_utilization(TPS("Start context switch"));
480
	rcu_sched_qs();
481
	rcu_preempt_note_context_switch();
482 483 484 485
	/* Load rcu_urgent_qs before other flags. */
	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
		goto out;
	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
486
	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
487
		rcu_momentary_dyntick_idle();
488
	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
489 490
	if (!preempt)
		rcu_note_voluntary_context_switch_lite(current);
491
out:
492
	trace_rcu_utilization(TPS("End context switch"));
493
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
494
}
495
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
496

497
/*
498
 * Register a quiescent state for all RCU flavors.  If there is an
499 500
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
501
 * RCU flavors in desperate need of a quiescent state, which will normally
502 503
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
504 505 506 507 508
 *
 * The barrier() calls are redundant in the common case when this is
 * called externally, but just in case this is called from within this
 * file.
 *
509 510 511
 */
void rcu_all_qs(void)
{
512 513
	unsigned long flags;

514 515 516 517 518 519 520 521 522
	if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
		return;
	preempt_disable();
	/* Load rcu_urgent_qs before other flags. */
	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
		preempt_enable();
		return;
	}
	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
523
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
524
	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
525
		local_irq_save(flags);
526
		rcu_momentary_dyntick_idle();
527 528
		local_irq_restore(flags);
	}
529
	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
530
		rcu_sched_qs();
531
	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
532
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
533
	preempt_enable();
534 535 536
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
537 538 539
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
540

E
Eric Dumazet 已提交
541 542 543
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
544

545 546
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
547
static bool rcu_kick_kthreads;
548 549 550

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);
551
module_param(rcu_kick_kthreads, bool, 0644);
552

553 554 555 556 557 558 559
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

560
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
561
				  struct rcu_data *rdp);
562 563 564 565
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
566
static void force_quiescent_state(struct rcu_state *rsp);
567
static int rcu_pending(void);
568 569

/*
570
 * Return the number of RCU batches started thus far for debug & stats.
571
 */
572 573 574 575 576 577 578 579
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
580
 */
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
607
 */
608
unsigned long rcu_batches_completed_sched(void)
609
{
610
	return rcu_sched_state.completed;
611
}
612
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
613 614

/*
615
 * Return the number of RCU BH batches completed thus far for debug & stats.
616
 */
617
unsigned long rcu_batches_completed_bh(void)
618 619 620 621 622
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
/*
 * Return the number of RCU expedited batches completed thus far for
 * debug & stats.  Odd numbers mean that a batch is in progress, even
 * numbers mean idle.  The value returned will thus be roughly double
 * the cumulative batches since boot.
 */
unsigned long rcu_exp_batches_completed(void)
{
	return rcu_state_p->expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);

/*
 * Return the number of RCU-sched expedited batches completed thus far
 * for debug & stats.  Similar to rcu_exp_batches_completed().
 */
unsigned long rcu_exp_batches_completed_sched(void)
{
	return rcu_sched_state.expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);

645 646 647 648 649
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
650
	force_quiescent_state(rcu_state_p);
651 652 653
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

654 655 656 657 658
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
659
	force_quiescent_state(&rcu_bh_state);
660 661 662
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

663 664 665 666 667 668 669 670 671
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

687 688 689 690 691 692 693 694 695 696 697 698 699 700
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

701 702 703 704 705 706 707 708 709 710
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
711
		rsp = rcu_state_p;
712 713 714 715 716 717 718 719 720 721
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
722
	if (rsp == NULL)
723
		return;
724 725 726
	*flags = READ_ONCE(rsp->gp_flags);
	*gpnum = READ_ONCE(rsp->gpnum);
	*completed = READ_ONCE(rsp->completed);
727 728 729
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

730 731 732 733 734 735 736 737 738 739 740
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
757
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
758 759
	int *fp = &rnp->need_future_gp[idx];

760
	return READ_ONCE(*fp);
761 762
}

763
/*
764 765 766
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
767
 */
768
static bool
769 770
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
771
	if (rcu_gp_in_progress(rsp))
772
		return false;  /* No, a grace period is already in progress. */
773
	if (rcu_future_needs_gp(rsp))
774
		return true;  /* Yes, a no-CBs CPU needs one. */
775
	if (!rcu_segcblist_is_enabled(&rdp->cblist))
776
		return false;  /* No, this is a no-CBs (or offline) CPU. */
777
	if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
778
		return true;  /* Yes, CPU has newly registered callbacks. */
779 780 781
	if (rcu_segcblist_future_gp_needed(&rdp->cblist,
					   READ_ONCE(rsp->completed)))
		return true;  /* Yes, CBs for future grace period. */
782
	return false; /* No grace period needed. */
783 784
}

785
/*
P
Paul E. McKenney 已提交
786
 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
787
 *
P
Paul E. McKenney 已提交
788 789
 * Enter idle, doing appropriate accounting.  The caller must have
 * disabled interrupts.
790
 */
P
Paul E. McKenney 已提交
791
static void rcu_eqs_enter_common(bool user)
792
{
793 794
	struct rcu_state *rsp;
	struct rcu_data *rdp;
P
Paul E. McKenney 已提交
795
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
796

P
Paul E. McKenney 已提交
797
	trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
798 799
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
800 801
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
802

P
Paul E. McKenney 已提交
803
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
804
		rcu_ftrace_dump(DUMP_ORIG);
805 806 807
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
808
	}
809 810 811 812
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
813
	rcu_prepare_for_idle();
814
	__this_cpu_inc(disable_rcu_irq_enter);
P
Paul E. McKenney 已提交
815 816
	rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
	rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
817
	__this_cpu_dec(disable_rcu_irq_enter);
818
	rcu_dynticks_task_enter();
819 820

	/*
821
	 * It is illegal to enter an extended quiescent state while
822 823
	 * in an RCU read-side critical section.
	 */
824 825 826 827 828 829
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal idle entry in RCU read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
			 "Illegal idle entry in RCU-bh read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
			 "Illegal idle entry in RCU-sched read-side critical section.");
830
}
831

832 833 834
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
835
 */
836
static void rcu_eqs_enter(bool user)
837 838 839
{
	struct rcu_dynticks *rdtp;

840
	rdtp = this_cpu_ptr(&rcu_dynticks);
841
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
P
Paul E. McKenney 已提交
842 843 844 845
		     (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
	if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rcu_eqs_enter_common(user);
	else
846
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
847
}
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
863 864 865
	unsigned long flags;

	local_irq_save(flags);
866
	rcu_eqs_enter(false);
867
	rcu_sysidle_enter(0);
868
	local_irq_restore(flags);
869
}
870
EXPORT_SYMBOL_GPL(rcu_idle_enter);
871

872
#ifdef CONFIG_NO_HZ_FULL
873 874 875 876 877 878 879 880 881 882
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
883
	rcu_eqs_enter(1);
884
}
885
#endif /* CONFIG_NO_HZ_FULL */
886

887 888 889 890 891
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
892
 * sections can occur.  The caller must have disabled interrupts.
893
 *
894 895 896 897 898 899 900 901
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
902
 */
903
void rcu_irq_exit(void)
904 905 906
{
	struct rcu_dynticks *rdtp;

907
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
908
	rdtp = this_cpu_ptr(&rcu_dynticks);
909
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
P
Paul E. McKenney 已提交
910 911 912 913 914 915 916
		     rdtp->dynticks_nesting < 1);
	if (rdtp->dynticks_nesting <= 1) {
		rcu_eqs_enter_common(true);
	} else {
		trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
		rdtp->dynticks_nesting--;
	}
917
	rcu_sysidle_enter(1);
918 919 920 921 922 923 924 925 926 927 928
}

/*
 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 */
void rcu_irq_exit_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_exit();
929 930 931 932
	local_irq_restore(flags);
}

/*
933
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
934 935 936 937 938
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
939
static void rcu_eqs_exit_common(long long oldval, int user)
940
{
941
	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
942

943
	rcu_dynticks_task_exit();
944
	rcu_dynticks_eqs_exit();
945
	rcu_cleanup_after_idle();
946
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
947 948
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
949 950
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
951

952
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
953
				  oldval, rdtp->dynticks_nesting);
954
		rcu_ftrace_dump(DUMP_ORIG);
955 956 957
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
958 959 960
	}
}

961 962 963
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
964
 */
965
static void rcu_eqs_exit(bool user)
966 967 968 969
{
	struct rcu_dynticks *rdtp;
	long long oldval;

970
	rdtp = this_cpu_ptr(&rcu_dynticks);
971
	oldval = rdtp->dynticks_nesting;
972
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
973
	if (oldval & DYNTICK_TASK_NEST_MASK) {
974
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
975
	} else {
976
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
977
		rcu_eqs_exit_common(oldval, user);
978
	}
979
}
980 981 982 983 984 985 986 987 988 989 990 991 992 993

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
994 995 996
	unsigned long flags;

	local_irq_save(flags);
997
	rcu_eqs_exit(false);
998
	rcu_sysidle_exit(0);
999
	local_irq_restore(flags);
1000
}
1001
EXPORT_SYMBOL_GPL(rcu_idle_exit);
1002

1003
#ifdef CONFIG_NO_HZ_FULL
1004 1005 1006 1007 1008 1009 1010 1011
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
1012
	rcu_eqs_exit(1);
1013
}
1014
#endif /* CONFIG_NO_HZ_FULL */
1015

1016 1017 1018 1019 1020
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
1021
 * sections can occur.  The caller must have disabled interrupts.
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	struct rcu_dynticks *rdtp;
	long long oldval;

1040
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1041
	rdtp = this_cpu_ptr(&rcu_dynticks);
1042 1043
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
1044 1045
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
1046
	if (oldval)
1047
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1048
	else
1049 1050
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
}

/*
 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 */
void rcu_irq_enter_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_enter();
1062 1063 1064 1065 1066 1067
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
1068 1069 1070 1071 1072
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
1073 1074 1075
 */
void rcu_nmi_enter(void)
{
1076
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1077
	int incby = 2;
1078

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
1090
	if (rcu_dynticks_curr_cpu_in_eqs()) {
1091
		rcu_dynticks_eqs_exit();
1092 1093 1094 1095
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
1096 1097 1098 1099 1100
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
1101 1102 1103 1104
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
1105 1106 1107
 */
void rcu_nmi_exit(void)
{
1108
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1109

1110 1111 1112 1113 1114 1115
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1116
	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1117 1118 1119 1120 1121 1122 1123

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
1124
		return;
1125 1126 1127 1128
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
1129
	rcu_dynticks_eqs_enter();
1130 1131 1132
}

/**
1133 1134 1135 1136 1137 1138 1139
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
1140
bool notrace __rcu_is_watching(void)
1141
{
1142
	return !rcu_dynticks_curr_cpu_in_eqs();
1143 1144 1145 1146
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1147
 *
1148
 * If the current CPU is in its idle loop and is neither in an interrupt
1149
 * or NMI handler, return true.
1150
 */
1151
bool notrace rcu_is_watching(void)
1152
{
1153
	bool ret;
1154

1155
	preempt_disable_notrace();
1156
	ret = __rcu_is_watching();
1157
	preempt_enable_notrace();
1158
	return ret;
1159
}
1160
EXPORT_SYMBOL_GPL(rcu_is_watching);
1161

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
/*
 * If a holdout task is actually running, request an urgent quiescent
 * state from its CPU.  This is unsynchronized, so migrations can cause
 * the request to go to the wrong CPU.  Which is OK, all that will happen
 * is that the CPU's next context switch will be a bit slower and next
 * time around this task will generate another request.
 */
void rcu_request_urgent_qs_task(struct task_struct *t)
{
	int cpu;

	barrier();
	cpu = task_cpu(t);
	if (!task_curr(t))
		return; /* This task is not running on that CPU. */
	smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
}

1180
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1181 1182 1183 1184 1185 1186 1187

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
1188 1189 1190 1191 1192 1193
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
1194 1195
 * the fact that a CPU enters the scheduler after completing the teardown
 * of the CPU.
1196
 *
1197 1198
 * This is also why RCU internally marks CPUs online during in the
 * preparation phase and offline after the CPU has been taken down.
1199 1200 1201 1202 1203 1204
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1205 1206
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1207 1208 1209
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1210
		return true;
1211
	preempt_disable();
1212
	rdp = this_cpu_ptr(&rcu_sched_data);
1213
	rnp = rdp->mynode;
1214
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1215 1216 1217 1218 1219 1220
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1221
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1222

1223
/**
1224
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1225
 *
1226 1227 1228
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1229
 */
1230
static int rcu_is_cpu_rrupt_from_idle(void)
1231
{
1232
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1233 1234 1235 1236 1237
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1238
 * is in dynticks idle mode, which is an extended quiescent state.
1239
 */
1240 1241
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1242
{
1243
	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1244
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1245
	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1246
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1247
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1248
				 rdp->mynode->gpnum))
1249
			WRITE_ONCE(rdp->gpwrap, true);
1250
		return 1;
1251
	}
1252
	return 0;
1253 1254 1255 1256 1257 1258
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1259
 * for this same CPU, or by virtue of having been offline.
1260
 */
1261 1262
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1263
{
1264
	unsigned long jtsq;
1265
	bool *rnhqp;
1266
	bool *ruqp;
1267 1268
	unsigned long rjtsc;
	struct rcu_node *rnp;
1269 1270 1271 1272 1273 1274 1275 1276 1277

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1278
	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1279
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1280 1281 1282 1283
		rdp->dynticks_fqs++;
		return 1;
	}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	/* Compute and saturate jiffies_till_sched_qs. */
	jtsq = jiffies_till_sched_qs;
	rjtsc = rcu_jiffies_till_stall_check();
	if (jtsq > rjtsc / 2) {
		WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
		jtsq = rjtsc / 2;
	} else if (jtsq < 1) {
		WRITE_ONCE(jiffies_till_sched_qs, 1);
		jtsq = 1;
	}

1295
	/*
1296 1297 1298 1299
	 * Has this CPU encountered a cond_resched_rcu_qs() since the
	 * beginning of the grace period?  For this to be the case,
	 * the CPU has to have noticed the current grace period.  This
	 * might not be the case for nohz_full CPUs looping in the kernel.
1300
	 */
1301
	rnp = rdp->mynode;
1302
	ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1303
	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1304
	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1305 1306 1307
	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
		return 1;
1308 1309 1310
	} else {
		/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
		smp_store_release(ruqp, true);
1311 1312
	}

1313 1314
	/* Check for the CPU being offline. */
	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1315
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1316 1317 1318
		rdp->offline_fqs++;
		return 1;
	}
1319 1320

	/*
1321 1322 1323 1324 1325 1326
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
1327
	 * rcu_need_heavy_qs variable are safe.  Yes, setting of
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1340
	 */
1341 1342 1343 1344 1345
	rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
	if (!READ_ONCE(*rnhqp) &&
	    (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
	     time_after(jiffies, rdp->rsp->jiffies_resched))) {
		WRITE_ONCE(*rnhqp, true);
1346 1347
		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
		smp_store_release(ruqp, true);
1348
		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1349 1350
	}

1351 1352 1353 1354 1355 1356
	/*
	 * If more than halfway to RCU CPU stall-warning time, do
	 * a resched_cpu() to try to loosen things up a bit.
	 */
	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
		resched_cpu(rdp->cpu);
1357

1358
	return 0;
1359 1360 1361 1362
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1363
	unsigned long j = jiffies;
1364
	unsigned long j1;
1365 1366 1367

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1368
	j1 = rcu_jiffies_till_stall_check();
1369
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1370
	rsp->jiffies_resched = j + j1 / 2;
1371
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1372 1373
}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/*
 * Convert a ->gp_state value to a character string.
 */
static const char *gp_state_getname(short gs)
{
	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
		return "???";
	return gp_state_names[gs];
}

1384 1385 1386 1387 1388 1389 1390 1391 1392
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1393
	gpa = READ_ONCE(rsp->gp_activity);
1394
	if (j - gpa > 2 * HZ) {
1395
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1396
		       rsp->name, j - gpa,
1397
		       rsp->gpnum, rsp->completed,
1398 1399
		       rsp->gp_flags,
		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1400
		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1401
		if (rsp->gp_kthread) {
1402
			sched_show_task(rsp->gp_kthread);
1403 1404
			wake_up_process(rsp->gp_kthread);
		}
1405
	}
1406 1407
}

1408
/*
1409 1410 1411 1412
 * Dump stacks of all tasks running on stalled CPUs.  First try using
 * NMIs, but fall back to manual remote stack tracing on architectures
 * that don't support NMI-based stack dumps.  The NMI-triggered stack
 * traces are more accurate because they are printed by the target CPU.
1413 1414 1415 1416 1417 1418 1419 1420
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
1421
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1422 1423 1424
		for_each_leaf_node_possible_cpu(rnp, cpu)
			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
				if (!trigger_single_cpu_backtrace(cpu))
1425
					dump_cpu_task(cpu);
B
Boqun Feng 已提交
1426
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1427 1428 1429
	}
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
/*
 * If too much time has passed in the current grace period, and if
 * so configured, go kick the relevant kthreads.
 */
static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
{
	unsigned long j;

	if (!rcu_kick_kthreads)
		return;
	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1441 1442
	if (time_after(jiffies, j) && rsp->gp_kthread &&
	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1443
		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1444
		rcu_ftrace_dump(DUMP_ALL);
1445 1446 1447 1448 1449
		wake_up_process(rsp->gp_kthread);
		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
	}
}

1450 1451 1452 1453 1454 1455
static inline void panic_on_rcu_stall(void)
{
	if (sysctl_panic_on_rcu_stall)
		panic("RCU Stall\n");
}

1456
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1457 1458 1459 1460
{
	int cpu;
	long delta;
	unsigned long flags;
1461 1462
	unsigned long gpa;
	unsigned long j;
1463
	int ndetected = 0;
1464
	struct rcu_node *rnp = rcu_get_root(rsp);
1465
	long totqlen = 0;
1466

1467 1468 1469 1470 1471
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1472 1473
	/* Only let one CPU complain about others per time interval. */

1474
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1475
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1476
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
B
Boqun Feng 已提交
1477
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1478 1479
		return;
	}
1480 1481
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1482
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1483

1484 1485 1486 1487 1488
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1489
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1490
	       rsp->name);
1491
	print_cpu_stall_info_begin();
1492
	rcu_for_each_leaf_node(rsp, rnp) {
1493
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1494
		ndetected += rcu_print_task_stall(rnp);
1495
		if (rnp->qsmask != 0) {
1496 1497 1498
			for_each_leaf_node_possible_cpu(rnp, cpu)
				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
					print_cpu_stall_info(rsp, cpu);
1499 1500 1501
					ndetected++;
				}
		}
B
Boqun Feng 已提交
1502
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1503
	}
1504 1505

	print_cpu_stall_info_end();
1506
	for_each_possible_cpu(cpu)
1507 1508
		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
							    cpu)->cblist);
1509
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1510
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1511
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1512
	if (ndetected) {
1513
		rcu_dump_cpu_stacks(rsp);
1514 1515 1516

		/* Complain about tasks blocking the grace period. */
		rcu_print_detail_task_stall(rsp);
1517
	} else {
1518 1519
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1520 1521 1522
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1523
			gpa = READ_ONCE(rsp->gp_activity);
1524
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1525
			       rsp->name, j - gpa, j, gpa,
1526 1527
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1528 1529 1530 1531
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1532

1533 1534
	rcu_check_gp_kthread_starvation(rsp);

1535 1536
	panic_on_rcu_stall();

1537
	force_quiescent_state(rsp);  /* Kick them all. */
1538 1539 1540 1541
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1542
	int cpu;
1543 1544
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1545
	long totqlen = 0;
1546

1547 1548 1549 1550 1551
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1552 1553 1554 1555 1556
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1557
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1558 1559 1560
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1561
	for_each_possible_cpu(cpu)
1562 1563
		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
							    cpu)->cblist);
1564 1565 1566
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1567 1568 1569

	rcu_check_gp_kthread_starvation(rsp);

1570
	rcu_dump_cpu_stacks(rsp);
1571

1572
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1573 1574 1575
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1576
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1577

1578 1579
	panic_on_rcu_stall();

1580 1581 1582 1583 1584 1585 1586 1587
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1588 1589 1590 1591
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1592 1593 1594
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1595 1596
	unsigned long j;
	unsigned long js;
1597 1598
	struct rcu_node *rnp;

1599 1600
	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
	    !rcu_gp_in_progress(rsp))
1601
		return;
1602
	rcu_stall_kick_kthreads(rsp);
1603
	j = jiffies;
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1622
	gpnum = READ_ONCE(rsp->gpnum);
1623
	smp_rmb(); /* Pick up ->gpnum first... */
1624
	js = READ_ONCE(rsp->jiffies_stall);
1625
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1626
	gps = READ_ONCE(rsp->gp_start);
1627
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1628
	completed = READ_ONCE(rsp->completed);
1629 1630 1631 1632
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1633
	rnp = rdp->mynode;
1634
	if (rcu_gp_in_progress(rsp) &&
1635
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1636 1637 1638 1639

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1640 1641
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1642

1643
		/* They had a few time units to dump stack, so complain. */
1644
		print_other_cpu_stall(rsp, gpnum);
1645 1646 1647
	}
}

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1659 1660 1661
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1662
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1663 1664
}

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1694 1695 1696 1697 1698
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1699
				unsigned long c, const char *s)
1700 1701 1702 1703 1704 1705 1706 1707 1708
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1709 1710
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1711 1712 1713
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1714 1715 1716
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1717 1718
{
	unsigned long c;
1719
	bool ret = false;
1720 1721 1722 1723 1724 1725 1726
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1727
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1728
	if (rnp->need_future_gp[c & 0x1]) {
1729
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1730
		goto out;
1731 1732 1733 1734 1735 1736 1737
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1738 1739 1740 1741 1742 1743 1744
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1745 1746
	 */
	if (rnp->gpnum != rnp->completed ||
1747
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1748
		rnp->need_future_gp[c & 0x1]++;
1749
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1750
		goto out;
1751 1752 1753 1754 1755 1756 1757
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1758 1759
	if (rnp != rnp_root)
		raw_spin_lock_rcu_node(rnp_root);
1760 1761 1762 1763

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
1764
	 * earlier.  Adjust callbacks as needed.
1765 1766
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1767 1768
	if (!rcu_is_nocb_cpu(rdp->cpu))
		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1769 1770 1771 1772 1773 1774

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1775
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1776 1777 1778 1779 1780 1781 1782 1783
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1784
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1785
	} else {
1786
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1787
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1788 1789 1790
	}
unlock_out:
	if (rnp != rnp_root)
B
Boqun Feng 已提交
1791
		raw_spin_unlock_rcu_node(rnp_root);
1792 1793 1794 1795
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1796 1797 1798 1799
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
1800
 * whether any additional grace periods have been requested.
1801 1802 1803 1804 1805 1806 1807 1808 1809
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1810 1811
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1812 1813 1814
	return needmore;
}

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1825
	    !READ_ONCE(rsp->gp_flags) ||
1826 1827
	    !rsp->gp_kthread)
		return;
1828
	swake_up(&rsp->gp_wq);
1829 1830
}

1831 1832 1833 1834 1835 1836 1837
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1838 1839
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1840 1841 1842
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1843
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1844 1845
			       struct rcu_data *rdp)
{
1846
	bool ret = false;
1847

1848 1849
	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1850
		return false;
1851 1852

	/*
1853 1854 1855 1856 1857 1858 1859 1860
	 * Callbacks are often registered with incomplete grace-period
	 * information.  Something about the fact that getting exact
	 * information requires acquiring a global lock...  RCU therefore
	 * makes a conservative estimate of the grace period number at which
	 * a given callback will become ready to invoke.	The following
	 * code checks this estimate and improves it when possible, thus
	 * accelerating callback invocation to an earlier grace-period
	 * number.
1861
	 */
1862 1863
	if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
		ret = rcu_start_future_gp(rnp, rdp, NULL);
1864 1865

	/* Trace depending on how much we were able to accelerate. */
1866
	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1867
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1868
	else
1869
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1870
	return ret;
1871 1872 1873 1874 1875 1876 1877 1878
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1879
 * Returns true if the RCU grace-period kthread needs to be awakened.
1880 1881 1882
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1883
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1884 1885
			    struct rcu_data *rdp)
{
1886 1887
	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1888
		return false;
1889 1890 1891 1892 1893

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
1894
	rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1895 1896

	/* Classify any remaining callbacks. */
1897
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1898 1899
}

1900
/*
1901 1902 1903
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1904
 * Returns true if the grace-period kthread needs to be awakened.
1905
 */
1906 1907
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1908
{
1909
	bool ret;
1910
	bool need_gp;
1911

1912
	/* Handle the ends of any preceding grace periods first. */
1913
	if (rdp->completed == rnp->completed &&
1914
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1915

1916
		/* No grace period end, so just accelerate recent callbacks. */
1917
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1918

1919 1920 1921
	} else {

		/* Advance callbacks. */
1922
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1923 1924 1925

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1926
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1927
	}
1928

1929
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1930 1931 1932 1933 1934 1935
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1936
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1937 1938
		need_gp = !!(rnp->qsmask & rdp->grpmask);
		rdp->cpu_no_qs.b.norm = need_gp;
1939
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1940
		rdp->core_needs_qs = need_gp;
1941
		zero_cpu_stall_ticks(rdp);
1942
		WRITE_ONCE(rdp->gpwrap, false);
1943
	}
1944
	return ret;
1945 1946
}

1947
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1948 1949
{
	unsigned long flags;
1950
	bool needwake;
1951 1952 1953 1954
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1955 1956 1957
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1958
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1959 1960 1961
		local_irq_restore(flags);
		return;
	}
1962
	needwake = __note_gp_changes(rsp, rnp, rdp);
B
Boqun Feng 已提交
1963
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1964 1965
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1966 1967
}

1968 1969 1970 1971 1972 1973 1974
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

1975
/*
1976
 * Initialize a new grace period.  Return false if no grace period required.
1977
 */
1978
static bool rcu_gp_init(struct rcu_state *rsp)
1979
{
1980
	unsigned long oldmask;
1981
	struct rcu_data *rdp;
1982
	struct rcu_node *rnp = rcu_get_root(rsp);
1983

1984
	WRITE_ONCE(rsp->gp_activity, jiffies);
1985
	raw_spin_lock_irq_rcu_node(rnp);
1986
	if (!READ_ONCE(rsp->gp_flags)) {
1987
		/* Spurious wakeup, tell caller to go back to sleep.  */
B
Boqun Feng 已提交
1988
		raw_spin_unlock_irq_rcu_node(rnp);
1989
		return false;
1990
	}
1991
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1992

1993 1994 1995 1996 1997
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
B
Boqun Feng 已提交
1998
		raw_spin_unlock_irq_rcu_node(rnp);
1999
		return false;
2000 2001 2002
	}

	/* Advance to a new grace period and initialize state. */
2003
	record_gp_stall_check_time(rsp);
2004 2005
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
2006
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
B
Boqun Feng 已提交
2007
	raw_spin_unlock_irq_rcu_node(rnp);
2008

2009 2010 2011 2012 2013 2014 2015
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
2016
		rcu_gp_slow(rsp, gp_preinit_delay);
2017
		raw_spin_lock_irq_rcu_node(rnp);
2018 2019 2020
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
B
Boqun Feng 已提交
2021
			raw_spin_unlock_irq_rcu_node(rnp);
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

B
Boqun Feng 已提交
2055
		raw_spin_unlock_irq_rcu_node(rnp);
2056
	}
2057 2058 2059 2060 2061 2062 2063 2064

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
2065
	 * leaf node has been initialized.
2066 2067 2068 2069 2070
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2071
		rcu_gp_slow(rsp, gp_init_delay);
2072
		raw_spin_lock_irq_rcu_node(rnp);
2073
		rdp = this_cpu_ptr(rsp->rda);
2074 2075
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
2076
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2077
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2078
			WRITE_ONCE(rnp->completed, rsp->completed);
2079
		if (rnp == rdp->mynode)
2080
			(void)__note_gp_changes(rsp, rnp, rdp);
2081 2082 2083 2084
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
B
Boqun Feng 已提交
2085
		raw_spin_unlock_irq_rcu_node(rnp);
2086
		cond_resched_rcu_qs();
2087
		WRITE_ONCE(rsp->gp_activity, jiffies);
2088
	}
2089

2090
	return true;
2091
}
2092

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
/*
 * Helper function for wait_event_interruptible_timeout() wakeup
 * at force-quiescent-state time.
 */
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rsp->gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

2113 2114 2115
/*
 * Do one round of quiescent-state forcing.
 */
2116
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2117
{
2118 2119
	bool isidle = false;
	unsigned long maxj;
2120 2121
	struct rcu_node *rnp = rcu_get_root(rsp);

2122
	WRITE_ONCE(rsp->gp_activity, jiffies);
2123
	rsp->n_force_qs++;
2124
	if (first_time) {
2125
		/* Collect dyntick-idle snapshots. */
2126
		if (is_sysidle_rcu_state(rsp)) {
2127
			isidle = true;
2128 2129
			maxj = jiffies - ULONG_MAX / 4;
		}
2130 2131
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
2132
		rcu_sysidle_report_gp(rsp, isidle, maxj);
2133 2134
	} else {
		/* Handle dyntick-idle and offline CPUs. */
2135
		isidle = true;
2136
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2137 2138
	}
	/* Clear flag to prevent immediate re-entry. */
2139
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2140
		raw_spin_lock_irq_rcu_node(rnp);
2141 2142
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2143
		raw_spin_unlock_irq_rcu_node(rnp);
2144 2145 2146
	}
}

2147 2148 2149
/*
 * Clean up after the old grace period.
 */
2150
static void rcu_gp_cleanup(struct rcu_state *rsp)
2151 2152
{
	unsigned long gp_duration;
2153
	bool needgp = false;
2154
	int nocb = 0;
2155 2156
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
2157
	struct swait_queue_head *sq;
2158

2159
	WRITE_ONCE(rsp->gp_activity, jiffies);
2160
	raw_spin_lock_irq_rcu_node(rnp);
2161 2162 2163
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
2164

2165 2166 2167 2168 2169 2170 2171 2172
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
B
Boqun Feng 已提交
2173
	raw_spin_unlock_irq_rcu_node(rnp);
2174

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2185
		raw_spin_lock_irq_rcu_node(rnp);
2186 2187
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
2188
		WRITE_ONCE(rnp->completed, rsp->gpnum);
2189 2190
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
2191
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2192
		/* smp_mb() provided by prior unlock-lock pair. */
2193
		nocb += rcu_future_gp_cleanup(rsp, rnp);
2194
		sq = rcu_nocb_gp_get(rnp);
B
Boqun Feng 已提交
2195
		raw_spin_unlock_irq_rcu_node(rnp);
2196
		rcu_nocb_gp_cleanup(sq);
2197
		cond_resched_rcu_qs();
2198
		WRITE_ONCE(rsp->gp_activity, jiffies);
2199
		rcu_gp_slow(rsp, gp_cleanup_delay);
2200
	}
2201
	rnp = rcu_get_root(rsp);
2202
	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2203
	rcu_nocb_gp_set(rnp, nocb);
2204

2205
	/* Declare grace period done. */
2206
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2207
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2208
	rsp->gp_state = RCU_GP_IDLE;
2209
	rdp = this_cpu_ptr(rsp->rda);
2210 2211 2212
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2213
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2214
		trace_rcu_grace_period(rsp->name,
2215
				       READ_ONCE(rsp->gpnum),
2216 2217
				       TPS("newreq"));
	}
B
Boqun Feng 已提交
2218
	raw_spin_unlock_irq_rcu_node(rnp);
2219 2220 2221 2222 2223 2224 2225
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2226
	bool first_gp_fqs;
2227
	int gf;
2228
	unsigned long j;
2229
	int ret;
2230 2231 2232
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2233
	rcu_bind_gp_kthread();
2234 2235 2236 2237
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2238
			trace_rcu_grace_period(rsp->name,
2239
					       READ_ONCE(rsp->gpnum),
2240
					       TPS("reqwait"));
2241
			rsp->gp_state = RCU_GP_WAIT_GPS;
2242
			swait_event_interruptible(rsp->gp_wq,
2243
						 READ_ONCE(rsp->gp_flags) &
2244
						 RCU_GP_FLAG_INIT);
2245
			rsp->gp_state = RCU_GP_DONE_GPS;
2246
			/* Locking provides needed memory barrier. */
2247
			if (rcu_gp_init(rsp))
2248
				break;
2249
			cond_resched_rcu_qs();
2250
			WRITE_ONCE(rsp->gp_activity, jiffies);
2251
			WARN_ON(signal_pending(current));
2252
			trace_rcu_grace_period(rsp->name,
2253
					       READ_ONCE(rsp->gpnum),
2254
					       TPS("reqwaitsig"));
2255
		}
2256

2257
		/* Handle quiescent-state forcing. */
2258
		first_gp_fqs = true;
2259 2260 2261 2262 2263
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2264
		ret = 0;
2265
		for (;;) {
2266
			if (!ret) {
2267
				rsp->jiffies_force_qs = jiffies + j;
2268 2269 2270
				WRITE_ONCE(rsp->jiffies_kick_kthreads,
					   jiffies + 3 * j);
			}
2271
			trace_rcu_grace_period(rsp->name,
2272
					       READ_ONCE(rsp->gpnum),
2273
					       TPS("fqswait"));
2274
			rsp->gp_state = RCU_GP_WAIT_FQS;
2275
			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2276
					rcu_gp_fqs_check_wake(rsp, &gf), j);
2277
			rsp->gp_state = RCU_GP_DOING_FQS;
2278
			/* Locking provides needed memory barriers. */
2279
			/* If grace period done, leave loop. */
2280
			if (!READ_ONCE(rnp->qsmask) &&
2281
			    !rcu_preempt_blocked_readers_cgp(rnp))
2282
				break;
2283
			/* If time for quiescent-state forcing, do it. */
2284 2285
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2286
				trace_rcu_grace_period(rsp->name,
2287
						       READ_ONCE(rsp->gpnum),
2288
						       TPS("fqsstart"));
2289 2290
				rcu_gp_fqs(rsp, first_gp_fqs);
				first_gp_fqs = false;
2291
				trace_rcu_grace_period(rsp->name,
2292
						       READ_ONCE(rsp->gpnum),
2293
						       TPS("fqsend"));
2294
				cond_resched_rcu_qs();
2295
				WRITE_ONCE(rsp->gp_activity, jiffies);
2296 2297 2298 2299 2300 2301 2302 2303 2304
				ret = 0; /* Force full wait till next FQS. */
				j = jiffies_till_next_fqs;
				if (j > HZ) {
					j = HZ;
					jiffies_till_next_fqs = HZ;
				} else if (j < 1) {
					j = 1;
					jiffies_till_next_fqs = 1;
				}
2305 2306
			} else {
				/* Deal with stray signal. */
2307
				cond_resched_rcu_qs();
2308
				WRITE_ONCE(rsp->gp_activity, jiffies);
2309
				WARN_ON(signal_pending(current));
2310
				trace_rcu_grace_period(rsp->name,
2311
						       READ_ONCE(rsp->gpnum),
2312
						       TPS("fqswaitsig"));
2313 2314 2315 2316 2317 2318
				ret = 1; /* Keep old FQS timing. */
				j = jiffies;
				if (time_after(jiffies, rsp->jiffies_force_qs))
					j = 1;
				else
					j = rsp->jiffies_force_qs - j;
2319
			}
2320
		}
2321 2322

		/* Handle grace-period end. */
2323
		rsp->gp_state = RCU_GP_CLEANUP;
2324
		rcu_gp_cleanup(rsp);
2325
		rsp->gp_state = RCU_GP_CLEANED;
2326 2327 2328
	}
}

2329 2330 2331
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2332
 * the root node's ->lock and hard irqs must be disabled.
2333 2334 2335 2336
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2337 2338
 *
 * Returns true if the grace-period kthread must be awakened.
2339
 */
2340
static bool
2341 2342
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2343
{
2344
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2345
		/*
2346
		 * Either we have not yet spawned the grace-period
2347 2348
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2349
		 * Either way, don't start a new grace period.
2350
		 */
2351
		return false;
2352
	}
2353 2354
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2355
			       TPS("newreq"));
2356

2357 2358
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2359
	 * could cause possible deadlocks with the rq->lock. Defer
2360
	 * the wakeup to our caller.
2361
	 */
2362
	return true;
2363 2364
}

2365 2366 2367 2368 2369 2370
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2371 2372
 *
 * Returns true if the grace-period kthread needs to be awakened.
2373
 */
2374
static bool rcu_start_gp(struct rcu_state *rsp)
2375 2376 2377
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2378
	bool ret = false;
2379 2380 2381 2382 2383 2384 2385 2386 2387

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2388 2389 2390
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2391 2392
}

2393
/*
2394 2395 2396 2397 2398 2399 2400
 * Report a full set of quiescent states to the specified rcu_state data
 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
 * kthread if another grace period is required.  Whether we wake
 * the grace-period kthread or it awakens itself for the next round
 * of quiescent-state forcing, that kthread will clean up after the
 * just-completed grace period.  Note that the caller must hold rnp->lock,
 * which is released before return.
2401
 */
P
Paul E. McKenney 已提交
2402
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2403
	__releases(rcu_get_root(rsp)->lock)
2404
{
2405
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2406
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2407
	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2408
	rcu_gp_kthread_wake(rsp);
2409 2410
}

2411
/*
P
Paul E. McKenney 已提交
2412 2413 2414
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2415 2416 2417 2418 2419
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2420 2421
 */
static void
P
Paul E. McKenney 已提交
2422
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2423
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2424 2425
	__releases(rnp->lock)
{
2426
	unsigned long oldmask = 0;
2427 2428
	struct rcu_node *rnp_c;

2429 2430
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2431
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2432

2433 2434 2435 2436
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
B
Boqun Feng 已提交
2437
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2438 2439
			return;
		}
2440
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2441
		rnp->qsmask &= ~mask;
2442 2443 2444 2445
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2446
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2447 2448

			/* Other bits still set at this level, so done. */
B
Boqun Feng 已提交
2449
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2450 2451 2452 2453 2454 2455 2456 2457 2458
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
B
Boqun Feng 已提交
2459
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2460
		rnp_c = rnp;
2461
		rnp = rnp->parent;
2462
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2463
		oldmask = rnp_c->qsmask;
2464 2465 2466 2467
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2468
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2469
	 * to clean up and start the next grace period if one is needed.
2470
	 */
P
Paul E. McKenney 已提交
2471
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2472 2473
}

2474 2475 2476 2477 2478 2479 2480
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2481
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2482 2483 2484
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2485
	unsigned long gps;
2486 2487 2488
	unsigned long mask;
	struct rcu_node *rnp_p;

2489 2490
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
B
Boqun Feng 已提交
2491
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2492 2493 2494 2495 2496 2497
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2498 2499
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2500 2501 2502 2503 2504
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2505 2506
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2507
	mask = rnp->grpmask;
B
Boqun Feng 已提交
2508
	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2509
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2510
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2511 2512
}

2513
/*
P
Paul E. McKenney 已提交
2514
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2515
 * structure.  This must be called from the specified CPU.
2516 2517
 */
static void
2518
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2519 2520 2521
{
	unsigned long flags;
	unsigned long mask;
2522
	bool needwake;
2523 2524 2525
	struct rcu_node *rnp;

	rnp = rdp->mynode;
2526
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2527 2528
	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2529 2530

		/*
2531 2532 2533 2534
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2535
		 */
2536
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2537
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
B
Boqun Feng 已提交
2538
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2539 2540 2541 2542
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
B
Boqun Feng 已提交
2543
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2544
	} else {
2545
		rdp->core_needs_qs = false;
2546 2547 2548 2549 2550

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2551
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2552

2553 2554
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2555 2556
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2569 2570
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2571 2572 2573 2574 2575

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
2576
	if (!rdp->core_needs_qs)
2577 2578 2579 2580 2581 2582
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2583
	if (rdp->cpu_no_qs.b.norm)
2584 2585
		return;

P
Paul E. McKenney 已提交
2586 2587 2588 2589
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2590
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2591 2592
}

2593
/*
2594 2595
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2596
 * ->orphan_lock.
2597
 */
2598 2599 2600
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2601
{
P
Paul E. McKenney 已提交
2602
	/* No-CBs CPUs do not have orphanable callbacks. */
2603
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2604 2605
		return;

2606 2607
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2608 2609
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2610
	 */
2611 2612
	rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
	rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
2613 2614

	/*
2615 2616 2617 2618 2619
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
2620
	 */
2621
	rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2622 2623

	/*
2624 2625 2626
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2627
	 */
2628
	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
2629

2630 2631
	/* Finally, disallow further callbacks on this CPU.  */
	rcu_segcblist_disable(&rdp->cblist);
2632 2633 2634 2635
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2636
 * orphanage.  The caller must hold the ->orphan_lock.
2637
 */
2638
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2639
{
2640
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2641

P
Paul E. McKenney 已提交
2642
	/* No-CBs CPUs are handled specially. */
2643 2644
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2645 2646
		return;

2647
	/* Do the accounting first. */
2648
	rdp->n_cbs_adopted += rsp->orphan_done.len;
2649
	if (rsp->orphan_done.len_lazy != rsp->orphan_done.len)
2650
		rcu_idle_count_callbacks_posted();
2651
	rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
2652 2653 2654 2655 2656 2657 2658

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

2659 2660
	/* First adopt the ready-to-invoke callbacks, then the done ones. */
	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
2661
	WARN_ON_ONCE(rsp->orphan_done.head);
2662
	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2663
	WARN_ON_ONCE(rsp->orphan_pend.head);
2664 2665
	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
		     !rcu_segcblist_n_cbs(&rdp->cblist));
2666 2667 2668 2669 2670 2671 2672
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
2673 2674 2675
	RCU_TRACE(unsigned long mask;)
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2676

2677 2678 2679
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2680
	RCU_TRACE(mask = rdp->grpmask;)
2681 2682
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2683
			       TPS("cpuofl"));
2684 2685
}

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2708 2709
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2710 2711 2712 2713 2714 2715
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
2716
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2717
		rnp->qsmaskinit &= ~mask;
2718
		rnp->qsmask &= ~mask;
2719
		if (rnp->qsmaskinit) {
B
Boqun Feng 已提交
2720 2721
			raw_spin_unlock_rcu_node(rnp);
			/* irqs remain disabled. */
2722 2723
			return;
		}
B
Boqun Feng 已提交
2724
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2725 2726 2727
	}
}

2728
/*
2729
 * The CPU has been completely removed, and some other CPU is reporting
2730 2731
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2732 2733
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2734
 */
2735
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2736
{
2737
	unsigned long flags;
2738
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2739
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2740

2741 2742 2743
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2744
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2745
	rcu_boost_kthread_setaffinity(rnp, -1);
2746

2747
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2748
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2749
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2750
	rcu_adopt_orphan_cbs(rsp, flags);
2751
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2752

2753 2754 2755 2756 2757
	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
		  !rcu_segcblist_empty(&rdp->cblist),
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
		  rcu_segcblist_first_cb(&rdp->cblist));
2758 2759 2760 2761 2762 2763
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2764
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2765 2766
{
	unsigned long flags;
2767 2768 2769
	struct rcu_head *rhp;
	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
	long bl, count;
2770

2771
	/* If no callbacks are ready, just return. */
2772 2773 2774 2775 2776 2777
	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
		trace_rcu_batch_start(rsp->name,
				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
		trace_rcu_batch_end(rsp->name, 0,
				    !rcu_segcblist_empty(&rdp->cblist),
2778 2779
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2780
		return;
2781
	}
2782 2783 2784

	/*
	 * Extract the list of ready callbacks, disabling to prevent
2785 2786
	 * races with call_rcu() from interrupt handlers.  Leave the
	 * callback counts, as rcu_barrier() needs to be conservative.
2787 2788
	 */
	local_irq_save(flags);
2789
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2790
	bl = rdp->blimit;
2791 2792 2793
	trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2794 2795 2796
	local_irq_restore(flags);

	/* Invoke callbacks. */
2797 2798 2799 2800 2801 2802 2803 2804 2805
	rhp = rcu_cblist_dequeue(&rcl);
	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
		debug_rcu_head_unqueue(rhp);
		if (__rcu_reclaim(rsp->name, rhp))
			rcu_cblist_dequeued_lazy(&rcl);
		/*
		 * Stop only if limit reached and CPU has something to do.
		 * Note: The rcl structure counts down from zero.
		 */
2806
		if (-rcl.len >= bl &&
2807 2808
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2809 2810 2811 2812
			break;
	}

	local_irq_save(flags);
2813
	count = -rcl.len;
2814 2815
	trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
			    is_idle_task(current), rcu_is_callbacks_kthread());
2816

2817 2818
	/* Update counts and requeue any remaining callbacks. */
	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2819 2820
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->n_cbs_invoked += count;
2821
	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2822 2823

	/* Reinstate batch limit if we have worked down the excess. */
2824 2825
	count = rcu_segcblist_n_cbs(&rdp->cblist);
	if (rdp->blimit == LONG_MAX && count <= qlowmark)
2826 2827
		rdp->blimit = blimit;

2828
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2829
	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2830 2831
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
2832 2833 2834
	} else if (count < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = count;
	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2835

2836 2837
	local_irq_restore(flags);

2838
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2839
	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2840
		invoke_rcu_core();
2841 2842 2843 2844 2845
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2846
 * Also schedule RCU core processing.
2847
 *
2848
 * This function must be called from hardirq context.  It is normally
2849
 * invoked from the scheduling-clock interrupt.
2850
 */
2851
void rcu_check_callbacks(int user)
2852
{
2853
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2854
	increment_cpu_stall_ticks();
2855
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2856 2857 2858 2859 2860

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2861
		 * a quiescent state, so note it.
2862 2863
		 *
		 * No memory barrier is required here because both
2864 2865 2866
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2867 2868
		 */

2869 2870
		rcu_sched_qs();
		rcu_bh_qs();
2871 2872 2873 2874 2875 2876 2877

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2878
		 * critical section, so note it.
2879 2880
		 */

2881
		rcu_bh_qs();
2882
	}
2883
	rcu_preempt_check_callbacks();
2884
	if (rcu_pending())
2885
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2886 2887
	if (user)
		rcu_note_voluntary_context_switch(current);
2888
	trace_rcu_utilization(TPS("End scheduler-tick"));
2889 2890 2891 2892 2893
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2894 2895
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2896
 * The caller must have suppressed start of new grace periods.
2897
 */
2898 2899 2900 2901
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2902 2903 2904 2905
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
2906
	struct rcu_node *rnp;
2907

2908
	rcu_for_each_leaf_node(rsp, rnp) {
2909
		cond_resched_rcu_qs();
2910
		mask = 0;
2911
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2912
		if (rnp->qsmask == 0) {
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2936
		}
2937 2938
		for_each_leaf_node_possible_cpu(rnp, cpu) {
			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2939 2940 2941 2942
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2943
		}
2944
		if (mask != 0) {
2945 2946
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2947 2948
		} else {
			/* Nothing to do here, so just drop the lock. */
B
Boqun Feng 已提交
2949
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2950 2951 2952 2953 2954 2955 2956 2957
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2958
static void force_quiescent_state(struct rcu_state *rsp)
2959 2960
{
	unsigned long flags;
2961 2962 2963 2964 2965
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2966
	rnp = __this_cpu_read(rsp->rda->mynode);
2967
	for (; rnp != NULL; rnp = rnp->parent) {
2968
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2969 2970 2971 2972
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2973
			rsp->n_force_qs_lh++;
2974 2975 2976 2977 2978
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2979

2980
	/* Reached the root of the rcu_node tree, acquire lock. */
2981
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2982
	raw_spin_unlock(&rnp_old->fqslock);
2983
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2984
		rsp->n_force_qs_lh++;
B
Boqun Feng 已提交
2985
		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2986
		return;  /* Someone beat us to it. */
2987
	}
2988
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2989
	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2990
	rcu_gp_kthread_wake(rsp);
2991 2992 2993
}

/*
2994 2995 2996
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2997 2998
 */
static void
2999
__rcu_process_callbacks(struct rcu_state *rsp)
3000 3001
{
	unsigned long flags;
3002
	bool needwake;
3003
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3004

N
Nicholas Mc Guire 已提交
3005
	WARN_ON_ONCE(!rdp->beenonline);
3006

3007 3008 3009 3010
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
3011
	local_irq_save(flags);
3012
	if (cpu_needs_another_gp(rsp, rdp)) {
3013
		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3014
		needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3015
		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3016 3017
		if (needwake)
			rcu_gp_kthread_wake(rsp);
3018 3019
	} else {
		local_irq_restore(flags);
3020 3021 3022
	}

	/* If there are callbacks ready, invoke them. */
3023
	if (rcu_segcblist_ready_cbs(&rdp->cblist))
3024
		invoke_rcu_callbacks(rsp, rdp);
3025 3026 3027

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
3028 3029
}

3030
/*
3031
 * Do RCU core processing for the current CPU.
3032
 */
3033
static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3034
{
3035 3036
	struct rcu_state *rsp;

3037 3038
	if (cpu_is_offline(smp_processor_id()))
		return;
3039
	trace_rcu_utilization(TPS("Start RCU core"));
3040 3041
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
3042
	trace_rcu_utilization(TPS("End RCU core"));
3043 3044
}

3045
/*
3046 3047 3048
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
3049
 * are running on the current CPU with softirqs disabled, the
3050
 * rcu_cpu_kthread_task cannot disappear out from under us.
3051
 */
3052
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3053
{
3054
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3055
		return;
3056 3057
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
3058 3059
		return;
	}
3060
	invoke_rcu_callbacks_kthread();
3061 3062
}

3063
static void invoke_rcu_core(void)
3064
{
3065 3066
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
3067 3068
}

3069 3070 3071 3072 3073
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
3074
{
3075 3076
	bool needwake;

3077 3078 3079 3080
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
3081
	if (!rcu_is_watching())
3082 3083
		invoke_rcu_core();

3084
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3085
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3086
		return;
3087

3088 3089 3090 3091 3092 3093 3094
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
3095 3096
	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
		     rdp->qlen_last_fqs_check + qhimark)) {
3097 3098

		/* Are we ignoring a completed grace period? */
3099
		note_gp_changes(rsp, rdp);
3100 3101 3102 3103 3104

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

3105
			raw_spin_lock_rcu_node(rnp_root);
3106
			needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3107
			raw_spin_unlock_rcu_node(rnp_root);
3108 3109
			if (needwake)
				rcu_gp_kthread_wake(rsp);
3110 3111 3112 3113
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3114
			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3115
				force_quiescent_state(rsp);
3116
			rdp->n_force_qs_snap = rsp->n_force_qs;
3117
			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3118
		}
3119
	}
3120 3121
}

3122 3123 3124 3125 3126 3127 3128
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3129 3130 3131 3132 3133 3134
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3135
static void
3136
__call_rcu(struct rcu_head *head, rcu_callback_t func,
P
Paul E. McKenney 已提交
3137
	   struct rcu_state *rsp, int cpu, bool lazy)
3138 3139 3140 3141
{
	unsigned long flags;
	struct rcu_data *rdp;

3142 3143 3144
	/* Misaligned rcu_head! */
	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));

3145 3146
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3147
		WRITE_ONCE(head->func, rcu_leak_callback);
3148 3149 3150
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3151 3152 3153
	head->func = func;
	head->next = NULL;
	local_irq_save(flags);
3154
	rdp = this_cpu_ptr(rsp->rda);
3155 3156

	/* Add the callback to our list. */
3157
	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
P
Paul E. McKenney 已提交
3158 3159 3160 3161
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3175
		WARN_ON_ONCE(!rcu_is_watching());
3176 3177
		if (rcu_segcblist_empty(&rdp->cblist))
			rcu_segcblist_init(&rdp->cblist);
3178
	}
3179 3180
	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
	if (!lazy)
3181
		rcu_idle_count_callbacks_posted();
3182

3183 3184
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3185 3186
					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
					 rcu_segcblist_n_cbs(&rdp->cblist));
3187
	else
3188 3189 3190
		trace_rcu_callback(rsp->name, head,
				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
				   rcu_segcblist_n_cbs(&rdp->cblist));
3191

3192 3193
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3194 3195 3196 3197
	local_irq_restore(flags);
}

/*
3198
 * Queue an RCU-sched callback for invocation after a grace period.
3199
 */
3200
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3201
{
P
Paul E. McKenney 已提交
3202
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3203
}
3204
EXPORT_SYMBOL_GPL(call_rcu_sched);
3205 3206

/*
3207
 * Queue an RCU callback for invocation after a quicker grace period.
3208
 */
3209
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3210
{
P
Paul E. McKenney 已提交
3211
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3212 3213 3214
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3215 3216 3217 3218 3219 3220 3221 3222
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
3223
		    rcu_callback_t func)
3224
{
3225
	__call_rcu(head, func, rcu_state_p, -1, 1);
3226 3227 3228
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3240 3241
	int ret;

3242
	might_sleep();  /* Check for RCU read-side critical section. */
3243 3244 3245 3246
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3247 3248
}

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3283 3284 3285 3286 3287 3288 3289 3290 3291
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3292 3293 3294 3295
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3296 3297
	if (rcu_blocking_is_gp())
		return;
3298
	if (rcu_gp_is_expedited())
3299 3300 3301
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3313 3314 3315
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3316 3317 3318
 */
void synchronize_rcu_bh(void)
{
3319 3320 3321 3322
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3323 3324
	if (rcu_blocking_is_gp())
		return;
3325
	if (rcu_gp_is_expedited())
3326 3327 3328
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3329 3330 3331
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3352
	return smp_load_acquire(&rcu_state_p->gpnum);
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3378
	newstate = smp_load_acquire(&rcu_state_p->completed);
3379 3380 3381 3382 3383
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
/**
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_sched(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_sched()
	 * and cond_synchronize_sched().
	 */
	return smp_load_acquire(&rcu_sched_state.gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);

/**
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 *
 * If a full RCU-sched grace period has elapsed since the earlier call to
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 * synchronize_sched() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_sched(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_sched_state.completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(cond_synchronize_sched);

3436 3437 3438 3439 3440 3441 3442 3443 3444
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3445 3446
	struct rcu_node *rnp = rdp->mynode;

3447 3448 3449 3450 3451
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3452 3453 3454 3455
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3456
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3457
	if (rcu_scheduler_fully_active &&
3458
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3459
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3460
		rdp->n_rp_core_needs_qs++;
3461
	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3462
		rdp->n_rp_report_qs++;
3463
		return 1;
3464
	}
3465 3466

	/* Does this CPU have callbacks ready to invoke? */
3467
	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3468
		rdp->n_rp_cb_ready++;
3469
		return 1;
3470
	}
3471 3472

	/* Has RCU gone idle with this CPU needing another grace period? */
3473 3474
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3475
		return 1;
3476
	}
3477 3478

	/* Has another RCU grace period completed?  */
3479
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3480
		rdp->n_rp_gp_completed++;
3481
		return 1;
3482
	}
3483 3484

	/* Has a new RCU grace period started? */
3485 3486
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3487
		rdp->n_rp_gp_started++;
3488
		return 1;
3489
	}
3490

3491 3492 3493 3494 3495 3496
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3497
	/* nothing to do */
3498
	rdp->n_rp_need_nothing++;
3499 3500 3501 3502 3503 3504 3505 3506
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3507
static int rcu_pending(void)
3508
{
3509 3510 3511
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3512
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3513 3514
			return 1;
	return 0;
3515 3516 3517
}

/*
3518 3519 3520
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3521
 */
3522
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3523
{
3524 3525 3526
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3527 3528
	struct rcu_state *rsp;

3529
	for_each_rcu_flavor(rsp) {
3530
		rdp = this_cpu_ptr(rsp->rda);
3531
		if (rcu_segcblist_empty(&rdp->cblist))
3532 3533
			continue;
		hc = true;
3534
		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3535
			al = false;
3536 3537
			break;
		}
3538 3539 3540 3541
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3542 3543
}

3544 3545 3546 3547
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3548
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3549 3550 3551 3552 3553 3554
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3555 3556 3557 3558
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3559
static void rcu_barrier_callback(struct rcu_head *rhp)
3560
{
3561 3562 3563
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3564
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3565
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3566
		complete(&rsp->barrier_completion);
3567
	} else {
3568
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3569
	}
3570 3571 3572 3573 3574 3575 3576
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3577
	struct rcu_state *rsp = type;
3578
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3579

3580
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3581
	atomic_inc(&rsp->barrier_cpu_count);
3582
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3583 3584 3585 3586 3587 3588
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3589
static void _rcu_barrier(struct rcu_state *rsp)
3590
{
3591 3592
	int cpu;
	struct rcu_data *rdp;
3593
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3594

3595
	_rcu_barrier_trace(rsp, "Begin", -1, s);
3596

3597
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3598
	mutex_lock(&rsp->barrier_mutex);
3599

3600 3601 3602
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3603 3604 3605 3606 3607
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

3608 3609 3610
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3611

3612
	/*
3613 3614
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3615 3616
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3617
	 */
3618
	init_completion(&rsp->barrier_completion);
3619
	atomic_set(&rsp->barrier_cpu_count, 1);
3620
	get_online_cpus();
3621 3622

	/*
3623 3624 3625
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3626
	 */
P
Paul E. McKenney 已提交
3627
	for_each_possible_cpu(cpu) {
3628
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3629
			continue;
3630
		rdp = per_cpu_ptr(rsp->rda, cpu);
3631
		if (rcu_is_nocb_cpu(cpu)) {
3632 3633
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3634
						   rsp->barrier_sequence);
3635 3636
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3637
						   rsp->barrier_sequence);
3638
				smp_mb__before_atomic();
3639 3640 3641 3642
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
3643
		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3644
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3645
					   rsp->barrier_sequence);
3646
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3647
		} else {
3648
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3649
					   rsp->barrier_sequence);
3650 3651
		}
	}
3652
	put_online_cpus();
3653 3654 3655 3656 3657

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3658
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3659
		complete(&rsp->barrier_completion);
3660 3661

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3662
	wait_for_completion(&rsp->barrier_completion);
3663

3664 3665 3666 3667
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

3668
	/* Other rcu_barrier() invocations can now safely proceed. */
3669
	mutex_unlock(&rsp->barrier_mutex);
3670 3671 3672 3673 3674 3675 3676
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3677
	_rcu_barrier(&rcu_bh_state);
3678 3679 3680 3681 3682 3683 3684 3685
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3686
	_rcu_barrier(&rcu_sched_state);
3687 3688 3689
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
3706
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3707
		rnp->qsmaskinit |= mask;
B
Boqun Feng 已提交
3708
		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3709 3710 3711
	}
}

3712
/*
3713
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3714
 */
3715 3716
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3717 3718
{
	unsigned long flags;
3719
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3720 3721 3722
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3723
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3724
	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3725
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3726
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3727
	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3728
	rdp->cpu = cpu;
3729
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3730
	rcu_boot_init_nocb_percpu_data(rdp);
B
Boqun Feng 已提交
3731
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3732 3733 3734 3735 3736 3737 3738
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3739
 */
3740
static void
3741
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3742 3743
{
	unsigned long flags;
3744
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3745 3746 3747
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3748
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3749 3750
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3751
	rdp->blimit = blimit;
3752 3753 3754
	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
	    !init_nocb_callback_list(rdp))
		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3755
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3756
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3757
	rcu_dynticks_eqs_online();
B
Boqun Feng 已提交
3758
	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3759

3760 3761 3762 3763 3764
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
3765
	rnp = rdp->mynode;
3766
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3767 3768 3769
	if (!rdp->beenonline)
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
	rdp->beenonline = true;	 /* We have now been online. */
3770 3771
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
3772
	rdp->cpu_no_qs.b.norm = true;
3773
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3774
	rdp->core_needs_qs = false;
3775
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
B
Boqun Feng 已提交
3776
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3777 3778
}

3779 3780 3781 3782
/*
 * Invoked early in the CPU-online process, when pretty much all
 * services are available.  The incoming CPU is not present.
 */
3783
int rcutree_prepare_cpu(unsigned int cpu)
3784
{
3785 3786 3787
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3788
		rcu_init_percpu_data(cpu, rsp);
3789 3790 3791 3792 3793 3794 3795

	rcu_prepare_kthreads(cpu);
	rcu_spawn_all_nocb_kthreads(cpu);

	return 0;
}

3796 3797 3798
/*
 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
 */
3799 3800 3801 3802 3803 3804 3805
static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);

	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
}

3806 3807 3808 3809
/*
 * Near the end of the CPU-online process.  Pretty much all services
 * enabled, and the CPU is now very much alive.
 */
3810 3811 3812 3813
int rcutree_online_cpu(unsigned int cpu)
{
	sync_sched_exp_online_cleanup(cpu);
	rcutree_affinity_setting(cpu, -1);
3814 3815
	if (IS_ENABLED(CONFIG_TREE_SRCU))
		srcu_online_cpu(cpu);
3816 3817 3818
	return 0;
}

3819 3820 3821 3822
/*
 * Near the beginning of the process.  The CPU is still very much alive
 * with pretty much all services enabled.
 */
3823 3824 3825
int rcutree_offline_cpu(unsigned int cpu)
{
	rcutree_affinity_setting(cpu, cpu);
3826 3827
	if (IS_ENABLED(CONFIG_TREE_SRCU))
		srcu_offline_cpu(cpu);
3828 3829 3830
	return 0;
}

3831 3832 3833
/*
 * Near the end of the offline process.  We do only tracing here.
 */
3834 3835 3836 3837 3838 3839 3840 3841 3842
int rcutree_dying_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_cpu(rsp);
	return 0;
}

3843 3844 3845
/*
 * The outgoing CPU is gone and we are running elsewhere.
 */
3846 3847 3848 3849 3850 3851 3852 3853 3854
int rcutree_dead_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		rcu_cleanup_dead_cpu(cpu, rsp);
		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
	}
	return 0;
3855 3856
}

3857 3858 3859 3860 3861 3862
/*
 * Mark the specified CPU as being online so that subsequent grace periods
 * (both expedited and normal) will wait on it.  Note that this means that
 * incoming CPUs are not allowed to use RCU read-side critical sections
 * until this function is called.  Failing to observe this restriction
 * will result in lockdep splats.
3863 3864 3865 3866
 *
 * Note that this function is special in that it is invoked directly
 * from the incoming CPU rather than from the cpuhp_step mechanism.
 * This is because this function must be invoked at a precise location.
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
 */
void rcu_cpu_starting(unsigned int cpu)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
3877
		rdp = per_cpu_ptr(rsp->rda, cpu);
3878 3879 3880 3881 3882 3883 3884 3885 3886
		rnp = rdp->mynode;
		mask = rdp->grpmask;
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
		rnp->qsmaskinitnext |= mask;
		rnp->expmaskinitnext |= mask;
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	}
}

3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
#ifdef CONFIG_HOTPLUG_CPU
/*
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
3904
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3905 3906
}

3907 3908 3909 3910 3911 3912 3913 3914
/*
 * The outgoing function has no further need of RCU, so remove it from
 * the list of CPUs that RCU must track.
 *
 * Note that this function is special in that it is invoked directly
 * from the outgoing CPU rather than from the cpuhp_step mechanism.
 * This is because this function must be invoked at a precise location.
 */
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
void rcu_report_dead(unsigned int cpu)
{
	struct rcu_state *rsp;

	/* QS for any half-done expedited RCU-sched GP. */
	preempt_disable();
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(rcu_sched_state.rda), true);
	preempt_enable();
	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_idle_cpu(cpu, rsp);
}
#endif

3929 3930 3931 3932
/*
 * On non-huge systems, use expedited RCU grace periods to make suspend
 * and hibernation run faster.
 */
3933 3934 3935 3936 3937 3938 3939
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3940
			rcu_expedite_gp();
3941 3942 3943
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
3944 3945
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
3946 3947 3948 3949 3950 3951 3952
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3953
/*
3954
 * Spawn the kthreads that handle each RCU flavor's grace periods.
3955 3956 3957 3958
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
3959
	int kthread_prio_in = kthread_prio;
3960 3961
	struct rcu_node *rnp;
	struct rcu_state *rsp;
3962
	struct sched_param sp;
3963 3964
	struct task_struct *t;

3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

3976
	rcu_scheduler_fully_active = 1;
3977
	for_each_rcu_flavor(rsp) {
3978
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3979 3980
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
3981
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3982
		rsp->gp_kthread = t;
3983 3984 3985 3986
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
B
Boqun Feng 已提交
3987
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3988
		wake_up_process(t);
3989
	}
3990
	rcu_spawn_nocb_kthreads();
3991
	rcu_spawn_boost_kthreads();
3992 3993 3994 3995
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3996
/*
3997 3998 3999 4000 4001 4002
 * This function is invoked towards the end of the scheduler's
 * initialization process.  Before this is called, the idle task might
 * contain synchronous grace-period primitives (during which time, this idle
 * task is booting the system, and such primitives are no-ops).  After this
 * function is called, any synchronous grace-period primitives are run as
 * expedited, with the requesting task driving the grace period forward.
4003
 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4004
 * runtime RCU functionality.
4005 4006 4007 4008 4009
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
4010 4011 4012
	rcu_test_sync_prims();
	rcu_scheduler_active = RCU_SCHEDULER_INIT;
	rcu_test_sync_prims();
4013 4014
}

4015 4016 4017
/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
4018
static void __init rcu_init_one(struct rcu_state *rsp)
4019
{
4020 4021
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4022 4023
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4024 4025

	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4026 4027 4028 4029 4030
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4031
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4032

4033 4034 4035
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4036

4037 4038
	/* Initialize the level-tracking arrays. */

4039
	for (i = 1; i < rcu_num_lvls; i++)
4040 4041
		rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
	rcu_init_levelspread(levelspread, num_rcu_lvl);
4042 4043 4044

	/* Initialize the elements themselves, starting from the leaves. */

4045
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4046
		cpustride *= levelspread[i];
4047
		rnp = rsp->level[i];
4048
		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
B
Boqun Feng 已提交
4049 4050
			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4051
						   &rcu_node_class[i], buf[i]);
4052 4053 4054
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4055 4056
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4057 4058 4059 4060
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4061 4062
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4063 4064 4065 4066 4067
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4068
				rnp->grpnum = j % levelspread[i - 1];
4069 4070
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4071
					      j / levelspread[i - 1];
4072 4073
			}
			rnp->level = i;
4074
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4075
			rcu_init_one_nocb(rnp);
4076 4077
			init_waitqueue_head(&rnp->exp_wq[0]);
			init_waitqueue_head(&rnp->exp_wq[1]);
4078 4079
			init_waitqueue_head(&rnp->exp_wq[2]);
			init_waitqueue_head(&rnp->exp_wq[3]);
4080
			spin_lock_init(&rnp->exp_lock);
4081 4082
		}
	}
4083

4084 4085
	init_swait_queue_head(&rsp->gp_wq);
	init_swait_queue_head(&rsp->expedited_wq);
4086
	rnp = rsp->level[rcu_num_lvls - 1];
4087
	for_each_possible_cpu(i) {
4088
		while (i > rnp->grphi)
4089
			rnp++;
4090
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4091 4092
		rcu_boot_init_percpu_data(i, rsp);
	}
4093
	list_add(&rsp->flavors, &rcu_struct_flavors);
4094 4095
}

4096 4097
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4098
 * replace the definitions in tree.h because those are needed to size
4099 4100 4101 4102
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4103
	ulong d;
4104
	int i;
4105
	int rcu_capacity[RCU_NUM_LVLS];
4106

4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4120
	/* If the compile-time values are accurate, just leave. */
4121
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4122
	    nr_cpu_ids == NR_CPUS)
4123
		return;
4124 4125
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4126 4127

	/*
4128 4129 4130 4131
	 * The boot-time rcu_fanout_leaf parameter must be at least two
	 * and cannot exceed the number of bits in the rcu_node masks.
	 * Complain and fall back to the compile-time values if this
	 * limit is exceeded.
4132
	 */
4133
	if (rcu_fanout_leaf < 2 ||
4134
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4135
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4136 4137 4138 4139 4140 4141
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4142
	 * with the given number of levels.
4143
	 */
4144
	rcu_capacity[0] = rcu_fanout_leaf;
4145
	for (i = 1; i < RCU_NUM_LVLS; i++)
4146
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4147 4148

	/*
4149
	 * The tree must be able to accommodate the configured number of CPUs.
4150
	 * If this limit is exceeded, fall back to the compile-time values.
4151
	 */
4152 4153 4154 4155 4156
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}
4157

4158
	/* Calculate the number of levels in the tree. */
4159
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4160
	}
4161
	rcu_num_lvls = i + 1;
4162

4163
	/* Calculate the number of rcu_nodes at each level of the tree. */
4164
	for (i = 0; i < rcu_num_lvls; i++) {
4165
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4166 4167
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4168 4169 4170

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4171
	for (i = 0; i < rcu_num_lvls; i++)
4172 4173 4174
		rcu_num_nodes += num_rcu_lvl[i];
}

4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4197
void __init rcu_init(void)
4198
{
P
Paul E. McKenney 已提交
4199
	int cpu;
4200

4201 4202
	rcu_early_boot_tests();

4203
	rcu_bootup_announce();
4204
	rcu_init_geometry();
4205 4206
	rcu_init_one(&rcu_bh_state);
	rcu_init_one(&rcu_sched_state);
4207 4208
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4209
	__rcu_init_preempt();
J
Jiang Fang 已提交
4210
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4211 4212 4213 4214 4215 4216

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
4217
	pm_notifier(rcu_pm_notify, 0);
4218
	for_each_online_cpu(cpu) {
4219
		rcutree_prepare_cpu(cpu);
4220
		rcu_cpu_starting(cpu);
4221 4222
		if (IS_ENABLED(CONFIG_TREE_SRCU))
			srcu_online_cpu(cpu);
4223
	}
4224 4225
}

4226
#include "tree_exp.h"
4227
#include "tree_plugin.h"