tree.c 116.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/ftrace_event.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73

74 75 76 77 78 79 80 81
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
82 83
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
84
static char sname##_varname[] = #sname; \
85 86 87 88 89 90 91 92 93
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
94
struct rcu_state sname##_state = { \
95
	.level = { &sname##_state.node[0] }, \
96
	.call = cr, \
97
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
98 99
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
100
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 102
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
103
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104
	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
105
	.name = RCU_STATE_NAME(sname), \
106
	.abbr = sabbr, \
107
}; \
108
DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data)
109

110 111
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112

113
static struct rcu_state *rcu_state_p;
114
LIST_HEAD(rcu_struct_flavors);
115

116 117
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
118
module_param(rcu_fanout_leaf, int, 0444);
119 120 121 122 123 124 125 126 127 128
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

129 130 131 132
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
133
 * optimize synchronize_sched() to a simple barrier().  When this variable
134 135 136 137
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
138 139 140
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

141 142 143 144 145 146 147 148 149 150 151 152 153 154
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

T
Thomas Gleixner 已提交
155
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
156 157
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
158

159 160 161 162 163 164 165 166 167 168 169 170
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

171 172 173 174 175 176 177 178 179 180
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

181
/*
182
 * Note a quiescent state.  Because we do not need to know
183
 * how many quiescent states passed, just if there was at least
184
 * one since the start of the grace period, this just sets a flag.
185
 * The caller must have disabled preemption.
186
 */
187
void rcu_sched_qs(void)
188
{
189 190 191 192 193 194
	if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_sched"),
				       __this_cpu_read(rcu_sched_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_sched_data.passed_quiesce, 1);
	}
195 196
}

197
void rcu_bh_qs(void)
198
{
199 200 201 202 203 204
	if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_bh_data.passed_quiesce, 1);
	}
205
}
206

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
 */
static void rcu_momentary_dyntick_idle(void)
{
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	local_irq_save(flags);

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
		if (ACCESS_ONCE(rdp->mynode->completed) !=
		    ACCESS_ONCE(rdp->cond_resched_completed))
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
	local_irq_restore(flags);
}

271 272 273
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
274
 * The caller must have disabled preemption.
275
 */
276
void rcu_note_context_switch(void)
277
{
278
	trace_rcu_utilization(TPS("Start context switch"));
279
	rcu_sched_qs();
280
	rcu_preempt_note_context_switch();
281 282
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
283
	trace_rcu_utilization(TPS("End context switch"));
284
}
285
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
286

E
Eric Dumazet 已提交
287 288 289
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
290

E
Eric Dumazet 已提交
291 292 293
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
294

295 296
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
297 298 299 300

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

301 302 303 304 305 306 307
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

308
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
309
				  struct rcu_data *rdp);
310 311 312 313
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
314
static void force_quiescent_state(struct rcu_state *rsp);
315
static int rcu_pending(void);
316 317

/*
318
 * Return the number of RCU-sched batches processed thus far for debug & stats.
319
 */
320
long rcu_batches_completed_sched(void)
321
{
322
	return rcu_sched_state.completed;
323
}
324
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
325 326 327 328 329 330 331 332 333 334

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

335 336 337 338 339
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
340
	force_quiescent_state(rcu_state_p);
341 342 343
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

344 345 346 347 348
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
349
	force_quiescent_state(&rcu_bh_state);
350 351 352
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

368 369 370 371 372 373 374 375 376 377 378 379 380 381
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

382 383 384 385 386 387 388 389 390 391
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
392
		rsp = rcu_state_p;
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
		*flags = ACCESS_ONCE(rsp->gp_flags);
		*gpnum = ACCESS_ONCE(rsp->gpnum);
		*completed = ACCESS_ONCE(rsp->completed);
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

415 416 417 418 419 420 421 422 423 424 425
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

426 427 428 429 430
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
431
	force_quiescent_state(&rcu_sched_state);
432 433 434
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

435 436 437 438 439 440
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
441 442
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
443 444
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
	int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
	int *fp = &rnp->need_future_gp[idx];

	return ACCESS_ONCE(*fp);
}

467
/*
468 469 470
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
471 472 473 474
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
475
	int i;
P
Paul E. McKenney 已提交
476

477 478
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
479
	if (rcu_future_needs_gp(rsp))
480
		return 1;  /* Yes, a no-CBs CPU needs one. */
481 482 483 484 485 486 487 488 489 490
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
491 492
}

493
/*
494
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
495 496 497 498 499
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
500
static void rcu_eqs_enter_common(long long oldval, bool user)
501
{
502 503
	struct rcu_state *rsp;
	struct rcu_data *rdp;
504
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
505

506
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
507
	if (!user && !is_idle_task(current)) {
508 509
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
510

511
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
512
		ftrace_dump(DUMP_ORIG);
513 514 515
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
516
	}
517 518 519 520
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
521
	rcu_prepare_for_idle();
522
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
523
	smp_mb__before_atomic();  /* See above. */
524
	atomic_inc(&rdtp->dynticks);
525
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
526
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
527
	rcu_dynticks_task_enter();
528 529

	/*
530
	 * It is illegal to enter an extended quiescent state while
531 532 533 534 535 536 537 538
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
539
}
540

541 542 543
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
544
 */
545
static void rcu_eqs_enter(bool user)
546
{
547
	long long oldval;
548 549
	struct rcu_dynticks *rdtp;

550
	rdtp = this_cpu_ptr(&rcu_dynticks);
551
	oldval = rdtp->dynticks_nesting;
552
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
553
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
554
		rdtp->dynticks_nesting = 0;
555
		rcu_eqs_enter_common(oldval, user);
556
	} else {
557
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
558
	}
559
}
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
575 576 577
	unsigned long flags;

	local_irq_save(flags);
578
	rcu_eqs_enter(false);
579
	rcu_sysidle_enter(0);
580
	local_irq_restore(flags);
581
}
582
EXPORT_SYMBOL_GPL(rcu_idle_enter);
583

584
#ifdef CONFIG_RCU_USER_QS
585 586 587 588 589 590 591 592 593 594
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
595
	rcu_eqs_enter(1);
596
}
597
#endif /* CONFIG_RCU_USER_QS */
598

599 600 601 602 603 604
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
605
 *
606 607 608 609 610 611 612 613
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
614
 */
615
void rcu_irq_exit(void)
616 617
{
	unsigned long flags;
618
	long long oldval;
619 620 621
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
622
	rdtp = this_cpu_ptr(&rcu_dynticks);
623
	oldval = rdtp->dynticks_nesting;
624 625
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
626
	if (rdtp->dynticks_nesting)
627
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
628
	else
629 630
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
631 632 633 634
	local_irq_restore(flags);
}

/*
635
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
636 637 638 639 640
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
641
static void rcu_eqs_exit_common(long long oldval, int user)
642
{
643 644
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

645
	rcu_dynticks_task_exit();
646
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
647 648
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
649
	smp_mb__after_atomic();  /* See above. */
650
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
651
	rcu_cleanup_after_idle();
652
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
653
	if (!user && !is_idle_task(current)) {
654 655
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
656

657
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
658
				  oldval, rdtp->dynticks_nesting);
659
		ftrace_dump(DUMP_ORIG);
660 661 662
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
663 664 665
	}
}

666 667 668
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
669
 */
670
static void rcu_eqs_exit(bool user)
671 672 673 674
{
	struct rcu_dynticks *rdtp;
	long long oldval;

675
	rdtp = this_cpu_ptr(&rcu_dynticks);
676
	oldval = rdtp->dynticks_nesting;
677
	WARN_ON_ONCE(oldval < 0);
678
	if (oldval & DYNTICK_TASK_NEST_MASK) {
679
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
680
	} else {
681
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
682
		rcu_eqs_exit_common(oldval, user);
683
	}
684
}
685 686 687 688 689 690 691 692 693 694 695 696 697 698

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
699 700 701
	unsigned long flags;

	local_irq_save(flags);
702
	rcu_eqs_exit(false);
703
	rcu_sysidle_exit(0);
704
	local_irq_restore(flags);
705
}
706
EXPORT_SYMBOL_GPL(rcu_idle_exit);
707

708
#ifdef CONFIG_RCU_USER_QS
709 710 711 712 713 714 715 716
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
717
	rcu_eqs_exit(1);
718
}
719
#endif /* CONFIG_RCU_USER_QS */
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
747
	rdtp = this_cpu_ptr(&rcu_dynticks);
748 749 750
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
751
	if (oldval)
752
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
753
	else
754 755
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
756 757 758 759 760 761 762 763 764 765 766 767
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
768
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
769

770 771
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
772
		return;
773
	rdtp->dynticks_nmi_nesting++;
774
	smp_mb__before_atomic();  /* Force delay from prior write. */
775 776
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
777
	smp_mb__after_atomic();  /* See above. */
778
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
779 780 781 782 783 784 785 786 787 788 789
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
790
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
791

792 793
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
794
		return;
795
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
796
	smp_mb__before_atomic();  /* See above. */
797
	atomic_inc(&rdtp->dynticks);
798
	smp_mb__after_atomic();  /* Force delay to next write. */
799
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
800 801 802
}

/**
803 804 805 806 807 808 809
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
810
bool notrace __rcu_is_watching(void)
811 812 813 814 815 816
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
817
 *
818
 * If the current CPU is in its idle loop and is neither in an interrupt
819
 * or NMI handler, return true.
820
 */
821
bool notrace rcu_is_watching(void)
822
{
823
	bool ret;
824 825

	preempt_disable();
826
	ret = __rcu_is_watching();
827 828
	preempt_enable();
	return ret;
829
}
830
EXPORT_SYMBOL_GPL(rcu_is_watching);
831

832
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
833 834 835 836 837 838 839

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
840 841 842 843 844 845 846 847 848 849 850
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
851 852 853 854 855 856
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
857 858
	struct rcu_data *rdp;
	struct rcu_node *rnp;
859 860 861
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
862
		return true;
863
	preempt_disable();
864
	rdp = this_cpu_ptr(&rcu_sched_data);
865 866
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
867 868 869 870 871 872
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

873
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
874

875
/**
876
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
877
 *
878 879 880
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
881
 */
882
static int rcu_is_cpu_rrupt_from_idle(void)
883
{
884
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
885 886 887 888 889
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
890
 * is in dynticks idle mode, which is an extended quiescent state.
891
 */
892 893
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
894
{
895
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
896
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
897 898 899 900 901 902
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
		return 1;
	} else {
		return 0;
	}
903 904
}

905 906 907 908 909 910
/*
 * This function really isn't for public consumption, but RCU is special in
 * that context switches can allow the state machine to make progress.
 */
extern void resched_cpu(int cpu);

911 912 913 914
/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
915
 * for this same CPU, or by virtue of having been offline.
916
 */
917 918
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
919
{
920
	unsigned int curr;
921
	int *rcrmp;
922
	unsigned int snap;
923

924 925
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
926 927 928 929 930 931 932 933 934

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
935
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
936
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
937 938 939 940
		rdp->dynticks_fqs++;
		return 1;
	}

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
956
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
957 958 959
		rdp->offline_fqs++;
		return 1;
	}
960 961

	/*
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
981
	 */
982 983 984
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
985
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
986 987 988 989 990 991 992 993 994 995 996 997 998
		if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			ACCESS_ONCE(rdp->cond_resched_completed) =
				ACCESS_ONCE(rdp->mynode->completed);
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
			ACCESS_ONCE(*rcrmp) =
				ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
			/* Time to beat on that CPU again! */
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
		}
999 1000
	}

1001
	return 0;
1002 1003 1004 1005
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1006
	unsigned long j = jiffies;
1007
	unsigned long j1;
1008 1009 1010

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1011
	j1 = rcu_jiffies_till_stall_check();
1012
	ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
1013
	rsp->jiffies_resched = j + j1 / 2;
1014 1015
}

1016
/*
1017
 * Dump stacks of all tasks running on stalled CPUs.
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

1036 1037 1038 1039 1040
static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
1041
	int ndetected = 0;
1042
	struct rcu_node *rnp = rcu_get_root(rsp);
1043
	long totqlen = 0;
1044 1045 1046

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
1047
	raw_spin_lock_irqsave(&rnp->lock, flags);
1048
	delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
1049
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1050
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1051 1052
		return;
	}
1053
	ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
1054
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1055

1056 1057 1058 1059 1060
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1061
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1062
	       rsp->name);
1063
	print_cpu_stall_info_begin();
1064
	rcu_for_each_leaf_node(rsp, rnp) {
1065
		raw_spin_lock_irqsave(&rnp->lock, flags);
1066
		ndetected += rcu_print_task_stall(rnp);
1067 1068 1069 1070 1071 1072 1073 1074
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
1075
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1076
	}
1077 1078 1079 1080 1081 1082 1083

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
1084
	ndetected += rcu_print_task_stall(rnp);
1085 1086 1087
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
1088 1089
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1090
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1091
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1092
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1093
	if (ndetected == 0)
1094
		pr_err("INFO: Stall ended before state dump start\n");
1095
	else
1096
		rcu_dump_cpu_stacks(rsp);
1097

1098
	/* Complain about tasks blocking the grace period. */
1099 1100 1101

	rcu_print_detail_task_stall(rsp);

1102
	force_quiescent_state(rsp);  /* Kick them all. */
1103 1104 1105 1106
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1107
	int cpu;
1108 1109
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1110
	long totqlen = 0;
1111

1112 1113 1114 1115 1116
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1117
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1118 1119 1120
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1121 1122
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1123 1124 1125
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1126
	rcu_dump_cpu_stacks(rsp);
1127

P
Paul E. McKenney 已提交
1128
	raw_spin_lock_irqsave(&rnp->lock, flags);
1129 1130
	if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
		ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1131
				     3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
1132
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1133

1134 1135 1136 1137 1138 1139 1140 1141
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1142 1143 1144 1145
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1146 1147 1148
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1149 1150
	unsigned long j;
	unsigned long js;
1151 1152
	struct rcu_node *rnp;

1153
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1154
		return;
1155
	j = jiffies;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
	gpnum = ACCESS_ONCE(rsp->gpnum);
	smp_rmb(); /* Pick up ->gpnum first... */
1176
	js = ACCESS_ONCE(rsp->jiffies_stall);
1177 1178 1179 1180 1181 1182 1183 1184
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
	gps = ACCESS_ONCE(rsp->gp_start);
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
	completed = ACCESS_ONCE(rsp->completed);
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1185
	rnp = rdp->mynode;
1186
	if (rcu_gp_in_progress(rsp) &&
1187
	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1188 1189 1190 1191

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1192 1193
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1194

1195
		/* They had a few time units to dump stack, so complain. */
1196 1197 1198 1199
		print_other_cpu_stall(rsp);
	}
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1211 1212 1213
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1214
		ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1215 1216
}

1217 1218 1219 1220 1221 1222 1223
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

1224 1225
	if (init_nocb_callback_list(rdp))
		return;
1226 1227 1228 1229 1230
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1260 1261 1262 1263 1264
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1265
				unsigned long c, const char *s)
1266 1267 1268 1269 1270 1271 1272 1273 1274
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1275 1276
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1277 1278 1279
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1280 1281 1282
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1283 1284 1285
{
	unsigned long c;
	int i;
1286
	bool ret = false;
1287 1288 1289 1290 1291 1292 1293
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1294
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1295
	if (rnp->need_future_gp[c & 0x1]) {
1296
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1297
		goto out;
1298 1299 1300 1301 1302 1303 1304
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1305 1306 1307 1308 1309 1310 1311
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1312 1313
	 */
	if (rnp->gpnum != rnp->completed ||
1314
	    ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
1315
		rnp->need_future_gp[c & 0x1]++;
1316
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1317
		goto out;
1318 1319 1320 1321 1322 1323 1324
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1325
	if (rnp != rnp_root) {
1326
		raw_spin_lock(&rnp_root->lock);
1327 1328
		smp_mb__after_unlock_lock();
	}
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1346
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1347 1348 1349 1350 1351 1352 1353 1354
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1355
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1356
	} else {
1357
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1358
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1359 1360 1361 1362
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
1363 1364 1365 1366
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1384 1385
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1386 1387 1388
	return needmore;
}

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
	    !ACCESS_ONCE(rsp->gp_flags) ||
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1405 1406 1407 1408 1409 1410 1411
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1412 1413
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1414 1415 1416
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1417
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1418 1419 1420 1421
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1422
	bool ret;
1423 1424 1425

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1426
		return false;
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1455
		return false;
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1466
	/* Record any needed additional grace periods. */
1467
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1468 1469 1470

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1471
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1472
	else
1473
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1474
	return ret;
1475 1476 1477 1478 1479 1480 1481 1482
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1483
 * Returns true if the RCU grace-period kthread needs to be awakened.
1484 1485 1486
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1487
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1488 1489 1490 1491 1492 1493
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1494
		return false;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1518
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1519 1520
}

1521
/*
1522 1523 1524
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1525
 * Returns true if the grace-period kthread needs to be awakened.
1526
 */
1527 1528
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1529
{
1530 1531
	bool ret;

1532
	/* Handle the ends of any preceding grace periods first. */
1533
	if (rdp->completed == rnp->completed) {
1534

1535
		/* No grace period end, so just accelerate recent callbacks. */
1536
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1537

1538 1539 1540
	} else {

		/* Advance callbacks. */
1541
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1542 1543 1544

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1545
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1546
	}
1547

1548 1549 1550 1551 1552 1553 1554
	if (rdp->gpnum != rnp->gpnum) {
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1555
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1556 1557 1558 1559
		rdp->passed_quiesce = 0;
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
		zero_cpu_stall_ticks(rdp);
	}
1560
	return ret;
1561 1562
}

1563
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1564 1565
{
	unsigned long flags;
1566
	bool needwake;
1567 1568 1569 1570
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1571 1572
	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
	     rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1573 1574 1575 1576
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1577
	smp_mb__after_unlock_lock();
1578
	needwake = __note_gp_changes(rsp, rnp, rdp);
1579
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1580 1581
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1582 1583
}

1584
/*
1585
 * Initialize a new grace period.  Return 0 if no grace period required.
1586
 */
1587
static int rcu_gp_init(struct rcu_state *rsp)
1588 1589
{
	struct rcu_data *rdp;
1590
	struct rcu_node *rnp = rcu_get_root(rsp);
1591

1592
	rcu_bind_gp_kthread();
1593
	raw_spin_lock_irq(&rnp->lock);
1594
	smp_mb__after_unlock_lock();
1595
	if (!ACCESS_ONCE(rsp->gp_flags)) {
1596 1597 1598 1599
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1600
	ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1601

1602 1603 1604 1605 1606
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1607 1608 1609 1610 1611
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1612
	record_gp_stall_check_time(rsp);
1613 1614
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1615
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1616 1617 1618
	raw_spin_unlock_irq(&rnp->lock);

	/* Exclude any concurrent CPU-hotplug operations. */
1619
	mutex_lock(&rsp->onoff_mutex);
1620
	smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1636
		raw_spin_lock_irq(&rnp->lock);
1637
		smp_mb__after_unlock_lock();
1638
		rdp = this_cpu_ptr(rsp->rda);
1639 1640
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1641
		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1642
		WARN_ON_ONCE(rnp->completed != rsp->completed);
1643
		ACCESS_ONCE(rnp->completed) = rsp->completed;
1644
		if (rnp == rdp->mynode)
1645
			(void)__note_gp_changes(rsp, rnp, rdp);
1646 1647 1648 1649 1650
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1651
		cond_resched_rcu_qs();
1652
	}
1653

1654
	mutex_unlock(&rsp->onoff_mutex);
1655 1656
	return 1;
}
1657

1658 1659 1660
/*
 * Do one round of quiescent-state forcing.
 */
1661
static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1662 1663
{
	int fqs_state = fqs_state_in;
1664 1665
	bool isidle = false;
	unsigned long maxj;
1666 1667 1668 1669 1670
	struct rcu_node *rnp = rcu_get_root(rsp);

	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
1671
		if (is_sysidle_rcu_state(rsp)) {
1672
			isidle = true;
1673 1674
			maxj = jiffies - ULONG_MAX / 4;
		}
1675 1676
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1677
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1678 1679 1680
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1681
		isidle = false;
1682
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1683 1684 1685 1686
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
1687
		smp_mb__after_unlock_lock();
1688 1689
		ACCESS_ONCE(rsp->gp_flags) =
			ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
1690 1691 1692 1693 1694
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1695 1696 1697
/*
 * Clean up after the old grace period.
 */
1698
static void rcu_gp_cleanup(struct rcu_state *rsp)
1699 1700
{
	unsigned long gp_duration;
1701
	bool needgp = false;
1702
	int nocb = 0;
1703 1704
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1705

1706
	raw_spin_lock_irq(&rnp->lock);
1707
	smp_mb__after_unlock_lock();
1708 1709 1710
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1711

1712 1713 1714 1715 1716 1717 1718 1719
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1720
	raw_spin_unlock_irq(&rnp->lock);
1721

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1732
		raw_spin_lock_irq(&rnp->lock);
1733
		smp_mb__after_unlock_lock();
1734
		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1735 1736
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
1737
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1738
		/* smp_mb() provided by prior unlock-lock pair. */
1739
		nocb += rcu_future_gp_cleanup(rsp, rnp);
1740
		raw_spin_unlock_irq(&rnp->lock);
1741
		cond_resched_rcu_qs();
1742
	}
1743 1744
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1745
	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1746
	rcu_nocb_gp_set(rnp, nocb);
1747

1748 1749
	/* Declare grace period done. */
	ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1750
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1751
	rsp->fqs_state = RCU_GP_IDLE;
1752
	rdp = this_cpu_ptr(rsp->rda);
1753 1754 1755
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1756
		ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1757 1758 1759 1760
		trace_rcu_grace_period(rsp->name,
				       ACCESS_ONCE(rsp->gpnum),
				       TPS("newreq"));
	}
1761 1762 1763 1764 1765 1766 1767 1768
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1769
	int fqs_state;
1770
	int gf;
1771
	unsigned long j;
1772
	int ret;
1773 1774 1775 1776 1777 1778 1779
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1780 1781 1782
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwait"));
1783
			rsp->gp_state = RCU_GP_WAIT_GPS;
1784
			wait_event_interruptible(rsp->gp_wq,
1785
						 ACCESS_ONCE(rsp->gp_flags) &
1786
						 RCU_GP_FLAG_INIT);
1787
			/* Locking provides needed memory barrier. */
1788
			if (rcu_gp_init(rsp))
1789
				break;
1790
			cond_resched_rcu_qs();
1791
			WARN_ON(signal_pending(current));
1792 1793 1794
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwaitsig"));
1795
		}
1796

1797 1798
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1799 1800 1801 1802 1803
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1804
		ret = 0;
1805
		for (;;) {
1806 1807
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
1808 1809 1810
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("fqswait"));
1811
			rsp->gp_state = RCU_GP_WAIT_FQS;
1812
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
1813 1814
					((gf = ACCESS_ONCE(rsp->gp_flags)) &
					 RCU_GP_FLAG_FQS) ||
1815 1816
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
1817
					j);
1818
			/* Locking provides needed memory barriers. */
1819
			/* If grace period done, leave loop. */
1820
			if (!ACCESS_ONCE(rnp->qsmask) &&
1821
			    !rcu_preempt_blocked_readers_cgp(rnp))
1822
				break;
1823
			/* If time for quiescent-state forcing, do it. */
1824 1825
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
1826 1827 1828
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsstart"));
1829
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
1830 1831 1832
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsend"));
1833
				cond_resched_rcu_qs();
1834 1835
			} else {
				/* Deal with stray signal. */
1836
				cond_resched_rcu_qs();
1837
				WARN_ON(signal_pending(current));
1838 1839 1840
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqswaitsig"));
1841
			}
1842 1843 1844 1845 1846 1847 1848 1849
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
1850
		}
1851 1852 1853

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
1854 1855 1856
	}
}

1857 1858 1859
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
1860
 * the root node's ->lock and hard irqs must be disabled.
1861 1862 1863 1864
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1865 1866
 *
 * Returns true if the grace-period kthread must be awakened.
1867
 */
1868
static bool
1869 1870
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
1871
{
1872
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1873
		/*
1874
		 * Either we have not yet spawned the grace-period
1875 1876
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
1877
		 * Either way, don't start a new grace period.
1878
		 */
1879
		return false;
1880
	}
1881
	ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1882 1883
	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
			       TPS("newreq"));
1884

1885 1886
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
1887
	 * could cause possible deadlocks with the rq->lock. Defer
1888
	 * the wakeup to our caller.
1889
	 */
1890
	return true;
1891 1892
}

1893 1894 1895 1896 1897 1898
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
1899 1900
 *
 * Returns true if the grace-period kthread needs to be awakened.
1901
 */
1902
static bool rcu_start_gp(struct rcu_state *rsp)
1903 1904 1905
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
1906
	bool ret = false;
1907 1908 1909 1910 1911 1912 1913 1914 1915

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
1916 1917 1918
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
1919 1920
}

1921
/*
P
Paul E. McKenney 已提交
1922 1923 1924
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
1925 1926
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
1927
 */
P
Paul E. McKenney 已提交
1928
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1929
	__releases(rcu_get_root(rsp)->lock)
1930
{
1931
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1932
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1933
	rcu_gp_kthread_wake(rsp);
1934 1935
}

1936
/*
P
Paul E. McKenney 已提交
1937 1938 1939 1940 1941 1942
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1943 1944
 */
static void
P
Paul E. McKenney 已提交
1945 1946
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1947 1948
	__releases(rnp->lock)
{
1949 1950
	struct rcu_node *rnp_c;

1951 1952 1953 1954 1955
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1956
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1957 1958 1959
			return;
		}
		rnp->qsmask &= ~mask;
1960 1961 1962 1963
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1964
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1965 1966

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1967
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1968 1969 1970 1971 1972 1973 1974 1975 1976
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1977
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1978
		rnp_c = rnp;
1979
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1980
		raw_spin_lock_irqsave(&rnp->lock, flags);
1981
		smp_mb__after_unlock_lock();
1982
		WARN_ON_ONCE(rnp_c->qsmask);
1983 1984 1985 1986
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1987
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1988
	 * to clean up and start the next grace period if one is needed.
1989
	 */
P
Paul E. McKenney 已提交
1990
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1991 1992 1993
}

/*
P
Paul E. McKenney 已提交
1994 1995 1996 1997 1998 1999 2000
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
2001 2002
 */
static void
2003
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2004 2005 2006
{
	unsigned long flags;
	unsigned long mask;
2007
	bool needwake;
2008 2009 2010
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
2011
	raw_spin_lock_irqsave(&rnp->lock, flags);
2012
	smp_mb__after_unlock_lock();
2013 2014
	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum) {
2015 2016

		/*
2017 2018 2019 2020
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2021
		 */
2022
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
2023
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2024 2025 2026 2027
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
2028
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2029 2030 2031 2032 2033 2034 2035
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2036
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2037

P
Paul E. McKenney 已提交
2038
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
2039 2040
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2053 2054
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2067
	if (!rdp->passed_quiesce)
2068 2069
		return;

P
Paul E. McKenney 已提交
2070 2071 2072 2073
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2074
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2075 2076 2077 2078
}

#ifdef CONFIG_HOTPLUG_CPU

2079
/*
2080 2081
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2082
 * ->orphan_lock.
2083
 */
2084 2085 2086
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2087
{
P
Paul E. McKenney 已提交
2088
	/* No-CBs CPUs do not have orphanable callbacks. */
2089
	if (rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2090 2091
		return;

2092 2093
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2094 2095
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2096
	 */
2097
	if (rdp->nxtlist != NULL) {
2098 2099 2100
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2101
		rdp->qlen_lazy = 0;
2102
		ACCESS_ONCE(rdp->qlen) = 0;
2103 2104 2105
	}

	/*
2106 2107 2108 2109 2110 2111 2112
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2113
	 */
2114 2115 2116 2117
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2118 2119 2120
	}

	/*
2121 2122 2123
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2124
	 */
2125
	if (rdp->nxtlist != NULL) {
2126 2127
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2128
	}
2129

2130
	/* Finally, initialize the rcu_data structure's list to empty.  */
2131
	init_callback_list(rdp);
2132 2133 2134 2135
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2136
 * orphanage.  The caller must hold the ->orphan_lock.
2137
 */
2138
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2139 2140
{
	int i;
2141
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2142

P
Paul E. McKenney 已提交
2143
	/* No-CBs CPUs are handled specially. */
2144
	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2145 2146
		return;

2147 2148 2149 2150
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2151 2152
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
2192 2193
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2194
			       TPS("cpuofl"));
2195 2196 2197
}

/*
2198
 * The CPU has been completely removed, and some other CPU is reporting
2199 2200
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2201 2202
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2203
 */
2204
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2205
{
2206 2207 2208
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
2209
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2210
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2211

2212
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2213
	rcu_boost_kthread_setaffinity(rnp, -1);
2214 2215

	/* Exclude any attempts to start a new grace period. */
2216
	mutex_lock(&rsp->onoff_mutex);
2217
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2218

2219 2220
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2221
	rcu_adopt_orphan_cbs(rsp, flags);
2222

2223 2224 2225 2226
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2227
		smp_mb__after_unlock_lock();
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
2245
	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2246 2247
	 * held leads to deadlock.
	 */
2248
	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2249 2250 2251 2252 2253 2254 2255
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
2256 2257 2258
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2259 2260 2261
	init_callback_list(rdp);
	/* Disallow further callbacks on this CPU. */
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2262
	mutex_unlock(&rsp->onoff_mutex);
2263 2264 2265 2266
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

2267
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2268 2269 2270
{
}

2271
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2272 2273 2274 2275 2276 2277 2278 2279 2280
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2281
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2282 2283 2284
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2285 2286
	long bl, count, count_lazy;
	int i;
2287

2288
	/* If no callbacks are ready, just return. */
2289
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2290
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2291 2292 2293
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2294
		return;
2295
	}
2296 2297 2298 2299 2300 2301

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2302
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2303
	bl = rdp->blimit;
2304
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2305 2306 2307 2308
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2309 2310 2311
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2312 2313 2314
	local_irq_restore(flags);

	/* Invoke callbacks. */
2315
	count = count_lazy = 0;
2316 2317 2318
	while (list) {
		next = list->next;
		prefetch(next);
2319
		debug_rcu_head_unqueue(list);
2320 2321
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2322
		list = next;
2323 2324 2325 2326
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2327 2328 2329 2330
			break;
	}

	local_irq_save(flags);
2331 2332 2333
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2334 2335 2336 2337 2338

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2339 2340 2341
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2342 2343 2344
			else
				break;
	}
2345 2346
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2347
	ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
2348
	rdp->n_cbs_invoked += count;
2349 2350 2351 2352 2353

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2354 2355 2356 2357 2358 2359
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2360
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2361

2362 2363
	local_irq_restore(flags);

2364
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2365
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2366
		invoke_rcu_core();
2367 2368 2369 2370 2371
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2372
 * Also schedule RCU core processing.
2373
 *
2374
 * This function must be called from hardirq context.  It is normally
2375 2376 2377
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2378
void rcu_check_callbacks(int user)
2379
{
2380
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2381
	increment_cpu_stall_ticks();
2382
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2383 2384 2385 2386 2387

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2388
		 * a quiescent state, so note it.
2389 2390
		 *
		 * No memory barrier is required here because both
2391 2392 2393
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2394 2395
		 */

2396 2397
		rcu_sched_qs();
		rcu_bh_qs();
2398 2399 2400 2401 2402 2403 2404

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2405
		 * critical section, so note it.
2406 2407
		 */

2408
		rcu_bh_qs();
2409
	}
2410
	rcu_preempt_check_callbacks();
2411
	if (rcu_pending())
2412
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2413 2414
	if (user)
		rcu_note_voluntary_context_switch(current);
2415
	trace_rcu_utilization(TPS("End scheduler-tick"));
2416 2417 2418 2419 2420
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2421 2422
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2423
 * The caller must have suppressed start of new grace periods.
2424
 */
2425 2426 2427 2428
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2429 2430 2431 2432 2433
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2434
	struct rcu_node *rnp;
2435

2436
	rcu_for_each_leaf_node(rsp, rnp) {
2437
		cond_resched_rcu_qs();
2438
		mask = 0;
P
Paul E. McKenney 已提交
2439
		raw_spin_lock_irqsave(&rnp->lock, flags);
2440
		smp_mb__after_unlock_lock();
2441
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
2442
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2443
			return;
2444
		}
2445
		if (rnp->qsmask == 0) {
2446
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2447 2448
			continue;
		}
2449
		cpu = rnp->grplo;
2450
		bit = 1;
2451
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2452 2453
			if ((rnp->qsmask & bit) != 0) {
				if ((rnp->qsmaskinit & bit) != 0)
2454
					*isidle = false;
2455 2456 2457
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2458
		}
2459
		if (mask != 0) {
2460

P
Paul E. McKenney 已提交
2461 2462
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2463 2464
			continue;
		}
P
Paul E. McKenney 已提交
2465
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2466
	}
2467
	rnp = rcu_get_root(rsp);
2468 2469
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
2470
		smp_mb__after_unlock_lock();
2471 2472
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
2473 2474 2475 2476 2477 2478
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2479
static void force_quiescent_state(struct rcu_state *rsp)
2480 2481
{
	unsigned long flags;
2482 2483 2484 2485 2486
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2487
	rnp = __this_cpu_read(rsp->rda->mynode);
2488 2489 2490 2491 2492 2493
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2494
			rsp->n_force_qs_lh++;
2495 2496 2497 2498 2499
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2500

2501 2502
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2503
	smp_mb__after_unlock_lock();
2504 2505
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2506
		rsp->n_force_qs_lh++;
2507
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2508
		return;  /* Someone beat us to it. */
2509
	}
2510 2511
	ACCESS_ONCE(rsp->gp_flags) =
		ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
2512
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2513
	rcu_gp_kthread_wake(rsp);
2514 2515 2516
}

/*
2517 2518 2519
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2520 2521
 */
static void
2522
__rcu_process_callbacks(struct rcu_state *rsp)
2523 2524
{
	unsigned long flags;
2525
	bool needwake;
2526
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2527

2528 2529
	WARN_ON_ONCE(rdp->beenonline == 0);

2530 2531 2532 2533
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2534
	local_irq_save(flags);
2535
	if (cpu_needs_another_gp(rsp, rdp)) {
2536
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2537
		needwake = rcu_start_gp(rsp);
2538
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2539 2540
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2541 2542
	} else {
		local_irq_restore(flags);
2543 2544 2545
	}

	/* If there are callbacks ready, invoke them. */
2546
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2547
		invoke_rcu_callbacks(rsp, rdp);
2548 2549 2550

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2551 2552
}

2553
/*
2554
 * Do RCU core processing for the current CPU.
2555
 */
2556
static void rcu_process_callbacks(struct softirq_action *unused)
2557
{
2558 2559
	struct rcu_state *rsp;

2560 2561
	if (cpu_is_offline(smp_processor_id()))
		return;
2562
	trace_rcu_utilization(TPS("Start RCU core"));
2563 2564
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2565
	trace_rcu_utilization(TPS("End RCU core"));
2566 2567
}

2568
/*
2569 2570 2571 2572 2573
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
2574
 */
2575
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2576
{
2577 2578
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
2579 2580
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2581 2582
		return;
	}
2583
	invoke_rcu_callbacks_kthread();
2584 2585
}

2586
static void invoke_rcu_core(void)
2587
{
2588 2589
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2590 2591
}

2592 2593 2594 2595 2596
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2597
{
2598 2599
	bool needwake;

2600 2601 2602 2603
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2604
	if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2605 2606
		invoke_rcu_core();

2607
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2608
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2609
		return;
2610

2611 2612 2613 2614 2615 2616 2617
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2618
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2619 2620

		/* Are we ignoring a completed grace period? */
2621
		note_gp_changes(rsp, rdp);
2622 2623 2624 2625 2626

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2627
			raw_spin_lock(&rnp_root->lock);
2628
			smp_mb__after_unlock_lock();
2629
			needwake = rcu_start_gp(rsp);
2630
			raw_spin_unlock(&rnp_root->lock);
2631 2632
			if (needwake)
				rcu_gp_kthread_wake(rsp);
2633 2634 2635 2636 2637
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2638
				force_quiescent_state(rsp);
2639 2640 2641
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2642
	}
2643 2644
}

2645 2646 2647 2648 2649 2650 2651
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
2652 2653 2654 2655 2656 2657
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
2658 2659
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
2660
	   struct rcu_state *rsp, int cpu, bool lazy)
2661 2662 2663 2664
{
	unsigned long flags;
	struct rcu_data *rdp;

2665
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2666 2667 2668 2669 2670 2671
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
		ACCESS_ONCE(head->func) = rcu_leak_callback;
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
2682
	rdp = this_cpu_ptr(rsp->rda);
2683 2684

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
2685 2686 2687 2688 2689
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
2690
		offline = !__call_rcu_nocb(rdp, head, lazy, flags);
P
Paul E. McKenney 已提交
2691
		WARN_ON_ONCE(offline);
2692 2693 2694 2695
		/* _call_rcu() is illegal on offline CPU; leak the callback. */
		local_irq_restore(flags);
		return;
	}
2696
	ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
2697 2698
	if (lazy)
		rdp->qlen_lazy++;
2699 2700
	else
		rcu_idle_count_callbacks_posted();
2701 2702 2703
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2704

2705 2706
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2707
					 rdp->qlen_lazy, rdp->qlen);
2708
	else
2709
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2710

2711 2712
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2713 2714 2715 2716
	local_irq_restore(flags);
}

/*
2717
 * Queue an RCU-sched callback for invocation after a grace period.
2718
 */
2719
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2720
{
P
Paul E. McKenney 已提交
2721
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2722
}
2723
EXPORT_SYMBOL_GPL(call_rcu_sched);
2724 2725

/*
2726
 * Queue an RCU callback for invocation after a quicker grace period.
2727 2728 2729
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
2730
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2731 2732 2733
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
2744
	__call_rcu(head, func, rcu_state_p, -1, 1);
2745 2746 2747
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2759 2760
	int ret;

2761
	might_sleep();  /* Check for RCU read-side critical section. */
2762 2763 2764 2765
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2766 2767
}

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
2802 2803 2804 2805 2806 2807 2808 2809 2810
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2811 2812 2813 2814
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2815 2816
	if (rcu_blocking_is_gp())
		return;
2817 2818 2819 2820
	if (rcu_expedited)
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
2832 2833 2834
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
2835 2836 2837
 */
void synchronize_rcu_bh(void)
{
2838 2839 2840 2841
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2842 2843
	if (rcu_blocking_is_gp())
		return;
2844 2845 2846 2847
	if (rcu_expedited)
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
2848 2849 2850
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
2871
	return smp_load_acquire(&rcu_state_p->gpnum);
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
2897
	newstate = smp_load_acquire(&rcu_state_p->completed);
2898 2899 2900 2901 2902
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
2954 2955 2956
	cpumask_var_t cm;
	bool cma = false;
	int cpu;
2957 2958
	long firstsnap, s, snap;
	int trycount = 0;
2959
	struct rcu_state *rsp = &rcu_sched_state;
2960

2961 2962 2963 2964 2965 2966 2967 2968
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
2969 2970
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
2971 2972
			 ULONG_MAX / 8)) {
		synchronize_sched();
2973
		atomic_long_inc(&rsp->expedited_wrap);
2974 2975
		return;
	}
2976

2977 2978 2979 2980
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
2981
	snap = atomic_long_inc_return(&rsp->expedited_start);
2982
	firstsnap = snap;
2983 2984 2985 2986 2987 2988
	if (!try_get_online_cpus()) {
		/* CPU hotplug operation in flight, fall back to normal GP. */
		wait_rcu_gp(call_rcu_sched);
		atomic_long_inc(&rsp->expedited_normal);
		return;
	}
2989
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2990

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
	/* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
	cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
	if (cma) {
		cpumask_copy(cm, cpu_online_mask);
		cpumask_clear_cpu(raw_smp_processor_id(), cm);
		for_each_cpu(cpu, cm) {
			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

			if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
				cpumask_clear_cpu(cpu, cm);
		}
		if (cpumask_weight(cm) == 0)
			goto all_cpus_idle;
	}

3006 3007 3008 3009
	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
3010
	while (try_stop_cpus(cma ? cm : cpu_online_mask,
3011 3012 3013
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
3014
		atomic_long_inc(&rsp->expedited_tryfail);
3015

3016
		/* Check to see if someone else did our work for us. */
3017
		s = atomic_long_read(&rsp->expedited_done);
3018
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3019
			/* ensure test happens before caller kfree */
3020
			smp_mb__before_atomic(); /* ^^^ */
3021
			atomic_long_inc(&rsp->expedited_workdone1);
3022
			free_cpumask_var(cm);
3023 3024
			return;
		}
3025 3026

		/* No joy, try again later.  Or just synchronize_sched(). */
3027
		if (trycount++ < 10) {
3028
			udelay(trycount * num_online_cpus());
3029
		} else {
3030
			wait_rcu_gp(call_rcu_sched);
3031
			atomic_long_inc(&rsp->expedited_normal);
3032
			free_cpumask_var(cm);
3033 3034 3035
			return;
		}

3036
		/* Recheck to see if someone else did our work for us. */
3037
		s = atomic_long_read(&rsp->expedited_done);
3038
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3039
			/* ensure test happens before caller kfree */
3040
			smp_mb__before_atomic(); /* ^^^ */
3041
			atomic_long_inc(&rsp->expedited_workdone2);
3042
			free_cpumask_var(cm);
3043 3044 3045 3046 3047
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
3048 3049 3050 3051
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
3052
		 */
3053 3054 3055 3056
		if (!try_get_online_cpus()) {
			/* CPU hotplug operation in flight, use normal GP. */
			wait_rcu_gp(call_rcu_sched);
			atomic_long_inc(&rsp->expedited_normal);
3057
			free_cpumask_var(cm);
3058 3059
			return;
		}
3060
		snap = atomic_long_read(&rsp->expedited_start);
3061 3062
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
3063
	atomic_long_inc(&rsp->expedited_stoppedcpus);
3064

3065 3066 3067
all_cpus_idle:
	free_cpumask_var(cm);

3068 3069 3070 3071
	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
3072
	 * than we did already did their update.
3073 3074
	 */
	do {
3075
		atomic_long_inc(&rsp->expedited_done_tries);
3076
		s = atomic_long_read(&rsp->expedited_done);
3077
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3078
			/* ensure test happens before caller kfree */
3079
			smp_mb__before_atomic(); /* ^^^ */
3080
			atomic_long_inc(&rsp->expedited_done_lost);
3081 3082
			break;
		}
3083
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3084
	atomic_long_inc(&rsp->expedited_done_exit);
3085 3086 3087 3088 3089

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3090 3091 3092 3093 3094 3095 3096 3097 3098
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3099 3100
	struct rcu_node *rnp = rdp->mynode;

3101 3102 3103 3104 3105
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3106 3107 3108 3109
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3110
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3111 3112
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
3113
		rdp->n_rp_qs_pending++;
3114
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
3115
		rdp->n_rp_report_qs++;
3116
		return 1;
3117
	}
3118 3119

	/* Does this CPU have callbacks ready to invoke? */
3120 3121
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3122
		return 1;
3123
	}
3124 3125

	/* Has RCU gone idle with this CPU needing another grace period? */
3126 3127
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3128
		return 1;
3129
	}
3130 3131

	/* Has another RCU grace period completed?  */
3132
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3133
		rdp->n_rp_gp_completed++;
3134
		return 1;
3135
	}
3136 3137

	/* Has a new RCU grace period started? */
3138
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
3139
		rdp->n_rp_gp_started++;
3140
		return 1;
3141
	}
3142

3143 3144 3145 3146 3147 3148
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3149
	/* nothing to do */
3150
	rdp->n_rp_need_nothing++;
3151 3152 3153 3154 3155 3156 3157 3158
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3159
static int rcu_pending(void)
3160
{
3161 3162 3163
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3164
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3165 3166
			return 1;
	return 0;
3167 3168 3169
}

/*
3170 3171 3172
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3173
 */
3174
static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3175
{
3176 3177 3178
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3179 3180
	struct rcu_state *rsp;

3181
	for_each_rcu_flavor(rsp) {
3182
		rdp = this_cpu_ptr(rsp->rda);
3183 3184 3185 3186
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3187
			al = false;
3188 3189
			break;
		}
3190 3191 3192 3193
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3194 3195
}

3196 3197 3198 3199
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3200
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3201 3202 3203 3204 3205 3206
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3207 3208 3209 3210
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3211
static void rcu_barrier_callback(struct rcu_head *rhp)
3212
{
3213 3214 3215
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3216 3217
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3218
		complete(&rsp->barrier_completion);
3219 3220 3221
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
3222 3223 3224 3225 3226 3227 3228
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3229
	struct rcu_state *rsp = type;
3230
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3231

3232
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3233
	atomic_inc(&rsp->barrier_cpu_count);
3234
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3235 3236 3237 3238 3239 3240
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3241
static void _rcu_barrier(struct rcu_state *rsp)
3242
{
3243 3244
	int cpu;
	struct rcu_data *rdp;
3245 3246
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
3247

3248
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3249

3250
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3251
	mutex_lock(&rsp->barrier_mutex);
3252

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
3265
	snap_done = rsp->n_barrier_done;
3266
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278

	/*
	 * If the value in snap is odd, we needed to wait for the current
	 * rcu_barrier() to complete, then wait for the next one, in other
	 * words, we need the value of snap_done to be three larger than
	 * the value of snap.  On the other hand, if the value in snap is
	 * even, we only had to wait for the next rcu_barrier() to complete,
	 * in other words, we need the value of snap_done to be only two
	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
	 * this for us (thank you, Linus!).
	 */
	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3279
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
3290
	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3291
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3292
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3293
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3294

3295
	/*
3296 3297
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3298 3299
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3300
	 */
3301
	init_completion(&rsp->barrier_completion);
3302
	atomic_set(&rsp->barrier_cpu_count, 1);
3303
	get_online_cpus();
3304 3305

	/*
3306 3307 3308
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3309
	 */
P
Paul E. McKenney 已提交
3310
	for_each_possible_cpu(cpu) {
3311
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3312
			continue;
3313
		rdp = per_cpu_ptr(rsp->rda, cpu);
3314
		if (rcu_is_nocb_cpu(cpu)) {
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
						   rsp->n_barrier_done);
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
						   rsp->n_barrier_done);
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
P
Paul E. McKenney 已提交
3325
		} else if (ACCESS_ONCE(rdp->qlen)) {
3326 3327
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
3328
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3329
		} else {
3330 3331
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
3332 3333
		}
	}
3334
	put_online_cpus();
3335 3336 3337 3338 3339

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3340
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3341
		complete(&rsp->barrier_completion);
3342

3343 3344
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
3345
	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3346
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3347
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3348 3349
	smp_mb(); /* Keep increment before caller's subsequent code. */

3350
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3351
	wait_for_completion(&rsp->barrier_completion);
3352 3353

	/* Other rcu_barrier() invocations can now safely proceed. */
3354
	mutex_unlock(&rsp->barrier_mutex);
3355 3356 3357 3358 3359 3360 3361
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3362
	_rcu_barrier(&rcu_bh_state);
3363 3364 3365 3366 3367 3368 3369 3370
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3371
	_rcu_barrier(&rcu_sched_state);
3372 3373 3374
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3375
/*
3376
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3377
 */
3378 3379
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3380 3381
{
	unsigned long flags;
3382
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3383 3384 3385
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3386
	raw_spin_lock_irqsave(&rnp->lock, flags);
3387
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3388
	init_callback_list(rdp);
3389
	rdp->qlen_lazy = 0;
3390
	ACCESS_ONCE(rdp->qlen) = 0;
3391
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3392
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3393
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3394
	rdp->cpu = cpu;
3395
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3396
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
3397
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3398 3399 3400 3401 3402 3403 3404
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3405
 */
3406
static void
3407
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3408 3409 3410
{
	unsigned long flags;
	unsigned long mask;
3411
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3412 3413
	struct rcu_node *rnp = rcu_get_root(rsp);

3414 3415 3416
	/* Exclude new grace periods. */
	mutex_lock(&rsp->onoff_mutex);

3417
	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3418
	raw_spin_lock_irqsave(&rnp->lock, flags);
3419
	rdp->beenonline = 1;	 /* We have now been online. */
3420 3421
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3422
	rdp->blimit = blimit;
3423
	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3424
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3425
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3426 3427
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
3428
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3429 3430 3431 3432 3433 3434

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
3435
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
3436 3437
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
3438
		if (rnp == rdp->mynode) {
3439 3440 3441 3442 3443 3444
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
3445
			rdp->completed = rnp->completed;
3446 3447
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
3448
			trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3449
		}
P
Paul E. McKenney 已提交
3450
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3451 3452
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
3453
	local_irq_restore(flags);
3454

3455
	mutex_unlock(&rsp->onoff_mutex);
3456 3457
}

3458
static void rcu_prepare_cpu(int cpu)
3459
{
3460 3461 3462
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3463
		rcu_init_percpu_data(cpu, rsp);
3464 3465 3466
}

/*
3467
 * Handle CPU online/offline notification events.
3468
 */
3469
static int rcu_cpu_notify(struct notifier_block *self,
3470
				    unsigned long action, void *hcpu)
3471 3472
{
	long cpu = (long)hcpu;
3473
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3474
	struct rcu_node *rnp = rdp->mynode;
3475
	struct rcu_state *rsp;
3476

3477
	trace_rcu_utilization(TPS("Start CPU hotplug"));
3478 3479 3480
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
3481 3482
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
3483
		rcu_spawn_all_nocb_kthreads(cpu);
3484 3485
		break;
	case CPU_ONLINE:
3486
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
3487
		rcu_boost_kthread_setaffinity(rnp, -1);
3488 3489
		break;
	case CPU_DOWN_PREPARE:
3490
		rcu_boost_kthread_setaffinity(rnp, cpu);
3491
		break;
3492 3493
	case CPU_DYING:
	case CPU_DYING_FROZEN:
3494 3495
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
3496
		break;
3497 3498 3499 3500
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
3501
		for_each_rcu_flavor(rsp) {
3502
			rcu_cleanup_dead_cpu(cpu, rsp);
3503 3504
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
3505 3506 3507 3508
		break;
	default:
		break;
	}
3509
	trace_rcu_utilization(TPS("End CPU hotplug"));
3510
	return NOTIFY_OK;
3511 3512
}

3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_expedited = 1;
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
		rcu_expedited = 0;
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3532
/*
3533
 * Spawn the kthreads that handle each RCU flavor's grace periods.
3534 3535 3536 3537 3538 3539 3540 3541
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
	struct task_struct *t;

3542
	rcu_scheduler_fully_active = 1;
3543
	for_each_rcu_flavor(rsp) {
3544
		t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3545 3546 3547 3548 3549 3550
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
3551
	rcu_spawn_nocb_kthreads();
3552
	rcu_spawn_boost_kthreads();
3553 3554 3555 3556
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

3572 3573 3574 3575 3576 3577 3578 3579 3580
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

3581 3582
	rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
	for (i = rcu_num_lvls - 2; i >= 0; i--)
3583 3584 3585 3586 3587 3588 3589 3590 3591
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

3592
	cprv = nr_cpu_ids;
3593
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3604 3605
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3606
{
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
	static const char * const buf[] = {
		"rcu_node_0",
		"rcu_node_1",
		"rcu_node_2",
		"rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static const char * const fqs[] = {
		"rcu_node_fqs_0",
		"rcu_node_fqs_1",
		"rcu_node_fqs_2",
		"rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3617
	static u8 fl_mask = 0x1;
3618 3619 3620 3621 3622
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

3623 3624
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

3625 3626 3627 3628
	/* Silence gcc 4.8 warning about array index out of range. */
	if (rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls overflow");

3629 3630
	/* Initialize the level-tracking arrays. */

3631 3632 3633
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
3634 3635
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);
3636 3637
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
3638 3639 3640

	/* Initialize the elements themselves, starting from the leaves. */

3641
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3642 3643 3644
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
3645
			raw_spin_lock_init(&rnp->lock);
3646 3647
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
3648 3649 3650
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
3651 3652
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
3653 3654 3655 3656
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
3657 3658
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
3670
			INIT_LIST_HEAD(&rnp->blkd_tasks);
3671
			rcu_init_one_nocb(rnp);
3672 3673
		}
	}
3674

3675
	rsp->rda = rda;
3676
	init_waitqueue_head(&rsp->gp_wq);
3677
	rnp = rsp->level[rcu_num_lvls - 1];
3678
	for_each_possible_cpu(i) {
3679
		while (i > rnp->grphi)
3680
			rnp++;
3681
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3682 3683
		rcu_boot_init_percpu_data(i, rsp);
	}
3684
	list_add(&rsp->flavors, &rcu_struct_flavors);
3685 3686
}

3687 3688
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3689
 * replace the definitions in tree.h because those are needed to size
3690 3691 3692 3693
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
3694
	ulong d;
3695 3696
	int i;
	int j;
3697
	int n = nr_cpu_ids;
3698 3699
	int rcu_capacity[MAX_RCU_LVLS + 1];

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

3713
	/* If the compile-time values are accurate, just leave. */
3714 3715
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
3716
		return;
3717 3718
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

3764
void __init rcu_init(void)
3765
{
P
Paul E. McKenney 已提交
3766
	int cpu;
3767

3768
	rcu_bootup_announce();
3769
	rcu_init_geometry();
3770
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3771
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3772
	__rcu_init_preempt();
J
Jiang Fang 已提交
3773
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3774 3775 3776 3777 3778 3779 3780

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
3781
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
3782 3783
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3784 3785

	rcu_early_boot_tests();
3786 3787
}

3788
#include "tree_plugin.h"