tree.c 128.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/ftrace_event.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73

74 75 76 77 78 79 80 81
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
82 83
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
84
static char sname##_varname[] = #sname; \
85 86 87 88 89 90 91 92 93
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
94
DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
95
struct rcu_state sname##_state = { \
96
	.level = { &sname##_state.node[0] }, \
97
	.rda = &sname##_data, \
98
	.call = cr, \
99
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
100 101
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
102
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
103 104
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
105
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
106
	.name = RCU_STATE_NAME(sname), \
107
	.abbr = sabbr, \
108
}
109

110 111
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112

113
static struct rcu_state *const rcu_state_p;
114
static struct rcu_data __percpu *const rcu_data_p;
115
LIST_HEAD(rcu_struct_flavors);
116

117 118
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
119
module_param(rcu_fanout_leaf, int, 0444);
120 121 122 123 124 125 126 127 128 129
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

130 131 132 133
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
134
 * optimize synchronize_sched() to a simple barrier().  When this variable
135 136 137 138
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
139 140 141
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

142 143 144 145 146 147 148 149 150 151 152 153 154 155
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

156 157
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
158
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
159 160
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
161

162 163 164 165
/* rcuc/rcub kthread realtime priority */
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
module_param(kthread_prio, int, 0644);

166 167 168
/* Delay in jiffies for grace-period initialization delays, debug only. */
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
169
module_param(gp_init_delay, int, 0644);
170 171 172 173
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
#define PER_RCU_NODE_PERIOD 10	/* Number of grace periods between delays. */
174

175 176 177 178 179 180 181 182 183 184 185 186
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

187 188 189 190 191 192 193 194
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
195
	return READ_ONCE(rnp->qsmaskinitnext);
196 197
}

198
/*
199
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
200 201 202 203 204
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
205
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
206 207
}

208
/*
209
 * Note a quiescent state.  Because we do not need to know
210
 * how many quiescent states passed, just if there was at least
211
 * one since the start of the grace period, this just sets a flag.
212
 * The caller must have disabled preemption.
213
 */
214
void rcu_sched_qs(void)
215
{
216 217 218 219 220 221
	if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_sched"),
				       __this_cpu_read(rcu_sched_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_sched_data.passed_quiesce, 1);
	}
222 223
}

224
void rcu_bh_qs(void)
225
{
226 227 228 229 230 231
	if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_bh_data.passed_quiesce, 1);
	}
232
}
233

234 235 236 237 238 239 240 241 242 243 244
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

245 246 247
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
 */
static void rcu_momentary_dyntick_idle(void)
{
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	local_irq_save(flags);

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
282 283
		if (READ_ONCE(rdp->mynode->completed) !=
		    READ_ONCE(rdp->cond_resched_completed))
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
	local_irq_restore(flags);
}

301 302 303
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
304
 * The caller must have disabled preemption.
305
 */
306
void rcu_note_context_switch(void)
307
{
308
	trace_rcu_utilization(TPS("Start context switch"));
309
	rcu_sched_qs();
310
	rcu_preempt_note_context_switch();
311 312
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
313
	trace_rcu_utilization(TPS("End context switch"));
314
}
315
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
316

317
/*
318
 * Register a quiescent state for all RCU flavors.  If there is an
319 320
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
321
 * RCU flavors in desperate need of a quiescent state, which will normally
322 323 324 325 326 327 328 329 330 331 332
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
 */
void rcu_all_qs(void)
{
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
	this_cpu_inc(rcu_qs_ctr);
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
333 334 335
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
336

E
Eric Dumazet 已提交
337 338 339
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
340

341 342
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
343 344 345 346

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

347 348 349 350 351 352 353
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

354
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
355
				  struct rcu_data *rdp);
356 357 358 359
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
360
static void force_quiescent_state(struct rcu_state *rsp);
361
static int rcu_pending(void);
362 363

/*
364
 * Return the number of RCU batches started thus far for debug & stats.
365
 */
366 367 368 369 370 371 372 373
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
374
 */
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
401
 */
402
unsigned long rcu_batches_completed_sched(void)
403
{
404
	return rcu_sched_state.completed;
405
}
406
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
407 408

/*
409
 * Return the number of RCU BH batches completed thus far for debug & stats.
410
 */
411
unsigned long rcu_batches_completed_bh(void)
412 413 414 415 416
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

417 418 419 420 421
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
422
	force_quiescent_state(rcu_state_p);
423 424 425
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

426 427 428 429 430
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
431
	force_quiescent_state(&rcu_bh_state);
432 433 434
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

435 436 437 438 439 440 441 442 443
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

459 460 461 462 463 464 465 466 467 468 469 470 471 472
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

473 474 475 476 477 478 479 480 481 482
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
483
		rsp = rcu_state_p;
484 485 486 487 488 489 490 491 492 493 494
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
495 496 497
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
498 499 500 501 502 503 504 505
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

506 507 508 509 510 511 512 513 514 515 516
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

517 518 519 520 521 522
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
523 524
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
525 526
}

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
543
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
544 545
	int *fp = &rnp->need_future_gp[idx];

546
	return READ_ONCE(*fp);
547 548
}

549
/*
550 551 552
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
553 554 555 556
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
557
	int i;
P
Paul E. McKenney 已提交
558

559 560
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
561
	if (rcu_future_needs_gp(rsp))
562
		return 1;  /* Yes, a no-CBs CPU needs one. */
563 564 565 566 567 568
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
569
		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
570 571 572
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
573 574
}

575
/*
576
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
577 578 579 580 581
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
582
static void rcu_eqs_enter_common(long long oldval, bool user)
583
{
584 585
	struct rcu_state *rsp;
	struct rcu_data *rdp;
586
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
587

588
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
589
	if (!user && !is_idle_task(current)) {
590 591
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
592

593
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
594
		ftrace_dump(DUMP_ORIG);
595 596 597
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
598
	}
599 600 601 602
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
603
	rcu_prepare_for_idle();
604
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
605
	smp_mb__before_atomic();  /* See above. */
606
	atomic_inc(&rdtp->dynticks);
607
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
608
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
609
	rcu_dynticks_task_enter();
610 611

	/*
612
	 * It is illegal to enter an extended quiescent state while
613 614 615 616 617 618 619 620
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
621
}
622

623 624 625
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
626
 */
627
static void rcu_eqs_enter(bool user)
628
{
629
	long long oldval;
630 631
	struct rcu_dynticks *rdtp;

632
	rdtp = this_cpu_ptr(&rcu_dynticks);
633
	oldval = rdtp->dynticks_nesting;
634
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
635
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
636
		rdtp->dynticks_nesting = 0;
637
		rcu_eqs_enter_common(oldval, user);
638
	} else {
639
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
640
	}
641
}
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
657 658 659
	unsigned long flags;

	local_irq_save(flags);
660
	rcu_eqs_enter(false);
661
	rcu_sysidle_enter(0);
662
	local_irq_restore(flags);
663
}
664
EXPORT_SYMBOL_GPL(rcu_idle_enter);
665

666
#ifdef CONFIG_RCU_USER_QS
667 668 669 670 671 672 673 674 675 676
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
677
	rcu_eqs_enter(1);
678
}
679
#endif /* CONFIG_RCU_USER_QS */
680

681 682 683 684 685 686
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
687
 *
688 689 690 691 692 693 694 695
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
696
 */
697
void rcu_irq_exit(void)
698 699
{
	unsigned long flags;
700
	long long oldval;
701 702 703
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
704
	rdtp = this_cpu_ptr(&rcu_dynticks);
705
	oldval = rdtp->dynticks_nesting;
706 707
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
708
	if (rdtp->dynticks_nesting)
709
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
710
	else
711 712
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
713 714 715 716
	local_irq_restore(flags);
}

/*
717
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
718 719 720 721 722
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
723
static void rcu_eqs_exit_common(long long oldval, int user)
724
{
725 726
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

727
	rcu_dynticks_task_exit();
728
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
729 730
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
731
	smp_mb__after_atomic();  /* See above. */
732
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
733
	rcu_cleanup_after_idle();
734
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
735
	if (!user && !is_idle_task(current)) {
736 737
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
738

739
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
740
				  oldval, rdtp->dynticks_nesting);
741
		ftrace_dump(DUMP_ORIG);
742 743 744
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
745 746 747
	}
}

748 749 750
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
751
 */
752
static void rcu_eqs_exit(bool user)
753 754 755 756
{
	struct rcu_dynticks *rdtp;
	long long oldval;

757
	rdtp = this_cpu_ptr(&rcu_dynticks);
758
	oldval = rdtp->dynticks_nesting;
759
	WARN_ON_ONCE(oldval < 0);
760
	if (oldval & DYNTICK_TASK_NEST_MASK) {
761
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
762
	} else {
763
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
764
		rcu_eqs_exit_common(oldval, user);
765
	}
766
}
767 768 769 770 771 772 773 774 775 776 777 778 779 780

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
781 782 783
	unsigned long flags;

	local_irq_save(flags);
784
	rcu_eqs_exit(false);
785
	rcu_sysidle_exit(0);
786
	local_irq_restore(flags);
787
}
788
EXPORT_SYMBOL_GPL(rcu_idle_exit);
789

790
#ifdef CONFIG_RCU_USER_QS
791 792 793 794 795 796 797 798
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
799
	rcu_eqs_exit(1);
800
}
801
#endif /* CONFIG_RCU_USER_QS */
802

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
829
	rdtp = this_cpu_ptr(&rcu_dynticks);
830 831 832
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
833
	if (oldval)
834
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
835
	else
836 837
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
838 839 840 841 842 843
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
844 845 846 847 848
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
849 850 851
 */
void rcu_nmi_enter(void)
{
852
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
853
	int incby = 2;
854

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
876 877 878 879 880
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
881 882 883 884
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
885 886 887
 */
void rcu_nmi_exit(void)
{
888
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
889

890 891 892 893 894 895 896 897 898 899 900 901 902 903
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
904
		return;
905 906 907 908
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
909
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
910
	smp_mb__before_atomic();  /* See above. */
911
	atomic_inc(&rdtp->dynticks);
912
	smp_mb__after_atomic();  /* Force delay to next write. */
913
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
914 915 916
}

/**
917 918 919 920 921 922 923
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
924
bool notrace __rcu_is_watching(void)
925 926 927 928 929 930
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
931
 *
932
 * If the current CPU is in its idle loop and is neither in an interrupt
933
 * or NMI handler, return true.
934
 */
935
bool notrace rcu_is_watching(void)
936
{
937
	bool ret;
938 939

	preempt_disable();
940
	ret = __rcu_is_watching();
941 942
	preempt_enable();
	return ret;
943
}
944
EXPORT_SYMBOL_GPL(rcu_is_watching);
945

946
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
947 948 949 950 951 952 953

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
954 955 956 957 958 959 960 961 962 963 964
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
965 966 967 968 969 970
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
971 972
	struct rcu_data *rdp;
	struct rcu_node *rnp;
973 974 975
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
976
		return true;
977
	preempt_disable();
978
	rdp = this_cpu_ptr(&rcu_sched_data);
979
	rnp = rdp->mynode;
980
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
981 982 983 984 985 986
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

987
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
988

989
/**
990
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
991
 *
992 993 994
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
995
 */
996
static int rcu_is_cpu_rrupt_from_idle(void)
997
{
998
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
999 1000 1001 1002 1003
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1004
 * is in dynticks idle mode, which is an extended quiescent state.
1005
 */
1006 1007
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1008
{
1009
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1010
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1011 1012 1013 1014
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
		return 1;
	} else {
1015
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1016
				 rdp->mynode->gpnum))
1017
			WRITE_ONCE(rdp->gpwrap, true);
1018 1019
		return 0;
	}
1020 1021 1022 1023 1024 1025
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1026
 * for this same CPU, or by virtue of having been offline.
1027
 */
1028 1029
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1030
{
1031
	unsigned int curr;
1032
	int *rcrmp;
1033
	unsigned int snap;
1034

1035 1036
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
1037 1038 1039 1040 1041 1042 1043 1044 1045

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1046
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1047
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1048 1049 1050 1051
		rdp->dynticks_fqs++;
		return 1;
	}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
1067
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1068 1069 1070
		rdp->offline_fqs++;
		return 1;
	}
1071 1072

	/*
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1092
	 */
1093 1094 1095
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1096
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1097 1098 1099
		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			WRITE_ONCE(rdp->cond_resched_completed,
				   READ_ONCE(rdp->mynode->completed));
1100
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1101 1102
			WRITE_ONCE(*rcrmp,
				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1103 1104 1105 1106 1107 1108 1109
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
			/* Time to beat on that CPU again! */
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
		}
1110 1111
	}

1112
	return 0;
1113 1114 1115 1116
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1117
	unsigned long j = jiffies;
1118
	unsigned long j1;
1119 1120 1121

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1122
	j1 = rcu_jiffies_till_stall_check();
1123
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1124
	rsp->jiffies_resched = j + j1 / 2;
1125
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1126 1127
}

1128 1129 1130 1131 1132 1133 1134 1135 1136
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1137
	gpa = READ_ONCE(rsp->gp_activity);
1138 1139 1140
	if (j - gpa > 2 * HZ)
		pr_err("%s kthread starved for %ld jiffies!\n",
		       rsp->name, j - gpa);
1141 1142
}

1143
/*
1144
 * Dump stacks of all tasks running on stalled CPUs.
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

1163
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1164 1165 1166 1167
{
	int cpu;
	long delta;
	unsigned long flags;
1168 1169
	unsigned long gpa;
	unsigned long j;
1170
	int ndetected = 0;
1171
	struct rcu_node *rnp = rcu_get_root(rsp);
1172
	long totqlen = 0;
1173 1174 1175

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
1176
	raw_spin_lock_irqsave(&rnp->lock, flags);
1177
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1178
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1179
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1180 1181
		return;
	}
1182 1183
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1184
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1185

1186 1187 1188 1189 1190
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1191
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1192
	       rsp->name);
1193
	print_cpu_stall_info_begin();
1194
	rcu_for_each_leaf_node(rsp, rnp) {
1195
		raw_spin_lock_irqsave(&rnp->lock, flags);
1196
		ndetected += rcu_print_task_stall(rnp);
1197 1198 1199 1200 1201 1202 1203 1204
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
1205
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1206
	}
1207 1208

	print_cpu_stall_info_end();
1209 1210
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1211
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1212
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1213
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1214
	if (ndetected) {
1215
		rcu_dump_cpu_stacks(rsp);
1216
	} else {
1217 1218
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1219 1220 1221
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1222
			gpa = READ_ONCE(rsp->gp_activity);
1223
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1224
			       rsp->name, j - gpa, j, gpa,
1225 1226
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1227 1228 1229 1230
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1231

1232
	/* Complain about tasks blocking the grace period. */
1233 1234
	rcu_print_detail_task_stall(rsp);

1235 1236
	rcu_check_gp_kthread_starvation(rsp);

1237
	force_quiescent_state(rsp);  /* Kick them all. */
1238 1239 1240 1241
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1242
	int cpu;
1243 1244
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1245
	long totqlen = 0;
1246

1247 1248 1249 1250 1251
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1252
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1253 1254 1255
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1256 1257
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1258 1259 1260
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1261 1262 1263

	rcu_check_gp_kthread_starvation(rsp);

1264
	rcu_dump_cpu_stacks(rsp);
1265

P
Paul E. McKenney 已提交
1266
	raw_spin_lock_irqsave(&rnp->lock, flags);
1267 1268 1269
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1270
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1271

1272 1273 1274 1275 1276 1277 1278 1279
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1280 1281 1282 1283
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1284 1285 1286
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1287 1288
	unsigned long j;
	unsigned long js;
1289 1290
	struct rcu_node *rnp;

1291
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1292
		return;
1293
	j = jiffies;
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1312
	gpnum = READ_ONCE(rsp->gpnum);
1313
	smp_rmb(); /* Pick up ->gpnum first... */
1314
	js = READ_ONCE(rsp->jiffies_stall);
1315
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1316
	gps = READ_ONCE(rsp->gp_start);
1317
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1318
	completed = READ_ONCE(rsp->completed);
1319 1320 1321 1322
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1323
	rnp = rdp->mynode;
1324
	if (rcu_gp_in_progress(rsp) &&
1325
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1326 1327 1328 1329

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1330 1331
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1332

1333
		/* They had a few time units to dump stack, so complain. */
1334
		print_other_cpu_stall(rsp, gpnum);
1335 1336 1337
	}
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1349 1350 1351
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1352
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1353 1354
}

1355
/*
1356 1357 1358
 * Initialize the specified rcu_data structure's default callback list
 * to empty.  The default callback list is the one that is not used by
 * no-callbacks CPUs.
1359
 */
1360
static void init_default_callback_list(struct rcu_data *rdp)
1361 1362 1363 1364 1365 1366 1367 1368
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	if (init_nocb_callback_list(rdp))
		return;
	init_default_callback_list(rdp);
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1408 1409 1410 1411 1412
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1413
				unsigned long c, const char *s)
1414 1415 1416 1417 1418 1419 1420 1421 1422
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1423 1424
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1425 1426 1427
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1428 1429 1430
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1431 1432 1433
{
	unsigned long c;
	int i;
1434
	bool ret = false;
1435 1436 1437 1438 1439 1440 1441
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1442
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1443
	if (rnp->need_future_gp[c & 0x1]) {
1444
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1445
		goto out;
1446 1447 1448 1449 1450 1451 1452
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1453 1454 1455 1456 1457 1458 1459
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1460 1461
	 */
	if (rnp->gpnum != rnp->completed ||
1462
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1463
		rnp->need_future_gp[c & 0x1]++;
1464
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1465
		goto out;
1466 1467 1468 1469 1470 1471 1472
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1473
	if (rnp != rnp_root) {
1474
		raw_spin_lock(&rnp_root->lock);
1475 1476
		smp_mb__after_unlock_lock();
	}
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1494
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1495 1496 1497 1498 1499 1500 1501 1502
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1503
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1504
	} else {
1505
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1506
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1507 1508 1509 1510
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
1511 1512 1513 1514
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1532 1533
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1534 1535 1536
	return needmore;
}

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1547
	    !READ_ONCE(rsp->gp_flags) ||
1548 1549 1550 1551 1552
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1553 1554 1555 1556 1557 1558 1559
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1560 1561
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1562 1563 1564
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1565
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1566 1567 1568 1569
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1570
	bool ret;
1571 1572 1573

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1574
		return false;
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1603
		return false;
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1614
	/* Record any needed additional grace periods. */
1615
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1616 1617 1618

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1619
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1620
	else
1621
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1622
	return ret;
1623 1624 1625 1626 1627 1628 1629 1630
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1631
 * Returns true if the RCU grace-period kthread needs to be awakened.
1632 1633 1634
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1635
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1636 1637 1638 1639 1640 1641
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1642
		return false;
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1666
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1667 1668
}

1669
/*
1670 1671 1672
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1673
 * Returns true if the grace-period kthread needs to be awakened.
1674
 */
1675 1676
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1677
{
1678 1679
	bool ret;

1680
	/* Handle the ends of any preceding grace periods first. */
1681
	if (rdp->completed == rnp->completed &&
1682
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1683

1684
		/* No grace period end, so just accelerate recent callbacks. */
1685
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1686

1687 1688 1689
	} else {

		/* Advance callbacks. */
1690
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1691 1692 1693

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1694
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1695
	}
1696

1697
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1698 1699 1700 1701 1702 1703
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1704
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1705
		rdp->passed_quiesce = 0;
1706
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1707 1708
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
		zero_cpu_stall_ticks(rdp);
1709
		WRITE_ONCE(rdp->gpwrap, false);
1710
	}
1711
	return ret;
1712 1713
}

1714
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1715 1716
{
	unsigned long flags;
1717
	bool needwake;
1718 1719 1720 1721
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1722 1723 1724
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1725 1726 1727 1728
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1729
	smp_mb__after_unlock_lock();
1730
	needwake = __note_gp_changes(rsp, rnp, rdp);
1731
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1732 1733
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1734 1735
}

1736
/*
1737
 * Initialize a new grace period.  Return 0 if no grace period required.
1738
 */
1739
static int rcu_gp_init(struct rcu_state *rsp)
1740
{
1741
	unsigned long oldmask;
1742
	struct rcu_data *rdp;
1743
	struct rcu_node *rnp = rcu_get_root(rsp);
1744

1745
	WRITE_ONCE(rsp->gp_activity, jiffies);
1746
	raw_spin_lock_irq(&rnp->lock);
1747
	smp_mb__after_unlock_lock();
1748
	if (!READ_ONCE(rsp->gp_flags)) {
1749 1750 1751 1752
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1753
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1754

1755 1756 1757 1758 1759
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1760 1761 1762 1763 1764
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1765
	record_gp_stall_check_time(rsp);
1766 1767
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1768
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1769 1770
	raw_spin_unlock_irq(&rnp->lock);

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irq(&rnp->lock);
		smp_mb__after_unlock_lock();
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
			raw_spin_unlock_irq(&rnp->lock);
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

		raw_spin_unlock_irq(&rnp->lock);
	}
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1834
		raw_spin_lock_irq(&rnp->lock);
1835
		smp_mb__after_unlock_lock();
1836
		rdp = this_cpu_ptr(rsp->rda);
1837 1838
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1839
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1840
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1841
			WRITE_ONCE(rnp->completed, rsp->completed);
1842
		if (rnp == rdp->mynode)
1843
			(void)__note_gp_changes(rsp, rnp, rdp);
1844 1845 1846 1847 1848
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1849
		cond_resched_rcu_qs();
1850
		WRITE_ONCE(rsp->gp_activity, jiffies);
1851 1852
		if (gp_init_delay > 0 &&
		    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD)))
1853
			schedule_timeout_uninterruptible(gp_init_delay);
1854
	}
1855

1856 1857
	return 1;
}
1858

1859 1860 1861
/*
 * Do one round of quiescent-state forcing.
 */
1862
static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1863 1864
{
	int fqs_state = fqs_state_in;
1865 1866
	bool isidle = false;
	unsigned long maxj;
1867 1868
	struct rcu_node *rnp = rcu_get_root(rsp);

1869
	WRITE_ONCE(rsp->gp_activity, jiffies);
1870 1871 1872
	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
1873
		if (is_sysidle_rcu_state(rsp)) {
1874
			isidle = true;
1875 1876
			maxj = jiffies - ULONG_MAX / 4;
		}
1877 1878
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1879
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1880 1881 1882
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1883
		isidle = true;
1884
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1885 1886
	}
	/* Clear flag to prevent immediate re-entry. */
1887
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1888
		raw_spin_lock_irq(&rnp->lock);
1889
		smp_mb__after_unlock_lock();
1890 1891
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1892 1893 1894 1895 1896
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1897 1898 1899
/*
 * Clean up after the old grace period.
 */
1900
static void rcu_gp_cleanup(struct rcu_state *rsp)
1901 1902
{
	unsigned long gp_duration;
1903
	bool needgp = false;
1904
	int nocb = 0;
1905 1906
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1907

1908
	WRITE_ONCE(rsp->gp_activity, jiffies);
1909
	raw_spin_lock_irq(&rnp->lock);
1910
	smp_mb__after_unlock_lock();
1911 1912 1913
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1914

1915 1916 1917 1918 1919 1920 1921 1922
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1923
	raw_spin_unlock_irq(&rnp->lock);
1924

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1935
		raw_spin_lock_irq(&rnp->lock);
1936
		smp_mb__after_unlock_lock();
1937 1938
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
1939
		WRITE_ONCE(rnp->completed, rsp->gpnum);
1940 1941
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
1942
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1943
		/* smp_mb() provided by prior unlock-lock pair. */
1944
		nocb += rcu_future_gp_cleanup(rsp, rnp);
1945
		raw_spin_unlock_irq(&rnp->lock);
1946
		cond_resched_rcu_qs();
1947
		WRITE_ONCE(rsp->gp_activity, jiffies);
1948
	}
1949 1950
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1951
	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1952
	rcu_nocb_gp_set(rnp, nocb);
1953

1954
	/* Declare grace period done. */
1955
	WRITE_ONCE(rsp->completed, rsp->gpnum);
1956
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1957
	rsp->fqs_state = RCU_GP_IDLE;
1958
	rdp = this_cpu_ptr(rsp->rda);
1959 1960 1961
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1962
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
1963
		trace_rcu_grace_period(rsp->name,
1964
				       READ_ONCE(rsp->gpnum),
1965 1966
				       TPS("newreq"));
	}
1967 1968 1969 1970 1971 1972 1973 1974
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1975
	int fqs_state;
1976
	int gf;
1977
	unsigned long j;
1978
	int ret;
1979 1980 1981
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

1982
	rcu_bind_gp_kthread();
1983 1984 1985 1986
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1987
			trace_rcu_grace_period(rsp->name,
1988
					       READ_ONCE(rsp->gpnum),
1989
					       TPS("reqwait"));
1990
			rsp->gp_state = RCU_GP_WAIT_GPS;
1991
			wait_event_interruptible(rsp->gp_wq,
1992
						 READ_ONCE(rsp->gp_flags) &
1993
						 RCU_GP_FLAG_INIT);
1994
			/* Locking provides needed memory barrier. */
1995
			if (rcu_gp_init(rsp))
1996
				break;
1997
			cond_resched_rcu_qs();
1998
			WRITE_ONCE(rsp->gp_activity, jiffies);
1999
			WARN_ON(signal_pending(current));
2000
			trace_rcu_grace_period(rsp->name,
2001
					       READ_ONCE(rsp->gpnum),
2002
					       TPS("reqwaitsig"));
2003
		}
2004

2005 2006
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
2007 2008 2009 2010 2011
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2012
		ret = 0;
2013
		for (;;) {
2014 2015
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
2016
			trace_rcu_grace_period(rsp->name,
2017
					       READ_ONCE(rsp->gpnum),
2018
					       TPS("fqswait"));
2019
			rsp->gp_state = RCU_GP_WAIT_FQS;
2020
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
2021
					((gf = READ_ONCE(rsp->gp_flags)) &
2022
					 RCU_GP_FLAG_FQS) ||
2023
					(!READ_ONCE(rnp->qsmask) &&
2024
					 !rcu_preempt_blocked_readers_cgp(rnp)),
2025
					j);
2026
			/* Locking provides needed memory barriers. */
2027
			/* If grace period done, leave loop. */
2028
			if (!READ_ONCE(rnp->qsmask) &&
2029
			    !rcu_preempt_blocked_readers_cgp(rnp))
2030
				break;
2031
			/* If time for quiescent-state forcing, do it. */
2032 2033
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2034
				trace_rcu_grace_period(rsp->name,
2035
						       READ_ONCE(rsp->gpnum),
2036
						       TPS("fqsstart"));
2037
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
2038
				trace_rcu_grace_period(rsp->name,
2039
						       READ_ONCE(rsp->gpnum),
2040
						       TPS("fqsend"));
2041
				cond_resched_rcu_qs();
2042
				WRITE_ONCE(rsp->gp_activity, jiffies);
2043 2044
			} else {
				/* Deal with stray signal. */
2045
				cond_resched_rcu_qs();
2046
				WRITE_ONCE(rsp->gp_activity, jiffies);
2047
				WARN_ON(signal_pending(current));
2048
				trace_rcu_grace_period(rsp->name,
2049
						       READ_ONCE(rsp->gpnum),
2050
						       TPS("fqswaitsig"));
2051
			}
2052 2053 2054 2055 2056 2057 2058 2059
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
2060
		}
2061 2062 2063

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
2064 2065 2066
	}
}

2067 2068 2069
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2070
 * the root node's ->lock and hard irqs must be disabled.
2071 2072 2073 2074
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2075 2076
 *
 * Returns true if the grace-period kthread must be awakened.
2077
 */
2078
static bool
2079 2080
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2081
{
2082
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2083
		/*
2084
		 * Either we have not yet spawned the grace-period
2085 2086
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2087
		 * Either way, don't start a new grace period.
2088
		 */
2089
		return false;
2090
	}
2091 2092
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2093
			       TPS("newreq"));
2094

2095 2096
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2097
	 * could cause possible deadlocks with the rq->lock. Defer
2098
	 * the wakeup to our caller.
2099
	 */
2100
	return true;
2101 2102
}

2103 2104 2105 2106 2107 2108
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2109 2110
 *
 * Returns true if the grace-period kthread needs to be awakened.
2111
 */
2112
static bool rcu_start_gp(struct rcu_state *rsp)
2113 2114 2115
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2116
	bool ret = false;
2117 2118 2119 2120 2121 2122 2123 2124 2125

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2126 2127 2128
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2129 2130
}

2131
/*
P
Paul E. McKenney 已提交
2132 2133 2134
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
2135 2136
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
2137
 */
P
Paul E. McKenney 已提交
2138
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2139
	__releases(rcu_get_root(rsp)->lock)
2140
{
2141
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2142
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2143
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2144
	rcu_gp_kthread_wake(rsp);
2145 2146
}

2147
/*
P
Paul E. McKenney 已提交
2148 2149 2150
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2151 2152 2153 2154 2155
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2156 2157
 */
static void
P
Paul E. McKenney 已提交
2158
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2159
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2160 2161
	__releases(rnp->lock)
{
2162
	unsigned long oldmask = 0;
2163 2164
	struct rcu_node *rnp_c;

2165 2166
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2167
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2168

2169 2170 2171 2172
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
P
Paul E. McKenney 已提交
2173
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2174 2175
			return;
		}
2176
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2177
		rnp->qsmask &= ~mask;
2178 2179 2180 2181
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2182
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2183 2184

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
2185
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2186 2187 2188 2189 2190 2191 2192 2193 2194
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
2195
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2196
		rnp_c = rnp;
2197
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
2198
		raw_spin_lock_irqsave(&rnp->lock, flags);
2199
		smp_mb__after_unlock_lock();
2200
		oldmask = rnp_c->qsmask;
2201 2202 2203 2204
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2205
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2206
	 * to clean up and start the next grace period if one is needed.
2207
	 */
P
Paul E. McKenney 已提交
2208
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2209 2210
}

2211 2212 2213 2214 2215 2216 2217
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2218
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2219 2220 2221
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2222
	unsigned long gps;
2223 2224 2225
	unsigned long mask;
	struct rcu_node *rnp_p;

2226 2227
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2228 2229 2230 2231 2232 2233 2234
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2235 2236
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2237 2238 2239 2240 2241
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2242 2243
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2244 2245 2246 2247
	mask = rnp->grpmask;
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
	smp_mb__after_unlock_lock();
2248
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2249 2250
}

2251
/*
P
Paul E. McKenney 已提交
2252 2253 2254 2255 2256 2257 2258
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
2259 2260
 */
static void
2261
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2262 2263 2264
{
	unsigned long flags;
	unsigned long mask;
2265
	bool needwake;
2266 2267 2268
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
2269
	raw_spin_lock_irqsave(&rnp->lock, flags);
2270
	smp_mb__after_unlock_lock();
2271 2272 2273 2274
	if ((rdp->passed_quiesce == 0 &&
	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
	    rdp->gpwrap) {
2275 2276

		/*
2277 2278 2279 2280
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2281
		 */
2282
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
2283
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
P
Paul E. McKenney 已提交
2284
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2285 2286 2287 2288
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
2289
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2290 2291 2292 2293 2294 2295 2296
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2297
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2298

2299 2300
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2301 2302
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2315 2316
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2329 2330
	if (!rdp->passed_quiesce &&
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2331 2332
		return;

P
Paul E. McKenney 已提交
2333 2334 2335 2336
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2337
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2338 2339 2340 2341
}

#ifdef CONFIG_HOTPLUG_CPU

2342
/*
2343 2344
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2345
 * ->orphan_lock.
2346
 */
2347 2348 2349
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2350
{
P
Paul E. McKenney 已提交
2351
	/* No-CBs CPUs do not have orphanable callbacks. */
2352
	if (rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2353 2354
		return;

2355 2356
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2357 2358
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2359
	 */
2360
	if (rdp->nxtlist != NULL) {
2361 2362 2363
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2364
		rdp->qlen_lazy = 0;
2365
		WRITE_ONCE(rdp->qlen, 0);
2366 2367 2368
	}

	/*
2369 2370 2371 2372 2373 2374 2375
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2376
	 */
2377 2378 2379 2380
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2381 2382 2383
	}

	/*
2384 2385 2386
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2387
	 */
2388
	if (rdp->nxtlist != NULL) {
2389 2390
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2391
	}
2392

2393 2394 2395 2396
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2397
	init_callback_list(rdp);
2398
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2399 2400 2401 2402
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2403
 * orphanage.  The caller must hold the ->orphan_lock.
2404
 */
2405
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2406 2407
{
	int i;
2408
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2409

P
Paul E. McKenney 已提交
2410
	/* No-CBs CPUs are handled specially. */
2411
	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2412 2413
		return;

2414 2415 2416 2417
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2418 2419
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
2459 2460
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2461
			       TPS("cpuofl"));
2462 2463
}

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
		smp_mb__after_unlock_lock(); /* GP memory ordering. */
		rnp->qsmaskinit &= ~mask;
2496
		rnp->qsmask &= ~mask;
2497 2498 2499 2500 2501 2502 2503 2504
		if (rnp->qsmaskinit) {
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			return;
		}
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
	}
}

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
/*
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();	/* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

2525
/*
2526
 * The CPU has been completely removed, and some other CPU is reporting
2527 2528
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2529 2530
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2531
 */
2532
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2533
{
2534
	unsigned long flags;
2535
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2536
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2537

2538
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2539
	rcu_boost_kthread_setaffinity(rnp, -1);
2540

2541
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2542
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2543
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2544
	rcu_adopt_orphan_cbs(rsp, flags);
2545
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2546

2547 2548 2549
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2550 2551 2552 2553
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

2554
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2555 2556 2557
{
}

2558 2559 2560 2561
static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
}

2562 2563 2564 2565
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
}

2566
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2567 2568 2569 2570 2571 2572 2573 2574 2575
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2576
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2577 2578 2579
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2580 2581
	long bl, count, count_lazy;
	int i;
2582

2583
	/* If no callbacks are ready, just return. */
2584
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2585
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2586
		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2587 2588
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2589
		return;
2590
	}
2591 2592 2593 2594 2595 2596

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2597
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2598
	bl = rdp->blimit;
2599
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2600 2601 2602 2603
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2604 2605 2606
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2607 2608 2609
	local_irq_restore(flags);

	/* Invoke callbacks. */
2610
	count = count_lazy = 0;
2611 2612 2613
	while (list) {
		next = list->next;
		prefetch(next);
2614
		debug_rcu_head_unqueue(list);
2615 2616
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2617
		list = next;
2618 2619 2620 2621
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2622 2623 2624 2625
			break;
	}

	local_irq_save(flags);
2626 2627 2628
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2629 2630 2631 2632 2633

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2634 2635 2636
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2637 2638 2639
			else
				break;
	}
2640 2641
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2642
	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2643
	rdp->n_cbs_invoked += count;
2644 2645 2646 2647 2648

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2649 2650 2651 2652 2653 2654
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2655
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2656

2657 2658
	local_irq_restore(flags);

2659
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2660
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2661
		invoke_rcu_core();
2662 2663 2664 2665 2666
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2667
 * Also schedule RCU core processing.
2668
 *
2669
 * This function must be called from hardirq context.  It is normally
2670 2671 2672
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2673
void rcu_check_callbacks(int user)
2674
{
2675
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2676
	increment_cpu_stall_ticks();
2677
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2678 2679 2680 2681 2682

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2683
		 * a quiescent state, so note it.
2684 2685
		 *
		 * No memory barrier is required here because both
2686 2687 2688
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2689 2690
		 */

2691 2692
		rcu_sched_qs();
		rcu_bh_qs();
2693 2694 2695 2696 2697 2698 2699

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2700
		 * critical section, so note it.
2701 2702
		 */

2703
		rcu_bh_qs();
2704
	}
2705
	rcu_preempt_check_callbacks();
2706
	if (rcu_pending())
2707
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2708 2709
	if (user)
		rcu_note_voluntary_context_switch(current);
2710
	trace_rcu_utilization(TPS("End scheduler-tick"));
2711 2712 2713 2714 2715
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2716 2717
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2718
 * The caller must have suppressed start of new grace periods.
2719
 */
2720 2721 2722 2723
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2724 2725 2726 2727 2728
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2729
	struct rcu_node *rnp;
2730

2731
	rcu_for_each_leaf_node(rsp, rnp) {
2732
		cond_resched_rcu_qs();
2733
		mask = 0;
P
Paul E. McKenney 已提交
2734
		raw_spin_lock_irqsave(&rnp->lock, flags);
2735
		smp_mb__after_unlock_lock();
2736
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
2737
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2738
			return;
2739
		}
2740
		if (rnp->qsmask == 0) {
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2764
		}
2765
		cpu = rnp->grplo;
2766
		bit = 1;
2767
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2768
			if ((rnp->qsmask & bit) != 0) {
2769 2770
				if ((rnp->qsmaskinit & bit) == 0)
					*isidle = false; /* Pending hotplug. */
2771 2772 2773
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2774
		}
2775
		if (mask != 0) {
2776 2777
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2778 2779 2780
		} else {
			/* Nothing to do here, so just drop the lock. */
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2781 2782 2783 2784 2785 2786 2787 2788
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2789
static void force_quiescent_state(struct rcu_state *rsp)
2790 2791
{
	unsigned long flags;
2792 2793 2794 2795 2796
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2797
	rnp = __this_cpu_read(rsp->rda->mynode);
2798
	for (; rnp != NULL; rnp = rnp->parent) {
2799
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2800 2801 2802 2803
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2804
			rsp->n_force_qs_lh++;
2805 2806 2807 2808 2809
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2810

2811 2812
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2813
	smp_mb__after_unlock_lock();
2814
	raw_spin_unlock(&rnp_old->fqslock);
2815
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2816
		rsp->n_force_qs_lh++;
2817
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2818
		return;  /* Someone beat us to it. */
2819
	}
2820
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2821
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2822
	rcu_gp_kthread_wake(rsp);
2823 2824 2825
}

/*
2826 2827 2828
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2829 2830
 */
static void
2831
__rcu_process_callbacks(struct rcu_state *rsp)
2832 2833
{
	unsigned long flags;
2834
	bool needwake;
2835
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2836

2837 2838
	WARN_ON_ONCE(rdp->beenonline == 0);

2839 2840 2841 2842
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2843
	local_irq_save(flags);
2844
	if (cpu_needs_another_gp(rsp, rdp)) {
2845
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2846
		needwake = rcu_start_gp(rsp);
2847
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2848 2849
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2850 2851
	} else {
		local_irq_restore(flags);
2852 2853 2854
	}

	/* If there are callbacks ready, invoke them. */
2855
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2856
		invoke_rcu_callbacks(rsp, rdp);
2857 2858 2859

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2860 2861
}

2862
/*
2863
 * Do RCU core processing for the current CPU.
2864
 */
2865
static void rcu_process_callbacks(struct softirq_action *unused)
2866
{
2867 2868
	struct rcu_state *rsp;

2869 2870
	if (cpu_is_offline(smp_processor_id()))
		return;
2871
	trace_rcu_utilization(TPS("Start RCU core"));
2872 2873
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2874
	trace_rcu_utilization(TPS("End RCU core"));
2875 2876
}

2877
/*
2878 2879 2880
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2881
 * are running on the current CPU with softirqs disabled, the
2882
 * rcu_cpu_kthread_task cannot disappear out from under us.
2883
 */
2884
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2885
{
2886
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2887
		return;
2888 2889
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2890 2891
		return;
	}
2892
	invoke_rcu_callbacks_kthread();
2893 2894
}

2895
static void invoke_rcu_core(void)
2896
{
2897 2898
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2899 2900
}

2901 2902 2903 2904 2905
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2906
{
2907 2908
	bool needwake;

2909 2910 2911 2912
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2913
	if (!rcu_is_watching())
2914 2915
		invoke_rcu_core();

2916
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2917
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2918
		return;
2919

2920 2921 2922 2923 2924 2925 2926
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2927
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2928 2929

		/* Are we ignoring a completed grace period? */
2930
		note_gp_changes(rsp, rdp);
2931 2932 2933 2934 2935

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2936
			raw_spin_lock(&rnp_root->lock);
2937
			smp_mb__after_unlock_lock();
2938
			needwake = rcu_start_gp(rsp);
2939
			raw_spin_unlock(&rnp_root->lock);
2940 2941
			if (needwake)
				rcu_gp_kthread_wake(rsp);
2942 2943 2944 2945 2946
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2947
				force_quiescent_state(rsp);
2948 2949 2950
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2951
	}
2952 2953
}

2954 2955 2956 2957 2958 2959 2960
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
2961 2962 2963 2964 2965 2966
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
2967 2968
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
2969
	   struct rcu_state *rsp, int cpu, bool lazy)
2970 2971 2972 2973
{
	unsigned long flags;
	struct rcu_data *rdp;

2974
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2975 2976
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
2977
		WRITE_ONCE(head->func, rcu_leak_callback);
2978 2979 2980
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
2991
	rdp = this_cpu_ptr(rsp->rda);
2992 2993

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
2994 2995 2996 2997 2998
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3012
		WARN_ON_ONCE(!rcu_is_watching());
3013 3014
		if (!likely(rdp->nxtlist))
			init_default_callback_list(rdp);
3015
	}
3016
	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3017 3018
	if (lazy)
		rdp->qlen_lazy++;
3019 3020
	else
		rcu_idle_count_callbacks_posted();
3021 3022 3023
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3024

3025 3026
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3027
					 rdp->qlen_lazy, rdp->qlen);
3028
	else
3029
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3030

3031 3032
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3033 3034 3035 3036
	local_irq_restore(flags);
}

/*
3037
 * Queue an RCU-sched callback for invocation after a grace period.
3038
 */
3039
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3040
{
P
Paul E. McKenney 已提交
3041
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3042
}
3043
EXPORT_SYMBOL_GPL(call_rcu_sched);
3044 3045

/*
3046
 * Queue an RCU callback for invocation after a quicker grace period.
3047 3048 3049
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
3050
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3051 3052 3053
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
3064
	__call_rcu(head, func, rcu_state_p, -1, 1);
3065 3066 3067
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3079 3080
	int ret;

3081
	might_sleep();  /* Check for RCU read-side critical section. */
3082 3083 3084 3085
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3086 3087
}

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3122 3123 3124 3125 3126 3127 3128 3129 3130
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3131 3132 3133 3134
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
3135 3136
	if (rcu_blocking_is_gp())
		return;
3137
	if (rcu_gp_is_expedited())
3138 3139 3140
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3152 3153 3154
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3155 3156 3157
 */
void synchronize_rcu_bh(void)
{
3158 3159 3160 3161
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3162 3163
	if (rcu_blocking_is_gp())
		return;
3164
	if (rcu_gp_is_expedited())
3165 3166 3167
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3168 3169 3170
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3191
	return smp_load_acquire(&rcu_state_p->gpnum);
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3217
	newstate = smp_load_acquire(&rcu_state_p->completed);
3218 3219 3220 3221 3222
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
3274 3275 3276
	cpumask_var_t cm;
	bool cma = false;
	int cpu;
3277 3278
	long firstsnap, s, snap;
	int trycount = 0;
3279
	struct rcu_state *rsp = &rcu_sched_state;
3280

3281 3282 3283 3284 3285 3286 3287 3288
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
3289 3290
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
3291 3292
			 ULONG_MAX / 8)) {
		synchronize_sched();
3293
		atomic_long_inc(&rsp->expedited_wrap);
3294 3295
		return;
	}
3296

3297 3298 3299 3300
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
3301
	snap = atomic_long_inc_return(&rsp->expedited_start);
3302
	firstsnap = snap;
3303 3304 3305 3306 3307 3308
	if (!try_get_online_cpus()) {
		/* CPU hotplug operation in flight, fall back to normal GP. */
		wait_rcu_gp(call_rcu_sched);
		atomic_long_inc(&rsp->expedited_normal);
		return;
	}
3309
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3310

3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
	/* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
	cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
	if (cma) {
		cpumask_copy(cm, cpu_online_mask);
		cpumask_clear_cpu(raw_smp_processor_id(), cm);
		for_each_cpu(cpu, cm) {
			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

			if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
				cpumask_clear_cpu(cpu, cm);
		}
		if (cpumask_weight(cm) == 0)
			goto all_cpus_idle;
	}

3326 3327 3328 3329
	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
3330
	while (try_stop_cpus(cma ? cm : cpu_online_mask,
3331 3332 3333
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
3334
		atomic_long_inc(&rsp->expedited_tryfail);
3335

3336
		/* Check to see if someone else did our work for us. */
3337
		s = atomic_long_read(&rsp->expedited_done);
3338
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3339
			/* ensure test happens before caller kfree */
3340
			smp_mb__before_atomic(); /* ^^^ */
3341
			atomic_long_inc(&rsp->expedited_workdone1);
3342
			free_cpumask_var(cm);
3343 3344
			return;
		}
3345 3346

		/* No joy, try again later.  Or just synchronize_sched(). */
3347
		if (trycount++ < 10) {
3348
			udelay(trycount * num_online_cpus());
3349
		} else {
3350
			wait_rcu_gp(call_rcu_sched);
3351
			atomic_long_inc(&rsp->expedited_normal);
3352
			free_cpumask_var(cm);
3353 3354 3355
			return;
		}

3356
		/* Recheck to see if someone else did our work for us. */
3357
		s = atomic_long_read(&rsp->expedited_done);
3358
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3359
			/* ensure test happens before caller kfree */
3360
			smp_mb__before_atomic(); /* ^^^ */
3361
			atomic_long_inc(&rsp->expedited_workdone2);
3362
			free_cpumask_var(cm);
3363 3364 3365 3366 3367
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
3368 3369 3370 3371
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
3372
		 */
3373 3374 3375 3376
		if (!try_get_online_cpus()) {
			/* CPU hotplug operation in flight, use normal GP. */
			wait_rcu_gp(call_rcu_sched);
			atomic_long_inc(&rsp->expedited_normal);
3377
			free_cpumask_var(cm);
3378 3379
			return;
		}
3380
		snap = atomic_long_read(&rsp->expedited_start);
3381 3382
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
3383
	atomic_long_inc(&rsp->expedited_stoppedcpus);
3384

3385 3386 3387
all_cpus_idle:
	free_cpumask_var(cm);

3388 3389 3390 3391
	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
3392
	 * than we did already did their update.
3393 3394
	 */
	do {
3395
		atomic_long_inc(&rsp->expedited_done_tries);
3396
		s = atomic_long_read(&rsp->expedited_done);
3397
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3398
			/* ensure test happens before caller kfree */
3399
			smp_mb__before_atomic(); /* ^^^ */
3400
			atomic_long_inc(&rsp->expedited_done_lost);
3401 3402
			break;
		}
3403
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3404
	atomic_long_inc(&rsp->expedited_done_exit);
3405 3406 3407 3408 3409

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3410 3411 3412 3413 3414 3415 3416 3417 3418
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3419 3420
	struct rcu_node *rnp = rdp->mynode;

3421 3422 3423 3424 3425
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3426 3427 3428 3429
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3430
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3431
	if (rcu_scheduler_fully_active &&
3432 3433
	    rdp->qs_pending && !rdp->passed_quiesce &&
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3434
		rdp->n_rp_qs_pending++;
3435 3436 3437
	} else if (rdp->qs_pending &&
		   (rdp->passed_quiesce ||
		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3438
		rdp->n_rp_report_qs++;
3439
		return 1;
3440
	}
3441 3442

	/* Does this CPU have callbacks ready to invoke? */
3443 3444
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3445
		return 1;
3446
	}
3447 3448

	/* Has RCU gone idle with this CPU needing another grace period? */
3449 3450
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3451
		return 1;
3452
	}
3453 3454

	/* Has another RCU grace period completed?  */
3455
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3456
		rdp->n_rp_gp_completed++;
3457
		return 1;
3458
	}
3459 3460

	/* Has a new RCU grace period started? */
3461 3462
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3463
		rdp->n_rp_gp_started++;
3464
		return 1;
3465
	}
3466

3467 3468 3469 3470 3471 3472
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3473
	/* nothing to do */
3474
	rdp->n_rp_need_nothing++;
3475 3476 3477 3478 3479 3480 3481 3482
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3483
static int rcu_pending(void)
3484
{
3485 3486 3487
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3488
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3489 3490
			return 1;
	return 0;
3491 3492 3493
}

/*
3494 3495 3496
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3497
 */
3498
static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3499
{
3500 3501 3502
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3503 3504
	struct rcu_state *rsp;

3505
	for_each_rcu_flavor(rsp) {
3506
		rdp = this_cpu_ptr(rsp->rda);
3507 3508 3509 3510
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3511
			al = false;
3512 3513
			break;
		}
3514 3515 3516 3517
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3518 3519
}

3520 3521 3522 3523
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3524
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3525 3526 3527 3528 3529 3530
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3531 3532 3533 3534
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3535
static void rcu_barrier_callback(struct rcu_head *rhp)
3536
{
3537 3538 3539
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3540 3541
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3542
		complete(&rsp->barrier_completion);
3543 3544 3545
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
3546 3547 3548 3549 3550 3551 3552
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3553
	struct rcu_state *rsp = type;
3554
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3555

3556
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3557
	atomic_inc(&rsp->barrier_cpu_count);
3558
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3559 3560 3561 3562 3563 3564
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3565
static void _rcu_barrier(struct rcu_state *rsp)
3566
{
3567 3568
	int cpu;
	struct rcu_data *rdp;
3569
	unsigned long snap = READ_ONCE(rsp->n_barrier_done);
3570
	unsigned long snap_done;
3571

3572
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3573

3574
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3575
	mutex_lock(&rsp->barrier_mutex);
3576

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
3589
	snap_done = rsp->n_barrier_done;
3590
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602

	/*
	 * If the value in snap is odd, we needed to wait for the current
	 * rcu_barrier() to complete, then wait for the next one, in other
	 * words, we need the value of snap_done to be three larger than
	 * the value of snap.  On the other hand, if the value in snap is
	 * even, we only had to wait for the next rcu_barrier() to complete,
	 * in other words, we need the value of snap_done to be only two
	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
	 * this for us (thank you, Linus!).
	 */
	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3603
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3604 3605 3606 3607 3608 3609 3610
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
3611
	 * WRITE_ONCE() to prevent the compiler from speculating
3612 3613
	 * the increment to precede the early-exit check.
	 */
3614
	WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3615
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3616
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3617
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3618

3619
	/*
3620 3621
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3622 3623
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3624
	 */
3625
	init_completion(&rsp->barrier_completion);
3626
	atomic_set(&rsp->barrier_cpu_count, 1);
3627
	get_online_cpus();
3628 3629

	/*
3630 3631 3632
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3633
	 */
P
Paul E. McKenney 已提交
3634
	for_each_possible_cpu(cpu) {
3635
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3636
			continue;
3637
		rdp = per_cpu_ptr(rsp->rda, cpu);
3638
		if (rcu_is_nocb_cpu(cpu)) {
3639 3640 3641 3642 3643 3644
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
						   rsp->n_barrier_done);
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
						   rsp->n_barrier_done);
3645
				smp_mb__before_atomic();
3646 3647 3648 3649
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
3650
		} else if (READ_ONCE(rdp->qlen)) {
3651 3652
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
3653
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3654
		} else {
3655 3656
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
3657 3658
		}
	}
3659
	put_online_cpus();
3660 3661 3662 3663 3664

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3665
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3666
		complete(&rsp->barrier_completion);
3667

3668 3669
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
3670
	WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3671
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3672
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3673 3674
	smp_mb(); /* Keep increment before caller's subsequent code. */

3675
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3676
	wait_for_completion(&rsp->barrier_completion);
3677 3678

	/* Other rcu_barrier() invocations can now safely proceed. */
3679
	mutex_unlock(&rsp->barrier_mutex);
3680 3681 3682 3683 3684 3685 3686
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3687
	_rcu_barrier(&rcu_bh_state);
3688 3689 3690 3691 3692 3693 3694 3695
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3696
	_rcu_barrier(&rcu_sched_state);
3697 3698 3699
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
		raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
		rnp->qsmaskinit |= mask;
		raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
	}
}

3722
/*
3723
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3724
 */
3725 3726
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3727 3728
{
	unsigned long flags;
3729
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3730 3731 3732
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3733
	raw_spin_lock_irqsave(&rnp->lock, flags);
3734 3735
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3736
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3737
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3738
	rdp->cpu = cpu;
3739
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3740
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
3741
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3742 3743 3744 3745 3746 3747 3748
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3749
 */
3750
static void
3751
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3752 3753 3754
{
	unsigned long flags;
	unsigned long mask;
3755
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3756 3757 3758
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3759
	raw_spin_lock_irqsave(&rnp->lock, flags);
3760
	rdp->beenonline = 1;	 /* We have now been online. */
3761 3762
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3763
	rdp->blimit = blimit;
3764 3765
	if (!rdp->nxtlist)
		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3766
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3767
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3768 3769
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
3770
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3771

3772 3773 3774 3775 3776
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
3777 3778
	rnp = rdp->mynode;
	mask = rdp->grpmask;
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
	smp_mb__after_unlock_lock();
	rnp->qsmaskinitnext |= mask;
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
	rdp->passed_quiesce = false;
	rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
	rdp->qs_pending = false;
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3789 3790
}

3791
static void rcu_prepare_cpu(int cpu)
3792
{
3793 3794 3795
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3796
		rcu_init_percpu_data(cpu, rsp);
3797 3798 3799
}

/*
3800
 * Handle CPU online/offline notification events.
3801
 */
3802 3803
int rcu_cpu_notify(struct notifier_block *self,
		   unsigned long action, void *hcpu)
3804 3805
{
	long cpu = (long)hcpu;
3806
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3807
	struct rcu_node *rnp = rdp->mynode;
3808
	struct rcu_state *rsp;
3809 3810 3811 3812

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
3813 3814
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
3815
		rcu_spawn_all_nocb_kthreads(cpu);
3816 3817
		break;
	case CPU_ONLINE:
3818
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
3819
		rcu_boost_kthread_setaffinity(rnp, -1);
3820 3821
		break;
	case CPU_DOWN_PREPARE:
3822
		rcu_boost_kthread_setaffinity(rnp, cpu);
3823
		break;
3824 3825
	case CPU_DYING:
	case CPU_DYING_FROZEN:
3826 3827
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
3828
		break;
3829 3830 3831 3832 3833
	case CPU_DYING_IDLE:
		for_each_rcu_flavor(rsp) {
			rcu_cleanup_dying_idle_cpu(cpu, rsp);
		}
		break;
3834 3835 3836 3837
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
3838
		for_each_rcu_flavor(rsp) {
3839
			rcu_cleanup_dead_cpu(cpu, rsp);
3840 3841
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
3842 3843 3844 3845
		break;
	default:
		break;
	}
3846
	return NOTIFY_OK;
3847 3848
}

3849 3850 3851 3852 3853 3854 3855
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3856
			rcu_expedite_gp();
3857 3858 3859
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
3860 3861
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
3862 3863 3864 3865 3866 3867 3868
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3869
/*
3870
 * Spawn the kthreads that handle each RCU flavor's grace periods.
3871 3872 3873 3874
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
3875
	int kthread_prio_in = kthread_prio;
3876 3877
	struct rcu_node *rnp;
	struct rcu_state *rsp;
3878
	struct sched_param sp;
3879 3880
	struct task_struct *t;

3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

3892
	rcu_scheduler_fully_active = 1;
3893
	for_each_rcu_flavor(rsp) {
3894
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3895 3896 3897 3898
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
3899 3900 3901 3902 3903
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
		wake_up_process(t);
3904 3905
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
3906
	rcu_spawn_nocb_kthreads();
3907
	rcu_spawn_boost_kthreads();
3908 3909 3910 3911
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

3927 3928 3929 3930 3931 3932 3933 3934
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
	if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT)) {
		rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
		for (i = rcu_num_lvls - 2; i >= 0; i--)
			rsp->levelspread[i] = CONFIG_RCU_FANOUT;
	} else {
		int ccur;
		int cprv;

		cprv = nr_cpu_ids;
		for (i = rcu_num_lvls - 1; i >= 0; i--) {
			ccur = rsp->levelcnt[i];
			rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
			cprv = ccur;
		}
3949 3950 3951 3952 3953 3954
	}
}

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3955 3956
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3957
{
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
	static const char * const buf[] = {
		"rcu_node_0",
		"rcu_node_1",
		"rcu_node_2",
		"rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static const char * const fqs[] = {
		"rcu_node_fqs_0",
		"rcu_node_fqs_1",
		"rcu_node_fqs_2",
		"rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3968
	static u8 fl_mask = 0x1;
3969 3970 3971 3972 3973
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

3974 3975
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

3976 3977 3978 3979
	/* Silence gcc 4.8 warning about array index out of range. */
	if (rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls overflow");

3980 3981
	/* Initialize the level-tracking arrays. */

3982 3983 3984
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
3985 3986
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);
3987 3988
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
3989 3990 3991

	/* Initialize the elements themselves, starting from the leaves. */

3992
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3993 3994 3995
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
3996
			raw_spin_lock_init(&rnp->lock);
3997 3998
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
3999 4000 4001
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4002 4003
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4004 4005 4006 4007
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4008 4009
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
4021
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4022
			rcu_init_one_nocb(rnp);
4023 4024
		}
	}
4025

4026
	init_waitqueue_head(&rsp->gp_wq);
4027
	rnp = rsp->level[rcu_num_lvls - 1];
4028
	for_each_possible_cpu(i) {
4029
		while (i > rnp->grphi)
4030
			rnp++;
4031
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4032 4033
		rcu_boot_init_percpu_data(i, rsp);
	}
4034
	list_add(&rsp->flavors, &rcu_struct_flavors);
4035 4036
}

4037 4038
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4039
 * replace the definitions in tree.h because those are needed to size
4040 4041 4042 4043
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4044
	ulong d;
4045 4046
	int i;
	int j;
4047
	int n = nr_cpu_ids;
4048 4049
	int rcu_capacity[MAX_RCU_LVLS + 1];

4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4063
	/* If the compile-time values are accurate, just leave. */
4064 4065
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
4066
		return;
4067 4068
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

4114
void __init rcu_init(void)
4115
{
P
Paul E. McKenney 已提交
4116
	int cpu;
4117

4118 4119
	rcu_early_boot_tests();

4120
	rcu_bootup_announce();
4121
	rcu_init_geometry();
4122
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4123
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4124
	__rcu_init_preempt();
J
Jiang Fang 已提交
4125
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4126 4127 4128 4129 4130 4131 4132

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
4133
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
4134 4135
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4136 4137
}

4138
#include "tree_plugin.h"