tree.c 128.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
35
#include <linux/rcupdate_wait.h>
36 37
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/sched/debug.h>
39
#include <linux/nmi.h>
40
#include <linux/atomic.h>
41
#include <linux/bitops.h>
42
#include <linux/export.h>
43 44 45 46 47 48 49
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <uapi/linux/sched/types.h>
54
#include <linux/prefetch.h>
55 56
#include <linux/delay.h>
#include <linux/stop_machine.h>
57
#include <linux/random.h>
58
#include <linux/trace_events.h>
59
#include <linux/suspend.h>
60

61
#include "tree.h"
62
#include "rcu.h"
63

64 65 66 67 68
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71 72 73 74 75 76 77 78
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
79 80
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
81
static char sname##_varname[] = #sname; \
82 83 84 85 86 87 88 89 90
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
91
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92
struct rcu_state sname##_state = { \
93
	.level = { &sname##_state.node[0] }, \
94
	.rda = &sname##_data, \
95
	.call = cr, \
96
	.gp_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
97 98
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
99
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 101
	.orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
	.orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
102
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103
	.name = RCU_STATE_NAME(sname), \
104
	.abbr = sabbr, \
105
	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106
	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107
}
108

109 110
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
111

112
static struct rcu_state *const rcu_state_p;
113
LIST_HEAD(rcu_struct_flavors);
114

115 116 117
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
118 119 120
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
121 122
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
123
module_param(rcu_fanout_leaf, int, 0444);
124
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
125 126
/* Number of rcu_nodes at specified level. */
static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
127
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128 129
/* panic() on RCU Stall sysctl. */
int sysctl_panic_on_rcu_stall __read_mostly;
130

131
/*
132 133 134 135
 * The rcu_scheduler_active variable is initialized to the value
 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 * RCU can assume that there is but one task, allowing RCU to (for example)
136
 * optimize synchronize_rcu() to a simple barrier().  When this variable
137 138 139 140 141
 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 * to detect real grace periods.  This variable is also used to suppress
 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 * is fully initialized, including all of its kthreads having been spawned.
142
 */
143 144 145
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

160 161
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
162
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
163 164
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
165 166
static void rcu_report_exp_rdp(struct rcu_state *rsp,
			       struct rcu_data *rdp, bool wake);
167
static void sync_sched_exp_online_cleanup(int cpu);
168

169
/* rcuc/rcub kthread realtime priority */
170
#ifdef CONFIG_RCU_KTHREAD_PRIO
171
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
172 173 174
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
175 176
module_param(kthread_prio, int, 0644);

177
/* Delay in jiffies for grace-period initialization delays, debug only. */
178 179 180 181 182 183 184 185

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

186 187
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
188
module_param(gp_init_delay, int, 0644);
189 190 191
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
192

193 194 195 196 197 198 199
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

200 201 202 203 204 205 206 207 208 209
/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
210

211 212 213 214 215 216 217 218 219 220 221 222
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

223 224 225 226 227 228 229 230
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
231
	return READ_ONCE(rnp->qsmaskinitnext);
232 233
}

234
/*
235
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
236 237 238 239 240
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
241
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
242 243
}

244
/*
245
 * Note a quiescent state.  Because we do not need to know
246
 * how many quiescent states passed, just if there was at least
247
 * one since the start of the grace period, this just sets a flag.
248
 * The caller must have disabled preemption.
249
 */
250
void rcu_sched_qs(void)
251
{
252 253 254 255 256 257 258 259
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
		return;
	trace_rcu_grace_period(TPS("rcu_sched"),
			       __this_cpu_read(rcu_sched_data.gpnum),
			       TPS("cpuqs"));
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
260 261 262
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(&rcu_sched_data), true);
263 264
}

265
void rcu_bh_qs(void)
266
{
267
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
268 269 270
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
271
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
272
	}
273
}
274

275 276 277 278 279 280 281 282 283 284
/*
 * Steal a bit from the bottom of ->dynticks for idle entry/exit
 * control.  Initially this is for TLB flushing.
 */
#define RCU_DYNTICK_CTRL_MASK 0x1
#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
#ifndef rcu_eqs_special_exit
#define rcu_eqs_special_exit() do { } while (0)
#endif

285 286
static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
287
	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
288 289 290 291 292 293
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

294 295 296 297 298 299 300
/*
 * Record entry into an extended quiescent state.  This is only to be
 * called when not already in an extended quiescent state.
 */
static void rcu_dynticks_eqs_enter(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
301
	int seq;
302 303

	/*
304
	 * CPUs seeing atomic_add_return() must see prior RCU read-side
305 306 307
	 * critical sections, and we also must force ordering with the
	 * next idle sojourn.
	 */
308 309 310 311 312 313 314
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
	/* Better be in an extended quiescent state! */
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (seq & RCU_DYNTICK_CTRL_CTR));
	/* Better not have special action (TLB flush) pending! */
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (seq & RCU_DYNTICK_CTRL_MASK));
315 316 317 318 319 320 321 322 323
}

/*
 * Record exit from an extended quiescent state.  This is only to be
 * called from an extended quiescent state.
 */
static void rcu_dynticks_eqs_exit(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
324
	int seq;
325 326

	/*
327
	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
328 329 330
	 * and we also must force ordering with the next RCU read-side
	 * critical section.
	 */
331 332 333 334 335 336 337 338 339
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(seq & RCU_DYNTICK_CTRL_CTR));
	if (seq & RCU_DYNTICK_CTRL_MASK) {
		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
		smp_mb__after_atomic(); /* _exit after clearing mask. */
		/* Prefer duplicate flushes to losing a flush. */
		rcu_eqs_special_exit();
	}
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
}

/*
 * Reset the current CPU's ->dynticks counter to indicate that the
 * newly onlined CPU is no longer in an extended quiescent state.
 * This will either leave the counter unchanged, or increment it
 * to the next non-quiescent value.
 *
 * The non-atomic test/increment sequence works because the upper bits
 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 * or when the corresponding CPU is offline.
 */
static void rcu_dynticks_eqs_online(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

356
	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
357
		return;
358
	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
359 360
}

361 362 363 364 365 366 367 368 369
/*
 * Is the current CPU in an extended quiescent state?
 *
 * No ordering, as we are sampling CPU-local information.
 */
bool rcu_dynticks_curr_cpu_in_eqs(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

370
	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
371 372
}

373 374 375 376
/*
 * Snapshot the ->dynticks counter with full ordering so as to allow
 * stable comparison of this counter with past and future snapshots.
 */
377
int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
378 379 380
{
	int snap = atomic_add_return(0, &rdtp->dynticks);

381
	return snap & ~RCU_DYNTICK_CTRL_MASK;
382 383
}

384 385 386 387 388 389
/*
 * Return true if the snapshot returned from rcu_dynticks_snap()
 * indicates that RCU is in an extended quiescent state.
 */
static bool rcu_dynticks_in_eqs(int snap)
{
390
	return !(snap & RCU_DYNTICK_CTRL_CTR);
391 392 393 394 395 396 397 398 399 400 401 402
}

/*
 * Return true if the CPU corresponding to the specified rcu_dynticks
 * structure has spent some time in an extended quiescent state since
 * rcu_dynticks_snap() returned the specified snapshot.
 */
static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
{
	return snap != rcu_dynticks_snap(rdtp);
}

403 404 405 406 407 408 409
/*
 * Do a double-increment of the ->dynticks counter to emulate a
 * momentary idle-CPU quiescent state.
 */
static void rcu_dynticks_momentary_idle(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
410 411
	int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
					&rdtp->dynticks);
412 413

	/* It is illegal to call this from idle state. */
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
}

/*
 * Set the special (bottom) bit of the specified CPU so that it
 * will take special action (such as flushing its TLB) on the
 * next exit from an extended quiescent state.  Returns true if
 * the bit was successfully set, or false if the CPU was not in
 * an extended quiescent state.
 */
bool rcu_eqs_special_set(int cpu)
{
	int old;
	int new;
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

	do {
		old = atomic_read(&rdtp->dynticks);
		if (old & RCU_DYNTICK_CTRL_CTR)
			return false;
		new = old | RCU_DYNTICK_CTRL_MASK;
	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
	return true;
437 438
}

439 440 441 442 443 444 445
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
446
 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
447 448
 *
 * The caller must have disabled interrupts.
449 450 451
 */
static void rcu_momentary_dyntick_idle(void)
{
452 453
	raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
	rcu_dynticks_momentary_idle();
454 455
}

456 457 458
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
459
 * The caller must have disabled interrupts.
460
 */
461
void rcu_note_context_switch(void)
462
{
463
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
464
	trace_rcu_utilization(TPS("Start context switch"));
465
	rcu_sched_qs();
466
	rcu_preempt_note_context_switch();
467 468 469 470
	/* Load rcu_urgent_qs before other flags. */
	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
		goto out;
	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
471
	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
472
		rcu_momentary_dyntick_idle();
473 474
	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
out:
475
	trace_rcu_utilization(TPS("End context switch"));
476
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
477
}
478
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
479

480
/*
481
 * Register a quiescent state for all RCU flavors.  If there is an
482 483
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
484
 * RCU flavors in desperate need of a quiescent state, which will normally
485 486
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
487 488 489 490 491
 *
 * The barrier() calls are redundant in the common case when this is
 * called externally, but just in case this is called from within this
 * file.
 *
492 493 494
 */
void rcu_all_qs(void)
{
495 496
	unsigned long flags;

497 498 499 500 501 502 503 504 505
	if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
		return;
	preempt_disable();
	/* Load rcu_urgent_qs before other flags. */
	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
		preempt_enable();
		return;
	}
	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
506
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
507
	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
508
		local_irq_save(flags);
509
		rcu_momentary_dyntick_idle();
510 511
		local_irq_restore(flags);
	}
512
	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
513
		rcu_sched_qs();
514
	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
515
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
516
	preempt_enable();
517 518 519
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
520 521 522
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
523

E
Eric Dumazet 已提交
524 525 526
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
527

528 529
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
530
static bool rcu_kick_kthreads;
531 532 533

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);
534
module_param(rcu_kick_kthreads, bool, 0644);
535

536 537 538 539 540 541 542
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

543
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
544
				  struct rcu_data *rdp);
545 546 547 548
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
549
static void force_quiescent_state(struct rcu_state *rsp);
550
static int rcu_pending(void);
551 552

/*
553
 * Return the number of RCU batches started thus far for debug & stats.
554
 */
555 556 557 558 559 560 561 562
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
563
 */
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
590
 */
591
unsigned long rcu_batches_completed_sched(void)
592
{
593
	return rcu_sched_state.completed;
594
}
595
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
596 597

/*
598
 * Return the number of RCU BH batches completed thus far for debug & stats.
599
 */
600
unsigned long rcu_batches_completed_bh(void)
601 602 603 604 605
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
/*
 * Return the number of RCU expedited batches completed thus far for
 * debug & stats.  Odd numbers mean that a batch is in progress, even
 * numbers mean idle.  The value returned will thus be roughly double
 * the cumulative batches since boot.
 */
unsigned long rcu_exp_batches_completed(void)
{
	return rcu_state_p->expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);

/*
 * Return the number of RCU-sched expedited batches completed thus far
 * for debug & stats.  Similar to rcu_exp_batches_completed().
 */
unsigned long rcu_exp_batches_completed_sched(void)
{
	return rcu_sched_state.expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);

628 629 630 631 632
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
633
	force_quiescent_state(rcu_state_p);
634 635 636
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

637 638 639 640 641
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
642
	force_quiescent_state(&rcu_bh_state);
643 644 645
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

646 647 648 649 650 651 652 653 654
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

670 671 672 673 674 675 676 677 678 679 680 681 682 683
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

684 685 686 687 688 689 690 691 692 693
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
694
		rsp = rcu_state_p;
695 696 697 698 699 700 701 702 703 704 705
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
706 707 708
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
709 710 711 712 713 714 715 716
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

717 718 719 720 721 722 723 724 725 726 727
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
744
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
745 746
	int *fp = &rnp->need_future_gp[idx];

747
	return READ_ONCE(*fp);
748 749
}

750
/*
751 752 753
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
754
 */
755
static bool
756 757
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
758
	if (rcu_gp_in_progress(rsp))
759
		return false;  /* No, a grace period is already in progress. */
760
	if (rcu_future_needs_gp(rsp))
761
		return true;  /* Yes, a no-CBs CPU needs one. */
762
	if (!rcu_segcblist_is_enabled(&rdp->cblist))
763
		return false;  /* No, this is a no-CBs (or offline) CPU. */
764
	if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
765
		return true;  /* Yes, CPU has newly registered callbacks. */
766 767 768
	if (rcu_segcblist_future_gp_needed(&rdp->cblist,
					   READ_ONCE(rsp->completed)))
		return true;  /* Yes, CBs for future grace period. */
769
	return false; /* No grace period needed. */
770 771
}

772
/*
773
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
774 775 776 777 778
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
779
static void rcu_eqs_enter_common(long long oldval, bool user)
780
{
781 782
	struct rcu_state *rsp;
	struct rcu_data *rdp;
783
	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
784

785
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
786 787
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
788 789
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
790

791
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
792
		rcu_ftrace_dump(DUMP_ORIG);
793 794 795
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
796
	}
797 798 799 800
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
801
	rcu_prepare_for_idle();
802
	rcu_dynticks_eqs_enter();
803
	rcu_dynticks_task_enter();
804 805

	/*
806
	 * It is illegal to enter an extended quiescent state while
807 808
	 * in an RCU read-side critical section.
	 */
809 810 811 812 813 814
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal idle entry in RCU read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
			 "Illegal idle entry in RCU-bh read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
			 "Illegal idle entry in RCU-sched read-side critical section.");
815
}
816

817 818 819
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
820
 */
821
static void rcu_eqs_enter(bool user)
822
{
823
	long long oldval;
824 825
	struct rcu_dynticks *rdtp;

826
	rdtp = this_cpu_ptr(&rcu_dynticks);
827
	oldval = rdtp->dynticks_nesting;
828 829
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
830
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
831
		rdtp->dynticks_nesting = 0;
832
		rcu_eqs_enter_common(oldval, user);
833
	} else {
834
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
835
	}
836
}
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
852 853 854
	unsigned long flags;

	local_irq_save(flags);
855
	rcu_eqs_enter(false);
856
	rcu_sysidle_enter(0);
857
	local_irq_restore(flags);
858
}
859
EXPORT_SYMBOL_GPL(rcu_idle_enter);
860

861
#ifdef CONFIG_NO_HZ_FULL
862 863 864 865 866 867 868 869 870 871
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
872
	rcu_eqs_enter(1);
873
}
874
#endif /* CONFIG_NO_HZ_FULL */
875

876 877 878 879 880
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
881
 * sections can occur.  The caller must have disabled interrupts.
882
 *
883 884 885 886 887 888 889 890
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
891
 */
892
void rcu_irq_exit(void)
893
{
894
	long long oldval;
895 896
	struct rcu_dynticks *rdtp;

897
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
898
	rdtp = this_cpu_ptr(&rcu_dynticks);
899
	oldval = rdtp->dynticks_nesting;
900
	rdtp->dynticks_nesting--;
901 902
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting < 0);
903
	if (rdtp->dynticks_nesting)
904
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
905
	else
906 907
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
908 909 910 911 912 913 914 915 916 917 918
}

/*
 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 */
void rcu_irq_exit_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_exit();
919 920 921 922
	local_irq_restore(flags);
}

/*
923
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
924 925 926 927 928
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
929
static void rcu_eqs_exit_common(long long oldval, int user)
930
{
931
	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
932

933
	rcu_dynticks_task_exit();
934
	rcu_dynticks_eqs_exit();
935
	rcu_cleanup_after_idle();
936
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
937 938
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
939 940
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
941

942
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
943
				  oldval, rdtp->dynticks_nesting);
944
		rcu_ftrace_dump(DUMP_ORIG);
945 946 947
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
948 949 950
	}
}

951 952 953
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
954
 */
955
static void rcu_eqs_exit(bool user)
956 957 958 959
{
	struct rcu_dynticks *rdtp;
	long long oldval;

960
	rdtp = this_cpu_ptr(&rcu_dynticks);
961
	oldval = rdtp->dynticks_nesting;
962
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
963
	if (oldval & DYNTICK_TASK_NEST_MASK) {
964
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
965
	} else {
966
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
967
		rcu_eqs_exit_common(oldval, user);
968
	}
969
}
970 971 972 973 974 975 976 977 978 979 980 981 982 983

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
984 985 986
	unsigned long flags;

	local_irq_save(flags);
987
	rcu_eqs_exit(false);
988
	rcu_sysidle_exit(0);
989
	local_irq_restore(flags);
990
}
991
EXPORT_SYMBOL_GPL(rcu_idle_exit);
992

993
#ifdef CONFIG_NO_HZ_FULL
994 995 996 997 998 999 1000 1001
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
1002
	rcu_eqs_exit(1);
1003
}
1004
#endif /* CONFIG_NO_HZ_FULL */
1005

1006 1007 1008 1009 1010
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
1011
 * sections can occur.  The caller must have disabled interrupts.
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	struct rcu_dynticks *rdtp;
	long long oldval;

1030
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1031
	rdtp = this_cpu_ptr(&rcu_dynticks);
1032 1033
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
1034 1035
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
1036
	if (oldval)
1037
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1038
	else
1039 1040
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
}

/*
 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 */
void rcu_irq_enter_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_enter();
1052 1053 1054 1055 1056 1057
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
1058 1059 1060 1061 1062
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
1063 1064 1065
 */
void rcu_nmi_enter(void)
{
1066
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1067
	int incby = 2;
1068

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
1080
	if (rcu_dynticks_curr_cpu_in_eqs()) {
1081
		rcu_dynticks_eqs_exit();
1082 1083 1084 1085
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
1086 1087 1088 1089 1090
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
1091 1092 1093 1094
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
1095 1096 1097
 */
void rcu_nmi_exit(void)
{
1098
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1099

1100 1101 1102 1103 1104 1105
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1106
	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1107 1108 1109 1110 1111 1112 1113

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
1114
		return;
1115 1116 1117 1118
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
1119
	rcu_dynticks_eqs_enter();
1120 1121 1122
}

/**
1123 1124 1125 1126 1127 1128 1129
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
1130
bool notrace __rcu_is_watching(void)
1131
{
1132
	return !rcu_dynticks_curr_cpu_in_eqs();
1133 1134 1135 1136
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1137
 *
1138
 * If the current CPU is in its idle loop and is neither in an interrupt
1139
 * or NMI handler, return true.
1140
 */
1141
bool notrace rcu_is_watching(void)
1142
{
1143
	bool ret;
1144

1145
	preempt_disable_notrace();
1146
	ret = __rcu_is_watching();
1147
	preempt_enable_notrace();
1148
	return ret;
1149
}
1150
EXPORT_SYMBOL_GPL(rcu_is_watching);
1151

1152
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1153 1154 1155 1156 1157 1158 1159

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
1160 1161 1162 1163 1164 1165
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
1166 1167
 * the fact that a CPU enters the scheduler after completing the teardown
 * of the CPU.
1168
 *
1169 1170
 * This is also why RCU internally marks CPUs online during in the
 * preparation phase and offline after the CPU has been taken down.
1171 1172 1173 1174 1175 1176
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1177 1178
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1179 1180 1181
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1182
		return true;
1183
	preempt_disable();
1184
	rdp = this_cpu_ptr(&rcu_sched_data);
1185
	rnp = rdp->mynode;
1186
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1187 1188 1189 1190 1191 1192
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1193
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1194

1195
/**
1196
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1197
 *
1198 1199 1200
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1201
 */
1202
static int rcu_is_cpu_rrupt_from_idle(void)
1203
{
1204
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1205 1206 1207 1208 1209
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1210
 * is in dynticks idle mode, which is an extended quiescent state.
1211
 */
1212 1213
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1214
{
1215
	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1216
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1217
	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1218
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1219
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1220
				 rdp->mynode->gpnum))
1221
			WRITE_ONCE(rdp->gpwrap, true);
1222
		return 1;
1223
	}
1224
	return 0;
1225 1226 1227 1228 1229 1230
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1231
 * for this same CPU, or by virtue of having been offline.
1232
 */
1233 1234
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1235
{
1236
	unsigned long jtsq;
1237
	bool *rnhqp;
1238
	bool *ruqp;
1239 1240
	unsigned long rjtsc;
	struct rcu_node *rnp;
1241 1242 1243 1244 1245 1246 1247 1248 1249

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1250
	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1251
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1252 1253 1254 1255
		rdp->dynticks_fqs++;
		return 1;
	}

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	/* Compute and saturate jiffies_till_sched_qs. */
	jtsq = jiffies_till_sched_qs;
	rjtsc = rcu_jiffies_till_stall_check();
	if (jtsq > rjtsc / 2) {
		WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
		jtsq = rjtsc / 2;
	} else if (jtsq < 1) {
		WRITE_ONCE(jiffies_till_sched_qs, 1);
		jtsq = 1;
	}

1267
	/*
1268 1269 1270 1271
	 * Has this CPU encountered a cond_resched_rcu_qs() since the
	 * beginning of the grace period?  For this to be the case,
	 * the CPU has to have noticed the current grace period.  This
	 * might not be the case for nohz_full CPUs looping in the kernel.
1272
	 */
1273
	rnp = rdp->mynode;
1274
	ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1275
	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1276
	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1277 1278 1279
	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
		return 1;
1280 1281 1282
	} else {
		/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
		smp_store_release(ruqp, true);
1283 1284
	}

1285 1286
	/* Check for the CPU being offline. */
	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1287
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1288 1289 1290
		rdp->offline_fqs++;
		return 1;
	}
1291 1292

	/*
1293 1294 1295 1296 1297 1298
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
1299
	 * rcu_need_heavy_qs variable are safe.  Yes, setting of
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1312
	 */
1313 1314 1315 1316 1317
	rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
	if (!READ_ONCE(*rnhqp) &&
	    (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
	     time_after(jiffies, rdp->rsp->jiffies_resched))) {
		WRITE_ONCE(*rnhqp, true);
1318 1319
		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
		smp_store_release(ruqp, true);
1320
		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1321 1322
	}

1323 1324 1325 1326 1327 1328
	/*
	 * If more than halfway to RCU CPU stall-warning time, do
	 * a resched_cpu() to try to loosen things up a bit.
	 */
	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
		resched_cpu(rdp->cpu);
1329

1330
	return 0;
1331 1332 1333 1334
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1335
	unsigned long j = jiffies;
1336
	unsigned long j1;
1337 1338 1339

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1340
	j1 = rcu_jiffies_till_stall_check();
1341
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1342
	rsp->jiffies_resched = j + j1 / 2;
1343
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1344 1345
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
/*
 * Convert a ->gp_state value to a character string.
 */
static const char *gp_state_getname(short gs)
{
	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
		return "???";
	return gp_state_names[gs];
}

1356 1357 1358 1359 1360 1361 1362 1363 1364
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1365
	gpa = READ_ONCE(rsp->gp_activity);
1366
	if (j - gpa > 2 * HZ) {
1367
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1368
		       rsp->name, j - gpa,
1369
		       rsp->gpnum, rsp->completed,
1370 1371
		       rsp->gp_flags,
		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1372
		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1373
		if (rsp->gp_kthread) {
1374
			sched_show_task(rsp->gp_kthread);
1375 1376
			wake_up_process(rsp->gp_kthread);
		}
1377
	}
1378 1379
}

1380
/*
1381 1382 1383 1384
 * Dump stacks of all tasks running on stalled CPUs.  First try using
 * NMIs, but fall back to manual remote stack tracing on architectures
 * that don't support NMI-based stack dumps.  The NMI-triggered stack
 * traces are more accurate because they are printed by the target CPU.
1385 1386 1387 1388 1389 1390 1391 1392
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
1393
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1394 1395 1396
		for_each_leaf_node_possible_cpu(rnp, cpu)
			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
				if (!trigger_single_cpu_backtrace(cpu))
1397
					dump_cpu_task(cpu);
B
Boqun Feng 已提交
1398
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1399 1400 1401
	}
}

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
/*
 * If too much time has passed in the current grace period, and if
 * so configured, go kick the relevant kthreads.
 */
static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
{
	unsigned long j;

	if (!rcu_kick_kthreads)
		return;
	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1413 1414
	if (time_after(jiffies, j) && rsp->gp_kthread &&
	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1415
		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1416
		rcu_ftrace_dump(DUMP_ALL);
1417 1418 1419 1420 1421
		wake_up_process(rsp->gp_kthread);
		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
	}
}

1422 1423 1424 1425 1426 1427
static inline void panic_on_rcu_stall(void)
{
	if (sysctl_panic_on_rcu_stall)
		panic("RCU Stall\n");
}

1428
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1429 1430 1431 1432
{
	int cpu;
	long delta;
	unsigned long flags;
1433 1434
	unsigned long gpa;
	unsigned long j;
1435
	int ndetected = 0;
1436
	struct rcu_node *rnp = rcu_get_root(rsp);
1437
	long totqlen = 0;
1438

1439 1440 1441 1442 1443
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1444 1445
	/* Only let one CPU complain about others per time interval. */

1446
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1447
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1448
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
B
Boqun Feng 已提交
1449
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1450 1451
		return;
	}
1452 1453
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1454
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1455

1456 1457 1458 1459 1460
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1461
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1462
	       rsp->name);
1463
	print_cpu_stall_info_begin();
1464
	rcu_for_each_leaf_node(rsp, rnp) {
1465
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1466
		ndetected += rcu_print_task_stall(rnp);
1467
		if (rnp->qsmask != 0) {
1468 1469 1470
			for_each_leaf_node_possible_cpu(rnp, cpu)
				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
					print_cpu_stall_info(rsp, cpu);
1471 1472 1473
					ndetected++;
				}
		}
B
Boqun Feng 已提交
1474
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1475
	}
1476 1477

	print_cpu_stall_info_end();
1478
	for_each_possible_cpu(cpu)
1479 1480
		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
							    cpu)->cblist);
1481
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1482
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1483
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1484
	if (ndetected) {
1485
		rcu_dump_cpu_stacks(rsp);
1486 1487 1488

		/* Complain about tasks blocking the grace period. */
		rcu_print_detail_task_stall(rsp);
1489
	} else {
1490 1491
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1492 1493 1494
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1495
			gpa = READ_ONCE(rsp->gp_activity);
1496
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1497
			       rsp->name, j - gpa, j, gpa,
1498 1499
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1500 1501 1502 1503
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1504

1505 1506
	rcu_check_gp_kthread_starvation(rsp);

1507 1508
	panic_on_rcu_stall();

1509
	force_quiescent_state(rsp);  /* Kick them all. */
1510 1511 1512 1513
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1514
	int cpu;
1515 1516
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1517
	long totqlen = 0;
1518

1519 1520 1521 1522 1523
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1524 1525 1526 1527 1528
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1529
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1530 1531 1532
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1533
	for_each_possible_cpu(cpu)
1534 1535
		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
							    cpu)->cblist);
1536 1537 1538
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1539 1540 1541

	rcu_check_gp_kthread_starvation(rsp);

1542
	rcu_dump_cpu_stacks(rsp);
1543

1544
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1545 1546 1547
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1548
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1549

1550 1551
	panic_on_rcu_stall();

1552 1553 1554 1555 1556 1557 1558 1559
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1560 1561 1562 1563
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1564 1565 1566
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1567 1568
	unsigned long j;
	unsigned long js;
1569 1570
	struct rcu_node *rnp;

1571 1572
	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
	    !rcu_gp_in_progress(rsp))
1573
		return;
1574
	rcu_stall_kick_kthreads(rsp);
1575
	j = jiffies;
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1594
	gpnum = READ_ONCE(rsp->gpnum);
1595
	smp_rmb(); /* Pick up ->gpnum first... */
1596
	js = READ_ONCE(rsp->jiffies_stall);
1597
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1598
	gps = READ_ONCE(rsp->gp_start);
1599
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1600
	completed = READ_ONCE(rsp->completed);
1601 1602 1603 1604
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1605
	rnp = rdp->mynode;
1606
	if (rcu_gp_in_progress(rsp) &&
1607
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1608 1609 1610 1611

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1612 1613
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1614

1615
		/* They had a few time units to dump stack, so complain. */
1616
		print_other_cpu_stall(rsp, gpnum);
1617 1618 1619
	}
}

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1631 1632 1633
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1634
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1635 1636
}

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1666 1667 1668 1669 1670
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1671
				unsigned long c, const char *s)
1672 1673 1674 1675 1676 1677 1678 1679 1680
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1681 1682
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1683 1684 1685
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1686 1687 1688
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1689 1690
{
	unsigned long c;
1691
	bool ret = false;
1692 1693 1694 1695 1696 1697 1698
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1699
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1700
	if (rnp->need_future_gp[c & 0x1]) {
1701
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1702
		goto out;
1703 1704 1705 1706 1707 1708 1709
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1710 1711 1712 1713 1714 1715 1716
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1717 1718
	 */
	if (rnp->gpnum != rnp->completed ||
1719
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1720
		rnp->need_future_gp[c & 0x1]++;
1721
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1722
		goto out;
1723 1724 1725 1726 1727 1728 1729
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1730 1731
	if (rnp != rnp_root)
		raw_spin_lock_rcu_node(rnp_root);
1732 1733 1734 1735

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
1736
	 * earlier.  Adjust callbacks as needed.
1737 1738
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1739 1740
	if (!rcu_is_nocb_cpu(rdp->cpu))
		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1741 1742 1743 1744 1745 1746

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1747
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1748 1749 1750 1751 1752 1753 1754 1755
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1756
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1757
	} else {
1758
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1759
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1760 1761 1762
	}
unlock_out:
	if (rnp != rnp_root)
B
Boqun Feng 已提交
1763
		raw_spin_unlock_rcu_node(rnp_root);
1764 1765 1766 1767
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1784 1785
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1786 1787 1788
	return needmore;
}

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1799
	    !READ_ONCE(rsp->gp_flags) ||
1800 1801
	    !rsp->gp_kthread)
		return;
1802
	swake_up(&rsp->gp_wq);
1803 1804
}

1805 1806 1807 1808 1809 1810 1811
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1812 1813
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1814 1815 1816
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1817
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1818 1819
			       struct rcu_data *rdp)
{
1820
	bool ret = false;
1821

1822 1823
	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1824
		return false;
1825 1826

	/*
1827 1828 1829 1830 1831 1832 1833 1834
	 * Callbacks are often registered with incomplete grace-period
	 * information.  Something about the fact that getting exact
	 * information requires acquiring a global lock...  RCU therefore
	 * makes a conservative estimate of the grace period number at which
	 * a given callback will become ready to invoke.	The following
	 * code checks this estimate and improves it when possible, thus
	 * accelerating callback invocation to an earlier grace-period
	 * number.
1835
	 */
1836 1837
	if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
		ret = rcu_start_future_gp(rnp, rdp, NULL);
1838 1839

	/* Trace depending on how much we were able to accelerate. */
1840
	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1841
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1842
	else
1843
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1844
	return ret;
1845 1846 1847 1848 1849 1850 1851 1852
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1853
 * Returns true if the RCU grace-period kthread needs to be awakened.
1854 1855 1856
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1857
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1858 1859
			    struct rcu_data *rdp)
{
1860 1861
	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1862
		return false;
1863 1864 1865 1866 1867

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
1868
	rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1869 1870

	/* Classify any remaining callbacks. */
1871
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1872 1873
}

1874
/*
1875 1876 1877
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1878
 * Returns true if the grace-period kthread needs to be awakened.
1879
 */
1880 1881
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1882
{
1883
	bool ret;
1884
	bool need_gp;
1885

1886
	/* Handle the ends of any preceding grace periods first. */
1887
	if (rdp->completed == rnp->completed &&
1888
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1889

1890
		/* No grace period end, so just accelerate recent callbacks. */
1891
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1892

1893 1894 1895
	} else {

		/* Advance callbacks. */
1896
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1897 1898 1899

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1900
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1901
	}
1902

1903
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1904 1905 1906 1907 1908 1909
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1910
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1911 1912
		need_gp = !!(rnp->qsmask & rdp->grpmask);
		rdp->cpu_no_qs.b.norm = need_gp;
1913
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1914
		rdp->core_needs_qs = need_gp;
1915
		zero_cpu_stall_ticks(rdp);
1916
		WRITE_ONCE(rdp->gpwrap, false);
1917
	}
1918
	return ret;
1919 1920
}

1921
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1922 1923
{
	unsigned long flags;
1924
	bool needwake;
1925 1926 1927 1928
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1929 1930 1931
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1932
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1933 1934 1935
		local_irq_restore(flags);
		return;
	}
1936
	needwake = __note_gp_changes(rsp, rnp, rdp);
B
Boqun Feng 已提交
1937
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1938 1939
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1940 1941
}

1942 1943 1944 1945 1946 1947 1948
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

1949
/*
1950
 * Initialize a new grace period.  Return false if no grace period required.
1951
 */
1952
static bool rcu_gp_init(struct rcu_state *rsp)
1953
{
1954
	unsigned long oldmask;
1955
	struct rcu_data *rdp;
1956
	struct rcu_node *rnp = rcu_get_root(rsp);
1957

1958
	WRITE_ONCE(rsp->gp_activity, jiffies);
1959
	raw_spin_lock_irq_rcu_node(rnp);
1960
	if (!READ_ONCE(rsp->gp_flags)) {
1961
		/* Spurious wakeup, tell caller to go back to sleep.  */
B
Boqun Feng 已提交
1962
		raw_spin_unlock_irq_rcu_node(rnp);
1963
		return false;
1964
	}
1965
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1966

1967 1968 1969 1970 1971
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
B
Boqun Feng 已提交
1972
		raw_spin_unlock_irq_rcu_node(rnp);
1973
		return false;
1974 1975 1976
	}

	/* Advance to a new grace period and initialize state. */
1977
	record_gp_stall_check_time(rsp);
1978 1979
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1980
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
B
Boqun Feng 已提交
1981
	raw_spin_unlock_irq_rcu_node(rnp);
1982

1983 1984 1985 1986 1987 1988 1989
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
1990
		rcu_gp_slow(rsp, gp_preinit_delay);
1991
		raw_spin_lock_irq_rcu_node(rnp);
1992 1993 1994
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
B
Boqun Feng 已提交
1995
			raw_spin_unlock_irq_rcu_node(rnp);
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

B
Boqun Feng 已提交
2029
		raw_spin_unlock_irq_rcu_node(rnp);
2030
	}
2031 2032 2033 2034 2035 2036 2037 2038

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
2039
	 * leaf node has been initialized.
2040 2041 2042 2043 2044
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2045
		rcu_gp_slow(rsp, gp_init_delay);
2046
		raw_spin_lock_irq_rcu_node(rnp);
2047
		rdp = this_cpu_ptr(rsp->rda);
2048 2049
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
2050
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2051
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2052
			WRITE_ONCE(rnp->completed, rsp->completed);
2053
		if (rnp == rdp->mynode)
2054
			(void)__note_gp_changes(rsp, rnp, rdp);
2055 2056 2057 2058
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
B
Boqun Feng 已提交
2059
		raw_spin_unlock_irq_rcu_node(rnp);
2060
		cond_resched_rcu_qs();
2061
		WRITE_ONCE(rsp->gp_activity, jiffies);
2062
	}
2063

2064
	return true;
2065
}
2066

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
/*
 * Helper function for wait_event_interruptible_timeout() wakeup
 * at force-quiescent-state time.
 */
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rsp->gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

2087 2088 2089
/*
 * Do one round of quiescent-state forcing.
 */
2090
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2091
{
2092 2093
	bool isidle = false;
	unsigned long maxj;
2094 2095
	struct rcu_node *rnp = rcu_get_root(rsp);

2096
	WRITE_ONCE(rsp->gp_activity, jiffies);
2097
	rsp->n_force_qs++;
2098
	if (first_time) {
2099
		/* Collect dyntick-idle snapshots. */
2100
		if (is_sysidle_rcu_state(rsp)) {
2101
			isidle = true;
2102 2103
			maxj = jiffies - ULONG_MAX / 4;
		}
2104 2105
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
2106
		rcu_sysidle_report_gp(rsp, isidle, maxj);
2107 2108
	} else {
		/* Handle dyntick-idle and offline CPUs. */
2109
		isidle = true;
2110
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2111 2112
	}
	/* Clear flag to prevent immediate re-entry. */
2113
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2114
		raw_spin_lock_irq_rcu_node(rnp);
2115 2116
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2117
		raw_spin_unlock_irq_rcu_node(rnp);
2118 2119 2120
	}
}

2121 2122 2123
/*
 * Clean up after the old grace period.
 */
2124
static void rcu_gp_cleanup(struct rcu_state *rsp)
2125 2126
{
	unsigned long gp_duration;
2127
	bool needgp = false;
2128
	int nocb = 0;
2129 2130
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
2131
	struct swait_queue_head *sq;
2132

2133
	WRITE_ONCE(rsp->gp_activity, jiffies);
2134
	raw_spin_lock_irq_rcu_node(rnp);
2135 2136 2137
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
2138

2139 2140 2141 2142 2143 2144 2145 2146
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
B
Boqun Feng 已提交
2147
	raw_spin_unlock_irq_rcu_node(rnp);
2148

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2159
		raw_spin_lock_irq_rcu_node(rnp);
2160 2161
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
2162
		WRITE_ONCE(rnp->completed, rsp->gpnum);
2163 2164
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
2165
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2166
		/* smp_mb() provided by prior unlock-lock pair. */
2167
		nocb += rcu_future_gp_cleanup(rsp, rnp);
2168
		sq = rcu_nocb_gp_get(rnp);
B
Boqun Feng 已提交
2169
		raw_spin_unlock_irq_rcu_node(rnp);
2170
		rcu_nocb_gp_cleanup(sq);
2171
		cond_resched_rcu_qs();
2172
		WRITE_ONCE(rsp->gp_activity, jiffies);
2173
		rcu_gp_slow(rsp, gp_cleanup_delay);
2174
	}
2175
	rnp = rcu_get_root(rsp);
2176
	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2177
	rcu_nocb_gp_set(rnp, nocb);
2178

2179
	/* Declare grace period done. */
2180
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2181
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2182
	rsp->gp_state = RCU_GP_IDLE;
2183
	rdp = this_cpu_ptr(rsp->rda);
2184 2185 2186
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2187
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2188
		trace_rcu_grace_period(rsp->name,
2189
				       READ_ONCE(rsp->gpnum),
2190 2191
				       TPS("newreq"));
	}
B
Boqun Feng 已提交
2192
	raw_spin_unlock_irq_rcu_node(rnp);
2193 2194 2195 2196 2197 2198 2199
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2200
	bool first_gp_fqs;
2201
	int gf;
2202
	unsigned long j;
2203
	int ret;
2204 2205 2206
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2207
	rcu_bind_gp_kthread();
2208 2209 2210 2211
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2212
			trace_rcu_grace_period(rsp->name,
2213
					       READ_ONCE(rsp->gpnum),
2214
					       TPS("reqwait"));
2215
			rsp->gp_state = RCU_GP_WAIT_GPS;
2216
			swait_event_interruptible(rsp->gp_wq,
2217
						 READ_ONCE(rsp->gp_flags) &
2218
						 RCU_GP_FLAG_INIT);
2219
			rsp->gp_state = RCU_GP_DONE_GPS;
2220
			/* Locking provides needed memory barrier. */
2221
			if (rcu_gp_init(rsp))
2222
				break;
2223
			cond_resched_rcu_qs();
2224
			WRITE_ONCE(rsp->gp_activity, jiffies);
2225
			WARN_ON(signal_pending(current));
2226
			trace_rcu_grace_period(rsp->name,
2227
					       READ_ONCE(rsp->gpnum),
2228
					       TPS("reqwaitsig"));
2229
		}
2230

2231
		/* Handle quiescent-state forcing. */
2232
		first_gp_fqs = true;
2233 2234 2235 2236 2237
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2238
		ret = 0;
2239
		for (;;) {
2240
			if (!ret) {
2241
				rsp->jiffies_force_qs = jiffies + j;
2242 2243 2244
				WRITE_ONCE(rsp->jiffies_kick_kthreads,
					   jiffies + 3 * j);
			}
2245
			trace_rcu_grace_period(rsp->name,
2246
					       READ_ONCE(rsp->gpnum),
2247
					       TPS("fqswait"));
2248
			rsp->gp_state = RCU_GP_WAIT_FQS;
2249
			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2250
					rcu_gp_fqs_check_wake(rsp, &gf), j);
2251
			rsp->gp_state = RCU_GP_DOING_FQS;
2252
			/* Locking provides needed memory barriers. */
2253
			/* If grace period done, leave loop. */
2254
			if (!READ_ONCE(rnp->qsmask) &&
2255
			    !rcu_preempt_blocked_readers_cgp(rnp))
2256
				break;
2257
			/* If time for quiescent-state forcing, do it. */
2258 2259
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2260
				trace_rcu_grace_period(rsp->name,
2261
						       READ_ONCE(rsp->gpnum),
2262
						       TPS("fqsstart"));
2263 2264
				rcu_gp_fqs(rsp, first_gp_fqs);
				first_gp_fqs = false;
2265
				trace_rcu_grace_period(rsp->name,
2266
						       READ_ONCE(rsp->gpnum),
2267
						       TPS("fqsend"));
2268
				cond_resched_rcu_qs();
2269
				WRITE_ONCE(rsp->gp_activity, jiffies);
2270 2271 2272 2273 2274 2275 2276 2277 2278
				ret = 0; /* Force full wait till next FQS. */
				j = jiffies_till_next_fqs;
				if (j > HZ) {
					j = HZ;
					jiffies_till_next_fqs = HZ;
				} else if (j < 1) {
					j = 1;
					jiffies_till_next_fqs = 1;
				}
2279 2280
			} else {
				/* Deal with stray signal. */
2281
				cond_resched_rcu_qs();
2282
				WRITE_ONCE(rsp->gp_activity, jiffies);
2283
				WARN_ON(signal_pending(current));
2284
				trace_rcu_grace_period(rsp->name,
2285
						       READ_ONCE(rsp->gpnum),
2286
						       TPS("fqswaitsig"));
2287 2288 2289 2290 2291 2292
				ret = 1; /* Keep old FQS timing. */
				j = jiffies;
				if (time_after(jiffies, rsp->jiffies_force_qs))
					j = 1;
				else
					j = rsp->jiffies_force_qs - j;
2293
			}
2294
		}
2295 2296

		/* Handle grace-period end. */
2297
		rsp->gp_state = RCU_GP_CLEANUP;
2298
		rcu_gp_cleanup(rsp);
2299
		rsp->gp_state = RCU_GP_CLEANED;
2300 2301 2302
	}
}

2303 2304 2305
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2306
 * the root node's ->lock and hard irqs must be disabled.
2307 2308 2309 2310
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2311 2312
 *
 * Returns true if the grace-period kthread must be awakened.
2313
 */
2314
static bool
2315 2316
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2317
{
2318
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2319
		/*
2320
		 * Either we have not yet spawned the grace-period
2321 2322
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2323
		 * Either way, don't start a new grace period.
2324
		 */
2325
		return false;
2326
	}
2327 2328
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2329
			       TPS("newreq"));
2330

2331 2332
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2333
	 * could cause possible deadlocks with the rq->lock. Defer
2334
	 * the wakeup to our caller.
2335
	 */
2336
	return true;
2337 2338
}

2339 2340 2341 2342 2343 2344
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2345 2346
 *
 * Returns true if the grace-period kthread needs to be awakened.
2347
 */
2348
static bool rcu_start_gp(struct rcu_state *rsp)
2349 2350 2351
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2352
	bool ret = false;
2353 2354 2355 2356 2357 2358 2359 2360 2361

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2362 2363 2364
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2365 2366
}

2367
/*
2368 2369 2370 2371 2372 2373 2374
 * Report a full set of quiescent states to the specified rcu_state data
 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
 * kthread if another grace period is required.  Whether we wake
 * the grace-period kthread or it awakens itself for the next round
 * of quiescent-state forcing, that kthread will clean up after the
 * just-completed grace period.  Note that the caller must hold rnp->lock,
 * which is released before return.
2375
 */
P
Paul E. McKenney 已提交
2376
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2377
	__releases(rcu_get_root(rsp)->lock)
2378
{
2379
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2380
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2381
	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2382
	rcu_gp_kthread_wake(rsp);
2383 2384
}

2385
/*
P
Paul E. McKenney 已提交
2386 2387 2388
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2389 2390 2391 2392 2393
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2394 2395
 */
static void
P
Paul E. McKenney 已提交
2396
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2397
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2398 2399
	__releases(rnp->lock)
{
2400
	unsigned long oldmask = 0;
2401 2402
	struct rcu_node *rnp_c;

2403 2404
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2405
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2406

2407 2408 2409 2410
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
B
Boqun Feng 已提交
2411
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2412 2413
			return;
		}
2414
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2415
		rnp->qsmask &= ~mask;
2416 2417 2418 2419
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2420
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2421 2422

			/* Other bits still set at this level, so done. */
B
Boqun Feng 已提交
2423
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2424 2425 2426 2427 2428 2429 2430 2431 2432
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
B
Boqun Feng 已提交
2433
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2434
		rnp_c = rnp;
2435
		rnp = rnp->parent;
2436
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2437
		oldmask = rnp_c->qsmask;
2438 2439 2440 2441
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2442
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2443
	 * to clean up and start the next grace period if one is needed.
2444
	 */
P
Paul E. McKenney 已提交
2445
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2446 2447
}

2448 2449 2450 2451 2452 2453 2454
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2455
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2456 2457 2458
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2459
	unsigned long gps;
2460 2461 2462
	unsigned long mask;
	struct rcu_node *rnp_p;

2463 2464
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
B
Boqun Feng 已提交
2465
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2466 2467 2468 2469 2470 2471
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2472 2473
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2474 2475 2476 2477 2478
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2479 2480
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2481
	mask = rnp->grpmask;
B
Boqun Feng 已提交
2482
	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2483
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2484
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2485 2486
}

2487
/*
P
Paul E. McKenney 已提交
2488
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2489
 * structure.  This must be called from the specified CPU.
2490 2491
 */
static void
2492
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2493 2494 2495
{
	unsigned long flags;
	unsigned long mask;
2496
	bool needwake;
2497 2498 2499
	struct rcu_node *rnp;

	rnp = rdp->mynode;
2500
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2501 2502
	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2503 2504

		/*
2505 2506 2507 2508
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2509
		 */
2510
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2511
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
B
Boqun Feng 已提交
2512
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2513 2514 2515 2516
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
B
Boqun Feng 已提交
2517
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2518
	} else {
2519
		rdp->core_needs_qs = false;
2520 2521 2522 2523 2524

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2525
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2526

2527 2528
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2529 2530
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2543 2544
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2545 2546 2547 2548 2549

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
2550
	if (!rdp->core_needs_qs)
2551 2552 2553 2554 2555 2556
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2557
	if (rdp->cpu_no_qs.b.norm)
2558 2559
		return;

P
Paul E. McKenney 已提交
2560 2561 2562 2563
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2564
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2565 2566
}

2567
/*
2568 2569
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2570
 * ->orphan_lock.
2571
 */
2572 2573 2574
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2575
{
P
Paul E. McKenney 已提交
2576
	/* No-CBs CPUs do not have orphanable callbacks. */
2577
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2578 2579
		return;

2580 2581
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2582 2583
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2584
	 */
2585 2586
	rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
	rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
2587 2588

	/*
2589 2590 2591 2592 2593
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
2594
	 */
2595
	rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2596 2597

	/*
2598 2599 2600
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2601
	 */
2602
	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
2603

2604 2605
	/* Finally, disallow further callbacks on this CPU.  */
	rcu_segcblist_disable(&rdp->cblist);
2606 2607 2608 2609
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2610
 * orphanage.  The caller must hold the ->orphan_lock.
2611
 */
2612
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2613
{
2614
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2615

P
Paul E. McKenney 已提交
2616
	/* No-CBs CPUs are handled specially. */
2617 2618
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2619 2620
		return;

2621
	/* Do the accounting first. */
2622 2623 2624
	rdp->n_cbs_adopted += rcu_cblist_n_cbs(&rsp->orphan_done);
	if (rcu_cblist_n_lazy_cbs(&rsp->orphan_done) !=
	    rcu_cblist_n_cbs(&rsp->orphan_done))
2625
		rcu_idle_count_callbacks_posted();
2626
	rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
2627 2628 2629 2630 2631 2632 2633

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

2634 2635 2636 2637 2638 2639 2640
	/* First adopt the ready-to-invoke callbacks, then the done ones. */
	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
	WARN_ON_ONCE(!rcu_cblist_empty(&rsp->orphan_done));
	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
	WARN_ON_ONCE(!rcu_cblist_empty(&rsp->orphan_pend));
	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
		     !rcu_segcblist_n_cbs(&rdp->cblist));
2641 2642 2643 2644 2645 2646 2647
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
2648 2649 2650
	RCU_TRACE(unsigned long mask;)
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2651

2652 2653 2654
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2655
	RCU_TRACE(mask = rdp->grpmask;)
2656 2657
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2658
			       TPS("cpuofl"));
2659 2660
}

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2683 2684
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2685 2686 2687 2688 2689 2690
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
2691
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2692
		rnp->qsmaskinit &= ~mask;
2693
		rnp->qsmask &= ~mask;
2694
		if (rnp->qsmaskinit) {
B
Boqun Feng 已提交
2695 2696
			raw_spin_unlock_rcu_node(rnp);
			/* irqs remain disabled. */
2697 2698
			return;
		}
B
Boqun Feng 已提交
2699
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2700 2701 2702
	}
}

2703
/*
2704
 * The CPU has been completely removed, and some other CPU is reporting
2705 2706
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2707 2708
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2709
 */
2710
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2711
{
2712
	unsigned long flags;
2713
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2714
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2715

2716 2717 2718
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2719
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2720
	rcu_boost_kthread_setaffinity(rnp, -1);
2721

2722
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2723
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2724
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2725
	rcu_adopt_orphan_cbs(rsp, flags);
2726
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2727

2728 2729 2730 2731 2732
	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
		  !rcu_segcblist_empty(&rdp->cblist),
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
		  rcu_segcblist_first_cb(&rdp->cblist));
2733 2734 2735 2736 2737 2738
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2739
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2740 2741
{
	unsigned long flags;
2742 2743 2744
	struct rcu_head *rhp;
	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
	long bl, count;
2745

2746
	/* If no callbacks are ready, just return. */
2747 2748 2749 2750 2751 2752
	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
		trace_rcu_batch_start(rsp->name,
				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
		trace_rcu_batch_end(rsp->name, 0,
				    !rcu_segcblist_empty(&rdp->cblist),
2753 2754
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2755
		return;
2756
	}
2757 2758 2759

	/*
	 * Extract the list of ready callbacks, disabling to prevent
2760 2761
	 * races with call_rcu() from interrupt handlers.  Leave the
	 * callback counts, as rcu_barrier() needs to be conservative.
2762 2763
	 */
	local_irq_save(flags);
2764
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2765
	bl = rdp->blimit;
2766 2767 2768
	trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2769 2770 2771
	local_irq_restore(flags);

	/* Invoke callbacks. */
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
	rhp = rcu_cblist_dequeue(&rcl);
	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
		debug_rcu_head_unqueue(rhp);
		if (__rcu_reclaim(rsp->name, rhp))
			rcu_cblist_dequeued_lazy(&rcl);
		/*
		 * Stop only if limit reached and CPU has something to do.
		 * Note: The rcl structure counts down from zero.
		 */
		if (-rcu_cblist_n_cbs(&rcl) >= bl &&
2782 2783
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2784 2785 2786 2787
			break;
	}

	local_irq_save(flags);
2788 2789 2790
	count = -rcu_cblist_n_cbs(&rcl);
	trace_rcu_batch_end(rsp->name, count, !rcu_cblist_empty(&rcl),
			    need_resched(), is_idle_task(current),
2791
			    rcu_is_callbacks_kthread());
2792

2793 2794
	/* Update counts and requeue any remaining callbacks. */
	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2795 2796
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->n_cbs_invoked += count;
2797
	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2798 2799

	/* Reinstate batch limit if we have worked down the excess. */
2800 2801
	count = rcu_segcblist_n_cbs(&rdp->cblist);
	if (rdp->blimit == LONG_MAX && count <= qlowmark)
2802 2803
		rdp->blimit = blimit;

2804
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2805
	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2806 2807
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
2808 2809 2810
	} else if (count < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = count;
	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2811

2812 2813
	local_irq_restore(flags);

2814
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2815
	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2816
		invoke_rcu_core();
2817 2818 2819 2820 2821
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2822
 * Also schedule RCU core processing.
2823
 *
2824
 * This function must be called from hardirq context.  It is normally
2825
 * invoked from the scheduling-clock interrupt.
2826
 */
2827
void rcu_check_callbacks(int user)
2828
{
2829
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2830
	increment_cpu_stall_ticks();
2831
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2832 2833 2834 2835 2836

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2837
		 * a quiescent state, so note it.
2838 2839
		 *
		 * No memory barrier is required here because both
2840 2841 2842
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2843 2844
		 */

2845 2846
		rcu_sched_qs();
		rcu_bh_qs();
2847 2848 2849 2850 2851 2852 2853

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2854
		 * critical section, so note it.
2855 2856
		 */

2857
		rcu_bh_qs();
2858
	}
2859
	rcu_preempt_check_callbacks();
2860
	if (rcu_pending())
2861
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2862 2863
	if (user)
		rcu_note_voluntary_context_switch(current);
2864
	trace_rcu_utilization(TPS("End scheduler-tick"));
2865 2866 2867 2868 2869
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2870 2871
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2872
 * The caller must have suppressed start of new grace periods.
2873
 */
2874 2875 2876 2877
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2878 2879 2880 2881
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
2882
	struct rcu_node *rnp;
2883

2884
	rcu_for_each_leaf_node(rsp, rnp) {
2885
		cond_resched_rcu_qs();
2886
		mask = 0;
2887
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2888
		if (rnp->qsmask == 0) {
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2912
		}
2913 2914
		for_each_leaf_node_possible_cpu(rnp, cpu) {
			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2915 2916 2917 2918
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2919
		}
2920
		if (mask != 0) {
2921 2922
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2923 2924
		} else {
			/* Nothing to do here, so just drop the lock. */
B
Boqun Feng 已提交
2925
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2926 2927 2928 2929 2930 2931 2932 2933
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2934
static void force_quiescent_state(struct rcu_state *rsp)
2935 2936
{
	unsigned long flags;
2937 2938 2939 2940 2941
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2942
	rnp = __this_cpu_read(rsp->rda->mynode);
2943
	for (; rnp != NULL; rnp = rnp->parent) {
2944
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2945 2946 2947 2948
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2949
			rsp->n_force_qs_lh++;
2950 2951 2952 2953 2954
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2955

2956
	/* Reached the root of the rcu_node tree, acquire lock. */
2957
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2958
	raw_spin_unlock(&rnp_old->fqslock);
2959
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2960
		rsp->n_force_qs_lh++;
B
Boqun Feng 已提交
2961
		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2962
		return;  /* Someone beat us to it. */
2963
	}
2964
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2965
	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2966
	rcu_gp_kthread_wake(rsp);
2967 2968 2969
}

/*
2970 2971 2972
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2973 2974
 */
static void
2975
__rcu_process_callbacks(struct rcu_state *rsp)
2976 2977
{
	unsigned long flags;
2978
	bool needwake;
2979
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2980

2981 2982
	WARN_ON_ONCE(rdp->beenonline == 0);

2983 2984 2985 2986
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2987
	local_irq_save(flags);
2988
	if (cpu_needs_another_gp(rsp, rdp)) {
2989
		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2990
		needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
2991
		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2992 2993
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2994 2995
	} else {
		local_irq_restore(flags);
2996 2997 2998
	}

	/* If there are callbacks ready, invoke them. */
2999
	if (rcu_segcblist_ready_cbs(&rdp->cblist))
3000
		invoke_rcu_callbacks(rsp, rdp);
3001 3002 3003

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
3004 3005
}

3006
/*
3007
 * Do RCU core processing for the current CPU.
3008
 */
3009
static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3010
{
3011 3012
	struct rcu_state *rsp;

3013 3014
	if (cpu_is_offline(smp_processor_id()))
		return;
3015
	trace_rcu_utilization(TPS("Start RCU core"));
3016 3017
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
3018
	trace_rcu_utilization(TPS("End RCU core"));
3019 3020
}

3021
/*
3022 3023 3024
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
3025
 * are running on the current CPU with softirqs disabled, the
3026
 * rcu_cpu_kthread_task cannot disappear out from under us.
3027
 */
3028
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3029
{
3030
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3031
		return;
3032 3033
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
3034 3035
		return;
	}
3036
	invoke_rcu_callbacks_kthread();
3037 3038
}

3039
static void invoke_rcu_core(void)
3040
{
3041 3042
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
3043 3044
}

3045 3046 3047 3048 3049
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
3050
{
3051 3052
	bool needwake;

3053 3054 3055 3056
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
3057
	if (!rcu_is_watching())
3058 3059
		invoke_rcu_core();

3060
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3061
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3062
		return;
3063

3064 3065 3066 3067 3068 3069 3070
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
3071 3072
	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
		     rdp->qlen_last_fqs_check + qhimark)) {
3073 3074

		/* Are we ignoring a completed grace period? */
3075
		note_gp_changes(rsp, rdp);
3076 3077 3078 3079 3080

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

3081
			raw_spin_lock_rcu_node(rnp_root);
3082
			needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3083
			raw_spin_unlock_rcu_node(rnp_root);
3084 3085
			if (needwake)
				rcu_gp_kthread_wake(rsp);
3086 3087 3088 3089
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3090
			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3091
				force_quiescent_state(rsp);
3092
			rdp->n_force_qs_snap = rsp->n_force_qs;
3093
			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3094
		}
3095
	}
3096 3097
}

3098 3099 3100 3101 3102 3103 3104
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3105 3106 3107 3108 3109 3110
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3111
static void
3112
__call_rcu(struct rcu_head *head, rcu_callback_t func,
P
Paul E. McKenney 已提交
3113
	   struct rcu_state *rsp, int cpu, bool lazy)
3114 3115 3116 3117
{
	unsigned long flags;
	struct rcu_data *rdp;

3118 3119 3120
	/* Misaligned rcu_head! */
	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));

3121 3122
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3123
		WRITE_ONCE(head->func, rcu_leak_callback);
3124 3125 3126
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3127 3128 3129
	head->func = func;
	head->next = NULL;
	local_irq_save(flags);
3130
	rdp = this_cpu_ptr(rsp->rda);
3131 3132

	/* Add the callback to our list. */
3133
	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
P
Paul E. McKenney 已提交
3134 3135 3136 3137
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3151
		WARN_ON_ONCE(!rcu_is_watching());
3152 3153
		if (rcu_segcblist_empty(&rdp->cblist))
			rcu_segcblist_init(&rdp->cblist);
3154
	}
3155 3156
	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
	if (!lazy)
3157
		rcu_idle_count_callbacks_posted();
3158

3159 3160
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3161 3162
					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
					 rcu_segcblist_n_cbs(&rdp->cblist));
3163
	else
3164 3165 3166
		trace_rcu_callback(rsp->name, head,
				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
				   rcu_segcblist_n_cbs(&rdp->cblist));
3167

3168 3169
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3170 3171 3172 3173
	local_irq_restore(flags);
}

/*
3174
 * Queue an RCU-sched callback for invocation after a grace period.
3175
 */
3176
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3177
{
P
Paul E. McKenney 已提交
3178
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3179
}
3180
EXPORT_SYMBOL_GPL(call_rcu_sched);
3181 3182

/*
3183
 * Queue an RCU callback for invocation after a quicker grace period.
3184
 */
3185
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3186
{
P
Paul E. McKenney 已提交
3187
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3188 3189 3190
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3191 3192 3193 3194 3195 3196 3197 3198
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
3199
		    rcu_callback_t func)
3200
{
3201
	__call_rcu(head, func, rcu_state_p, -1, 1);
3202 3203 3204
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3216 3217
	int ret;

3218
	might_sleep();  /* Check for RCU read-side critical section. */
3219 3220 3221 3222
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3223 3224
}

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3259 3260 3261 3262 3263 3264 3265 3266 3267
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3268 3269 3270 3271
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3272 3273
	if (rcu_blocking_is_gp())
		return;
3274
	if (rcu_gp_is_expedited())
3275 3276 3277
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3289 3290 3291
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3292 3293 3294
 */
void synchronize_rcu_bh(void)
{
3295 3296 3297 3298
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3299 3300
	if (rcu_blocking_is_gp())
		return;
3301
	if (rcu_gp_is_expedited())
3302 3303 3304
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3305 3306 3307
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3328
	return smp_load_acquire(&rcu_state_p->gpnum);
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3354
	newstate = smp_load_acquire(&rcu_state_p->completed);
3355 3356 3357 3358 3359
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
/**
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_sched(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_sched()
	 * and cond_synchronize_sched().
	 */
	return smp_load_acquire(&rcu_sched_state.gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);

/**
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 *
 * If a full RCU-sched grace period has elapsed since the earlier call to
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 * synchronize_sched() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_sched(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_sched_state.completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(cond_synchronize_sched);

3412 3413 3414 3415 3416 3417 3418 3419 3420
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3421 3422
	struct rcu_node *rnp = rdp->mynode;

3423 3424 3425 3426 3427
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3428 3429 3430 3431
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3432
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3433
	if (rcu_scheduler_fully_active &&
3434
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3435
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3436
		rdp->n_rp_core_needs_qs++;
3437
	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3438
		rdp->n_rp_report_qs++;
3439
		return 1;
3440
	}
3441 3442

	/* Does this CPU have callbacks ready to invoke? */
3443
	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3444
		rdp->n_rp_cb_ready++;
3445
		return 1;
3446
	}
3447 3448

	/* Has RCU gone idle with this CPU needing another grace period? */
3449 3450
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3451
		return 1;
3452
	}
3453 3454

	/* Has another RCU grace period completed?  */
3455
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3456
		rdp->n_rp_gp_completed++;
3457
		return 1;
3458
	}
3459 3460

	/* Has a new RCU grace period started? */
3461 3462
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3463
		rdp->n_rp_gp_started++;
3464
		return 1;
3465
	}
3466

3467 3468 3469 3470 3471 3472
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3473
	/* nothing to do */
3474
	rdp->n_rp_need_nothing++;
3475 3476 3477 3478 3479 3480 3481 3482
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3483
static int rcu_pending(void)
3484
{
3485 3486 3487
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3488
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3489 3490
			return 1;
	return 0;
3491 3492 3493
}

/*
3494 3495 3496
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3497
 */
3498
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3499
{
3500 3501 3502
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3503 3504
	struct rcu_state *rsp;

3505
	for_each_rcu_flavor(rsp) {
3506
		rdp = this_cpu_ptr(rsp->rda);
3507
		if (rcu_segcblist_empty(&rdp->cblist))
3508 3509
			continue;
		hc = true;
3510
		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3511
			al = false;
3512 3513
			break;
		}
3514 3515 3516 3517
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3518 3519
}

3520 3521 3522 3523
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3524
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3525 3526 3527 3528 3529 3530
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3531 3532 3533 3534
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3535
static void rcu_barrier_callback(struct rcu_head *rhp)
3536
{
3537 3538 3539
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3540
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3541
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3542
		complete(&rsp->barrier_completion);
3543
	} else {
3544
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3545
	}
3546 3547 3548 3549 3550 3551 3552
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3553
	struct rcu_state *rsp = type;
3554
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3555

3556
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3557
	atomic_inc(&rsp->barrier_cpu_count);
3558
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3559 3560 3561 3562 3563 3564
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3565
static void _rcu_barrier(struct rcu_state *rsp)
3566
{
3567 3568
	int cpu;
	struct rcu_data *rdp;
3569
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3570

3571
	_rcu_barrier_trace(rsp, "Begin", -1, s);
3572

3573
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3574
	mutex_lock(&rsp->barrier_mutex);
3575

3576 3577 3578
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3579 3580 3581 3582 3583
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

3584 3585 3586
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3587

3588
	/*
3589 3590
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3591 3592
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3593
	 */
3594
	init_completion(&rsp->barrier_completion);
3595
	atomic_set(&rsp->barrier_cpu_count, 1);
3596
	get_online_cpus();
3597 3598

	/*
3599 3600 3601
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3602
	 */
P
Paul E. McKenney 已提交
3603
	for_each_possible_cpu(cpu) {
3604
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3605
			continue;
3606
		rdp = per_cpu_ptr(rsp->rda, cpu);
3607
		if (rcu_is_nocb_cpu(cpu)) {
3608 3609
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3610
						   rsp->barrier_sequence);
3611 3612
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3613
						   rsp->barrier_sequence);
3614
				smp_mb__before_atomic();
3615 3616 3617 3618
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
3619
		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3620
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3621
					   rsp->barrier_sequence);
3622
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3623
		} else {
3624
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3625
					   rsp->barrier_sequence);
3626 3627
		}
	}
3628
	put_online_cpus();
3629 3630 3631 3632 3633

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3634
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3635
		complete(&rsp->barrier_completion);
3636 3637

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3638
	wait_for_completion(&rsp->barrier_completion);
3639

3640 3641 3642 3643
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

3644
	/* Other rcu_barrier() invocations can now safely proceed. */
3645
	mutex_unlock(&rsp->barrier_mutex);
3646 3647 3648 3649 3650 3651 3652
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3653
	_rcu_barrier(&rcu_bh_state);
3654 3655 3656 3657 3658 3659 3660 3661
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3662
	_rcu_barrier(&rcu_sched_state);
3663 3664 3665
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
3682
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3683
		rnp->qsmaskinit |= mask;
B
Boqun Feng 已提交
3684
		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3685 3686 3687
	}
}

3688
/*
3689
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3690
 */
3691 3692
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3693 3694
{
	unsigned long flags;
3695
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3696 3697 3698
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3699
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3700
	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3701
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3702
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3703
	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3704
	rdp->cpu = cpu;
3705
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3706
	rcu_boot_init_nocb_percpu_data(rdp);
B
Boqun Feng 已提交
3707
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3708 3709 3710 3711 3712 3713 3714
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3715
 */
3716
static void
3717
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3718 3719
{
	unsigned long flags;
3720
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3721 3722 3723
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3724
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3725 3726
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3727
	rdp->blimit = blimit;
3728 3729 3730
	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
	    !init_nocb_callback_list(rdp))
		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3731
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3732
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3733
	rcu_dynticks_eqs_online();
B
Boqun Feng 已提交
3734
	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3735

3736 3737 3738 3739 3740
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
3741
	rnp = rdp->mynode;
3742
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3743 3744 3745
	if (!rdp->beenonline)
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
	rdp->beenonline = true;	 /* We have now been online. */
3746 3747
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
3748
	rdp->cpu_no_qs.b.norm = true;
3749
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3750
	rdp->core_needs_qs = false;
3751
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
B
Boqun Feng 已提交
3752
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3753 3754
}

3755
int rcutree_prepare_cpu(unsigned int cpu)
3756
{
3757 3758 3759
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3760
		rcu_init_percpu_data(cpu, rsp);
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806

	rcu_prepare_kthreads(cpu);
	rcu_spawn_all_nocb_kthreads(cpu);

	return 0;
}

static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);

	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
}

int rcutree_online_cpu(unsigned int cpu)
{
	sync_sched_exp_online_cleanup(cpu);
	rcutree_affinity_setting(cpu, -1);
	return 0;
}

int rcutree_offline_cpu(unsigned int cpu)
{
	rcutree_affinity_setting(cpu, cpu);
	return 0;
}


int rcutree_dying_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_cpu(rsp);
	return 0;
}

int rcutree_dead_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		rcu_cleanup_dead_cpu(cpu, rsp);
		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
	}
	return 0;
3807 3808
}

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
/*
 * Mark the specified CPU as being online so that subsequent grace periods
 * (both expedited and normal) will wait on it.  Note that this means that
 * incoming CPUs are not allowed to use RCU read-side critical sections
 * until this function is called.  Failing to observe this restriction
 * will result in lockdep splats.
 */
void rcu_cpu_starting(unsigned int cpu)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
3825
		rdp = per_cpu_ptr(rsp->rda, cpu);
3826 3827 3828 3829 3830 3831 3832 3833 3834
		rnp = rdp->mynode;
		mask = rdp->grpmask;
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
		rnp->qsmaskinitnext |= mask;
		rnp->expmaskinitnext |= mask;
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	}
}

3835 3836
#ifdef CONFIG_HOTPLUG_CPU
/*
3837 3838 3839
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
3855
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
}

void rcu_report_dead(unsigned int cpu)
{
	struct rcu_state *rsp;

	/* QS for any half-done expedited RCU-sched GP. */
	preempt_disable();
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(rcu_sched_state.rda), true);
	preempt_enable();
	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_idle_cpu(cpu, rsp);
}
#endif

3872 3873 3874 3875 3876 3877 3878
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3879
			rcu_expedite_gp();
3880 3881 3882
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
3883 3884
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
3885 3886 3887 3888 3889 3890 3891
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3892
/*
3893
 * Spawn the kthreads that handle each RCU flavor's grace periods.
3894 3895 3896 3897
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
3898
	int kthread_prio_in = kthread_prio;
3899 3900
	struct rcu_node *rnp;
	struct rcu_state *rsp;
3901
	struct sched_param sp;
3902 3903
	struct task_struct *t;

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

3915
	rcu_scheduler_fully_active = 1;
3916
	for_each_rcu_flavor(rsp) {
3917
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3918 3919
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
3920
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3921
		rsp->gp_kthread = t;
3922 3923 3924 3925
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
B
Boqun Feng 已提交
3926
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3927
		wake_up_process(t);
3928
	}
3929
	rcu_spawn_nocb_kthreads();
3930
	rcu_spawn_boost_kthreads();
3931 3932 3933 3934
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3935
/*
3936 3937 3938 3939 3940 3941
 * This function is invoked towards the end of the scheduler's
 * initialization process.  Before this is called, the idle task might
 * contain synchronous grace-period primitives (during which time, this idle
 * task is booting the system, and such primitives are no-ops).  After this
 * function is called, any synchronous grace-period primitives are run as
 * expedited, with the requesting task driving the grace period forward.
3942
 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3943
 * runtime RCU functionality.
3944 3945 3946 3947 3948
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
3949 3950 3951
	rcu_test_sync_prims();
	rcu_scheduler_active = RCU_SCHEDULER_INIT;
	rcu_test_sync_prims();
3952 3953
}

3954 3955 3956
/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3957
static void __init rcu_init_one(struct rcu_state *rsp)
3958
{
3959 3960
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3961 3962
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3963 3964

	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3965 3966 3967 3968 3969
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

3970
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3971

3972 3973 3974
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
3975

3976 3977
	/* Initialize the level-tracking arrays. */

3978
	for (i = 1; i < rcu_num_lvls; i++)
3979 3980
		rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
	rcu_init_levelspread(levelspread, num_rcu_lvl);
3981 3982 3983

	/* Initialize the elements themselves, starting from the leaves. */

3984
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3985
		cpustride *= levelspread[i];
3986
		rnp = rsp->level[i];
3987
		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
B
Boqun Feng 已提交
3988 3989
			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3990
						   &rcu_node_class[i], buf[i]);
3991 3992 3993
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
3994 3995
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
3996 3997 3998 3999
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4000 4001
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4002 4003 4004 4005 4006
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4007
				rnp->grpnum = j % levelspread[i - 1];
4008 4009
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4010
					      j / levelspread[i - 1];
4011 4012
			}
			rnp->level = i;
4013
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4014
			rcu_init_one_nocb(rnp);
4015 4016
			init_waitqueue_head(&rnp->exp_wq[0]);
			init_waitqueue_head(&rnp->exp_wq[1]);
4017 4018
			init_waitqueue_head(&rnp->exp_wq[2]);
			init_waitqueue_head(&rnp->exp_wq[3]);
4019
			spin_lock_init(&rnp->exp_lock);
4020 4021
		}
	}
4022

4023 4024
	init_swait_queue_head(&rsp->gp_wq);
	init_swait_queue_head(&rsp->expedited_wq);
4025
	rnp = rsp->level[rcu_num_lvls - 1];
4026
	for_each_possible_cpu(i) {
4027
		while (i > rnp->grphi)
4028
			rnp++;
4029
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4030 4031
		rcu_boot_init_percpu_data(i, rsp);
	}
4032
	list_add(&rsp->flavors, &rcu_struct_flavors);
4033 4034
}

4035 4036
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4037
 * replace the definitions in tree.h because those are needed to size
4038 4039 4040 4041
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4042
	ulong d;
4043
	int i;
4044
	int rcu_capacity[RCU_NUM_LVLS];
4045

4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4059
	/* If the compile-time values are accurate, just leave. */
4060
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4061
	    nr_cpu_ids == NR_CPUS)
4062
		return;
4063 4064
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4065 4066

	/*
4067 4068 4069 4070
	 * The boot-time rcu_fanout_leaf parameter must be at least two
	 * and cannot exceed the number of bits in the rcu_node masks.
	 * Complain and fall back to the compile-time values if this
	 * limit is exceeded.
4071
	 */
4072
	if (rcu_fanout_leaf < 2 ||
4073
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4074
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4075 4076 4077 4078 4079 4080
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4081
	 * with the given number of levels.
4082
	 */
4083
	rcu_capacity[0] = rcu_fanout_leaf;
4084
	for (i = 1; i < RCU_NUM_LVLS; i++)
4085
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4086 4087

	/*
4088
	 * The tree must be able to accommodate the configured number of CPUs.
4089
	 * If this limit is exceeded, fall back to the compile-time values.
4090
	 */
4091 4092 4093 4094 4095
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}
4096

4097
	/* Calculate the number of levels in the tree. */
4098
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4099
	}
4100
	rcu_num_lvls = i + 1;
4101

4102
	/* Calculate the number of rcu_nodes at each level of the tree. */
4103
	for (i = 0; i < rcu_num_lvls; i++) {
4104
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4105 4106
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4107 4108 4109

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4110
	for (i = 0; i < rcu_num_lvls; i++)
4111 4112 4113
		rcu_num_nodes += num_rcu_lvl[i];
}

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4136
void __init rcu_init(void)
4137
{
P
Paul E. McKenney 已提交
4138
	int cpu;
4139

4140 4141
	rcu_early_boot_tests();

4142
	rcu_bootup_announce();
4143
	rcu_init_geometry();
4144 4145
	rcu_init_one(&rcu_bh_state);
	rcu_init_one(&rcu_sched_state);
4146 4147
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4148
	__rcu_init_preempt();
J
Jiang Fang 已提交
4149
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4150 4151 4152 4153 4154 4155

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
4156
	pm_notifier(rcu_pm_notify, 0);
4157
	for_each_online_cpu(cpu) {
4158
		rcutree_prepare_cpu(cpu);
4159 4160
		rcu_cpu_starting(cpu);
	}
4161 4162
}

4163
#include "tree_exp.h"
4164
#include "tree_plugin.h"