tree.c 128.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/ftrace_event.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73

74 75 76 77 78 79 80 81
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
82 83
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
84
static char sname##_varname[] = #sname; \
85 86 87 88 89 90 91 92 93
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
94
DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
95
struct rcu_state sname##_state = { \
96
	.level = { &sname##_state.node[0] }, \
97
	.rda = &sname##_data, \
98
	.call = cr, \
99
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
100 101
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
102
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
103 104
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
105
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
106
	.name = RCU_STATE_NAME(sname), \
107
	.abbr = sabbr, \
108
}
109

110 111
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112

113
static struct rcu_state *rcu_state_p;
114
LIST_HEAD(rcu_struct_flavors);
115

116 117
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
118
module_param(rcu_fanout_leaf, int, 0444);
119 120 121 122 123 124 125 126 127 128
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

129 130 131 132
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
133
 * optimize synchronize_sched() to a simple barrier().  When this variable
134 135 136 137
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
138 139 140
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

141 142 143 144 145 146 147 148 149 150 151 152 153 154
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

155 156
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
157
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
158 159
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
160

161 162 163 164
/* rcuc/rcub kthread realtime priority */
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
module_param(kthread_prio, int, 0644);

165 166 167
/* Delay in jiffies for grace-period initialization delays, debug only. */
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
168
module_param(gp_init_delay, int, 0644);
169 170 171
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
172 173 174 175 176 177 178 179 180 181 182

/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
183

184 185 186 187 188 189 190 191 192 193 194 195
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

196 197 198 199 200 201 202 203
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
204
	return READ_ONCE(rnp->qsmaskinitnext);
205 206
}

207
/*
208
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
209 210 211 212 213
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
214
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
215 216
}

217
/*
218
 * Note a quiescent state.  Because we do not need to know
219
 * how many quiescent states passed, just if there was at least
220
 * one since the start of the grace period, this just sets a flag.
221
 * The caller must have disabled preemption.
222
 */
223
void rcu_sched_qs(void)
224
{
225 226 227 228 229 230
	if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_sched"),
				       __this_cpu_read(rcu_sched_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_sched_data.passed_quiesce, 1);
	}
231 232
}

233
void rcu_bh_qs(void)
234
{
235 236 237 238 239 240
	if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_bh_data.passed_quiesce, 1);
	}
241
}
242

243 244 245 246 247 248 249 250 251 252 253
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

254 255 256
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
 */
static void rcu_momentary_dyntick_idle(void)
{
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	local_irq_save(flags);

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
291 292
		if (READ_ONCE(rdp->mynode->completed) !=
		    READ_ONCE(rdp->cond_resched_completed))
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
	local_irq_restore(flags);
}

310 311 312
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
313
 * The caller must have disabled preemption.
314
 */
315
void rcu_note_context_switch(void)
316
{
317
	trace_rcu_utilization(TPS("Start context switch"));
318
	rcu_sched_qs();
319
	rcu_preempt_note_context_switch();
320 321
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
322
	trace_rcu_utilization(TPS("End context switch"));
323
}
324
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
325

326
/*
327
 * Register a quiescent state for all RCU flavors.  If there is an
328 329
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
330
 * RCU flavors in desperate need of a quiescent state, which will normally
331 332 333 334 335 336 337 338 339 340 341
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
 */
void rcu_all_qs(void)
{
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
	this_cpu_inc(rcu_qs_ctr);
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
342 343 344
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
345

E
Eric Dumazet 已提交
346 347 348
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
349

350 351
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
352 353 354 355

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

356 357 358 359 360 361 362
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

363
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
364
				  struct rcu_data *rdp);
365 366 367 368
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
369
static void force_quiescent_state(struct rcu_state *rsp);
370
static int rcu_pending(void);
371 372

/*
373
 * Return the number of RCU batches started thus far for debug & stats.
374
 */
375 376 377 378 379 380 381 382
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
383
 */
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
410
 */
411
unsigned long rcu_batches_completed_sched(void)
412
{
413
	return rcu_sched_state.completed;
414
}
415
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
416 417

/*
418
 * Return the number of RCU BH batches completed thus far for debug & stats.
419
 */
420
unsigned long rcu_batches_completed_bh(void)
421 422 423 424 425
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

426 427 428 429 430
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
431
	force_quiescent_state(rcu_state_p);
432 433 434
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

435 436 437 438 439
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
440
	force_quiescent_state(&rcu_bh_state);
441 442 443
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

444 445 446 447 448 449 450 451 452
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

468 469 470 471 472 473 474 475 476 477 478 479 480 481
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

482 483 484 485 486 487 488 489 490 491
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
492
		rsp = rcu_state_p;
493 494 495 496 497 498 499 500 501 502 503
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
504 505 506
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
507 508 509 510 511 512 513 514
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

515 516 517 518 519 520 521 522 523 524 525
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

526 527 528 529 530 531
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
532 533
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
534 535
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
552
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
553 554
	int *fp = &rnp->need_future_gp[idx];

555
	return READ_ONCE(*fp);
556 557
}

558
/*
559 560 561
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
562 563 564 565
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
566
	int i;
P
Paul E. McKenney 已提交
567

568 569
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
570
	if (rcu_future_needs_gp(rsp))
571
		return 1;  /* Yes, a no-CBs CPU needs one. */
572 573 574 575 576 577
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
578
		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
579 580 581
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
582 583
}

584
/*
585
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
586 587 588 589 590
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
591
static void rcu_eqs_enter_common(long long oldval, bool user)
592
{
593 594
	struct rcu_state *rsp;
	struct rcu_data *rdp;
595
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
596

597
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
598
	if (!user && !is_idle_task(current)) {
599 600
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
601

602
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
603
		ftrace_dump(DUMP_ORIG);
604 605 606
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
607
	}
608 609 610 611
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
612
	rcu_prepare_for_idle();
613
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
614
	smp_mb__before_atomic();  /* See above. */
615
	atomic_inc(&rdtp->dynticks);
616
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
617
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
618
	rcu_dynticks_task_enter();
619 620

	/*
621
	 * It is illegal to enter an extended quiescent state while
622 623 624 625 626 627 628 629
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
630
}
631

632 633 634
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
635
 */
636
static void rcu_eqs_enter(bool user)
637
{
638
	long long oldval;
639 640
	struct rcu_dynticks *rdtp;

641
	rdtp = this_cpu_ptr(&rcu_dynticks);
642
	oldval = rdtp->dynticks_nesting;
643
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
644
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
645
		rdtp->dynticks_nesting = 0;
646
		rcu_eqs_enter_common(oldval, user);
647
	} else {
648
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
649
	}
650
}
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
666 667 668
	unsigned long flags;

	local_irq_save(flags);
669
	rcu_eqs_enter(false);
670
	rcu_sysidle_enter(0);
671
	local_irq_restore(flags);
672
}
673
EXPORT_SYMBOL_GPL(rcu_idle_enter);
674

675
#ifdef CONFIG_RCU_USER_QS
676 677 678 679 680 681 682 683 684 685
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
686
	rcu_eqs_enter(1);
687
}
688
#endif /* CONFIG_RCU_USER_QS */
689

690 691 692 693 694 695
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
696
 *
697 698 699 700 701 702 703 704
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
705
 */
706
void rcu_irq_exit(void)
707 708
{
	unsigned long flags;
709
	long long oldval;
710 711 712
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
713
	rdtp = this_cpu_ptr(&rcu_dynticks);
714
	oldval = rdtp->dynticks_nesting;
715 716
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
717
	if (rdtp->dynticks_nesting)
718
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
719
	else
720 721
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
722 723 724 725
	local_irq_restore(flags);
}

/*
726
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
727 728 729 730 731
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
732
static void rcu_eqs_exit_common(long long oldval, int user)
733
{
734 735
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

736
	rcu_dynticks_task_exit();
737
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
738 739
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
740
	smp_mb__after_atomic();  /* See above. */
741
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
742
	rcu_cleanup_after_idle();
743
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
744
	if (!user && !is_idle_task(current)) {
745 746
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
747

748
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
749
				  oldval, rdtp->dynticks_nesting);
750
		ftrace_dump(DUMP_ORIG);
751 752 753
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
754 755 756
	}
}

757 758 759
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
760
 */
761
static void rcu_eqs_exit(bool user)
762 763 764 765
{
	struct rcu_dynticks *rdtp;
	long long oldval;

766
	rdtp = this_cpu_ptr(&rcu_dynticks);
767
	oldval = rdtp->dynticks_nesting;
768
	WARN_ON_ONCE(oldval < 0);
769
	if (oldval & DYNTICK_TASK_NEST_MASK) {
770
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
771
	} else {
772
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
773
		rcu_eqs_exit_common(oldval, user);
774
	}
775
}
776 777 778 779 780 781 782 783 784 785 786 787 788 789

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
790 791 792
	unsigned long flags;

	local_irq_save(flags);
793
	rcu_eqs_exit(false);
794
	rcu_sysidle_exit(0);
795
	local_irq_restore(flags);
796
}
797
EXPORT_SYMBOL_GPL(rcu_idle_exit);
798

799
#ifdef CONFIG_RCU_USER_QS
800 801 802 803 804 805 806 807
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
808
	rcu_eqs_exit(1);
809
}
810
#endif /* CONFIG_RCU_USER_QS */
811

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
838
	rdtp = this_cpu_ptr(&rcu_dynticks);
839 840 841
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
842
	if (oldval)
843
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
844
	else
845 846
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
847 848 849 850 851 852
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
853 854 855 856 857
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
858 859 860
 */
void rcu_nmi_enter(void)
{
861
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
862
	int incby = 2;
863

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
885 886 887 888 889
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
890 891 892 893
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
894 895 896
 */
void rcu_nmi_exit(void)
{
897
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
898

899 900 901 902 903 904 905 906 907 908 909 910 911 912
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
913
		return;
914 915 916 917
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
918
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
919
	smp_mb__before_atomic();  /* See above. */
920
	atomic_inc(&rdtp->dynticks);
921
	smp_mb__after_atomic();  /* Force delay to next write. */
922
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
923 924 925
}

/**
926 927 928 929 930 931 932
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
933
bool notrace __rcu_is_watching(void)
934 935 936 937 938 939
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
940
 *
941
 * If the current CPU is in its idle loop and is neither in an interrupt
942
 * or NMI handler, return true.
943
 */
944
bool notrace rcu_is_watching(void)
945
{
946
	bool ret;
947 948

	preempt_disable();
949
	ret = __rcu_is_watching();
950 951
	preempt_enable();
	return ret;
952
}
953
EXPORT_SYMBOL_GPL(rcu_is_watching);
954

955
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
956 957 958 959 960 961 962

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
963 964 965 966 967 968 969 970 971 972 973
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
974 975 976 977 978 979
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
980 981
	struct rcu_data *rdp;
	struct rcu_node *rnp;
982 983 984
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
985
		return true;
986
	preempt_disable();
987
	rdp = this_cpu_ptr(&rcu_sched_data);
988
	rnp = rdp->mynode;
989
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
990 991 992 993 994 995
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

996
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
997

998
/**
999
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1000
 *
1001 1002 1003
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1004
 */
1005
static int rcu_is_cpu_rrupt_from_idle(void)
1006
{
1007
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1008 1009 1010 1011 1012
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1013
 * is in dynticks idle mode, which is an extended quiescent state.
1014
 */
1015 1016
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1017
{
1018
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1019
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1020 1021 1022 1023
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
		return 1;
	} else {
1024
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1025
				 rdp->mynode->gpnum))
1026
			WRITE_ONCE(rdp->gpwrap, true);
1027 1028
		return 0;
	}
1029 1030 1031 1032 1033 1034
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1035
 * for this same CPU, or by virtue of having been offline.
1036
 */
1037 1038
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1039
{
1040
	unsigned int curr;
1041
	int *rcrmp;
1042
	unsigned int snap;
1043

1044 1045
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
1046 1047 1048 1049 1050 1051 1052 1053 1054

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1055
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1056
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1057 1058 1059 1060
		rdp->dynticks_fqs++;
		return 1;
	}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
1076
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1077 1078 1079
		rdp->offline_fqs++;
		return 1;
	}
1080 1081

	/*
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1101
	 */
1102 1103 1104
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1105
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1106 1107 1108
		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			WRITE_ONCE(rdp->cond_resched_completed,
				   READ_ONCE(rdp->mynode->completed));
1109
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1110 1111
			WRITE_ONCE(*rcrmp,
				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1112 1113 1114 1115 1116 1117 1118
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
			/* Time to beat on that CPU again! */
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
		}
1119 1120
	}

1121
	return 0;
1122 1123 1124 1125
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1126
	unsigned long j = jiffies;
1127
	unsigned long j1;
1128 1129 1130

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1131
	j1 = rcu_jiffies_till_stall_check();
1132
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1133
	rsp->jiffies_resched = j + j1 / 2;
1134
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1146
	gpa = READ_ONCE(rsp->gp_activity);
1147 1148 1149
	if (j - gpa > 2 * HZ)
		pr_err("%s kthread starved for %ld jiffies!\n",
		       rsp->name, j - gpa);
1150 1151
}

1152
/*
1153
 * Dump stacks of all tasks running on stalled CPUs.
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

1172
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1173 1174 1175 1176
{
	int cpu;
	long delta;
	unsigned long flags;
1177 1178
	unsigned long gpa;
	unsigned long j;
1179
	int ndetected = 0;
1180
	struct rcu_node *rnp = rcu_get_root(rsp);
1181
	long totqlen = 0;
1182 1183 1184

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
1185
	raw_spin_lock_irqsave(&rnp->lock, flags);
1186
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1187
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1188
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1189 1190
		return;
	}
1191 1192
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1193
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1194

1195 1196 1197 1198 1199
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1200
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1201
	       rsp->name);
1202
	print_cpu_stall_info_begin();
1203
	rcu_for_each_leaf_node(rsp, rnp) {
1204
		raw_spin_lock_irqsave(&rnp->lock, flags);
1205
		ndetected += rcu_print_task_stall(rnp);
1206 1207 1208 1209 1210 1211 1212 1213
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
1214
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1215
	}
1216 1217

	print_cpu_stall_info_end();
1218 1219
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1220
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1221
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1222
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1223
	if (ndetected) {
1224
		rcu_dump_cpu_stacks(rsp);
1225
	} else {
1226 1227
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1228 1229 1230
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1231
			gpa = READ_ONCE(rsp->gp_activity);
1232
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1233
			       rsp->name, j - gpa, j, gpa,
1234 1235
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1236 1237 1238 1239
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1240

1241
	/* Complain about tasks blocking the grace period. */
1242 1243
	rcu_print_detail_task_stall(rsp);

1244 1245
	rcu_check_gp_kthread_starvation(rsp);

1246
	force_quiescent_state(rsp);  /* Kick them all. */
1247 1248 1249 1250
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1251
	int cpu;
1252 1253
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1254
	long totqlen = 0;
1255

1256 1257 1258 1259 1260
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1261
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1262 1263 1264
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1265 1266
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1267 1268 1269
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1270 1271 1272

	rcu_check_gp_kthread_starvation(rsp);

1273
	rcu_dump_cpu_stacks(rsp);
1274

P
Paul E. McKenney 已提交
1275
	raw_spin_lock_irqsave(&rnp->lock, flags);
1276 1277 1278
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1279
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1280

1281 1282 1283 1284 1285 1286 1287 1288
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1289 1290 1291 1292
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1293 1294 1295
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1296 1297
	unsigned long j;
	unsigned long js;
1298 1299
	struct rcu_node *rnp;

1300
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1301
		return;
1302
	j = jiffies;
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1321
	gpnum = READ_ONCE(rsp->gpnum);
1322
	smp_rmb(); /* Pick up ->gpnum first... */
1323
	js = READ_ONCE(rsp->jiffies_stall);
1324
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1325
	gps = READ_ONCE(rsp->gp_start);
1326
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1327
	completed = READ_ONCE(rsp->completed);
1328 1329 1330 1331
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1332
	rnp = rdp->mynode;
1333
	if (rcu_gp_in_progress(rsp) &&
1334
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1335 1336 1337 1338

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1339 1340
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1341

1342
		/* They had a few time units to dump stack, so complain. */
1343
		print_other_cpu_stall(rsp, gpnum);
1344 1345 1346
	}
}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1358 1359 1360
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1361
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1362 1363
}

1364
/*
1365 1366 1367
 * Initialize the specified rcu_data structure's default callback list
 * to empty.  The default callback list is the one that is not used by
 * no-callbacks CPUs.
1368
 */
1369
static void init_default_callback_list(struct rcu_data *rdp)
1370 1371 1372 1373 1374 1375 1376 1377
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	if (init_nocb_callback_list(rdp))
		return;
	init_default_callback_list(rdp);
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1417 1418 1419 1420 1421
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1422
				unsigned long c, const char *s)
1423 1424 1425 1426 1427 1428 1429 1430 1431
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1432 1433
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1434 1435 1436
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1437 1438 1439
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1440 1441 1442
{
	unsigned long c;
	int i;
1443
	bool ret = false;
1444 1445 1446 1447 1448 1449 1450
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1451
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1452
	if (rnp->need_future_gp[c & 0x1]) {
1453
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1454
		goto out;
1455 1456 1457 1458 1459 1460 1461
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1462 1463 1464 1465 1466 1467 1468
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1469 1470
	 */
	if (rnp->gpnum != rnp->completed ||
1471
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1472
		rnp->need_future_gp[c & 0x1]++;
1473
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1474
		goto out;
1475 1476 1477 1478 1479 1480 1481
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1482
	if (rnp != rnp_root) {
1483
		raw_spin_lock(&rnp_root->lock);
1484 1485
		smp_mb__after_unlock_lock();
	}
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1503
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1504 1505 1506 1507 1508 1509 1510 1511
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1512
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1513
	} else {
1514
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1515
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1516 1517 1518 1519
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
1520 1521 1522 1523
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1541 1542
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1543 1544 1545
	return needmore;
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1556
	    !READ_ONCE(rsp->gp_flags) ||
1557 1558 1559 1560 1561
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1562 1563 1564 1565 1566 1567 1568
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1569 1570
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1571 1572 1573
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1574
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1575 1576 1577 1578
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1579
	bool ret;
1580 1581 1582

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1583
		return false;
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1612
		return false;
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1623
	/* Record any needed additional grace periods. */
1624
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1625 1626 1627

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1628
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1629
	else
1630
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1631
	return ret;
1632 1633 1634 1635 1636 1637 1638 1639
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1640
 * Returns true if the RCU grace-period kthread needs to be awakened.
1641 1642 1643
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1644
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1645 1646 1647 1648 1649 1650
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1651
		return false;
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1675
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1676 1677
}

1678
/*
1679 1680 1681
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1682
 * Returns true if the grace-period kthread needs to be awakened.
1683
 */
1684 1685
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1686
{
1687 1688
	bool ret;

1689
	/* Handle the ends of any preceding grace periods first. */
1690
	if (rdp->completed == rnp->completed &&
1691
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1692

1693
		/* No grace period end, so just accelerate recent callbacks. */
1694
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1695

1696 1697 1698
	} else {

		/* Advance callbacks. */
1699
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1700 1701 1702

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1703
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1704
	}
1705

1706
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1707 1708 1709 1710 1711 1712
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1713
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1714
		rdp->passed_quiesce = 0;
1715
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1716 1717
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
		zero_cpu_stall_ticks(rdp);
1718
		WRITE_ONCE(rdp->gpwrap, false);
1719
	}
1720
	return ret;
1721 1722
}

1723
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1724 1725
{
	unsigned long flags;
1726
	bool needwake;
1727 1728 1729 1730
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1731 1732 1733
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1734 1735 1736 1737
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1738
	smp_mb__after_unlock_lock();
1739
	needwake = __note_gp_changes(rsp, rnp, rdp);
1740
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1741 1742
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1743 1744
}

1745
/*
1746
 * Initialize a new grace period.  Return 0 if no grace period required.
1747
 */
1748
static int rcu_gp_init(struct rcu_state *rsp)
1749
{
1750
	unsigned long oldmask;
1751
	struct rcu_data *rdp;
1752
	struct rcu_node *rnp = rcu_get_root(rsp);
1753

1754
	WRITE_ONCE(rsp->gp_activity, jiffies);
1755
	raw_spin_lock_irq(&rnp->lock);
1756
	smp_mb__after_unlock_lock();
1757
	if (!READ_ONCE(rsp->gp_flags)) {
1758 1759 1760 1761
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1762
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1763

1764 1765 1766 1767 1768
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1769 1770 1771 1772 1773
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1774
	record_gp_stall_check_time(rsp);
1775 1776
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1777
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1778 1779
	raw_spin_unlock_irq(&rnp->lock);

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irq(&rnp->lock);
		smp_mb__after_unlock_lock();
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
			raw_spin_unlock_irq(&rnp->lock);
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

		raw_spin_unlock_irq(&rnp->lock);
	}
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1843
		raw_spin_lock_irq(&rnp->lock);
1844
		smp_mb__after_unlock_lock();
1845
		rdp = this_cpu_ptr(rsp->rda);
1846 1847
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1848
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1849
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1850
			WRITE_ONCE(rnp->completed, rsp->completed);
1851
		if (rnp == rdp->mynode)
1852
			(void)__note_gp_changes(rsp, rnp, rdp);
1853 1854 1855 1856 1857
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1858
		cond_resched_rcu_qs();
1859
		WRITE_ONCE(rsp->gp_activity, jiffies);
1860
		if (gp_init_delay > 0 &&
1861 1862
		    !(rsp->gpnum %
		      (rcu_num_nodes * PER_RCU_NODE_PERIOD * gp_init_delay)))
1863
			schedule_timeout_uninterruptible(gp_init_delay);
1864
	}
1865

1866 1867
	return 1;
}
1868

1869 1870 1871
/*
 * Do one round of quiescent-state forcing.
 */
1872
static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1873 1874
{
	int fqs_state = fqs_state_in;
1875 1876
	bool isidle = false;
	unsigned long maxj;
1877 1878
	struct rcu_node *rnp = rcu_get_root(rsp);

1879
	WRITE_ONCE(rsp->gp_activity, jiffies);
1880 1881 1882
	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
1883
		if (is_sysidle_rcu_state(rsp)) {
1884
			isidle = true;
1885 1886
			maxj = jiffies - ULONG_MAX / 4;
		}
1887 1888
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1889
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1890 1891 1892
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1893
		isidle = true;
1894
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1895 1896
	}
	/* Clear flag to prevent immediate re-entry. */
1897
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1898
		raw_spin_lock_irq(&rnp->lock);
1899
		smp_mb__after_unlock_lock();
1900 1901
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1902 1903 1904 1905 1906
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1907 1908 1909
/*
 * Clean up after the old grace period.
 */
1910
static void rcu_gp_cleanup(struct rcu_state *rsp)
1911 1912
{
	unsigned long gp_duration;
1913
	bool needgp = false;
1914
	int nocb = 0;
1915 1916
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1917

1918
	WRITE_ONCE(rsp->gp_activity, jiffies);
1919
	raw_spin_lock_irq(&rnp->lock);
1920
	smp_mb__after_unlock_lock();
1921 1922 1923
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1924

1925 1926 1927 1928 1929 1930 1931 1932
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1933
	raw_spin_unlock_irq(&rnp->lock);
1934

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1945
		raw_spin_lock_irq(&rnp->lock);
1946
		smp_mb__after_unlock_lock();
1947 1948
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
1949
		WRITE_ONCE(rnp->completed, rsp->gpnum);
1950 1951
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
1952
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1953
		/* smp_mb() provided by prior unlock-lock pair. */
1954
		nocb += rcu_future_gp_cleanup(rsp, rnp);
1955
		raw_spin_unlock_irq(&rnp->lock);
1956
		cond_resched_rcu_qs();
1957
		WRITE_ONCE(rsp->gp_activity, jiffies);
1958
	}
1959 1960
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1961
	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1962
	rcu_nocb_gp_set(rnp, nocb);
1963

1964
	/* Declare grace period done. */
1965
	WRITE_ONCE(rsp->completed, rsp->gpnum);
1966
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1967
	rsp->fqs_state = RCU_GP_IDLE;
1968
	rdp = this_cpu_ptr(rsp->rda);
1969 1970 1971
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1972
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
1973
		trace_rcu_grace_period(rsp->name,
1974
				       READ_ONCE(rsp->gpnum),
1975 1976
				       TPS("newreq"));
	}
1977 1978 1979 1980 1981 1982 1983 1984
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1985
	int fqs_state;
1986
	int gf;
1987
	unsigned long j;
1988
	int ret;
1989 1990 1991
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

1992
	rcu_bind_gp_kthread();
1993 1994 1995 1996
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1997
			trace_rcu_grace_period(rsp->name,
1998
					       READ_ONCE(rsp->gpnum),
1999
					       TPS("reqwait"));
2000
			rsp->gp_state = RCU_GP_WAIT_GPS;
2001
			wait_event_interruptible(rsp->gp_wq,
2002
						 READ_ONCE(rsp->gp_flags) &
2003
						 RCU_GP_FLAG_INIT);
2004
			/* Locking provides needed memory barrier. */
2005
			if (rcu_gp_init(rsp))
2006
				break;
2007
			cond_resched_rcu_qs();
2008
			WRITE_ONCE(rsp->gp_activity, jiffies);
2009
			WARN_ON(signal_pending(current));
2010
			trace_rcu_grace_period(rsp->name,
2011
					       READ_ONCE(rsp->gpnum),
2012
					       TPS("reqwaitsig"));
2013
		}
2014

2015 2016
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
2017 2018 2019 2020 2021
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2022
		ret = 0;
2023
		for (;;) {
2024 2025
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
2026
			trace_rcu_grace_period(rsp->name,
2027
					       READ_ONCE(rsp->gpnum),
2028
					       TPS("fqswait"));
2029
			rsp->gp_state = RCU_GP_WAIT_FQS;
2030
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
2031
					((gf = READ_ONCE(rsp->gp_flags)) &
2032
					 RCU_GP_FLAG_FQS) ||
2033
					(!READ_ONCE(rnp->qsmask) &&
2034
					 !rcu_preempt_blocked_readers_cgp(rnp)),
2035
					j);
2036
			/* Locking provides needed memory barriers. */
2037
			/* If grace period done, leave loop. */
2038
			if (!READ_ONCE(rnp->qsmask) &&
2039
			    !rcu_preempt_blocked_readers_cgp(rnp))
2040
				break;
2041
			/* If time for quiescent-state forcing, do it. */
2042 2043
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2044
				trace_rcu_grace_period(rsp->name,
2045
						       READ_ONCE(rsp->gpnum),
2046
						       TPS("fqsstart"));
2047
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
2048
				trace_rcu_grace_period(rsp->name,
2049
						       READ_ONCE(rsp->gpnum),
2050
						       TPS("fqsend"));
2051
				cond_resched_rcu_qs();
2052
				WRITE_ONCE(rsp->gp_activity, jiffies);
2053 2054
			} else {
				/* Deal with stray signal. */
2055
				cond_resched_rcu_qs();
2056
				WRITE_ONCE(rsp->gp_activity, jiffies);
2057
				WARN_ON(signal_pending(current));
2058
				trace_rcu_grace_period(rsp->name,
2059
						       READ_ONCE(rsp->gpnum),
2060
						       TPS("fqswaitsig"));
2061
			}
2062 2063 2064 2065 2066 2067 2068 2069
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
2070
		}
2071 2072 2073

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
2074 2075 2076
	}
}

2077 2078 2079
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2080
 * the root node's ->lock and hard irqs must be disabled.
2081 2082 2083 2084
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2085 2086
 *
 * Returns true if the grace-period kthread must be awakened.
2087
 */
2088
static bool
2089 2090
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2091
{
2092
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2093
		/*
2094
		 * Either we have not yet spawned the grace-period
2095 2096
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2097
		 * Either way, don't start a new grace period.
2098
		 */
2099
		return false;
2100
	}
2101 2102
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2103
			       TPS("newreq"));
2104

2105 2106
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2107
	 * could cause possible deadlocks with the rq->lock. Defer
2108
	 * the wakeup to our caller.
2109
	 */
2110
	return true;
2111 2112
}

2113 2114 2115 2116 2117 2118
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2119 2120
 *
 * Returns true if the grace-period kthread needs to be awakened.
2121
 */
2122
static bool rcu_start_gp(struct rcu_state *rsp)
2123 2124 2125
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2126
	bool ret = false;
2127 2128 2129 2130 2131 2132 2133 2134 2135

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2136 2137 2138
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2139 2140
}

2141
/*
P
Paul E. McKenney 已提交
2142 2143 2144
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
2145 2146
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
2147
 */
P
Paul E. McKenney 已提交
2148
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2149
	__releases(rcu_get_root(rsp)->lock)
2150
{
2151
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2152
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2153
	rcu_gp_kthread_wake(rsp);
2154 2155
}

2156
/*
P
Paul E. McKenney 已提交
2157 2158 2159
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2160 2161 2162 2163 2164
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2165 2166
 */
static void
P
Paul E. McKenney 已提交
2167
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2168
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2169 2170
	__releases(rnp->lock)
{
2171
	unsigned long oldmask = 0;
2172 2173
	struct rcu_node *rnp_c;

2174 2175
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2176
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2177

2178 2179 2180 2181
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
P
Paul E. McKenney 已提交
2182
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2183 2184
			return;
		}
2185
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2186
		rnp->qsmask &= ~mask;
2187 2188 2189 2190
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2191
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2192 2193

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
2194
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2195 2196 2197 2198 2199 2200 2201 2202 2203
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
2204
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2205
		rnp_c = rnp;
2206
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
2207
		raw_spin_lock_irqsave(&rnp->lock, flags);
2208
		smp_mb__after_unlock_lock();
2209
		oldmask = rnp_c->qsmask;
2210 2211 2212 2213
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2214
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2215
	 * to clean up and start the next grace period if one is needed.
2216
	 */
P
Paul E. McKenney 已提交
2217
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2218 2219
}

2220 2221 2222 2223 2224 2225 2226
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2227
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2228 2229 2230
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2231
	unsigned long gps;
2232 2233 2234
	unsigned long mask;
	struct rcu_node *rnp_p;

2235 2236
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2237 2238 2239 2240 2241 2242 2243
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2244 2245
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2246 2247 2248 2249 2250
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2251 2252
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2253 2254 2255 2256
	mask = rnp->grpmask;
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
	smp_mb__after_unlock_lock();
2257
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2258 2259
}

2260
/*
P
Paul E. McKenney 已提交
2261 2262 2263 2264 2265 2266 2267
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
2268 2269
 */
static void
2270
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2271 2272 2273
{
	unsigned long flags;
	unsigned long mask;
2274
	bool needwake;
2275 2276 2277
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
2278
	raw_spin_lock_irqsave(&rnp->lock, flags);
2279
	smp_mb__after_unlock_lock();
2280 2281 2282 2283
	if ((rdp->passed_quiesce == 0 &&
	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
	    rdp->gpwrap) {
2284 2285

		/*
2286 2287 2288 2289
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2290
		 */
2291
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
2292
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
P
Paul E. McKenney 已提交
2293
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2294 2295 2296 2297
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
2298
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2299 2300 2301 2302 2303 2304 2305
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2306
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2307

2308 2309
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2310 2311
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2324 2325
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2338 2339
	if (!rdp->passed_quiesce &&
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2340 2341
		return;

P
Paul E. McKenney 已提交
2342 2343 2344 2345
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2346
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2347 2348 2349 2350
}

#ifdef CONFIG_HOTPLUG_CPU

2351
/*
2352 2353
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2354
 * ->orphan_lock.
2355
 */
2356 2357 2358
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2359
{
P
Paul E. McKenney 已提交
2360
	/* No-CBs CPUs do not have orphanable callbacks. */
2361
	if (rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2362 2363
		return;

2364 2365
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2366 2367
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2368
	 */
2369
	if (rdp->nxtlist != NULL) {
2370 2371 2372
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2373
		rdp->qlen_lazy = 0;
2374
		WRITE_ONCE(rdp->qlen, 0);
2375 2376 2377
	}

	/*
2378 2379 2380 2381 2382 2383 2384
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2385
	 */
2386 2387 2388 2389
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2390 2391 2392
	}

	/*
2393 2394 2395
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2396
	 */
2397
	if (rdp->nxtlist != NULL) {
2398 2399
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2400
	}
2401

2402 2403 2404 2405
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2406
	init_callback_list(rdp);
2407
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2408 2409 2410 2411
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2412
 * orphanage.  The caller must hold the ->orphan_lock.
2413
 */
2414
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2415 2416
{
	int i;
2417
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2418

P
Paul E. McKenney 已提交
2419
	/* No-CBs CPUs are handled specially. */
2420
	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2421 2422
		return;

2423 2424 2425 2426
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2427 2428
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
2468 2469
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2470
			       TPS("cpuofl"));
2471 2472
}

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
		smp_mb__after_unlock_lock(); /* GP memory ordering. */
		rnp->qsmaskinit &= ~mask;
2505
		rnp->qsmask &= ~mask;
2506 2507 2508 2509 2510 2511 2512 2513
		if (rnp->qsmaskinit) {
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			return;
		}
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
	}
}

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
/*
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();	/* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

2534
/*
2535
 * The CPU has been completely removed, and some other CPU is reporting
2536 2537
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2538 2539
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2540
 */
2541
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2542
{
2543
	unsigned long flags;
2544
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2545
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2546

2547
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2548
	rcu_boost_kthread_setaffinity(rnp, -1);
2549

2550
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2551
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2552
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2553
	rcu_adopt_orphan_cbs(rsp, flags);
2554
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2555

2556 2557 2558
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2559 2560 2561 2562
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

2563
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2564 2565 2566
{
}

2567 2568 2569 2570
static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
}

2571 2572 2573 2574
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
}

2575
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2576 2577 2578 2579 2580 2581 2582 2583 2584
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2585
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2586 2587 2588
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2589 2590
	long bl, count, count_lazy;
	int i;
2591

2592
	/* If no callbacks are ready, just return. */
2593
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2594
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2595
		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2596 2597
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2598
		return;
2599
	}
2600 2601 2602 2603 2604 2605

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2606
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2607
	bl = rdp->blimit;
2608
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2609 2610 2611 2612
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2613 2614 2615
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2616 2617 2618
	local_irq_restore(flags);

	/* Invoke callbacks. */
2619
	count = count_lazy = 0;
2620 2621 2622
	while (list) {
		next = list->next;
		prefetch(next);
2623
		debug_rcu_head_unqueue(list);
2624 2625
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2626
		list = next;
2627 2628 2629 2630
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2631 2632 2633 2634
			break;
	}

	local_irq_save(flags);
2635 2636 2637
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2638 2639 2640 2641 2642

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2643 2644 2645
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2646 2647 2648
			else
				break;
	}
2649 2650
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2651
	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2652
	rdp->n_cbs_invoked += count;
2653 2654 2655 2656 2657

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2658 2659 2660 2661 2662 2663
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2664
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2665

2666 2667
	local_irq_restore(flags);

2668
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2669
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2670
		invoke_rcu_core();
2671 2672 2673 2674 2675
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2676
 * Also schedule RCU core processing.
2677
 *
2678
 * This function must be called from hardirq context.  It is normally
2679 2680 2681
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2682
void rcu_check_callbacks(int user)
2683
{
2684
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2685
	increment_cpu_stall_ticks();
2686
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2687 2688 2689 2690 2691

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2692
		 * a quiescent state, so note it.
2693 2694
		 *
		 * No memory barrier is required here because both
2695 2696 2697
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2698 2699
		 */

2700 2701
		rcu_sched_qs();
		rcu_bh_qs();
2702 2703 2704 2705 2706 2707 2708

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2709
		 * critical section, so note it.
2710 2711
		 */

2712
		rcu_bh_qs();
2713
	}
2714
	rcu_preempt_check_callbacks();
2715
	if (rcu_pending())
2716
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2717 2718
	if (user)
		rcu_note_voluntary_context_switch(current);
2719
	trace_rcu_utilization(TPS("End scheduler-tick"));
2720 2721 2722 2723 2724
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2725 2726
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2727
 * The caller must have suppressed start of new grace periods.
2728
 */
2729 2730 2731 2732
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2733 2734 2735 2736 2737
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2738
	struct rcu_node *rnp;
2739

2740
	rcu_for_each_leaf_node(rsp, rnp) {
2741
		cond_resched_rcu_qs();
2742
		mask = 0;
P
Paul E. McKenney 已提交
2743
		raw_spin_lock_irqsave(&rnp->lock, flags);
2744
		smp_mb__after_unlock_lock();
2745
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
2746
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2747
			return;
2748
		}
2749
		if (rnp->qsmask == 0) {
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2773
		}
2774
		cpu = rnp->grplo;
2775
		bit = 1;
2776
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2777
			if ((rnp->qsmask & bit) != 0) {
2778 2779
				if ((rnp->qsmaskinit & bit) == 0)
					*isidle = false; /* Pending hotplug. */
2780 2781 2782
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2783
		}
2784
		if (mask != 0) {
2785 2786
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2787 2788 2789
		} else {
			/* Nothing to do here, so just drop the lock. */
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2790 2791 2792 2793 2794 2795 2796 2797
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2798
static void force_quiescent_state(struct rcu_state *rsp)
2799 2800
{
	unsigned long flags;
2801 2802 2803 2804 2805
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2806
	rnp = __this_cpu_read(rsp->rda->mynode);
2807
	for (; rnp != NULL; rnp = rnp->parent) {
2808
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2809 2810 2811 2812
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2813
			rsp->n_force_qs_lh++;
2814 2815 2816 2817 2818
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2819

2820 2821
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2822
	smp_mb__after_unlock_lock();
2823
	raw_spin_unlock(&rnp_old->fqslock);
2824
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2825
		rsp->n_force_qs_lh++;
2826
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2827
		return;  /* Someone beat us to it. */
2828
	}
2829
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2830
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2831
	rcu_gp_kthread_wake(rsp);
2832 2833 2834
}

/*
2835 2836 2837
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2838 2839
 */
static void
2840
__rcu_process_callbacks(struct rcu_state *rsp)
2841 2842
{
	unsigned long flags;
2843
	bool needwake;
2844
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2845

2846 2847
	WARN_ON_ONCE(rdp->beenonline == 0);

2848 2849 2850 2851
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2852
	local_irq_save(flags);
2853
	if (cpu_needs_another_gp(rsp, rdp)) {
2854
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2855
		needwake = rcu_start_gp(rsp);
2856
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2857 2858
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2859 2860
	} else {
		local_irq_restore(flags);
2861 2862 2863
	}

	/* If there are callbacks ready, invoke them. */
2864
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2865
		invoke_rcu_callbacks(rsp, rdp);
2866 2867 2868

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2869 2870
}

2871
/*
2872
 * Do RCU core processing for the current CPU.
2873
 */
2874
static void rcu_process_callbacks(struct softirq_action *unused)
2875
{
2876 2877
	struct rcu_state *rsp;

2878 2879
	if (cpu_is_offline(smp_processor_id()))
		return;
2880
	trace_rcu_utilization(TPS("Start RCU core"));
2881 2882
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2883
	trace_rcu_utilization(TPS("End RCU core"));
2884 2885
}

2886
/*
2887 2888 2889
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2890
 * are running on the current CPU with softirqs disabled, the
2891
 * rcu_cpu_kthread_task cannot disappear out from under us.
2892
 */
2893
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2894
{
2895
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2896
		return;
2897 2898
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2899 2900
		return;
	}
2901
	invoke_rcu_callbacks_kthread();
2902 2903
}

2904
static void invoke_rcu_core(void)
2905
{
2906 2907
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2908 2909
}

2910 2911 2912 2913 2914
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2915
{
2916 2917
	bool needwake;

2918 2919 2920 2921
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2922
	if (!rcu_is_watching())
2923 2924
		invoke_rcu_core();

2925
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2926
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2927
		return;
2928

2929 2930 2931 2932 2933 2934 2935
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2936
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2937 2938

		/* Are we ignoring a completed grace period? */
2939
		note_gp_changes(rsp, rdp);
2940 2941 2942 2943 2944

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2945
			raw_spin_lock(&rnp_root->lock);
2946
			smp_mb__after_unlock_lock();
2947
			needwake = rcu_start_gp(rsp);
2948
			raw_spin_unlock(&rnp_root->lock);
2949 2950
			if (needwake)
				rcu_gp_kthread_wake(rsp);
2951 2952 2953 2954 2955
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2956
				force_quiescent_state(rsp);
2957 2958 2959
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2960
	}
2961 2962
}

2963 2964 2965 2966 2967 2968 2969
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
2970 2971 2972 2973 2974 2975
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
2976 2977
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
2978
	   struct rcu_state *rsp, int cpu, bool lazy)
2979 2980 2981 2982
{
	unsigned long flags;
	struct rcu_data *rdp;

2983
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2984 2985
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
2986
		WRITE_ONCE(head->func, rcu_leak_callback);
2987 2988 2989
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
3000
	rdp = this_cpu_ptr(rsp->rda);
3001 3002

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
3003 3004 3005 3006 3007
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3021
		WARN_ON_ONCE(!rcu_is_watching());
3022 3023
		if (!likely(rdp->nxtlist))
			init_default_callback_list(rdp);
3024
	}
3025
	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3026 3027
	if (lazy)
		rdp->qlen_lazy++;
3028 3029
	else
		rcu_idle_count_callbacks_posted();
3030 3031 3032
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3033

3034 3035
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3036
					 rdp->qlen_lazy, rdp->qlen);
3037
	else
3038
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3039

3040 3041
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3042 3043 3044 3045
	local_irq_restore(flags);
}

/*
3046
 * Queue an RCU-sched callback for invocation after a grace period.
3047
 */
3048
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3049
{
P
Paul E. McKenney 已提交
3050
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3051
}
3052
EXPORT_SYMBOL_GPL(call_rcu_sched);
3053 3054

/*
3055
 * Queue an RCU callback for invocation after a quicker grace period.
3056 3057 3058
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
3059
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3060 3061 3062
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
3073
	__call_rcu(head, func, rcu_state_p, -1, 1);
3074 3075 3076
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3088 3089
	int ret;

3090
	might_sleep();  /* Check for RCU read-side critical section. */
3091 3092 3093 3094
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3095 3096
}

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3131 3132 3133 3134 3135 3136 3137 3138 3139
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3140 3141 3142 3143
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
3144 3145
	if (rcu_blocking_is_gp())
		return;
3146
	if (rcu_gp_is_expedited())
3147 3148 3149
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3161 3162 3163
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3164 3165 3166
 */
void synchronize_rcu_bh(void)
{
3167 3168 3169 3170
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3171 3172
	if (rcu_blocking_is_gp())
		return;
3173
	if (rcu_gp_is_expedited())
3174 3175 3176
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3177 3178 3179
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3200
	return smp_load_acquire(&rcu_state_p->gpnum);
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3226
	newstate = smp_load_acquire(&rcu_state_p->completed);
3227 3228 3229 3230 3231
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
3283 3284 3285
	cpumask_var_t cm;
	bool cma = false;
	int cpu;
3286 3287
	long firstsnap, s, snap;
	int trycount = 0;
3288
	struct rcu_state *rsp = &rcu_sched_state;
3289

3290 3291 3292 3293 3294 3295 3296 3297
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
3298 3299
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
3300 3301
			 ULONG_MAX / 8)) {
		synchronize_sched();
3302
		atomic_long_inc(&rsp->expedited_wrap);
3303 3304
		return;
	}
3305

3306 3307 3308 3309
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
3310
	snap = atomic_long_inc_return(&rsp->expedited_start);
3311
	firstsnap = snap;
3312 3313 3314 3315 3316 3317
	if (!try_get_online_cpus()) {
		/* CPU hotplug operation in flight, fall back to normal GP. */
		wait_rcu_gp(call_rcu_sched);
		atomic_long_inc(&rsp->expedited_normal);
		return;
	}
3318
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3319

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
	/* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
	cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
	if (cma) {
		cpumask_copy(cm, cpu_online_mask);
		cpumask_clear_cpu(raw_smp_processor_id(), cm);
		for_each_cpu(cpu, cm) {
			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

			if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
				cpumask_clear_cpu(cpu, cm);
		}
		if (cpumask_weight(cm) == 0)
			goto all_cpus_idle;
	}

3335 3336 3337 3338
	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
3339
	while (try_stop_cpus(cma ? cm : cpu_online_mask,
3340 3341 3342
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
3343
		atomic_long_inc(&rsp->expedited_tryfail);
3344

3345
		/* Check to see if someone else did our work for us. */
3346
		s = atomic_long_read(&rsp->expedited_done);
3347
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3348
			/* ensure test happens before caller kfree */
3349
			smp_mb__before_atomic(); /* ^^^ */
3350
			atomic_long_inc(&rsp->expedited_workdone1);
3351
			free_cpumask_var(cm);
3352 3353
			return;
		}
3354 3355

		/* No joy, try again later.  Or just synchronize_sched(). */
3356
		if (trycount++ < 10) {
3357
			udelay(trycount * num_online_cpus());
3358
		} else {
3359
			wait_rcu_gp(call_rcu_sched);
3360
			atomic_long_inc(&rsp->expedited_normal);
3361
			free_cpumask_var(cm);
3362 3363 3364
			return;
		}

3365
		/* Recheck to see if someone else did our work for us. */
3366
		s = atomic_long_read(&rsp->expedited_done);
3367
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3368
			/* ensure test happens before caller kfree */
3369
			smp_mb__before_atomic(); /* ^^^ */
3370
			atomic_long_inc(&rsp->expedited_workdone2);
3371
			free_cpumask_var(cm);
3372 3373 3374 3375 3376
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
3377 3378 3379 3380
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
3381
		 */
3382 3383 3384 3385
		if (!try_get_online_cpus()) {
			/* CPU hotplug operation in flight, use normal GP. */
			wait_rcu_gp(call_rcu_sched);
			atomic_long_inc(&rsp->expedited_normal);
3386
			free_cpumask_var(cm);
3387 3388
			return;
		}
3389
		snap = atomic_long_read(&rsp->expedited_start);
3390 3391
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
3392
	atomic_long_inc(&rsp->expedited_stoppedcpus);
3393

3394 3395 3396
all_cpus_idle:
	free_cpumask_var(cm);

3397 3398 3399 3400
	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
3401
	 * than we did already did their update.
3402 3403
	 */
	do {
3404
		atomic_long_inc(&rsp->expedited_done_tries);
3405
		s = atomic_long_read(&rsp->expedited_done);
3406
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3407
			/* ensure test happens before caller kfree */
3408
			smp_mb__before_atomic(); /* ^^^ */
3409
			atomic_long_inc(&rsp->expedited_done_lost);
3410 3411
			break;
		}
3412
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3413
	atomic_long_inc(&rsp->expedited_done_exit);
3414 3415 3416 3417 3418

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3419 3420 3421 3422 3423 3424 3425 3426 3427
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3428 3429
	struct rcu_node *rnp = rdp->mynode;

3430 3431 3432 3433 3434
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3435 3436 3437 3438
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3439
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3440
	if (rcu_scheduler_fully_active &&
3441 3442
	    rdp->qs_pending && !rdp->passed_quiesce &&
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3443
		rdp->n_rp_qs_pending++;
3444 3445 3446
	} else if (rdp->qs_pending &&
		   (rdp->passed_quiesce ||
		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3447
		rdp->n_rp_report_qs++;
3448
		return 1;
3449
	}
3450 3451

	/* Does this CPU have callbacks ready to invoke? */
3452 3453
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3454
		return 1;
3455
	}
3456 3457

	/* Has RCU gone idle with this CPU needing another grace period? */
3458 3459
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3460
		return 1;
3461
	}
3462 3463

	/* Has another RCU grace period completed?  */
3464
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3465
		rdp->n_rp_gp_completed++;
3466
		return 1;
3467
	}
3468 3469

	/* Has a new RCU grace period started? */
3470 3471
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3472
		rdp->n_rp_gp_started++;
3473
		return 1;
3474
	}
3475

3476 3477 3478 3479 3480 3481
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3482
	/* nothing to do */
3483
	rdp->n_rp_need_nothing++;
3484 3485 3486 3487 3488 3489 3490 3491
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3492
static int rcu_pending(void)
3493
{
3494 3495 3496
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3497
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3498 3499
			return 1;
	return 0;
3500 3501 3502
}

/*
3503 3504 3505
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3506
 */
3507
static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3508
{
3509 3510 3511
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3512 3513
	struct rcu_state *rsp;

3514
	for_each_rcu_flavor(rsp) {
3515
		rdp = this_cpu_ptr(rsp->rda);
3516 3517 3518 3519
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3520
			al = false;
3521 3522
			break;
		}
3523 3524 3525 3526
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3527 3528
}

3529 3530 3531 3532
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3533
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3534 3535 3536 3537 3538 3539
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3540 3541 3542 3543
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3544
static void rcu_barrier_callback(struct rcu_head *rhp)
3545
{
3546 3547 3548
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3549 3550
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3551
		complete(&rsp->barrier_completion);
3552 3553 3554
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
3555 3556 3557 3558 3559 3560 3561
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3562
	struct rcu_state *rsp = type;
3563
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3564

3565
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3566
	atomic_inc(&rsp->barrier_cpu_count);
3567
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3568 3569 3570 3571 3572 3573
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3574
static void _rcu_barrier(struct rcu_state *rsp)
3575
{
3576 3577
	int cpu;
	struct rcu_data *rdp;
3578
	unsigned long snap = READ_ONCE(rsp->n_barrier_done);
3579
	unsigned long snap_done;
3580

3581
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3582

3583
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3584
	mutex_lock(&rsp->barrier_mutex);
3585

3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
3598
	snap_done = rsp->n_barrier_done;
3599
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611

	/*
	 * If the value in snap is odd, we needed to wait for the current
	 * rcu_barrier() to complete, then wait for the next one, in other
	 * words, we need the value of snap_done to be three larger than
	 * the value of snap.  On the other hand, if the value in snap is
	 * even, we only had to wait for the next rcu_barrier() to complete,
	 * in other words, we need the value of snap_done to be only two
	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
	 * this for us (thank you, Linus!).
	 */
	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3612
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3613 3614 3615 3616 3617 3618 3619
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
3620
	 * WRITE_ONCE() to prevent the compiler from speculating
3621 3622
	 * the increment to precede the early-exit check.
	 */
3623
	WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3624
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3625
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3626
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3627

3628
	/*
3629 3630
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3631 3632
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3633
	 */
3634
	init_completion(&rsp->barrier_completion);
3635
	atomic_set(&rsp->barrier_cpu_count, 1);
3636
	get_online_cpus();
3637 3638

	/*
3639 3640 3641
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3642
	 */
P
Paul E. McKenney 已提交
3643
	for_each_possible_cpu(cpu) {
3644
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3645
			continue;
3646
		rdp = per_cpu_ptr(rsp->rda, cpu);
3647
		if (rcu_is_nocb_cpu(cpu)) {
3648 3649 3650 3651 3652 3653
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
						   rsp->n_barrier_done);
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
						   rsp->n_barrier_done);
3654
				smp_mb__before_atomic();
3655 3656 3657 3658
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
3659
		} else if (READ_ONCE(rdp->qlen)) {
3660 3661
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
3662
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3663
		} else {
3664 3665
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
3666 3667
		}
	}
3668
	put_online_cpus();
3669 3670 3671 3672 3673

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3674
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3675
		complete(&rsp->barrier_completion);
3676

3677 3678
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
3679
	WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
3680
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3681
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3682 3683
	smp_mb(); /* Keep increment before caller's subsequent code. */

3684
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3685
	wait_for_completion(&rsp->barrier_completion);
3686 3687

	/* Other rcu_barrier() invocations can now safely proceed. */
3688
	mutex_unlock(&rsp->barrier_mutex);
3689 3690 3691 3692 3693 3694 3695
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3696
	_rcu_barrier(&rcu_bh_state);
3697 3698 3699 3700 3701 3702 3703 3704
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3705
	_rcu_barrier(&rcu_sched_state);
3706 3707 3708
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
		raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
		rnp->qsmaskinit |= mask;
		raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
	}
}

3731
/*
3732
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3733
 */
3734 3735
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3736 3737
{
	unsigned long flags;
3738
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3739 3740 3741
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3742
	raw_spin_lock_irqsave(&rnp->lock, flags);
3743 3744
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3745
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3746
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3747
	rdp->cpu = cpu;
3748
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3749
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
3750
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3751 3752 3753 3754 3755 3756 3757
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3758
 */
3759
static void
3760
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3761 3762 3763
{
	unsigned long flags;
	unsigned long mask;
3764
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3765 3766 3767
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3768
	raw_spin_lock_irqsave(&rnp->lock, flags);
3769
	rdp->beenonline = 1;	 /* We have now been online. */
3770 3771
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3772
	rdp->blimit = blimit;
3773 3774
	if (!rdp->nxtlist)
		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3775
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3776
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3777 3778
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
3779
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3780

3781 3782 3783 3784 3785
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
3786 3787
	rnp = rdp->mynode;
	mask = rdp->grpmask;
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
	smp_mb__after_unlock_lock();
	rnp->qsmaskinitnext |= mask;
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
	rdp->passed_quiesce = false;
	rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
	rdp->qs_pending = false;
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3798 3799
}

3800
static void rcu_prepare_cpu(int cpu)
3801
{
3802 3803 3804
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3805
		rcu_init_percpu_data(cpu, rsp);
3806 3807 3808
}

/*
3809
 * Handle CPU online/offline notification events.
3810
 */
3811 3812
int rcu_cpu_notify(struct notifier_block *self,
		   unsigned long action, void *hcpu)
3813 3814
{
	long cpu = (long)hcpu;
3815
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3816
	struct rcu_node *rnp = rdp->mynode;
3817
	struct rcu_state *rsp;
3818 3819 3820 3821

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
3822 3823
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
3824
		rcu_spawn_all_nocb_kthreads(cpu);
3825 3826
		break;
	case CPU_ONLINE:
3827
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
3828
		rcu_boost_kthread_setaffinity(rnp, -1);
3829 3830
		break;
	case CPU_DOWN_PREPARE:
3831
		rcu_boost_kthread_setaffinity(rnp, cpu);
3832
		break;
3833 3834
	case CPU_DYING:
	case CPU_DYING_FROZEN:
3835 3836
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
3837
		break;
3838 3839 3840 3841 3842
	case CPU_DYING_IDLE:
		for_each_rcu_flavor(rsp) {
			rcu_cleanup_dying_idle_cpu(cpu, rsp);
		}
		break;
3843 3844 3845 3846
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
3847
		for_each_rcu_flavor(rsp) {
3848
			rcu_cleanup_dead_cpu(cpu, rsp);
3849 3850
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
3851 3852 3853 3854
		break;
	default:
		break;
	}
3855
	return NOTIFY_OK;
3856 3857
}

3858 3859 3860 3861 3862 3863 3864
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3865
			rcu_expedite_gp();
3866 3867 3868
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
3869 3870
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
3871 3872 3873 3874 3875 3876 3877
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3878
/*
3879
 * Spawn the kthreads that handle each RCU flavor's grace periods.
3880 3881 3882 3883
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
3884
	int kthread_prio_in = kthread_prio;
3885 3886
	struct rcu_node *rnp;
	struct rcu_state *rsp;
3887
	struct sched_param sp;
3888 3889
	struct task_struct *t;

3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

3901
	rcu_scheduler_fully_active = 1;
3902
	for_each_rcu_flavor(rsp) {
3903
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3904 3905 3906 3907
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
3908 3909 3910 3911 3912
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
		wake_up_process(t);
3913 3914
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
3915
	rcu_spawn_nocb_kthreads();
3916
	rcu_spawn_boost_kthreads();
3917 3918 3919 3920
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

3936 3937 3938 3939 3940 3941 3942 3943
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
	if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT)) {
		rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
		for (i = rcu_num_lvls - 2; i >= 0; i--)
			rsp->levelspread[i] = CONFIG_RCU_FANOUT;
	} else {
		int ccur;
		int cprv;

		cprv = nr_cpu_ids;
		for (i = rcu_num_lvls - 1; i >= 0; i--) {
			ccur = rsp->levelcnt[i];
			rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
			cprv = ccur;
		}
3958 3959 3960 3961 3962 3963
	}
}

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3964 3965
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3966
{
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
	static const char * const buf[] = {
		"rcu_node_0",
		"rcu_node_1",
		"rcu_node_2",
		"rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static const char * const fqs[] = {
		"rcu_node_fqs_0",
		"rcu_node_fqs_1",
		"rcu_node_fqs_2",
		"rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3977
	static u8 fl_mask = 0x1;
3978 3979 3980 3981 3982
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

3983 3984
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

3985 3986 3987
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
3988

3989 3990
	/* Initialize the level-tracking arrays. */

3991 3992 3993
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
3994 3995
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);
3996 3997
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
3998 3999 4000

	/* Initialize the elements themselves, starting from the leaves. */

4001
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4002 4003 4004
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
4005
			raw_spin_lock_init(&rnp->lock);
4006 4007
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
4008 4009 4010
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4011 4012
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4013 4014 4015 4016
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4017 4018
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
4030
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4031
			rcu_init_one_nocb(rnp);
4032 4033
		}
	}
4034

4035
	init_waitqueue_head(&rsp->gp_wq);
4036
	rnp = rsp->level[rcu_num_lvls - 1];
4037
	for_each_possible_cpu(i) {
4038
		while (i > rnp->grphi)
4039
			rnp++;
4040
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4041 4042
		rcu_boot_init_percpu_data(i, rsp);
	}
4043
	list_add(&rsp->flavors, &rcu_struct_flavors);
4044 4045
}

4046 4047
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4048
 * replace the definitions in tree.h because those are needed to size
4049 4050 4051 4052
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4053
	ulong d;
4054 4055
	int i;
	int j;
4056
	int n = nr_cpu_ids;
4057 4058
	int rcu_capacity[MAX_RCU_LVLS + 1];

4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4072
	/* If the compile-time values are accurate, just leave. */
4073 4074
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
4075
		return;
4076 4077
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

4123
void __init rcu_init(void)
4124
{
P
Paul E. McKenney 已提交
4125
	int cpu;
4126

4127 4128
	rcu_early_boot_tests();

4129
	rcu_bootup_announce();
4130
	rcu_init_geometry();
4131
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4132
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4133
	__rcu_init_preempt();
J
Jiang Fang 已提交
4134
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4135 4136 4137 4138 4139 4140 4141

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
4142
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
4143 4144
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4145 4146
}

4147
#include "tree_plugin.h"