tree.c 140.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/trace_events.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71 72 73 74 75 76 77 78
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
79 80
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
81
static char sname##_varname[] = #sname; \
82 83 84 85 86 87 88 89 90
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
91
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92
struct rcu_state sname##_state = { \
93
	.level = { &sname##_state.node[0] }, \
94
	.rda = &sname##_data, \
95
	.call = cr, \
96
	.gp_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
97 98
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
99
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 101
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
102
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103
	.name = RCU_STATE_NAME(sname), \
104
	.abbr = sabbr, \
105
}
106

107 108
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109

110
static struct rcu_state *const rcu_state_p;
111
static struct rcu_data __percpu *const rcu_data_p;
112
LIST_HEAD(rcu_struct_flavors);
113

114 115 116
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
117 118 119
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
120 121
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
122
module_param(rcu_fanout_leaf, int, 0444);
123
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
124 125
/* Number of rcu_nodes at specified level. */
static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
126 127
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

128 129 130 131
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
132
 * optimize synchronize_sched() to a simple barrier().  When this variable
133 134 135 136
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
137 138 139
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

154 155
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
156
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
157 158
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
159 160
static void rcu_report_exp_rdp(struct rcu_state *rsp,
			       struct rcu_data *rdp, bool wake);
161

162
/* rcuc/rcub kthread realtime priority */
163
#ifdef CONFIG_RCU_KTHREAD_PRIO
164
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
165 166 167
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
168 169
module_param(kthread_prio, int, 0644);

170
/* Delay in jiffies for grace-period initialization delays, debug only. */
171 172 173 174 175 176 177 178

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

179 180
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
181
module_param(gp_init_delay, int, 0644);
182 183 184
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
185

186 187 188 189 190 191 192
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

193 194 195 196 197 198 199 200 201 202
/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
203

204 205 206 207 208 209 210 211 212 213 214 215
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

216 217 218 219 220 221 222 223
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
224
	return READ_ONCE(rnp->qsmaskinitnext);
225 226
}

227
/*
228
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
229 230 231 232 233
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
234
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
235 236
}

237
/*
238
 * Note a quiescent state.  Because we do not need to know
239
 * how many quiescent states passed, just if there was at least
240
 * one since the start of the grace period, this just sets a flag.
241
 * The caller must have disabled preemption.
242
 */
243
void rcu_sched_qs(void)
244
{
245 246 247 248 249 250 251 252
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
		return;
	trace_rcu_grace_period(TPS("rcu_sched"),
			       __this_cpu_read(rcu_sched_data.gpnum),
			       TPS("cpuqs"));
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
253 254 255
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(&rcu_sched_data), true);
256 257
}

258
void rcu_bh_qs(void)
259
{
260
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
261 262 263
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
264
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
265
	}
266
}
267

268 269 270 271 272 273 274 275 276 277 278
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

279 280 281
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

282 283 284 285 286 287 288 289 290 291
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
292 293
 *
 * The caller must have disabled interrupts.
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
 */
static void rcu_momentary_dyntick_idle(void)
{
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
315 316
		if (READ_ONCE(rdp->mynode->completed) !=
		    READ_ONCE(rdp->cond_resched_completed))
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
}

333 334 335
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
336
 * The caller must have disabled interrupts.
337
 */
338
void rcu_note_context_switch(void)
339
{
340
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
341
	trace_rcu_utilization(TPS("Start context switch"));
342
	rcu_sched_qs();
343
	rcu_preempt_note_context_switch();
344 345
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
346
	trace_rcu_utilization(TPS("End context switch"));
347
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
348
}
349
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
350

351
/*
352
 * Register a quiescent state for all RCU flavors.  If there is an
353 354
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
355
 * RCU flavors in desperate need of a quiescent state, which will normally
356 357
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
358 359 360 361 362
 *
 * The barrier() calls are redundant in the common case when this is
 * called externally, but just in case this is called from within this
 * file.
 *
363 364 365
 */
void rcu_all_qs(void)
{
366 367
	unsigned long flags;

368
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
369 370
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
		local_irq_save(flags);
371
		rcu_momentary_dyntick_idle();
372 373
		local_irq_restore(flags);
	}
374
	this_cpu_inc(rcu_qs_ctr);
375
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
376 377 378
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
379 380 381
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
382

E
Eric Dumazet 已提交
383 384 385
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
386

387 388
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
389 390 391 392

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

393 394 395 396 397 398 399
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

400
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
401
				  struct rcu_data *rdp);
402 403 404 405
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
406
static void force_quiescent_state(struct rcu_state *rsp);
407
static int rcu_pending(void);
408 409

/*
410
 * Return the number of RCU batches started thus far for debug & stats.
411
 */
412 413 414 415 416 417 418 419
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
420
 */
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
447
 */
448
unsigned long rcu_batches_completed_sched(void)
449
{
450
	return rcu_sched_state.completed;
451
}
452
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
453 454

/*
455
 * Return the number of RCU BH batches completed thus far for debug & stats.
456
 */
457
unsigned long rcu_batches_completed_bh(void)
458 459 460 461 462
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

463 464 465 466 467
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
468
	force_quiescent_state(rcu_state_p);
469 470 471
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

472 473 474 475 476
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
477
	force_quiescent_state(&rcu_bh_state);
478 479 480
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

481 482 483 484 485 486 487 488 489
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

505 506 507 508 509 510 511 512 513 514 515 516 517 518
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

519 520 521 522 523 524 525 526 527 528
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
529
		rsp = rcu_state_p;
530 531 532 533 534 535 536 537 538 539 540
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
541 542 543
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
544 545 546 547 548 549 550 551
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

552 553 554 555 556 557 558 559 560 561 562
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

563 564 565 566 567 568
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
569 570
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
571 572
}

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
589
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
590 591
	int *fp = &rnp->need_future_gp[idx];

592
	return READ_ONCE(*fp);
593 594
}

595
/*
596 597 598
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
599
 */
600
static bool
601 602
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
603
	int i;
P
Paul E. McKenney 已提交
604

605
	if (rcu_gp_in_progress(rsp))
606
		return false;  /* No, a grace period is already in progress. */
607
	if (rcu_future_needs_gp(rsp))
608
		return true;  /* Yes, a no-CBs CPU needs one. */
609
	if (!rdp->nxttail[RCU_NEXT_TAIL])
610
		return false;  /* No, this is a no-CBs (or offline) CPU. */
611
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
612
		return true;  /* Yes, CPU has newly registered callbacks. */
613 614
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
615
		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
616
				 rdp->nxtcompleted[i]))
617 618
			return true;  /* Yes, CBs for future grace period. */
	return false; /* No grace period needed. */
619 620
}

621
/*
622
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
623 624 625 626 627
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
628
static void rcu_eqs_enter_common(long long oldval, bool user)
629
{
630 631
	struct rcu_state *rsp;
	struct rcu_data *rdp;
632
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
633

634
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
635 636
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
637 638
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
639

640
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
641
		ftrace_dump(DUMP_ORIG);
642 643 644
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
645
	}
646 647 648 649
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
650
	rcu_prepare_for_idle();
651
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
652
	smp_mb__before_atomic();  /* See above. */
653
	atomic_inc(&rdtp->dynticks);
654
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
655 656
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     atomic_read(&rdtp->dynticks) & 0x1);
657
	rcu_dynticks_task_enter();
658 659

	/*
660
	 * It is illegal to enter an extended quiescent state while
661 662
	 * in an RCU read-side critical section.
	 */
663 664 665 666 667 668
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal idle entry in RCU read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
			 "Illegal idle entry in RCU-bh read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
			 "Illegal idle entry in RCU-sched read-side critical section.");
669
}
670

671 672 673
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
674
 */
675
static void rcu_eqs_enter(bool user)
676
{
677
	long long oldval;
678 679
	struct rcu_dynticks *rdtp;

680
	rdtp = this_cpu_ptr(&rcu_dynticks);
681
	oldval = rdtp->dynticks_nesting;
682 683
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
684
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
685
		rdtp->dynticks_nesting = 0;
686
		rcu_eqs_enter_common(oldval, user);
687
	} else {
688
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
689
	}
690
}
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
706 707 708
	unsigned long flags;

	local_irq_save(flags);
709
	rcu_eqs_enter(false);
710
	rcu_sysidle_enter(0);
711
	local_irq_restore(flags);
712
}
713
EXPORT_SYMBOL_GPL(rcu_idle_enter);
714

715
#ifdef CONFIG_NO_HZ_FULL
716 717 718 719 720 721 722 723 724 725
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
726
	rcu_eqs_enter(1);
727
}
728
#endif /* CONFIG_NO_HZ_FULL */
729

730 731 732 733 734 735
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
736
 *
737 738 739 740 741 742 743 744
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
745
 */
746
void rcu_irq_exit(void)
747 748
{
	unsigned long flags;
749
	long long oldval;
750 751 752
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
753
	rdtp = this_cpu_ptr(&rcu_dynticks);
754
	oldval = rdtp->dynticks_nesting;
755
	rdtp->dynticks_nesting--;
756 757
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting < 0);
758
	if (rdtp->dynticks_nesting)
759
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
760
	else
761 762
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
763 764 765 766
	local_irq_restore(flags);
}

/*
767
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
768 769 770 771 772
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
773
static void rcu_eqs_exit_common(long long oldval, int user)
774
{
775 776
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

777
	rcu_dynticks_task_exit();
778
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
779 780
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
781
	smp_mb__after_atomic();  /* See above. */
782 783
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(atomic_read(&rdtp->dynticks) & 0x1));
784
	rcu_cleanup_after_idle();
785
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
786 787
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
788 789
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
790

791
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
792
				  oldval, rdtp->dynticks_nesting);
793
		ftrace_dump(DUMP_ORIG);
794 795 796
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
797 798 799
	}
}

800 801 802
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
803
 */
804
static void rcu_eqs_exit(bool user)
805 806 807 808
{
	struct rcu_dynticks *rdtp;
	long long oldval;

809
	rdtp = this_cpu_ptr(&rcu_dynticks);
810
	oldval = rdtp->dynticks_nesting;
811
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
812
	if (oldval & DYNTICK_TASK_NEST_MASK) {
813
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
814
	} else {
815
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
816
		rcu_eqs_exit_common(oldval, user);
817
	}
818
}
819 820 821 822 823 824 825 826 827 828 829 830 831 832

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
833 834 835
	unsigned long flags;

	local_irq_save(flags);
836
	rcu_eqs_exit(false);
837
	rcu_sysidle_exit(0);
838
	local_irq_restore(flags);
839
}
840
EXPORT_SYMBOL_GPL(rcu_idle_exit);
841

842
#ifdef CONFIG_NO_HZ_FULL
843 844 845 846 847 848 849 850
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
851
	rcu_eqs_exit(1);
852
}
853
#endif /* CONFIG_NO_HZ_FULL */
854

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
881
	rdtp = this_cpu_ptr(&rcu_dynticks);
882 883
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
884 885
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
886
	if (oldval)
887
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
888
	else
889 890
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
891 892 893 894 895 896
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
897 898 899 900 901
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
902 903 904
 */
void rcu_nmi_enter(void)
{
905
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
906
	int incby = 2;
907

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
929 930 931 932 933
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
934 935 936 937
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
938 939 940
 */
void rcu_nmi_exit(void)
{
941
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
942

943 944 945 946 947 948 949 950 951 952 953 954 955 956
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
957
		return;
958 959 960 961
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
962
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
963
	smp_mb__before_atomic();  /* See above. */
964
	atomic_inc(&rdtp->dynticks);
965
	smp_mb__after_atomic();  /* Force delay to next write. */
966
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
967 968 969
}

/**
970 971 972 973 974 975 976
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
977
bool notrace __rcu_is_watching(void)
978 979 980 981 982 983
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
984
 *
985
 * If the current CPU is in its idle loop and is neither in an interrupt
986
 * or NMI handler, return true.
987
 */
988
bool notrace rcu_is_watching(void)
989
{
990
	bool ret;
991

992
	preempt_disable_notrace();
993
	ret = __rcu_is_watching();
994
	preempt_enable_notrace();
995
	return ret;
996
}
997
EXPORT_SYMBOL_GPL(rcu_is_watching);
998

999
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1000 1001 1002 1003 1004 1005 1006

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1018 1019 1020 1021 1022 1023
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1024 1025
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1026 1027 1028
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1029
		return true;
1030
	preempt_disable();
1031
	rdp = this_cpu_ptr(&rcu_sched_data);
1032
	rnp = rdp->mynode;
1033
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1034 1035 1036 1037 1038 1039
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1040
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1041

1042
/**
1043
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1044
 *
1045 1046 1047
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1048
 */
1049
static int rcu_is_cpu_rrupt_from_idle(void)
1050
{
1051
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1052 1053 1054 1055 1056
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1057
 * is in dynticks idle mode, which is an extended quiescent state.
1058
 */
1059 1060
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1061
{
1062
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1063
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1064 1065 1066 1067
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
		return 1;
	} else {
1068
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1069
				 rdp->mynode->gpnum))
1070
			WRITE_ONCE(rdp->gpwrap, true);
1071 1072
		return 0;
	}
1073 1074 1075 1076 1077 1078
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1079
 * for this same CPU, or by virtue of having been offline.
1080
 */
1081 1082
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1083
{
1084
	unsigned int curr;
1085
	int *rcrmp;
1086
	unsigned int snap;
1087

1088 1089
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
1090 1091 1092 1093 1094 1095 1096 1097 1098

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1099
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1100
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1101 1102 1103 1104
		rdp->dynticks_fqs++;
		return 1;
	}

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
1120
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1121 1122 1123
		rdp->offline_fqs++;
		return 1;
	}
1124 1125

	/*
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1145
	 */
1146 1147 1148
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1149
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1150 1151 1152
		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			WRITE_ONCE(rdp->cond_resched_completed,
				   READ_ONCE(rdp->mynode->completed));
1153
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1154 1155
			WRITE_ONCE(*rcrmp,
				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1156 1157 1158 1159 1160 1161 1162
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
			/* Time to beat on that CPU again! */
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
		}
1163 1164
	}

1165
	return 0;
1166 1167 1168 1169
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1170
	unsigned long j = jiffies;
1171
	unsigned long j1;
1172 1173 1174

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1175
	j1 = rcu_jiffies_till_stall_check();
1176
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1177
	rsp->jiffies_resched = j + j1 / 2;
1178
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1179 1180
}

1181 1182 1183 1184 1185 1186 1187 1188 1189
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1190
	gpa = READ_ONCE(rsp->gp_activity);
1191
	if (j - gpa > 2 * HZ)
1192
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x s%d ->state=%#lx\n",
1193
		       rsp->name, j - gpa,
1194 1195 1196
		       rsp->gpnum, rsp->completed,
		       rsp->gp_flags, rsp->gp_state,
		       rsp->gp_kthread ? rsp->gp_kthread->state : 0);
1197 1198
}

1199
/*
1200
 * Dump stacks of all tasks running on stalled CPUs.
1201 1202 1203 1204 1205 1206 1207 1208
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
1209
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1210 1211 1212 1213 1214 1215 1216 1217 1218
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

1219
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1220 1221 1222 1223
{
	int cpu;
	long delta;
	unsigned long flags;
1224 1225
	unsigned long gpa;
	unsigned long j;
1226
	int ndetected = 0;
1227
	struct rcu_node *rnp = rcu_get_root(rsp);
1228
	long totqlen = 0;
1229 1230 1231

	/* Only let one CPU complain about others per time interval. */

1232
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1233
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1234
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1235
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1236 1237
		return;
	}
1238 1239
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1240
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1241

1242 1243 1244 1245 1246
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1247
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1248
	       rsp->name);
1249
	print_cpu_stall_info_begin();
1250
	rcu_for_each_leaf_node(rsp, rnp) {
1251
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1252
		ndetected += rcu_print_task_stall(rnp);
1253 1254 1255 1256 1257 1258 1259 1260
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
1261
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1262
	}
1263 1264

	print_cpu_stall_info_end();
1265 1266
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1267
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1268
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1269
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1270
	if (ndetected) {
1271
		rcu_dump_cpu_stacks(rsp);
1272
	} else {
1273 1274
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1275 1276 1277
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1278
			gpa = READ_ONCE(rsp->gp_activity);
1279
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1280
			       rsp->name, j - gpa, j, gpa,
1281 1282
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1283 1284 1285 1286
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1287

1288
	/* Complain about tasks blocking the grace period. */
1289 1290
	rcu_print_detail_task_stall(rsp);

1291 1292
	rcu_check_gp_kthread_starvation(rsp);

1293
	force_quiescent_state(rsp);  /* Kick them all. */
1294 1295 1296 1297
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1298
	int cpu;
1299 1300
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1301
	long totqlen = 0;
1302

1303 1304 1305 1306 1307
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1308
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1309 1310 1311
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1312 1313
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1314 1315 1316
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1317 1318 1319

	rcu_check_gp_kthread_starvation(rsp);

1320
	rcu_dump_cpu_stacks(rsp);
1321

1322
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1323 1324 1325
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1326
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1327

1328 1329 1330 1331 1332 1333 1334 1335
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1336 1337 1338 1339
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1340 1341 1342
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1343 1344
	unsigned long j;
	unsigned long js;
1345 1346
	struct rcu_node *rnp;

1347
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1348
		return;
1349
	j = jiffies;
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1368
	gpnum = READ_ONCE(rsp->gpnum);
1369
	smp_rmb(); /* Pick up ->gpnum first... */
1370
	js = READ_ONCE(rsp->jiffies_stall);
1371
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1372
	gps = READ_ONCE(rsp->gp_start);
1373
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1374
	completed = READ_ONCE(rsp->completed);
1375 1376 1377 1378
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1379
	rnp = rdp->mynode;
1380
	if (rcu_gp_in_progress(rsp) &&
1381
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1382 1383 1384 1385

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1386 1387
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1388

1389
		/* They had a few time units to dump stack, so complain. */
1390
		print_other_cpu_stall(rsp, gpnum);
1391 1392 1393
	}
}

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1405 1406 1407
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1408
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1409 1410
}

1411
/*
1412 1413 1414
 * Initialize the specified rcu_data structure's default callback list
 * to empty.  The default callback list is the one that is not used by
 * no-callbacks CPUs.
1415
 */
1416
static void init_default_callback_list(struct rcu_data *rdp)
1417 1418 1419 1420 1421 1422 1423 1424
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	if (init_nocb_callback_list(rdp))
		return;
	init_default_callback_list(rdp);
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1464 1465 1466 1467 1468
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1469
				unsigned long c, const char *s)
1470 1471 1472 1473 1474 1475 1476 1477 1478
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1479 1480
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1481 1482 1483
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1484 1485 1486
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1487 1488 1489
{
	unsigned long c;
	int i;
1490
	bool ret = false;
1491 1492 1493 1494 1495 1496 1497
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1498
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1499
	if (rnp->need_future_gp[c & 0x1]) {
1500
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1501
		goto out;
1502 1503 1504 1505 1506 1507 1508
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1509 1510 1511 1512 1513 1514 1515
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1516 1517
	 */
	if (rnp->gpnum != rnp->completed ||
1518
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1519
		rnp->need_future_gp[c & 0x1]++;
1520
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1521
		goto out;
1522 1523 1524 1525 1526 1527 1528
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1529 1530
	if (rnp != rnp_root)
		raw_spin_lock_rcu_node(rnp_root);
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1548
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1549 1550 1551 1552 1553 1554 1555 1556
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1557
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1558
	} else {
1559
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1560
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1561 1562 1563 1564
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
1565 1566 1567 1568
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1586 1587
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1588 1589 1590
	return needmore;
}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1601
	    !READ_ONCE(rsp->gp_flags) ||
1602 1603 1604 1605 1606
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1607 1608 1609 1610 1611 1612 1613
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1614 1615
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1616 1617 1618
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1619
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1620 1621 1622 1623
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1624
	bool ret;
1625 1626 1627

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1628
		return false;
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1657
		return false;
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1668
	/* Record any needed additional grace periods. */
1669
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1670 1671 1672

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1673
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1674
	else
1675
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1676
	return ret;
1677 1678 1679 1680 1681 1682 1683 1684
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1685
 * Returns true if the RCU grace-period kthread needs to be awakened.
1686 1687 1688
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1689
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1690 1691 1692 1693 1694 1695
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1696
		return false;
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1720
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1721 1722
}

1723
/*
1724 1725 1726
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1727
 * Returns true if the grace-period kthread needs to be awakened.
1728
 */
1729 1730
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1731
{
1732 1733
	bool ret;

1734
	/* Handle the ends of any preceding grace periods first. */
1735
	if (rdp->completed == rnp->completed &&
1736
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1737

1738
		/* No grace period end, so just accelerate recent callbacks. */
1739
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1740

1741 1742 1743
	} else {

		/* Advance callbacks. */
1744
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1745 1746 1747

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1748
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1749
	}
1750

1751
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1752 1753 1754 1755 1756 1757
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1758
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1759
		rdp->cpu_no_qs.b.norm = true;
1760
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1761
		rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1762
		zero_cpu_stall_ticks(rdp);
1763
		WRITE_ONCE(rdp->gpwrap, false);
1764
	}
1765
	return ret;
1766 1767
}

1768
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1769 1770
{
	unsigned long flags;
1771
	bool needwake;
1772 1773 1774 1775
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1776 1777 1778
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1779
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1780 1781 1782
		local_irq_restore(flags);
		return;
	}
1783
	needwake = __note_gp_changes(rsp, rnp, rdp);
1784
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1785 1786
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1787 1788
}

1789 1790 1791 1792 1793 1794 1795
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

1796
/*
1797
 * Initialize a new grace period.  Return 0 if no grace period required.
1798
 */
1799
static int rcu_gp_init(struct rcu_state *rsp)
1800
{
1801
	unsigned long oldmask;
1802
	struct rcu_data *rdp;
1803
	struct rcu_node *rnp = rcu_get_root(rsp);
1804

1805
	WRITE_ONCE(rsp->gp_activity, jiffies);
1806
	raw_spin_lock_irq_rcu_node(rnp);
1807
	if (!READ_ONCE(rsp->gp_flags)) {
1808 1809 1810 1811
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1812
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1813

1814 1815 1816 1817 1818
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1819 1820 1821 1822 1823
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1824
	record_gp_stall_check_time(rsp);
1825 1826
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1827
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1828 1829
	raw_spin_unlock_irq(&rnp->lock);

1830 1831 1832 1833 1834 1835 1836
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
1837
		rcu_gp_slow(rsp, gp_preinit_delay);
1838
		raw_spin_lock_irq_rcu_node(rnp);
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
			raw_spin_unlock_irq(&rnp->lock);
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

		raw_spin_unlock_irq(&rnp->lock);
	}
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1893
		rcu_gp_slow(rsp, gp_init_delay);
1894
		raw_spin_lock_irq_rcu_node(rnp);
1895
		rdp = this_cpu_ptr(rsp->rda);
1896 1897
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1898
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1899
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1900
			WRITE_ONCE(rnp->completed, rsp->completed);
1901
		if (rnp == rdp->mynode)
1902
			(void)__note_gp_changes(rsp, rnp, rdp);
1903 1904 1905 1906 1907
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1908
		cond_resched_rcu_qs();
1909
		WRITE_ONCE(rsp->gp_activity, jiffies);
1910
	}
1911

1912 1913
	return 1;
}
1914

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
/*
 * Helper function for wait_event_interruptible_timeout() wakeup
 * at force-quiescent-state time.
 */
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rsp->gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

1935 1936 1937
/*
 * Do one round of quiescent-state forcing.
 */
1938
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
1939
{
1940 1941
	bool isidle = false;
	unsigned long maxj;
1942 1943
	struct rcu_node *rnp = rcu_get_root(rsp);

1944
	WRITE_ONCE(rsp->gp_activity, jiffies);
1945
	rsp->n_force_qs++;
1946
	if (first_time) {
1947
		/* Collect dyntick-idle snapshots. */
1948
		if (is_sysidle_rcu_state(rsp)) {
1949
			isidle = true;
1950 1951
			maxj = jiffies - ULONG_MAX / 4;
		}
1952 1953
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1954
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1955 1956
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1957
		isidle = true;
1958
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1959 1960
	}
	/* Clear flag to prevent immediate re-entry. */
1961
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1962
		raw_spin_lock_irq_rcu_node(rnp);
1963 1964
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1965 1966 1967 1968
		raw_spin_unlock_irq(&rnp->lock);
	}
}

1969 1970 1971
/*
 * Clean up after the old grace period.
 */
1972
static void rcu_gp_cleanup(struct rcu_state *rsp)
1973 1974
{
	unsigned long gp_duration;
1975
	bool needgp = false;
1976
	int nocb = 0;
1977 1978
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1979

1980
	WRITE_ONCE(rsp->gp_activity, jiffies);
1981
	raw_spin_lock_irq_rcu_node(rnp);
1982 1983 1984
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1985

1986 1987 1988 1989 1990 1991 1992 1993
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1994
	raw_spin_unlock_irq(&rnp->lock);
1995

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2006
		raw_spin_lock_irq_rcu_node(rnp);
2007 2008
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
2009
		WRITE_ONCE(rnp->completed, rsp->gpnum);
2010 2011
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
2012
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2013
		/* smp_mb() provided by prior unlock-lock pair. */
2014
		nocb += rcu_future_gp_cleanup(rsp, rnp);
2015
		raw_spin_unlock_irq(&rnp->lock);
2016
		cond_resched_rcu_qs();
2017
		WRITE_ONCE(rsp->gp_activity, jiffies);
2018
		rcu_gp_slow(rsp, gp_cleanup_delay);
2019
	}
2020
	rnp = rcu_get_root(rsp);
2021
	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2022
	rcu_nocb_gp_set(rnp, nocb);
2023

2024
	/* Declare grace period done. */
2025
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2026
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2027
	rsp->gp_state = RCU_GP_IDLE;
2028
	rdp = this_cpu_ptr(rsp->rda);
2029 2030 2031
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2032
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2033
		trace_rcu_grace_period(rsp->name,
2034
				       READ_ONCE(rsp->gpnum),
2035 2036
				       TPS("newreq"));
	}
2037 2038 2039 2040 2041 2042 2043 2044
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2045
	bool first_gp_fqs;
2046
	int gf;
2047
	unsigned long j;
2048
	int ret;
2049 2050 2051
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2052
	rcu_bind_gp_kthread();
2053 2054 2055 2056
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2057
			trace_rcu_grace_period(rsp->name,
2058
					       READ_ONCE(rsp->gpnum),
2059
					       TPS("reqwait"));
2060
			rsp->gp_state = RCU_GP_WAIT_GPS;
2061
			wait_event_interruptible(rsp->gp_wq,
2062
						 READ_ONCE(rsp->gp_flags) &
2063
						 RCU_GP_FLAG_INIT);
2064
			rsp->gp_state = RCU_GP_DONE_GPS;
2065
			/* Locking provides needed memory barrier. */
2066
			if (rcu_gp_init(rsp))
2067
				break;
2068
			cond_resched_rcu_qs();
2069
			WRITE_ONCE(rsp->gp_activity, jiffies);
2070
			WARN_ON(signal_pending(current));
2071
			trace_rcu_grace_period(rsp->name,
2072
					       READ_ONCE(rsp->gpnum),
2073
					       TPS("reqwaitsig"));
2074
		}
2075

2076
		/* Handle quiescent-state forcing. */
2077
		first_gp_fqs = true;
2078 2079 2080 2081 2082
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2083
		ret = 0;
2084
		for (;;) {
2085 2086
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
2087
			trace_rcu_grace_period(rsp->name,
2088
					       READ_ONCE(rsp->gpnum),
2089
					       TPS("fqswait"));
2090
			rsp->gp_state = RCU_GP_WAIT_FQS;
2091
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
2092
					rcu_gp_fqs_check_wake(rsp, &gf), j);
2093
			rsp->gp_state = RCU_GP_DOING_FQS;
2094
			/* Locking provides needed memory barriers. */
2095
			/* If grace period done, leave loop. */
2096
			if (!READ_ONCE(rnp->qsmask) &&
2097
			    !rcu_preempt_blocked_readers_cgp(rnp))
2098
				break;
2099
			/* If time for quiescent-state forcing, do it. */
2100 2101
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2102
				trace_rcu_grace_period(rsp->name,
2103
						       READ_ONCE(rsp->gpnum),
2104
						       TPS("fqsstart"));
2105 2106
				rcu_gp_fqs(rsp, first_gp_fqs);
				first_gp_fqs = false;
2107
				trace_rcu_grace_period(rsp->name,
2108
						       READ_ONCE(rsp->gpnum),
2109
						       TPS("fqsend"));
2110
				cond_resched_rcu_qs();
2111
				WRITE_ONCE(rsp->gp_activity, jiffies);
2112 2113
			} else {
				/* Deal with stray signal. */
2114
				cond_resched_rcu_qs();
2115
				WRITE_ONCE(rsp->gp_activity, jiffies);
2116
				WARN_ON(signal_pending(current));
2117
				trace_rcu_grace_period(rsp->name,
2118
						       READ_ONCE(rsp->gpnum),
2119
						       TPS("fqswaitsig"));
2120
			}
2121 2122 2123 2124 2125 2126 2127 2128
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
2129
		}
2130 2131

		/* Handle grace-period end. */
2132
		rsp->gp_state = RCU_GP_CLEANUP;
2133
		rcu_gp_cleanup(rsp);
2134
		rsp->gp_state = RCU_GP_CLEANED;
2135 2136 2137
	}
}

2138 2139 2140
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2141
 * the root node's ->lock and hard irqs must be disabled.
2142 2143 2144 2145
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2146 2147
 *
 * Returns true if the grace-period kthread must be awakened.
2148
 */
2149
static bool
2150 2151
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2152
{
2153
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2154
		/*
2155
		 * Either we have not yet spawned the grace-period
2156 2157
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2158
		 * Either way, don't start a new grace period.
2159
		 */
2160
		return false;
2161
	}
2162 2163
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2164
			       TPS("newreq"));
2165

2166 2167
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2168
	 * could cause possible deadlocks with the rq->lock. Defer
2169
	 * the wakeup to our caller.
2170
	 */
2171
	return true;
2172 2173
}

2174 2175 2176 2177 2178 2179
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2180 2181
 *
 * Returns true if the grace-period kthread needs to be awakened.
2182
 */
2183
static bool rcu_start_gp(struct rcu_state *rsp)
2184 2185 2186
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2187
	bool ret = false;
2188 2189 2190 2191 2192 2193 2194 2195 2196

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2197 2198 2199
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2200 2201
}

2202
/*
P
Paul E. McKenney 已提交
2203 2204 2205
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
2206 2207
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
2208
 */
P
Paul E. McKenney 已提交
2209
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2210
	__releases(rcu_get_root(rsp)->lock)
2211
{
2212
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2213
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2214
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2215
	rcu_gp_kthread_wake(rsp);
2216 2217
}

2218
/*
P
Paul E. McKenney 已提交
2219 2220 2221
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2222 2223 2224 2225 2226
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2227 2228
 */
static void
P
Paul E. McKenney 已提交
2229
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2230
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2231 2232
	__releases(rnp->lock)
{
2233
	unsigned long oldmask = 0;
2234 2235
	struct rcu_node *rnp_c;

2236 2237
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2238
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2239

2240 2241 2242 2243
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
P
Paul E. McKenney 已提交
2244
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2245 2246
			return;
		}
2247
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2248
		rnp->qsmask &= ~mask;
2249 2250 2251 2252
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2253
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2254 2255

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
2256
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2257 2258 2259 2260 2261 2262 2263 2264 2265
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
2266
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2267
		rnp_c = rnp;
2268
		rnp = rnp->parent;
2269
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2270
		oldmask = rnp_c->qsmask;
2271 2272 2273 2274
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2275
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2276
	 * to clean up and start the next grace period if one is needed.
2277
	 */
P
Paul E. McKenney 已提交
2278
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2279 2280
}

2281 2282 2283 2284 2285 2286 2287
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2288
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2289 2290 2291
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2292
	unsigned long gps;
2293 2294 2295
	unsigned long mask;
	struct rcu_node *rnp_p;

2296 2297
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2298 2299 2300 2301 2302 2303 2304
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2305 2306
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2307 2308 2309 2310 2311
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2312 2313
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2314 2315
	mask = rnp->grpmask;
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
2316
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2317
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2318 2319
}

2320
/*
P
Paul E. McKenney 已提交
2321 2322 2323 2324 2325 2326 2327
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
2328 2329
 */
static void
2330
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2331 2332 2333
{
	unsigned long flags;
	unsigned long mask;
2334
	bool needwake;
2335 2336 2337
	struct rcu_node *rnp;

	rnp = rdp->mynode;
2338
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2339
	if ((rdp->cpu_no_qs.b.norm &&
2340 2341 2342
	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
	    rdp->gpwrap) {
2343 2344

		/*
2345 2346 2347 2348
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2349
		 */
2350
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2351
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
P
Paul E. McKenney 已提交
2352
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2353 2354 2355 2356
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
2357
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2358
	} else {
2359
		rdp->core_needs_qs = 0;
2360 2361 2362 2363 2364

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2365
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2366

2367 2368
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2369 2370
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2383 2384
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2385 2386 2387 2388 2389

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
2390
	if (!rdp->core_needs_qs)
2391 2392 2393 2394 2395 2396
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2397
	if (rdp->cpu_no_qs.b.norm &&
2398
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2399 2400
		return;

P
Paul E. McKenney 已提交
2401 2402 2403 2404
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2405
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2406 2407
}

2408
/*
2409 2410
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2411
 * ->orphan_lock.
2412
 */
2413 2414 2415
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2416
{
P
Paul E. McKenney 已提交
2417
	/* No-CBs CPUs do not have orphanable callbacks. */
2418
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2419 2420
		return;

2421 2422
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2423 2424
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2425
	 */
2426
	if (rdp->nxtlist != NULL) {
2427 2428 2429
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2430
		rdp->qlen_lazy = 0;
2431
		WRITE_ONCE(rdp->qlen, 0);
2432 2433 2434
	}

	/*
2435 2436 2437 2438 2439 2440 2441
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2442
	 */
2443 2444 2445 2446
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2447 2448 2449
	}

	/*
2450 2451 2452
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2453
	 */
2454
	if (rdp->nxtlist != NULL) {
2455 2456
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2457
	}
2458

2459 2460 2461 2462
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2463
	init_callback_list(rdp);
2464
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2465 2466 2467 2468
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2469
 * orphanage.  The caller must hold the ->orphan_lock.
2470
 */
2471
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2472 2473
{
	int i;
2474
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2475

P
Paul E. McKenney 已提交
2476
	/* No-CBs CPUs are handled specially. */
2477 2478
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2479 2480
		return;

2481 2482 2483 2484
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2485 2486
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

2525 2526 2527
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2528
	RCU_TRACE(mask = rdp->grpmask);
2529 2530
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2531
			       TPS("cpuofl"));
2532 2533
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2556 2557
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2558 2559 2560 2561 2562 2563
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
2564
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2565
		rnp->qsmaskinit &= ~mask;
2566
		rnp->qsmask &= ~mask;
2567 2568 2569 2570 2571 2572 2573 2574
		if (rnp->qsmaskinit) {
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			return;
		}
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
	}
}

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
/*
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

2587 2588 2589
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2590 2591
	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
2592
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
2593 2594 2595 2596
	rnp->qsmaskinitnext &= ~mask;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

2597
/*
2598
 * The CPU has been completely removed, and some other CPU is reporting
2599 2600
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2601 2602
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2603
 */
2604
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2605
{
2606
	unsigned long flags;
2607
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2608
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2609

2610 2611 2612
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2613
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2614
	rcu_boost_kthread_setaffinity(rnp, -1);
2615

2616
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2617
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2618
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2619
	rcu_adopt_orphan_cbs(rsp, flags);
2620
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2621

2622 2623 2624
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2625 2626 2627 2628 2629 2630
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2631
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2632 2633 2634
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2635 2636
	long bl, count, count_lazy;
	int i;
2637

2638
	/* If no callbacks are ready, just return. */
2639
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2640
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2641
		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2642 2643
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2644
		return;
2645
	}
2646 2647 2648 2649 2650 2651

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2652
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2653
	bl = rdp->blimit;
2654
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2655 2656 2657 2658
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2659 2660 2661
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2662 2663 2664
	local_irq_restore(flags);

	/* Invoke callbacks. */
2665
	count = count_lazy = 0;
2666 2667 2668
	while (list) {
		next = list->next;
		prefetch(next);
2669
		debug_rcu_head_unqueue(list);
2670 2671
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2672
		list = next;
2673 2674 2675 2676
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2677 2678 2679 2680
			break;
	}

	local_irq_save(flags);
2681 2682 2683
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2684 2685 2686 2687 2688

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2689 2690 2691
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2692 2693 2694
			else
				break;
	}
2695 2696
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2697
	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2698
	rdp->n_cbs_invoked += count;
2699 2700 2701 2702 2703

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2704 2705 2706 2707 2708 2709
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2710
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2711

2712 2713
	local_irq_restore(flags);

2714
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2715
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2716
		invoke_rcu_core();
2717 2718 2719 2720 2721
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2722
 * Also schedule RCU core processing.
2723
 *
2724
 * This function must be called from hardirq context.  It is normally
2725 2726 2727
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2728
void rcu_check_callbacks(int user)
2729
{
2730
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2731
	increment_cpu_stall_ticks();
2732
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2733 2734 2735 2736 2737

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2738
		 * a quiescent state, so note it.
2739 2740
		 *
		 * No memory barrier is required here because both
2741 2742 2743
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2744 2745
		 */

2746 2747
		rcu_sched_qs();
		rcu_bh_qs();
2748 2749 2750 2751 2752 2753 2754

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2755
		 * critical section, so note it.
2756 2757
		 */

2758
		rcu_bh_qs();
2759
	}
2760
	rcu_preempt_check_callbacks();
2761
	if (rcu_pending())
2762
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2763 2764
	if (user)
		rcu_note_voluntary_context_switch(current);
2765
	trace_rcu_utilization(TPS("End scheduler-tick"));
2766 2767 2768 2769 2770
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2771 2772
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2773
 * The caller must have suppressed start of new grace periods.
2774
 */
2775 2776 2777 2778
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2779 2780 2781 2782 2783
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2784
	struct rcu_node *rnp;
2785

2786
	rcu_for_each_leaf_node(rsp, rnp) {
2787
		cond_resched_rcu_qs();
2788
		mask = 0;
2789
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2790
		if (rnp->qsmask == 0) {
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2814
		}
2815
		cpu = rnp->grplo;
2816
		bit = 1;
2817
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2818 2819 2820 2821
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2822
		}
2823
		if (mask != 0) {
2824 2825
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2826 2827 2828
		} else {
			/* Nothing to do here, so just drop the lock. */
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2829 2830 2831 2832 2833 2834 2835 2836
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2837
static void force_quiescent_state(struct rcu_state *rsp)
2838 2839
{
	unsigned long flags;
2840 2841 2842 2843 2844
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2845
	rnp = __this_cpu_read(rsp->rda->mynode);
2846
	for (; rnp != NULL; rnp = rnp->parent) {
2847
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2848 2849 2850 2851
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2852
			rsp->n_force_qs_lh++;
2853 2854 2855 2856 2857
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2858

2859
	/* Reached the root of the rcu_node tree, acquire lock. */
2860
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2861
	raw_spin_unlock(&rnp_old->fqslock);
2862
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2863
		rsp->n_force_qs_lh++;
2864
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2865
		return;  /* Someone beat us to it. */
2866
	}
2867
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2868
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2869
	rcu_gp_kthread_wake(rsp);
2870 2871 2872
}

/*
2873 2874 2875
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2876 2877
 */
static void
2878
__rcu_process_callbacks(struct rcu_state *rsp)
2879 2880
{
	unsigned long flags;
2881
	bool needwake;
2882
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2883

2884 2885
	WARN_ON_ONCE(rdp->beenonline == 0);

2886 2887 2888 2889
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2890
	local_irq_save(flags);
2891
	if (cpu_needs_another_gp(rsp, rdp)) {
2892
		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2893
		needwake = rcu_start_gp(rsp);
2894
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2895 2896
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2897 2898
	} else {
		local_irq_restore(flags);
2899 2900 2901
	}

	/* If there are callbacks ready, invoke them. */
2902
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2903
		invoke_rcu_callbacks(rsp, rdp);
2904 2905 2906

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2907 2908
}

2909
/*
2910
 * Do RCU core processing for the current CPU.
2911
 */
2912
static void rcu_process_callbacks(struct softirq_action *unused)
2913
{
2914 2915
	struct rcu_state *rsp;

2916 2917
	if (cpu_is_offline(smp_processor_id()))
		return;
2918
	trace_rcu_utilization(TPS("Start RCU core"));
2919 2920
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2921
	trace_rcu_utilization(TPS("End RCU core"));
2922 2923
}

2924
/*
2925 2926 2927
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2928
 * are running on the current CPU with softirqs disabled, the
2929
 * rcu_cpu_kthread_task cannot disappear out from under us.
2930
 */
2931
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2932
{
2933
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2934
		return;
2935 2936
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2937 2938
		return;
	}
2939
	invoke_rcu_callbacks_kthread();
2940 2941
}

2942
static void invoke_rcu_core(void)
2943
{
2944 2945
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2946 2947
}

2948 2949 2950 2951 2952
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2953
{
2954 2955
	bool needwake;

2956 2957 2958 2959
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2960
	if (!rcu_is_watching())
2961 2962
		invoke_rcu_core();

2963
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2964
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2965
		return;
2966

2967 2968 2969 2970 2971 2972 2973
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2974
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2975 2976

		/* Are we ignoring a completed grace period? */
2977
		note_gp_changes(rsp, rdp);
2978 2979 2980 2981 2982

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2983
			raw_spin_lock_rcu_node(rnp_root);
2984
			needwake = rcu_start_gp(rsp);
2985
			raw_spin_unlock(&rnp_root->lock);
2986 2987
			if (needwake)
				rcu_gp_kthread_wake(rsp);
2988 2989 2990 2991 2992
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2993
				force_quiescent_state(rsp);
2994 2995 2996
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2997
	}
2998 2999
}

3000 3001 3002 3003 3004 3005 3006
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3007 3008 3009 3010 3011 3012
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3013
static void
3014
__call_rcu(struct rcu_head *head, rcu_callback_t func,
P
Paul E. McKenney 已提交
3015
	   struct rcu_state *rsp, int cpu, bool lazy)
3016 3017 3018 3019
{
	unsigned long flags;
	struct rcu_data *rdp;

3020
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3021 3022
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3023
		WRITE_ONCE(head->func, rcu_leak_callback);
3024 3025 3026
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
3037
	rdp = this_cpu_ptr(rsp->rda);
3038 3039

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
3040 3041 3042 3043 3044
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3058
		WARN_ON_ONCE(!rcu_is_watching());
3059 3060
		if (!likely(rdp->nxtlist))
			init_default_callback_list(rdp);
3061
	}
3062
	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3063 3064
	if (lazy)
		rdp->qlen_lazy++;
3065 3066
	else
		rcu_idle_count_callbacks_posted();
3067 3068 3069
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3070

3071 3072
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3073
					 rdp->qlen_lazy, rdp->qlen);
3074
	else
3075
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3076

3077 3078
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3079 3080 3081 3082
	local_irq_restore(flags);
}

/*
3083
 * Queue an RCU-sched callback for invocation after a grace period.
3084
 */
3085
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3086
{
P
Paul E. McKenney 已提交
3087
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3088
}
3089
EXPORT_SYMBOL_GPL(call_rcu_sched);
3090 3091

/*
3092
 * Queue an RCU callback for invocation after a quicker grace period.
3093
 */
3094
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3095
{
P
Paul E. McKenney 已提交
3096
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3097 3098 3099
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3100 3101 3102 3103 3104 3105 3106 3107
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
3108
		    rcu_callback_t func)
3109
{
3110
	__call_rcu(head, func, rcu_state_p, -1, 1);
3111 3112 3113
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3125 3126
	int ret;

3127
	might_sleep();  /* Check for RCU read-side critical section. */
3128 3129 3130 3131
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3132 3133
}

3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3168 3169 3170 3171 3172 3173 3174 3175 3176
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3177 3178 3179 3180
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3181 3182
	if (rcu_blocking_is_gp())
		return;
3183
	if (rcu_gp_is_expedited())
3184 3185 3186
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3198 3199 3200
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3201 3202 3203
 */
void synchronize_rcu_bh(void)
{
3204 3205 3206 3207
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3208 3209
	if (rcu_blocking_is_gp())
		return;
3210
	if (rcu_gp_is_expedited())
3211 3212 3213
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3214 3215 3216
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3237
	return smp_load_acquire(&rcu_state_p->gpnum);
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3263
	newstate = smp_load_acquire(&rcu_state_p->completed);
3264 3265 3266 3267 3268
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
/**
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_sched(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_sched()
	 * and cond_synchronize_sched().
	 */
	return smp_load_acquire(&rcu_sched_state.gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);

/**
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 *
 * If a full RCU-sched grace period has elapsed since the earlier call to
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 * synchronize_sched() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_sched(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_sched_state.completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(cond_synchronize_sched);

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
/* Adjust sequence number for start of update-side operation. */
static void rcu_seq_start(unsigned long *sp)
{
	WRITE_ONCE(*sp, *sp + 1);
	smp_mb(); /* Ensure update-side operation after counter increment. */
	WARN_ON_ONCE(!(*sp & 0x1));
}

/* Adjust sequence number for end of update-side operation. */
static void rcu_seq_end(unsigned long *sp)
{
	smp_mb(); /* Ensure update-side operation before counter increment. */
	WRITE_ONCE(*sp, *sp + 1);
	WARN_ON_ONCE(*sp & 0x1);
}

/* Take a snapshot of the update side's sequence number. */
static unsigned long rcu_seq_snap(unsigned long *sp)
{
	unsigned long s;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	s = (READ_ONCE(*sp) + 3) & ~0x1;
	smp_mb(); /* Above access must not bleed into critical section. */
	return s;
}

/*
 * Given a snapshot from rcu_seq_snap(), determine whether or not a
 * full update-side operation has occurred.
 */
static bool rcu_seq_done(unsigned long *sp, unsigned long s)
{
	return ULONG_CMP_GE(READ_ONCE(*sp), s);
}

/* Wrapper functions for expedited grace periods.  */
static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
{
	rcu_seq_start(&rsp->expedited_sequence);
}
static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
{
	rcu_seq_end(&rsp->expedited_sequence);
3365
	smp_mb(); /* Ensure that consecutive grace periods serialize. */
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
}
static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
{
	return rcu_seq_snap(&rsp->expedited_sequence);
}
static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
{
	return rcu_seq_done(&rsp->expedited_sequence, s);
}

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
/*
 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
 * recent CPU-online activity.  Note that these masks are not cleared
 * when CPUs go offline, so they reflect the union of all CPUs that have
 * ever been online.  This means that this function normally takes its
 * no-work-to-do fastpath.
 */
static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
{
	bool done;
	unsigned long flags;
	unsigned long mask;
	unsigned long oldmask;
	int ncpus = READ_ONCE(rsp->ncpus);
	struct rcu_node *rnp;
	struct rcu_node *rnp_up;

	/* If no new CPUs onlined since last time, nothing to do. */
	if (likely(ncpus == rsp->ncpus_snap))
		return;
	rsp->ncpus_snap = ncpus;

	/*
	 * Each pass through the following loop propagates newly onlined
	 * CPUs for the current rcu_node structure up the rcu_node tree.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
3403
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
		if (rnp->expmaskinit == rnp->expmaskinitnext) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
			continue;  /* No new CPUs, nothing to do. */
		}

		/* Update this node's mask, track old value for propagation. */
		oldmask = rnp->expmaskinit;
		rnp->expmaskinit = rnp->expmaskinitnext;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);

		/* If was already nonzero, nothing to propagate. */
		if (oldmask)
			continue;

		/* Propagate the new CPU up the tree. */
		mask = rnp->grpmask;
		rnp_up = rnp->parent;
		done = false;
		while (rnp_up) {
3423
			raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
			if (rnp_up->expmaskinit)
				done = true;
			rnp_up->expmaskinit |= mask;
			raw_spin_unlock_irqrestore(&rnp_up->lock, flags);
			if (done)
				break;
			mask = rnp_up->grpmask;
			rnp_up = rnp_up->parent;
		}
	}
}

/*
 * Reset the ->expmask values in the rcu_node tree in preparation for
 * a new expedited grace period.
 */
static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	sync_exp_reset_tree_hotplug(rsp);
	rcu_for_each_node_breadth_first(rsp, rnp) {
3447
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3448 3449 3450 3451 3452 3453
		WARN_ON_ONCE(rnp->expmask);
		rnp->expmask = rnp->expmaskinit;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

3454
/*
3455
 * Return non-zero if there is no RCU expedited grace period in progress
3456 3457 3458 3459 3460 3461 3462 3463 3464
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
3465
	return rnp->exp_tasks == NULL &&
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
	       READ_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
3477 3478
 * Caller must hold the root rcu_node's exp_funnel_mutex and the
 * specified rcu_node structure's ->lock.
3479
 */
3480 3481 3482
static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
				 bool wake, unsigned long flags)
	__releases(rnp->lock)
3483 3484 3485 3486 3487
{
	unsigned long mask;

	for (;;) {
		if (!sync_rcu_preempt_exp_done(rnp)) {
3488 3489 3490 3491
			if (!rnp->expmask)
				rcu_initiate_boost(rnp, flags);
			else
				raw_spin_unlock_irqrestore(&rnp->lock, flags);
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
			break;
		}
		if (rnp->parent == NULL) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
			if (wake) {
				smp_mb(); /* EGP done before wake_up(). */
				wake_up(&rsp->expedited_wq);
			}
			break;
		}
		mask = rnp->grpmask;
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
		rnp = rnp->parent;
3505
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
3506
		WARN_ON_ONCE(!(rnp->expmask & mask));
3507 3508 3509 3510
		rnp->expmask &= ~mask;
	}
}

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
/*
 * Report expedited quiescent state for specified node.  This is a
 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
 *
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
					      struct rcu_node *rnp, bool wake)
{
	unsigned long flags;

3522
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
	__rcu_report_exp_rnp(rsp, rnp, wake, flags);
}

/*
 * Report expedited quiescent state for multiple CPUs, all covered by the
 * specified leaf rcu_node structure.  Caller must hold the root
 * rcu_node's exp_funnel_mutex.
 */
static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
				    unsigned long mask, bool wake)
{
	unsigned long flags;

3536
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3537 3538 3539 3540
	if (!(rnp->expmask & mask)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
3541 3542 3543 3544 3545 3546 3547 3548
	rnp->expmask &= ~mask;
	__rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
}

/*
 * Report expedited quiescent state for specified rcu_data (CPU).
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
3549 3550
static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
			       bool wake)
3551 3552 3553 3554
{
	rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
}

3555 3556
/* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
3557
			       struct rcu_data *rdp,
3558
			       atomic_long_t *stat, unsigned long s)
3559
{
3560
	if (rcu_exp_gp_seq_done(rsp, s)) {
3561 3562
		if (rnp)
			mutex_unlock(&rnp->exp_funnel_mutex);
3563 3564
		else if (rdp)
			mutex_unlock(&rdp->exp_funnel_mutex);
3565 3566 3567 3568 3569 3570 3571 3572
		/* Ensure test happens before caller kfree(). */
		smp_mb__before_atomic(); /* ^^^ */
		atomic_long_inc(stat);
		return true;
	}
	return false;
}

3573 3574 3575 3576 3577 3578 3579
/*
 * Funnel-lock acquisition for expedited grace periods.  Returns a
 * pointer to the root rcu_node structure, or NULL if some other
 * task did the expedited grace period for us.
 */
static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
{
3580
	struct rcu_data *rdp;
3581 3582 3583
	struct rcu_node *rnp0;
	struct rcu_node *rnp1 = NULL;

3584
	/*
3585 3586 3587 3588
	 * First try directly acquiring the root lock in order to reduce
	 * latency in the common case where expedited grace periods are
	 * rare.  We check mutex_is_locked() to avoid pathological levels of
	 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3589
	 */
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
	rnp0 = rcu_get_root(rsp);
	if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
		if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
			if (sync_exp_work_done(rsp, rnp0, NULL,
					       &rsp->expedited_workdone0, s))
				return NULL;
			return rnp0;
		}
	}

3600 3601 3602 3603 3604 3605 3606 3607
	/*
	 * Each pass through the following loop works its way
	 * up the rcu_node tree, returning if others have done the
	 * work or otherwise falls through holding the root rnp's
	 * ->exp_funnel_mutex.  The mapping from CPU to rcu_node structure
	 * can be inexact, as it is just promoting locality and is not
	 * strictly needed for correctness.
	 */
3608 3609 3610 3611 3612
	rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
	if (sync_exp_work_done(rsp, NULL, NULL, &rsp->expedited_workdone1, s))
		return NULL;
	mutex_lock(&rdp->exp_funnel_mutex);
	rnp0 = rdp->mynode;
3613
	for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3614 3615
		if (sync_exp_work_done(rsp, rnp1, rdp,
				       &rsp->expedited_workdone2, s))
3616 3617 3618 3619
			return NULL;
		mutex_lock(&rnp0->exp_funnel_mutex);
		if (rnp1)
			mutex_unlock(&rnp1->exp_funnel_mutex);
3620 3621
		else
			mutex_unlock(&rdp->exp_funnel_mutex);
3622 3623
		rnp1 = rnp0;
	}
3624 3625
	if (sync_exp_work_done(rsp, rnp1, rdp,
			       &rsp->expedited_workdone3, s))
3626 3627 3628 3629
		return NULL;
	return rnp1;
}

3630
/* Invoked on each online non-idle CPU for expedited quiescent state. */
3631
static void sync_sched_exp_handler(void *data)
3632
{
3633 3634 3635
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp = data;
3636

3637 3638 3639 3640 3641
	rdp = this_cpu_ptr(rsp->rda);
	rnp = rdp->mynode;
	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
	    __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
3642 3643
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
	resched_cpu(smp_processor_id());
3644 3645
}

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
/* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
static void sync_sched_exp_online_cleanup(int cpu)
{
	struct rcu_data *rdp;
	int ret;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_sched_state;

	rdp = per_cpu_ptr(rsp->rda, cpu);
	rnp = rdp->mynode;
	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
		return;
	ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
	WARN_ON_ONCE(ret);
}

3662 3663 3664 3665
/*
 * Select the nodes that the upcoming expedited grace period needs
 * to wait for.
 */
3666 3667
static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
				     smp_call_func_t func)
3668 3669 3670 3671 3672 3673
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
	unsigned long mask_ofl_test;
	unsigned long mask_ofl_ipi;
3674
	int ret;
3675 3676 3677 3678
	struct rcu_node *rnp;

	sync_exp_reset_tree(rsp);
	rcu_for_each_leaf_node(rsp, rnp) {
3679
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706

		/* Each pass checks a CPU for identity, offline, and idle. */
		mask_ofl_test = 0;
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

			if (raw_smp_processor_id() == cpu ||
			    !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
				mask_ofl_test |= rdp->grpmask;
		}
		mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;

		/*
		 * Need to wait for any blocked tasks as well.  Note that
		 * additional blocking tasks will also block the expedited
		 * GP until such time as the ->expmask bits are cleared.
		 */
		if (rcu_preempt_has_tasks(rnp))
			rnp->exp_tasks = rnp->blkd_tasks.next;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);

		/* IPI the remaining CPUs for expedited quiescent state. */
		mask = 1;
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
			if (!(mask_ofl_ipi & mask))
				continue;
3707
retry_ipi:
3708
			ret = smp_call_function_single(cpu, func, rsp, 0);
3709
			if (!ret) {
3710
				mask_ofl_ipi &= ~mask;
3711 3712
			} else {
				/* Failed, raced with offline. */
3713
				raw_spin_lock_irqsave_rcu_node(rnp, flags);
3714 3715 3716 3717 3718 3719 3720 3721
				if (cpu_online(cpu) &&
				    (rnp->expmask & mask)) {
					raw_spin_unlock_irqrestore(&rnp->lock,
								   flags);
					schedule_timeout_uninterruptible(1);
					if (cpu_online(cpu) &&
					    (rnp->expmask & mask))
						goto retry_ipi;
3722 3723
					raw_spin_lock_irqsave_rcu_node(rnp,
								       flags);
3724 3725 3726 3727 3728
				}
				if (!(rnp->expmask & mask))
					mask_ofl_ipi &= ~mask;
				raw_spin_unlock_irqrestore(&rnp->lock, flags);
			}
3729 3730 3731 3732 3733 3734
		}
		/* Report quiescent states for those that went offline. */
		mask_ofl_test |= mask_ofl_ipi;
		if (mask_ofl_test)
			rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
	}
3735 3736
}

3737 3738 3739 3740 3741
static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
{
	int cpu;
	unsigned long jiffies_stall;
	unsigned long jiffies_start;
3742 3743 3744
	unsigned long mask;
	struct rcu_node *rnp;
	struct rcu_node *rnp_root = rcu_get_root(rsp);
3745 3746 3747 3748 3749 3750 3751 3752
	int ret;

	jiffies_stall = rcu_jiffies_till_stall_check();
	jiffies_start = jiffies;

	for (;;) {
		ret = wait_event_interruptible_timeout(
				rsp->expedited_wq,
3753
				sync_rcu_preempt_exp_done(rnp_root),
3754 3755 3756 3757 3758 3759
				jiffies_stall);
		if (ret > 0)
			return;
		if (ret < 0) {
			/* Hit a signal, disable CPU stall warnings. */
			wait_event(rsp->expedited_wq,
3760
				   sync_rcu_preempt_exp_done(rnp_root));
3761 3762
			return;
		}
3763
		pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3764
		       rsp->name);
3765
		rcu_for_each_leaf_node(rsp, rnp) {
3766
			(void)rcu_print_task_exp_stall(rnp);
3767 3768
			mask = 1;
			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3769 3770
				struct rcu_data *rdp;

3771 3772
				if (!(rnp->expmask & mask))
					continue;
3773 3774 3775 3776 3777
				rdp = per_cpu_ptr(rsp->rda, cpu);
				pr_cont(" %d-%c%c%c", cpu,
					"O."[cpu_online(cpu)],
					"o."[!!(rdp->grpmask & rnp->expmaskinit)],
					"N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
3778 3779
			}
			mask <<= 1;
3780 3781 3782
		}
		pr_cont(" } %lu jiffies s: %lu\n",
			jiffies - jiffies_start, rsp->expedited_sequence);
3783 3784 3785 3786 3787 3788 3789
		rcu_for_each_leaf_node(rsp, rnp) {
			mask = 1;
			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
				if (!(rnp->expmask & mask))
					continue;
				dump_cpu_task(cpu);
			}
3790 3791 3792 3793 3794
		}
		jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
	}
}

3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
3805
 *
3806 3807 3808
 * This implementation can be thought of as an application of sequence
 * locking to expedited grace periods, but using the sequence counter to
 * determine when someone else has already done the work instead of for
3809
 * retrying readers.
3810 3811 3812
 */
void synchronize_sched_expedited(void)
{
3813
	unsigned long s;
3814
	struct rcu_node *rnp;
3815
	struct rcu_state *rsp = &rcu_sched_state;
3816

3817
	/* Take a snapshot of the sequence number.  */
3818
	s = rcu_exp_gp_seq_snap(rsp);
3819

3820
	rnp = exp_funnel_lock(rsp, s);
3821
	if (rnp == NULL)
3822
		return;  /* Someone else did our work for us. */
3823

3824
	rcu_exp_gp_seq_start(rsp);
3825
	sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
3826
	synchronize_sched_expedited_wait(rsp);
3827

3828
	rcu_exp_gp_seq_end(rsp);
3829
	mutex_unlock(&rnp->exp_funnel_mutex);
3830 3831 3832
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3833 3834 3835 3836 3837 3838 3839 3840 3841
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3842 3843
	struct rcu_node *rnp = rdp->mynode;

3844 3845 3846 3847 3848
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3849 3850 3851 3852
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3853
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3854
	if (rcu_scheduler_fully_active &&
3855
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3856
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3857 3858
		rdp->n_rp_core_needs_qs++;
	} else if (rdp->core_needs_qs &&
3859
		   (!rdp->cpu_no_qs.b.norm ||
3860
		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3861
		rdp->n_rp_report_qs++;
3862
		return 1;
3863
	}
3864 3865

	/* Does this CPU have callbacks ready to invoke? */
3866 3867
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3868
		return 1;
3869
	}
3870 3871

	/* Has RCU gone idle with this CPU needing another grace period? */
3872 3873
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3874
		return 1;
3875
	}
3876 3877

	/* Has another RCU grace period completed?  */
3878
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3879
		rdp->n_rp_gp_completed++;
3880
		return 1;
3881
	}
3882 3883

	/* Has a new RCU grace period started? */
3884 3885
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3886
		rdp->n_rp_gp_started++;
3887
		return 1;
3888
	}
3889

3890 3891 3892 3893 3894 3895
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3896
	/* nothing to do */
3897
	rdp->n_rp_need_nothing++;
3898 3899 3900 3901 3902 3903 3904 3905
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3906
static int rcu_pending(void)
3907
{
3908 3909 3910
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3911
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3912 3913
			return 1;
	return 0;
3914 3915 3916
}

/*
3917 3918 3919
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3920
 */
3921
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3922
{
3923 3924 3925
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3926 3927
	struct rcu_state *rsp;

3928
	for_each_rcu_flavor(rsp) {
3929
		rdp = this_cpu_ptr(rsp->rda);
3930 3931 3932 3933
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3934
			al = false;
3935 3936
			break;
		}
3937 3938 3939 3940
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3941 3942
}

3943 3944 3945 3946
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3947
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3948 3949 3950 3951 3952 3953
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3954 3955 3956 3957
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3958
static void rcu_barrier_callback(struct rcu_head *rhp)
3959
{
3960 3961 3962
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3963
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3964
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3965
		complete(&rsp->barrier_completion);
3966
	} else {
3967
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3968
	}
3969 3970 3971 3972 3973 3974 3975
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3976
	struct rcu_state *rsp = type;
3977
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3978

3979
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3980
	atomic_inc(&rsp->barrier_cpu_count);
3981
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3982 3983 3984 3985 3986 3987
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3988
static void _rcu_barrier(struct rcu_state *rsp)
3989
{
3990 3991
	int cpu;
	struct rcu_data *rdp;
3992
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3993

3994
	_rcu_barrier_trace(rsp, "Begin", -1, s);
3995

3996
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3997
	mutex_lock(&rsp->barrier_mutex);
3998

3999 4000 4001
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
4002 4003 4004 4005 4006
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

4007 4008 4009
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
4010

4011
	/*
4012 4013
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
4014 4015
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
4016
	 */
4017
	init_completion(&rsp->barrier_completion);
4018
	atomic_set(&rsp->barrier_cpu_count, 1);
4019
	get_online_cpus();
4020 4021

	/*
4022 4023 4024
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
4025
	 */
P
Paul E. McKenney 已提交
4026
	for_each_possible_cpu(cpu) {
4027
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
4028
			continue;
4029
		rdp = per_cpu_ptr(rsp->rda, cpu);
4030
		if (rcu_is_nocb_cpu(cpu)) {
4031 4032
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4033
						   rsp->barrier_sequence);
4034 4035
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4036
						   rsp->barrier_sequence);
4037
				smp_mb__before_atomic();
4038 4039 4040 4041
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
4042
		} else if (READ_ONCE(rdp->qlen)) {
4043
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
4044
					   rsp->barrier_sequence);
4045
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4046
		} else {
4047
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4048
					   rsp->barrier_sequence);
4049 4050
		}
	}
4051
	put_online_cpus();
4052 4053 4054 4055 4056

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
4057
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4058
		complete(&rsp->barrier_completion);
4059 4060

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4061
	wait_for_completion(&rsp->barrier_completion);
4062

4063 4064 4065 4066
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

4067
	/* Other rcu_barrier() invocations can now safely proceed. */
4068
	mutex_unlock(&rsp->barrier_mutex);
4069 4070 4071 4072 4073 4074 4075
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
4076
	_rcu_barrier(&rcu_bh_state);
4077 4078 4079 4080 4081 4082 4083 4084
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
4085
	_rcu_barrier(&rcu_sched_state);
4086 4087 4088
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
4105
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4106 4107 4108 4109 4110
		rnp->qsmaskinit |= mask;
		raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
	}
}

4111
/*
4112
 * Do boot-time initialization of a CPU's per-CPU RCU data.
4113
 */
4114 4115
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4116 4117
{
	unsigned long flags;
4118
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4119 4120 4121
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
4122
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4123 4124
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4125
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4126
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4127
	rdp->cpu = cpu;
4128
	rdp->rsp = rsp;
4129
	mutex_init(&rdp->exp_funnel_mutex);
P
Paul E. McKenney 已提交
4130
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
4131
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
4132 4133 4134 4135 4136 4137 4138
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4139
 */
4140
static void
4141
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4142 4143 4144
{
	unsigned long flags;
	unsigned long mask;
4145
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4146 4147 4148
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
4149
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4150 4151
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
4152
	rdp->blimit = blimit;
4153 4154
	if (!rdp->nxtlist)
		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
4155
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4156
	rcu_sysidle_init_percpu_data(rdp->dynticks);
4157 4158
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
4159
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
4160

4161 4162 4163 4164 4165
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
4166 4167
	rnp = rdp->mynode;
	mask = rdp->grpmask;
4168
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4169
	rnp->qsmaskinitnext |= mask;
4170 4171 4172 4173
	rnp->expmaskinitnext |= mask;
	if (!rdp->beenonline)
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
	rdp->beenonline = true;	 /* We have now been online. */
4174 4175
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
4176
	rdp->cpu_no_qs.b.norm = true;
4177
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4178
	rdp->core_needs_qs = false;
4179 4180
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
4181 4182
}

4183
static void rcu_prepare_cpu(int cpu)
4184
{
4185 4186 4187
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
4188
		rcu_init_percpu_data(cpu, rsp);
4189 4190 4191
}

/*
4192
 * Handle CPU online/offline notification events.
4193
 */
4194 4195
int rcu_cpu_notify(struct notifier_block *self,
		   unsigned long action, void *hcpu)
4196 4197
{
	long cpu = (long)hcpu;
4198
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4199
	struct rcu_node *rnp = rdp->mynode;
4200
	struct rcu_state *rsp;
4201 4202 4203 4204

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
4205 4206
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
4207
		rcu_spawn_all_nocb_kthreads(cpu);
4208 4209
		break;
	case CPU_ONLINE:
4210
	case CPU_DOWN_FAILED:
4211
		sync_sched_exp_online_cleanup(cpu);
T
Thomas Gleixner 已提交
4212
		rcu_boost_kthread_setaffinity(rnp, -1);
4213 4214
		break;
	case CPU_DOWN_PREPARE:
4215
		rcu_boost_kthread_setaffinity(rnp, cpu);
4216
		break;
4217 4218
	case CPU_DYING:
	case CPU_DYING_FROZEN:
4219 4220
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
4221
		break;
4222
	case CPU_DYING_IDLE:
4223
		/* QS for any half-done expedited RCU-sched GP. */
4224 4225 4226 4227
		preempt_disable();
		rcu_report_exp_rdp(&rcu_sched_state,
				   this_cpu_ptr(rcu_sched_state.rda), true);
		preempt_enable();
4228

4229 4230 4231 4232
		for_each_rcu_flavor(rsp) {
			rcu_cleanup_dying_idle_cpu(cpu, rsp);
		}
		break;
4233 4234 4235 4236
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
4237
		for_each_rcu_flavor(rsp) {
4238
			rcu_cleanup_dead_cpu(cpu, rsp);
4239 4240
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
4241 4242 4243 4244
		break;
	default:
		break;
	}
4245
	return NOTIFY_OK;
4246 4247
}

4248 4249 4250 4251 4252 4253 4254
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4255
			rcu_expedite_gp();
4256 4257 4258
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
4259 4260
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
4261 4262 4263 4264 4265 4266 4267
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

4268
/*
4269
 * Spawn the kthreads that handle each RCU flavor's grace periods.
4270 4271 4272 4273
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
4274
	int kthread_prio_in = kthread_prio;
4275 4276
	struct rcu_node *rnp;
	struct rcu_state *rsp;
4277
	struct sched_param sp;
4278 4279
	struct task_struct *t;

4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

4291
	rcu_scheduler_fully_active = 1;
4292
	for_each_rcu_flavor(rsp) {
4293
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4294 4295
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
4296
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4297
		rsp->gp_kthread = t;
4298 4299 4300 4301 4302
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
		wake_up_process(t);
4303 4304
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
4305
	rcu_spawn_nocb_kthreads();
4306
	rcu_spawn_boost_kthreads();
4307 4308 4309 4310
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

4326 4327
/*
 * Compute the per-level fanout, either using the exact fanout specified
4328
 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4329
 */
4330
static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4331 4332 4333
{
	int i;

4334
	if (rcu_fanout_exact) {
4335
		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4336
		for (i = rcu_num_lvls - 2; i >= 0; i--)
4337
			levelspread[i] = RCU_FANOUT;
4338 4339 4340 4341 4342 4343
	} else {
		int ccur;
		int cprv;

		cprv = nr_cpu_ids;
		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4344 4345
			ccur = levelcnt[i];
			levelspread[i] = (cprv + ccur - 1) / ccur;
4346 4347
			cprv = ccur;
		}
4348 4349 4350 4351 4352 4353
	}
}

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
4354
static void __init rcu_init_one(struct rcu_state *rsp)
4355
{
4356 4357
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4358
	static const char * const exp[] = RCU_EXP_NAME_INIT;
4359 4360 4361
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
4362
	static u8 fl_mask = 0x1;
4363 4364 4365

	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4366 4367 4368 4369 4370
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4371
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4372

4373 4374 4375
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4376

4377 4378
	/* Initialize the level-tracking arrays. */

4379
	for (i = 0; i < rcu_num_lvls; i++)
4380
		levelcnt[i] = num_rcu_lvl[i];
4381
	for (i = 1; i < rcu_num_lvls; i++)
4382 4383
		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
	rcu_init_levelspread(levelspread, levelcnt);
4384 4385
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
4386 4387 4388

	/* Initialize the elements themselves, starting from the leaves. */

4389
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4390
		cpustride *= levelspread[i];
4391
		rnp = rsp->level[i];
4392
		for (j = 0; j < levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
4393
			raw_spin_lock_init(&rnp->lock);
4394 4395
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
4396 4397 4398
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4399 4400
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4401 4402 4403 4404
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4405 4406
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4407 4408 4409 4410 4411
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4412
				rnp->grpnum = j % levelspread[i - 1];
4413 4414
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4415
					      j / levelspread[i - 1];
4416 4417
			}
			rnp->level = i;
4418
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4419
			rcu_init_one_nocb(rnp);
4420
			mutex_init(&rnp->exp_funnel_mutex);
4421 4422
			lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
						   &rcu_exp_class[i], exp[i]);
4423 4424
		}
	}
4425

4426
	init_waitqueue_head(&rsp->gp_wq);
4427
	init_waitqueue_head(&rsp->expedited_wq);
4428
	rnp = rsp->level[rcu_num_lvls - 1];
4429
	for_each_possible_cpu(i) {
4430
		while (i > rnp->grphi)
4431
			rnp++;
4432
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4433 4434
		rcu_boot_init_percpu_data(i, rsp);
	}
4435
	list_add(&rsp->flavors, &rcu_struct_flavors);
4436 4437
}

4438 4439
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4440
 * replace the definitions in tree.h because those are needed to size
4441 4442 4443 4444
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4445
	ulong d;
4446
	int i;
4447
	int rcu_capacity[RCU_NUM_LVLS];
4448

4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4462
	/* If the compile-time values are accurate, just leave. */
4463
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4464
	    nr_cpu_ids == NR_CPUS)
4465
		return;
4466 4467
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4468 4469

	/*
4470 4471 4472 4473
	 * The boot-time rcu_fanout_leaf parameter must be at least two
	 * and cannot exceed the number of bits in the rcu_node masks.
	 * Complain and fall back to the compile-time values if this
	 * limit is exceeded.
4474
	 */
4475
	if (rcu_fanout_leaf < 2 ||
4476
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4477
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4478 4479 4480 4481 4482 4483
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4484
	 * with the given number of levels.
4485
	 */
4486
	rcu_capacity[0] = rcu_fanout_leaf;
4487
	for (i = 1; i < RCU_NUM_LVLS; i++)
4488
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4489 4490

	/*
4491
	 * The tree must be able to accommodate the configured number of CPUs.
4492
	 * If this limit is exceeded, fall back to the compile-time values.
4493
	 */
4494 4495 4496 4497 4498
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}
4499

4500
	/* Calculate the number of levels in the tree. */
4501
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4502
	}
4503
	rcu_num_lvls = i + 1;
4504

4505
	/* Calculate the number of rcu_nodes at each level of the tree. */
4506
	for (i = 0; i < rcu_num_lvls; i++) {
4507
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4508 4509
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4510 4511 4512

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4513
	for (i = 0; i < rcu_num_lvls; i++)
4514 4515 4516
		rcu_num_nodes += num_rcu_lvl[i];
}

4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4539
void __init rcu_init(void)
4540
{
P
Paul E. McKenney 已提交
4541
	int cpu;
4542

4543 4544
	rcu_early_boot_tests();

4545
	rcu_bootup_announce();
4546
	rcu_init_geometry();
4547 4548
	rcu_init_one(&rcu_bh_state);
	rcu_init_one(&rcu_sched_state);
4549 4550
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4551
	__rcu_init_preempt();
J
Jiang Fang 已提交
4552
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4553 4554 4555 4556 4557 4558 4559

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
4560
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
4561 4562
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4563 4564
}

4565
#include "tree_plugin.h"