tree.c 134.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
35
#include <linux/rcupdate_wait.h>
36 37
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/sched/debug.h>
39
#include <linux/nmi.h>
40
#include <linux/atomic.h>
41
#include <linux/bitops.h>
42
#include <linux/export.h>
43 44 45 46 47 48 49
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <uapi/linux/sched/types.h>
54
#include <linux/prefetch.h>
55 56
#include <linux/delay.h>
#include <linux/stop_machine.h>
57
#include <linux/random.h>
58
#include <linux/trace_events.h>
59
#include <linux/suspend.h>
60

61
#include "tree.h"
62
#include "rcu.h"
63

64 65 66 67 68
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71 72 73 74 75 76 77 78
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
79 80
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
81
static char sname##_varname[] = #sname; \
82 83 84 85 86 87 88 89 90
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
91
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92
struct rcu_state sname##_state = { \
93
	.level = { &sname##_state.node[0] }, \
94
	.rda = &sname##_data, \
95
	.call = cr, \
96
	.gp_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
97 98
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
99
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 101
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
102
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103
	.name = RCU_STATE_NAME(sname), \
104
	.abbr = sabbr, \
105
	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106
	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107
}
108

109 110
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
111

112
static struct rcu_state *const rcu_state_p;
113
LIST_HEAD(rcu_struct_flavors);
114

115 116 117
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
118 119 120
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
121 122
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
123
module_param(rcu_fanout_leaf, int, 0444);
124
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
125 126
/* Number of rcu_nodes at specified level. */
static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
127
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128 129
/* panic() on RCU Stall sysctl. */
int sysctl_panic_on_rcu_stall __read_mostly;
130

131
/*
132 133 134 135
 * The rcu_scheduler_active variable is initialized to the value
 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 * RCU can assume that there is but one task, allowing RCU to (for example)
136
 * optimize synchronize_rcu() to a simple barrier().  When this variable
137 138 139 140 141
 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 * to detect real grace periods.  This variable is also used to suppress
 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 * is fully initialized, including all of its kthreads having been spawned.
142
 */
143 144 145
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

160 161
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
162
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
163 164
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
165 166
static void rcu_report_exp_rdp(struct rcu_state *rsp,
			       struct rcu_data *rdp, bool wake);
167
static void sync_sched_exp_online_cleanup(int cpu);
168

169
/* rcuc/rcub kthread realtime priority */
170
#ifdef CONFIG_RCU_KTHREAD_PRIO
171
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
172 173 174
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
175 176
module_param(kthread_prio, int, 0644);

177
/* Delay in jiffies for grace-period initialization delays, debug only. */
178 179 180 181 182 183 184 185

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

186 187
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
188
module_param(gp_init_delay, int, 0644);
189 190 191
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
192

193 194 195 196 197 198 199
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

200 201 202 203 204 205 206 207 208 209
/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
210

211 212 213 214 215 216 217 218 219 220 221 222
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

223 224 225 226 227 228 229 230
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
231
	return READ_ONCE(rnp->qsmaskinitnext);
232 233
}

234
/*
235
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
236 237 238 239 240
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
241
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
242 243
}

244
/*
245
 * Note a quiescent state.  Because we do not need to know
246
 * how many quiescent states passed, just if there was at least
247
 * one since the start of the grace period, this just sets a flag.
248
 * The caller must have disabled preemption.
249
 */
250
void rcu_sched_qs(void)
251
{
252 253 254 255 256 257 258 259
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
		return;
	trace_rcu_grace_period(TPS("rcu_sched"),
			       __this_cpu_read(rcu_sched_data.gpnum),
			       TPS("cpuqs"));
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
260 261 262
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(&rcu_sched_data), true);
263 264
}

265
void rcu_bh_qs(void)
266
{
267
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
268 269 270
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
271
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
272
	}
273
}
274

275 276
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

277 278 279 280 281 282 283 284 285 286
/*
 * Steal a bit from the bottom of ->dynticks for idle entry/exit
 * control.  Initially this is for TLB flushing.
 */
#define RCU_DYNTICK_CTRL_MASK 0x1
#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
#ifndef rcu_eqs_special_exit
#define rcu_eqs_special_exit() do { } while (0)
#endif

287 288
static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
289
	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
290 291 292 293 294 295
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

296 297 298 299 300 301 302
/*
 * Record entry into an extended quiescent state.  This is only to be
 * called when not already in an extended quiescent state.
 */
static void rcu_dynticks_eqs_enter(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
303
	int seq;
304 305

	/*
306
	 * CPUs seeing atomic_add_return() must see prior RCU read-side
307 308 309
	 * critical sections, and we also must force ordering with the
	 * next idle sojourn.
	 */
310 311 312 313 314 315 316
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
	/* Better be in an extended quiescent state! */
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (seq & RCU_DYNTICK_CTRL_CTR));
	/* Better not have special action (TLB flush) pending! */
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (seq & RCU_DYNTICK_CTRL_MASK));
317 318 319 320 321 322 323 324 325
}

/*
 * Record exit from an extended quiescent state.  This is only to be
 * called from an extended quiescent state.
 */
static void rcu_dynticks_eqs_exit(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
326
	int seq;
327 328

	/*
329
	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
330 331 332
	 * and we also must force ordering with the next RCU read-side
	 * critical section.
	 */
333 334 335 336 337 338 339 340 341
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(seq & RCU_DYNTICK_CTRL_CTR));
	if (seq & RCU_DYNTICK_CTRL_MASK) {
		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
		smp_mb__after_atomic(); /* _exit after clearing mask. */
		/* Prefer duplicate flushes to losing a flush. */
		rcu_eqs_special_exit();
	}
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
}

/*
 * Reset the current CPU's ->dynticks counter to indicate that the
 * newly onlined CPU is no longer in an extended quiescent state.
 * This will either leave the counter unchanged, or increment it
 * to the next non-quiescent value.
 *
 * The non-atomic test/increment sequence works because the upper bits
 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 * or when the corresponding CPU is offline.
 */
static void rcu_dynticks_eqs_online(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

358
	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
359
		return;
360
	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
361 362
}

363 364 365 366 367 368 369 370 371
/*
 * Is the current CPU in an extended quiescent state?
 *
 * No ordering, as we are sampling CPU-local information.
 */
bool rcu_dynticks_curr_cpu_in_eqs(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

372
	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
373 374
}

375 376 377 378
/*
 * Snapshot the ->dynticks counter with full ordering so as to allow
 * stable comparison of this counter with past and future snapshots.
 */
379
int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
380 381 382
{
	int snap = atomic_add_return(0, &rdtp->dynticks);

383
	return snap & ~RCU_DYNTICK_CTRL_MASK;
384 385
}

386 387 388 389 390 391
/*
 * Return true if the snapshot returned from rcu_dynticks_snap()
 * indicates that RCU is in an extended quiescent state.
 */
static bool rcu_dynticks_in_eqs(int snap)
{
392
	return !(snap & RCU_DYNTICK_CTRL_CTR);
393 394 395 396 397 398 399 400 401 402 403 404
}

/*
 * Return true if the CPU corresponding to the specified rcu_dynticks
 * structure has spent some time in an extended quiescent state since
 * rcu_dynticks_snap() returned the specified snapshot.
 */
static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
{
	return snap != rcu_dynticks_snap(rdtp);
}

405 406 407 408 409 410 411
/*
 * Do a double-increment of the ->dynticks counter to emulate a
 * momentary idle-CPU quiescent state.
 */
static void rcu_dynticks_momentary_idle(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
412 413
	int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
					&rdtp->dynticks);
414 415

	/* It is illegal to call this from idle state. */
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
}

/*
 * Set the special (bottom) bit of the specified CPU so that it
 * will take special action (such as flushing its TLB) on the
 * next exit from an extended quiescent state.  Returns true if
 * the bit was successfully set, or false if the CPU was not in
 * an extended quiescent state.
 */
bool rcu_eqs_special_set(int cpu)
{
	int old;
	int new;
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

	do {
		old = atomic_read(&rdtp->dynticks);
		if (old & RCU_DYNTICK_CTRL_CTR)
			return false;
		new = old | RCU_DYNTICK_CTRL_MASK;
	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
	return true;
439 440
}

441 442 443
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

444 445 446 447 448 449 450 451 452 453
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
454 455
 *
 * The caller must have disabled interrupts.
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
 */
static void rcu_momentary_dyntick_idle(void)
{
	struct rcu_data *rdp;
	int resched_mask;
	struct rcu_state *rsp;

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
476 477
		if (READ_ONCE(rdp->mynode->completed) !=
		    READ_ONCE(rdp->cond_resched_completed))
478 479 480 481 482 483 484 485
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
486
		rcu_dynticks_momentary_idle();
487 488 489 490
		break;
	}
}

491 492 493
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
494
 * The caller must have disabled interrupts.
495
 */
496
void rcu_note_context_switch(void)
497
{
498
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
499
	trace_rcu_utilization(TPS("Start context switch"));
500
	rcu_sched_qs();
501
	rcu_preempt_note_context_switch();
502 503
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
504
	trace_rcu_utilization(TPS("End context switch"));
505
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
506
}
507
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
508

509
/*
510
 * Register a quiescent state for all RCU flavors.  If there is an
511 512
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
513
 * RCU flavors in desperate need of a quiescent state, which will normally
514 515
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
516 517 518 519 520
 *
 * The barrier() calls are redundant in the common case when this is
 * called externally, but just in case this is called from within this
 * file.
 *
521 522 523
 */
void rcu_all_qs(void)
{
524 525
	unsigned long flags;

526
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
527 528
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
		local_irq_save(flags);
529
		rcu_momentary_dyntick_idle();
530 531
		local_irq_restore(flags);
	}
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
		/*
		 * Yes, we just checked a per-CPU variable with preemption
		 * enabled, so we might be migrated to some other CPU at
		 * this point.  That is OK because in that case, the
		 * migration will supply the needed quiescent state.
		 * We might end up needlessly disabling preemption and
		 * invoking rcu_sched_qs() on the destination CPU, but
		 * the probability and cost are both quite low, so this
		 * should not be a problem in practice.
		 */
		preempt_disable();
		rcu_sched_qs();
		preempt_enable();
	}
547
	this_cpu_inc(rcu_qs_ctr);
548
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
549 550 551
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
552 553 554
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
555

E
Eric Dumazet 已提交
556 557 558
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
559

560 561
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
562
static bool rcu_kick_kthreads;
563 564 565

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);
566
module_param(rcu_kick_kthreads, bool, 0644);
567

568 569 570 571 572 573 574
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

575
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
576
				  struct rcu_data *rdp);
577 578 579 580
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
581
static void force_quiescent_state(struct rcu_state *rsp);
582
static int rcu_pending(void);
583 584

/*
585
 * Return the number of RCU batches started thus far for debug & stats.
586
 */
587 588 589 590 591 592 593 594
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
595
 */
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
622
 */
623
unsigned long rcu_batches_completed_sched(void)
624
{
625
	return rcu_sched_state.completed;
626
}
627
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
628 629

/*
630
 * Return the number of RCU BH batches completed thus far for debug & stats.
631
 */
632
unsigned long rcu_batches_completed_bh(void)
633 634 635 636 637
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
/*
 * Return the number of RCU expedited batches completed thus far for
 * debug & stats.  Odd numbers mean that a batch is in progress, even
 * numbers mean idle.  The value returned will thus be roughly double
 * the cumulative batches since boot.
 */
unsigned long rcu_exp_batches_completed(void)
{
	return rcu_state_p->expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);

/*
 * Return the number of RCU-sched expedited batches completed thus far
 * for debug & stats.  Similar to rcu_exp_batches_completed().
 */
unsigned long rcu_exp_batches_completed_sched(void)
{
	return rcu_sched_state.expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);

660 661 662 663 664
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
665
	force_quiescent_state(rcu_state_p);
666 667 668
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

669 670 671 672 673
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
674
	force_quiescent_state(&rcu_bh_state);
675 676 677
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

678 679 680 681 682 683 684 685 686
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

702 703 704 705 706 707 708 709 710 711 712 713 714 715
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

716 717 718 719 720 721 722 723 724 725
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
726
		rsp = rcu_state_p;
727 728 729 730 731 732 733 734 735 736 737
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
738 739 740
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
741 742 743 744 745 746 747 748
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

749 750 751 752 753 754 755 756 757 758 759
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

760 761 762 763 764 765
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
766
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
767
	       rdp->nxttail[RCU_NEXT_TAIL] != NULL;
768 769
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
786
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
787 788
	int *fp = &rnp->need_future_gp[idx];

789
	return READ_ONCE(*fp);
790 791
}

792
/*
793 794 795
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
796
 */
797
static bool
798 799
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
800
	int i;
P
Paul E. McKenney 已提交
801

802
	if (rcu_gp_in_progress(rsp))
803
		return false;  /* No, a grace period is already in progress. */
804
	if (rcu_future_needs_gp(rsp))
805
		return true;  /* Yes, a no-CBs CPU needs one. */
806
	if (!rdp->nxttail[RCU_NEXT_TAIL])
807
		return false;  /* No, this is a no-CBs (or offline) CPU. */
808
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
809
		return true;  /* Yes, CPU has newly registered callbacks. */
810 811
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
812
		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
813
				 rdp->nxtcompleted[i]))
814 815
			return true;  /* Yes, CBs for future grace period. */
	return false; /* No grace period needed. */
816 817
}

818
/*
819
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
820 821 822 823 824
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
825
static void rcu_eqs_enter_common(long long oldval, bool user)
826
{
827 828
	struct rcu_state *rsp;
	struct rcu_data *rdp;
829
	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
830

831
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
832 833
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
834 835
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
836

837
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
838
		rcu_ftrace_dump(DUMP_ORIG);
839 840 841
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
842
	}
843 844 845 846
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
847
	rcu_prepare_for_idle();
848
	rcu_dynticks_eqs_enter();
849
	rcu_dynticks_task_enter();
850 851

	/*
852
	 * It is illegal to enter an extended quiescent state while
853 854
	 * in an RCU read-side critical section.
	 */
855 856 857 858 859 860
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal idle entry in RCU read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
			 "Illegal idle entry in RCU-bh read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
			 "Illegal idle entry in RCU-sched read-side critical section.");
861
}
862

863 864 865
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
866
 */
867
static void rcu_eqs_enter(bool user)
868
{
869
	long long oldval;
870 871
	struct rcu_dynticks *rdtp;

872
	rdtp = this_cpu_ptr(&rcu_dynticks);
873
	oldval = rdtp->dynticks_nesting;
874 875
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
876
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
877
		rdtp->dynticks_nesting = 0;
878
		rcu_eqs_enter_common(oldval, user);
879
	} else {
880
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
881
	}
882
}
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
898 899 900
	unsigned long flags;

	local_irq_save(flags);
901
	rcu_eqs_enter(false);
902
	rcu_sysidle_enter(0);
903
	local_irq_restore(flags);
904
}
905
EXPORT_SYMBOL_GPL(rcu_idle_enter);
906

907
#ifdef CONFIG_NO_HZ_FULL
908 909 910 911 912 913 914 915 916 917
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
918
	rcu_eqs_enter(1);
919
}
920
#endif /* CONFIG_NO_HZ_FULL */
921

922 923 924 925 926
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
927
 * sections can occur.  The caller must have disabled interrupts.
928
 *
929 930 931 932 933 934 935 936
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
937
 */
938
void rcu_irq_exit(void)
939
{
940
	long long oldval;
941 942
	struct rcu_dynticks *rdtp;

943
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
944
	rdtp = this_cpu_ptr(&rcu_dynticks);
945
	oldval = rdtp->dynticks_nesting;
946
	rdtp->dynticks_nesting--;
947 948
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting < 0);
949
	if (rdtp->dynticks_nesting)
950
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
951
	else
952 953
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
954 955 956 957 958 959 960 961 962 963 964
}

/*
 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 */
void rcu_irq_exit_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_exit();
965 966 967 968
	local_irq_restore(flags);
}

/*
969
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
970 971 972 973 974
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
975
static void rcu_eqs_exit_common(long long oldval, int user)
976
{
977
	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
978

979
	rcu_dynticks_task_exit();
980
	rcu_dynticks_eqs_exit();
981
	rcu_cleanup_after_idle();
982
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
983 984
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
985 986
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
987

988
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
989
				  oldval, rdtp->dynticks_nesting);
990
		rcu_ftrace_dump(DUMP_ORIG);
991 992 993
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
994 995 996
	}
}

997 998 999
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
1000
 */
1001
static void rcu_eqs_exit(bool user)
1002 1003 1004 1005
{
	struct rcu_dynticks *rdtp;
	long long oldval;

1006
	rdtp = this_cpu_ptr(&rcu_dynticks);
1007
	oldval = rdtp->dynticks_nesting;
1008
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
1009
	if (oldval & DYNTICK_TASK_NEST_MASK) {
1010
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
1011
	} else {
1012
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
1013
		rcu_eqs_exit_common(oldval, user);
1014
	}
1015
}
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
1030 1031 1032
	unsigned long flags;

	local_irq_save(flags);
1033
	rcu_eqs_exit(false);
1034
	rcu_sysidle_exit(0);
1035
	local_irq_restore(flags);
1036
}
1037
EXPORT_SYMBOL_GPL(rcu_idle_exit);
1038

1039
#ifdef CONFIG_NO_HZ_FULL
1040 1041 1042 1043 1044 1045 1046 1047
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
1048
	rcu_eqs_exit(1);
1049
}
1050
#endif /* CONFIG_NO_HZ_FULL */
1051

1052 1053 1054 1055 1056
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
1057
 * sections can occur.  The caller must have disabled interrupts.
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	struct rcu_dynticks *rdtp;
	long long oldval;

1076
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1077
	rdtp = this_cpu_ptr(&rcu_dynticks);
1078 1079
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
1080 1081
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
1082
	if (oldval)
1083
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1084
	else
1085 1086
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
}

/*
 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 */
void rcu_irq_enter_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_enter();
1098 1099 1100 1101 1102 1103
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
1104 1105 1106 1107 1108
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
1109 1110 1111
 */
void rcu_nmi_enter(void)
{
1112
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1113
	int incby = 2;
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
1126
	if (rcu_dynticks_curr_cpu_in_eqs()) {
1127
		rcu_dynticks_eqs_exit();
1128 1129 1130 1131
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
1132 1133 1134 1135 1136
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
1137 1138 1139 1140
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
1141 1142 1143
 */
void rcu_nmi_exit(void)
{
1144
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1145

1146 1147 1148 1149 1150 1151
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1152
	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1153 1154 1155 1156 1157 1158 1159

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
1160
		return;
1161 1162 1163 1164
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
1165
	rcu_dynticks_eqs_enter();
1166 1167 1168
}

/**
1169 1170 1171 1172 1173 1174 1175
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
1176
bool notrace __rcu_is_watching(void)
1177
{
1178
	return !rcu_dynticks_curr_cpu_in_eqs();
1179 1180 1181 1182
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1183
 *
1184
 * If the current CPU is in its idle loop and is neither in an interrupt
1185
 * or NMI handler, return true.
1186
 */
1187
bool notrace rcu_is_watching(void)
1188
{
1189
	bool ret;
1190

1191
	preempt_disable_notrace();
1192
	ret = __rcu_is_watching();
1193
	preempt_enable_notrace();
1194
	return ret;
1195
}
1196
EXPORT_SYMBOL_GPL(rcu_is_watching);
1197

1198
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1199 1200 1201 1202 1203 1204 1205

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
1206 1207 1208 1209 1210 1211
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
1212 1213
 * the fact that a CPU enters the scheduler after completing the teardown
 * of the CPU.
1214
 *
1215 1216
 * This is also why RCU internally marks CPUs online during in the
 * preparation phase and offline after the CPU has been taken down.
1217 1218 1219 1220 1221 1222
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1223 1224
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1225 1226 1227
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1228
		return true;
1229
	preempt_disable();
1230
	rdp = this_cpu_ptr(&rcu_sched_data);
1231
	rnp = rdp->mynode;
1232
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1233 1234 1235 1236 1237 1238
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1239
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1240

1241
/**
1242
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1243
 *
1244 1245 1246
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1247
 */
1248
static int rcu_is_cpu_rrupt_from_idle(void)
1249
{
1250
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1251 1252 1253 1254 1255
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1256
 * is in dynticks idle mode, which is an extended quiescent state.
1257
 */
1258 1259
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1260
{
1261
	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1262
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1263
	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1264
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1265
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1266
				 rdp->mynode->gpnum))
1267
			WRITE_ONCE(rdp->gpwrap, true);
1268
		return 1;
1269
	}
1270
	return 0;
1271 1272 1273 1274 1275 1276
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1277
 * for this same CPU, or by virtue of having been offline.
1278
 */
1279 1280
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1281
{
1282
	unsigned long jtsq;
1283
	int *rcrmp;
1284 1285
	unsigned long rjtsc;
	struct rcu_node *rnp;
1286 1287 1288 1289 1290 1291 1292 1293 1294

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1295
	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1296
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1297 1298 1299 1300
		rdp->dynticks_fqs++;
		return 1;
	}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	/* Compute and saturate jiffies_till_sched_qs. */
	jtsq = jiffies_till_sched_qs;
	rjtsc = rcu_jiffies_till_stall_check();
	if (jtsq > rjtsc / 2) {
		WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
		jtsq = rjtsc / 2;
	} else if (jtsq < 1) {
		WRITE_ONCE(jiffies_till_sched_qs, 1);
		jtsq = 1;
	}

1312
	/*
1313 1314 1315 1316
	 * Has this CPU encountered a cond_resched_rcu_qs() since the
	 * beginning of the grace period?  For this to be the case,
	 * the CPU has to have noticed the current grace period.  This
	 * might not be the case for nohz_full CPUs looping in the kernel.
1317
	 */
1318 1319 1320 1321 1322 1323 1324 1325
	rnp = rdp->mynode;
	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_qs_ctr, rdp->cpu) &&
	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
		return 1;
	}

1326 1327
	/* Check for the CPU being offline. */
	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1328
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1329 1330 1331
		rdp->offline_fqs++;
		return 1;
	}
1332 1333

	/*
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1353
	 */
1354
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1355 1356
	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
	    time_after(jiffies, rdp->rsp->jiffies_resched)) {
1357 1358 1359
		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			WRITE_ONCE(rdp->cond_resched_completed,
				   READ_ONCE(rdp->mynode->completed));
1360
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1361 1362
			WRITE_ONCE(*rcrmp,
				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1363
		}
1364
		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1365 1366
	}

1367 1368 1369 1370 1371 1372
	/*
	 * If more than halfway to RCU CPU stall-warning time, do
	 * a resched_cpu() to try to loosen things up a bit.
	 */
	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
		resched_cpu(rdp->cpu);
1373

1374
	return 0;
1375 1376 1377 1378
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1379
	unsigned long j = jiffies;
1380
	unsigned long j1;
1381 1382 1383

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1384
	j1 = rcu_jiffies_till_stall_check();
1385
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1386
	rsp->jiffies_resched = j + j1 / 2;
1387
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1388 1389
}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
/*
 * Convert a ->gp_state value to a character string.
 */
static const char *gp_state_getname(short gs)
{
	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
		return "???";
	return gp_state_names[gs];
}

1400 1401 1402 1403 1404 1405 1406 1407 1408
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1409
	gpa = READ_ONCE(rsp->gp_activity);
1410
	if (j - gpa > 2 * HZ) {
1411
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1412
		       rsp->name, j - gpa,
1413
		       rsp->gpnum, rsp->completed,
1414 1415
		       rsp->gp_flags,
		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1416
		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1417
		if (rsp->gp_kthread) {
1418
			sched_show_task(rsp->gp_kthread);
1419 1420
			wake_up_process(rsp->gp_kthread);
		}
1421
	}
1422 1423
}

1424
/*
1425 1426 1427 1428
 * Dump stacks of all tasks running on stalled CPUs.  First try using
 * NMIs, but fall back to manual remote stack tracing on architectures
 * that don't support NMI-based stack dumps.  The NMI-triggered stack
 * traces are more accurate because they are printed by the target CPU.
1429 1430 1431 1432 1433 1434 1435 1436
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
1437
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1438 1439 1440
		for_each_leaf_node_possible_cpu(rnp, cpu)
			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
				if (!trigger_single_cpu_backtrace(cpu))
1441
					dump_cpu_task(cpu);
B
Boqun Feng 已提交
1442
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1443 1444 1445
	}
}

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
/*
 * If too much time has passed in the current grace period, and if
 * so configured, go kick the relevant kthreads.
 */
static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
{
	unsigned long j;

	if (!rcu_kick_kthreads)
		return;
	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1457 1458
	if (time_after(jiffies, j) && rsp->gp_kthread &&
	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1459
		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1460
		rcu_ftrace_dump(DUMP_ALL);
1461 1462 1463 1464 1465
		wake_up_process(rsp->gp_kthread);
		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
	}
}

1466 1467 1468 1469 1470 1471
static inline void panic_on_rcu_stall(void)
{
	if (sysctl_panic_on_rcu_stall)
		panic("RCU Stall\n");
}

1472
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1473 1474 1475 1476
{
	int cpu;
	long delta;
	unsigned long flags;
1477 1478
	unsigned long gpa;
	unsigned long j;
1479
	int ndetected = 0;
1480
	struct rcu_node *rnp = rcu_get_root(rsp);
1481
	long totqlen = 0;
1482

1483 1484 1485 1486 1487
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1488 1489
	/* Only let one CPU complain about others per time interval. */

1490
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1491
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1492
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
B
Boqun Feng 已提交
1493
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1494 1495
		return;
	}
1496 1497
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1498
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1499

1500 1501 1502 1503 1504
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1505
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1506
	       rsp->name);
1507
	print_cpu_stall_info_begin();
1508
	rcu_for_each_leaf_node(rsp, rnp) {
1509
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1510
		ndetected += rcu_print_task_stall(rnp);
1511
		if (rnp->qsmask != 0) {
1512 1513 1514
			for_each_leaf_node_possible_cpu(rnp, cpu)
				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
					print_cpu_stall_info(rsp, cpu);
1515 1516 1517
					ndetected++;
				}
		}
B
Boqun Feng 已提交
1518
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1519
	}
1520 1521

	print_cpu_stall_info_end();
1522 1523
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1524
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1525
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1526
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1527
	if (ndetected) {
1528
		rcu_dump_cpu_stacks(rsp);
1529 1530 1531

		/* Complain about tasks blocking the grace period. */
		rcu_print_detail_task_stall(rsp);
1532
	} else {
1533 1534
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1535 1536 1537
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1538
			gpa = READ_ONCE(rsp->gp_activity);
1539
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1540
			       rsp->name, j - gpa, j, gpa,
1541 1542
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1543 1544 1545 1546
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1547

1548 1549
	rcu_check_gp_kthread_starvation(rsp);

1550 1551
	panic_on_rcu_stall();

1552
	force_quiescent_state(rsp);  /* Kick them all. */
1553 1554 1555 1556
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1557
	int cpu;
1558 1559
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1560
	long totqlen = 0;
1561

1562 1563 1564 1565 1566
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1567 1568 1569 1570 1571
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1572
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1573 1574 1575
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1576 1577
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1578 1579 1580
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1581 1582 1583

	rcu_check_gp_kthread_starvation(rsp);

1584
	rcu_dump_cpu_stacks(rsp);
1585

1586
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1587 1588 1589
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1590
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1591

1592 1593
	panic_on_rcu_stall();

1594 1595 1596 1597 1598 1599 1600 1601
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1602 1603 1604 1605
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1606 1607 1608
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1609 1610
	unsigned long j;
	unsigned long js;
1611 1612
	struct rcu_node *rnp;

1613 1614
	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
	    !rcu_gp_in_progress(rsp))
1615
		return;
1616
	rcu_stall_kick_kthreads(rsp);
1617
	j = jiffies;
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1636
	gpnum = READ_ONCE(rsp->gpnum);
1637
	smp_rmb(); /* Pick up ->gpnum first... */
1638
	js = READ_ONCE(rsp->jiffies_stall);
1639
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1640
	gps = READ_ONCE(rsp->gp_start);
1641
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1642
	completed = READ_ONCE(rsp->completed);
1643 1644 1645 1646
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1647
	rnp = rdp->mynode;
1648
	if (rcu_gp_in_progress(rsp) &&
1649
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1650 1651 1652 1653

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1654 1655
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1656

1657
		/* They had a few time units to dump stack, so complain. */
1658
		print_other_cpu_stall(rsp, gpnum);
1659 1660 1661
	}
}

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1673 1674 1675
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1676
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1677 1678
}

1679
/*
1680 1681 1682
 * Initialize the specified rcu_data structure's default callback list
 * to empty.  The default callback list is the one that is not used by
 * no-callbacks CPUs.
1683
 */
1684
static void init_default_callback_list(struct rcu_data *rdp)
1685 1686 1687 1688 1689 1690 1691 1692
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	if (init_nocb_callback_list(rdp))
		return;
	init_default_callback_list(rdp);
}

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1732 1733 1734 1735 1736
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1737
				unsigned long c, const char *s)
1738 1739 1740 1741 1742 1743 1744 1745 1746
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1747 1748
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1749 1750 1751
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1752 1753 1754
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1755 1756 1757
{
	unsigned long c;
	int i;
1758
	bool ret = false;
1759 1760 1761 1762 1763 1764 1765
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1766
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1767
	if (rnp->need_future_gp[c & 0x1]) {
1768
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1769
		goto out;
1770 1771 1772 1773 1774 1775 1776
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1777 1778 1779 1780 1781 1782 1783
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1784 1785
	 */
	if (rnp->gpnum != rnp->completed ||
1786
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1787
		rnp->need_future_gp[c & 0x1]++;
1788
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1789
		goto out;
1790 1791 1792 1793 1794 1795 1796
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1797 1798
	if (rnp != rnp_root)
		raw_spin_lock_rcu_node(rnp_root);
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1816
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1817 1818 1819 1820 1821 1822 1823 1824
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1825
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1826
	} else {
1827
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1828
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1829 1830 1831
	}
unlock_out:
	if (rnp != rnp_root)
B
Boqun Feng 已提交
1832
		raw_spin_unlock_rcu_node(rnp_root);
1833 1834 1835 1836
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1853 1854
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1855 1856 1857
	return needmore;
}

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1868
	    !READ_ONCE(rsp->gp_flags) ||
1869 1870
	    !rsp->gp_kthread)
		return;
1871
	swake_up(&rsp->gp_wq);
1872 1873
}

1874 1875 1876 1877 1878 1879 1880
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1881 1882
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1883 1884 1885
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1886
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1887 1888 1889 1890
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1891
	bool ret;
1892 1893 1894

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1895
		return false;
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1924
		return false;
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1935
	/* Record any needed additional grace periods. */
1936
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1937 1938 1939

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1940
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1941
	else
1942
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1943
	return ret;
1944 1945 1946 1947 1948 1949 1950 1951
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1952
 * Returns true if the RCU grace-period kthread needs to be awakened.
1953 1954 1955
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1956
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1957 1958 1959 1960 1961 1962
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1963
		return false;
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1987
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1988 1989
}

1990
/*
1991 1992 1993
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1994
 * Returns true if the grace-period kthread needs to be awakened.
1995
 */
1996 1997
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1998
{
1999
	bool ret;
2000
	bool need_gp;
2001

2002
	/* Handle the ends of any preceding grace periods first. */
2003
	if (rdp->completed == rnp->completed &&
2004
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
2005

2006
		/* No grace period end, so just accelerate recent callbacks. */
2007
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
2008

2009 2010 2011
	} else {

		/* Advance callbacks. */
2012
		ret = rcu_advance_cbs(rsp, rnp, rdp);
2013 2014 2015

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
2016
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
2017
	}
2018

2019
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
2020 2021 2022 2023 2024 2025
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
2026
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
2027 2028
		need_gp = !!(rnp->qsmask & rdp->grpmask);
		rdp->cpu_no_qs.b.norm = need_gp;
2029
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2030
		rdp->core_needs_qs = need_gp;
2031
		zero_cpu_stall_ticks(rdp);
2032
		WRITE_ONCE(rdp->gpwrap, false);
2033
	}
2034
	return ret;
2035 2036
}

2037
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
2038 2039
{
	unsigned long flags;
2040
	bool needwake;
2041 2042 2043 2044
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
2045 2046 2047
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2048
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
2049 2050 2051
		local_irq_restore(flags);
		return;
	}
2052
	needwake = __note_gp_changes(rsp, rnp, rdp);
B
Boqun Feng 已提交
2053
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2054 2055
	if (needwake)
		rcu_gp_kthread_wake(rsp);
2056 2057
}

2058 2059 2060 2061 2062 2063 2064
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

2065
/*
2066
 * Initialize a new grace period.  Return false if no grace period required.
2067
 */
2068
static bool rcu_gp_init(struct rcu_state *rsp)
2069
{
2070
	unsigned long oldmask;
2071
	struct rcu_data *rdp;
2072
	struct rcu_node *rnp = rcu_get_root(rsp);
2073

2074
	WRITE_ONCE(rsp->gp_activity, jiffies);
2075
	raw_spin_lock_irq_rcu_node(rnp);
2076
	if (!READ_ONCE(rsp->gp_flags)) {
2077
		/* Spurious wakeup, tell caller to go back to sleep.  */
B
Boqun Feng 已提交
2078
		raw_spin_unlock_irq_rcu_node(rnp);
2079
		return false;
2080
	}
2081
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
2082

2083 2084 2085 2086 2087
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
B
Boqun Feng 已提交
2088
		raw_spin_unlock_irq_rcu_node(rnp);
2089
		return false;
2090 2091 2092
	}

	/* Advance to a new grace period and initialize state. */
2093
	record_gp_stall_check_time(rsp);
2094 2095
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
2096
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
B
Boqun Feng 已提交
2097
	raw_spin_unlock_irq_rcu_node(rnp);
2098

2099 2100 2101 2102 2103 2104 2105
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
2106
		rcu_gp_slow(rsp, gp_preinit_delay);
2107
		raw_spin_lock_irq_rcu_node(rnp);
2108 2109 2110
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
B
Boqun Feng 已提交
2111
			raw_spin_unlock_irq_rcu_node(rnp);
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

B
Boqun Feng 已提交
2145
		raw_spin_unlock_irq_rcu_node(rnp);
2146
	}
2147 2148 2149 2150 2151 2152 2153 2154

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
2155
	 * leaf node has been initialized.
2156 2157 2158 2159 2160
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2161
		rcu_gp_slow(rsp, gp_init_delay);
2162
		raw_spin_lock_irq_rcu_node(rnp);
2163
		rdp = this_cpu_ptr(rsp->rda);
2164 2165
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
2166
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2167
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2168
			WRITE_ONCE(rnp->completed, rsp->completed);
2169
		if (rnp == rdp->mynode)
2170
			(void)__note_gp_changes(rsp, rnp, rdp);
2171 2172 2173 2174
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
B
Boqun Feng 已提交
2175
		raw_spin_unlock_irq_rcu_node(rnp);
2176
		cond_resched_rcu_qs();
2177
		WRITE_ONCE(rsp->gp_activity, jiffies);
2178
	}
2179

2180
	return true;
2181
}
2182

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
/*
 * Helper function for wait_event_interruptible_timeout() wakeup
 * at force-quiescent-state time.
 */
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rsp->gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

2203 2204 2205
/*
 * Do one round of quiescent-state forcing.
 */
2206
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2207
{
2208 2209
	bool isidle = false;
	unsigned long maxj;
2210 2211
	struct rcu_node *rnp = rcu_get_root(rsp);

2212
	WRITE_ONCE(rsp->gp_activity, jiffies);
2213
	rsp->n_force_qs++;
2214
	if (first_time) {
2215
		/* Collect dyntick-idle snapshots. */
2216
		if (is_sysidle_rcu_state(rsp)) {
2217
			isidle = true;
2218 2219
			maxj = jiffies - ULONG_MAX / 4;
		}
2220 2221
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
2222
		rcu_sysidle_report_gp(rsp, isidle, maxj);
2223 2224
	} else {
		/* Handle dyntick-idle and offline CPUs. */
2225
		isidle = true;
2226
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2227 2228
	}
	/* Clear flag to prevent immediate re-entry. */
2229
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2230
		raw_spin_lock_irq_rcu_node(rnp);
2231 2232
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2233
		raw_spin_unlock_irq_rcu_node(rnp);
2234 2235 2236
	}
}

2237 2238 2239
/*
 * Clean up after the old grace period.
 */
2240
static void rcu_gp_cleanup(struct rcu_state *rsp)
2241 2242
{
	unsigned long gp_duration;
2243
	bool needgp = false;
2244
	int nocb = 0;
2245 2246
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
2247
	struct swait_queue_head *sq;
2248

2249
	WRITE_ONCE(rsp->gp_activity, jiffies);
2250
	raw_spin_lock_irq_rcu_node(rnp);
2251 2252 2253
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
2254

2255 2256 2257 2258 2259 2260 2261 2262
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
B
Boqun Feng 已提交
2263
	raw_spin_unlock_irq_rcu_node(rnp);
2264

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2275
		raw_spin_lock_irq_rcu_node(rnp);
2276 2277
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
2278
		WRITE_ONCE(rnp->completed, rsp->gpnum);
2279 2280
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
2281
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2282
		/* smp_mb() provided by prior unlock-lock pair. */
2283
		nocb += rcu_future_gp_cleanup(rsp, rnp);
2284
		sq = rcu_nocb_gp_get(rnp);
B
Boqun Feng 已提交
2285
		raw_spin_unlock_irq_rcu_node(rnp);
2286
		rcu_nocb_gp_cleanup(sq);
2287
		cond_resched_rcu_qs();
2288
		WRITE_ONCE(rsp->gp_activity, jiffies);
2289
		rcu_gp_slow(rsp, gp_cleanup_delay);
2290
	}
2291
	rnp = rcu_get_root(rsp);
2292
	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2293
	rcu_nocb_gp_set(rnp, nocb);
2294

2295
	/* Declare grace period done. */
2296
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2297
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2298
	rsp->gp_state = RCU_GP_IDLE;
2299
	rdp = this_cpu_ptr(rsp->rda);
2300 2301 2302
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2303
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2304
		trace_rcu_grace_period(rsp->name,
2305
				       READ_ONCE(rsp->gpnum),
2306 2307
				       TPS("newreq"));
	}
B
Boqun Feng 已提交
2308
	raw_spin_unlock_irq_rcu_node(rnp);
2309 2310 2311 2312 2313 2314 2315
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2316
	bool first_gp_fqs;
2317
	int gf;
2318
	unsigned long j;
2319
	int ret;
2320 2321 2322
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2323
	rcu_bind_gp_kthread();
2324 2325 2326 2327
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2328
			trace_rcu_grace_period(rsp->name,
2329
					       READ_ONCE(rsp->gpnum),
2330
					       TPS("reqwait"));
2331
			rsp->gp_state = RCU_GP_WAIT_GPS;
2332
			swait_event_interruptible(rsp->gp_wq,
2333
						 READ_ONCE(rsp->gp_flags) &
2334
						 RCU_GP_FLAG_INIT);
2335
			rsp->gp_state = RCU_GP_DONE_GPS;
2336
			/* Locking provides needed memory barrier. */
2337
			if (rcu_gp_init(rsp))
2338
				break;
2339
			cond_resched_rcu_qs();
2340
			WRITE_ONCE(rsp->gp_activity, jiffies);
2341
			WARN_ON(signal_pending(current));
2342
			trace_rcu_grace_period(rsp->name,
2343
					       READ_ONCE(rsp->gpnum),
2344
					       TPS("reqwaitsig"));
2345
		}
2346

2347
		/* Handle quiescent-state forcing. */
2348
		first_gp_fqs = true;
2349 2350 2351 2352 2353
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2354
		ret = 0;
2355
		for (;;) {
2356
			if (!ret) {
2357
				rsp->jiffies_force_qs = jiffies + j;
2358 2359 2360
				WRITE_ONCE(rsp->jiffies_kick_kthreads,
					   jiffies + 3 * j);
			}
2361
			trace_rcu_grace_period(rsp->name,
2362
					       READ_ONCE(rsp->gpnum),
2363
					       TPS("fqswait"));
2364
			rsp->gp_state = RCU_GP_WAIT_FQS;
2365
			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2366
					rcu_gp_fqs_check_wake(rsp, &gf), j);
2367
			rsp->gp_state = RCU_GP_DOING_FQS;
2368
			/* Locking provides needed memory barriers. */
2369
			/* If grace period done, leave loop. */
2370
			if (!READ_ONCE(rnp->qsmask) &&
2371
			    !rcu_preempt_blocked_readers_cgp(rnp))
2372
				break;
2373
			/* If time for quiescent-state forcing, do it. */
2374 2375
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2376
				trace_rcu_grace_period(rsp->name,
2377
						       READ_ONCE(rsp->gpnum),
2378
						       TPS("fqsstart"));
2379 2380
				rcu_gp_fqs(rsp, first_gp_fqs);
				first_gp_fqs = false;
2381
				trace_rcu_grace_period(rsp->name,
2382
						       READ_ONCE(rsp->gpnum),
2383
						       TPS("fqsend"));
2384
				cond_resched_rcu_qs();
2385
				WRITE_ONCE(rsp->gp_activity, jiffies);
2386 2387 2388 2389 2390 2391 2392 2393 2394
				ret = 0; /* Force full wait till next FQS. */
				j = jiffies_till_next_fqs;
				if (j > HZ) {
					j = HZ;
					jiffies_till_next_fqs = HZ;
				} else if (j < 1) {
					j = 1;
					jiffies_till_next_fqs = 1;
				}
2395 2396
			} else {
				/* Deal with stray signal. */
2397
				cond_resched_rcu_qs();
2398
				WRITE_ONCE(rsp->gp_activity, jiffies);
2399
				WARN_ON(signal_pending(current));
2400
				trace_rcu_grace_period(rsp->name,
2401
						       READ_ONCE(rsp->gpnum),
2402
						       TPS("fqswaitsig"));
2403 2404 2405 2406 2407 2408
				ret = 1; /* Keep old FQS timing. */
				j = jiffies;
				if (time_after(jiffies, rsp->jiffies_force_qs))
					j = 1;
				else
					j = rsp->jiffies_force_qs - j;
2409
			}
2410
		}
2411 2412

		/* Handle grace-period end. */
2413
		rsp->gp_state = RCU_GP_CLEANUP;
2414
		rcu_gp_cleanup(rsp);
2415
		rsp->gp_state = RCU_GP_CLEANED;
2416 2417 2418
	}
}

2419 2420 2421
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2422
 * the root node's ->lock and hard irqs must be disabled.
2423 2424 2425 2426
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2427 2428
 *
 * Returns true if the grace-period kthread must be awakened.
2429
 */
2430
static bool
2431 2432
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2433
{
2434
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2435
		/*
2436
		 * Either we have not yet spawned the grace-period
2437 2438
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2439
		 * Either way, don't start a new grace period.
2440
		 */
2441
		return false;
2442
	}
2443 2444
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2445
			       TPS("newreq"));
2446

2447 2448
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2449
	 * could cause possible deadlocks with the rq->lock. Defer
2450
	 * the wakeup to our caller.
2451
	 */
2452
	return true;
2453 2454
}

2455 2456 2457 2458 2459 2460
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2461 2462
 *
 * Returns true if the grace-period kthread needs to be awakened.
2463
 */
2464
static bool rcu_start_gp(struct rcu_state *rsp)
2465 2466 2467
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2468
	bool ret = false;
2469 2470 2471 2472 2473 2474 2475 2476 2477

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2478 2479 2480
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2481 2482
}

2483
/*
2484 2485 2486 2487 2488 2489 2490
 * Report a full set of quiescent states to the specified rcu_state data
 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
 * kthread if another grace period is required.  Whether we wake
 * the grace-period kthread or it awakens itself for the next round
 * of quiescent-state forcing, that kthread will clean up after the
 * just-completed grace period.  Note that the caller must hold rnp->lock,
 * which is released before return.
2491
 */
P
Paul E. McKenney 已提交
2492
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2493
	__releases(rcu_get_root(rsp)->lock)
2494
{
2495
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2496
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2497
	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2498
	rcu_gp_kthread_wake(rsp);
2499 2500
}

2501
/*
P
Paul E. McKenney 已提交
2502 2503 2504
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2505 2506 2507 2508 2509
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2510 2511
 */
static void
P
Paul E. McKenney 已提交
2512
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2513
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2514 2515
	__releases(rnp->lock)
{
2516
	unsigned long oldmask = 0;
2517 2518
	struct rcu_node *rnp_c;

2519 2520
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2521
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2522

2523 2524 2525 2526
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
B
Boqun Feng 已提交
2527
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2528 2529
			return;
		}
2530
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2531
		rnp->qsmask &= ~mask;
2532 2533 2534 2535
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2536
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2537 2538

			/* Other bits still set at this level, so done. */
B
Boqun Feng 已提交
2539
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2540 2541 2542 2543 2544 2545 2546 2547 2548
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
B
Boqun Feng 已提交
2549
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2550
		rnp_c = rnp;
2551
		rnp = rnp->parent;
2552
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2553
		oldmask = rnp_c->qsmask;
2554 2555 2556 2557
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2558
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2559
	 * to clean up and start the next grace period if one is needed.
2560
	 */
P
Paul E. McKenney 已提交
2561
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2562 2563
}

2564 2565 2566 2567 2568 2569 2570
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2571
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2572 2573 2574
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2575
	unsigned long gps;
2576 2577 2578
	unsigned long mask;
	struct rcu_node *rnp_p;

2579 2580
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
B
Boqun Feng 已提交
2581
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2582 2583 2584 2585 2586 2587
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2588 2589
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2590 2591 2592 2593 2594
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2595 2596
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2597
	mask = rnp->grpmask;
B
Boqun Feng 已提交
2598
	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2599
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2600
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2601 2602
}

2603
/*
P
Paul E. McKenney 已提交
2604
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2605
 * structure.  This must be called from the specified CPU.
2606 2607
 */
static void
2608
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2609 2610 2611
{
	unsigned long flags;
	unsigned long mask;
2612
	bool needwake;
2613 2614 2615
	struct rcu_node *rnp;

	rnp = rdp->mynode;
2616
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2617 2618
	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2619 2620

		/*
2621 2622 2623 2624
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2625
		 */
2626
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2627
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
B
Boqun Feng 已提交
2628
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2629 2630 2631 2632
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
B
Boqun Feng 已提交
2633
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2634
	} else {
2635
		rdp->core_needs_qs = false;
2636 2637 2638 2639 2640

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2641
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2642

2643 2644
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2645 2646
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2659 2660
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2661 2662 2663 2664 2665

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
2666
	if (!rdp->core_needs_qs)
2667 2668 2669 2670 2671 2672
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2673
	if (rdp->cpu_no_qs.b.norm)
2674 2675
		return;

P
Paul E. McKenney 已提交
2676 2677 2678 2679
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2680
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2681 2682
}

2683
/*
2684 2685
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2686
 * ->orphan_lock.
2687
 */
2688 2689 2690
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2691
{
P
Paul E. McKenney 已提交
2692
	/* No-CBs CPUs do not have orphanable callbacks. */
2693
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2694 2695
		return;

2696 2697
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2698 2699
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2700
	 */
2701
	if (rdp->nxtlist != NULL) {
2702 2703 2704
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2705
		rdp->qlen_lazy = 0;
2706
		WRITE_ONCE(rdp->qlen, 0);
2707 2708 2709
	}

	/*
2710 2711 2712 2713 2714 2715 2716
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2717
	 */
2718 2719 2720 2721
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2722 2723 2724
	}

	/*
2725 2726 2727
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2728
	 */
2729
	if (rdp->nxtlist != NULL) {
2730 2731
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2732
	}
2733

2734 2735 2736 2737
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2738
	init_callback_list(rdp);
2739
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2740 2741 2742 2743
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2744
 * orphanage.  The caller must hold the ->orphan_lock.
2745
 */
2746
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2747 2748
{
	int i;
2749
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2750

P
Paul E. McKenney 已提交
2751
	/* No-CBs CPUs are handled specially. */
2752 2753
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2754 2755
		return;

2756 2757 2758 2759
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2760 2761
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

2800 2801 2802
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2803
	RCU_TRACE(mask = rdp->grpmask);
2804 2805
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2806
			       TPS("cpuofl"));
2807 2808
}

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2831 2832
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2833 2834 2835 2836 2837 2838
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
2839
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2840
		rnp->qsmaskinit &= ~mask;
2841
		rnp->qsmask &= ~mask;
2842
		if (rnp->qsmaskinit) {
B
Boqun Feng 已提交
2843 2844
			raw_spin_unlock_rcu_node(rnp);
			/* irqs remain disabled. */
2845 2846
			return;
		}
B
Boqun Feng 已提交
2847
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2848 2849 2850
	}
}

2851
/*
2852
 * The CPU has been completely removed, and some other CPU is reporting
2853 2854
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2855 2856
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2857
 */
2858
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2859
{
2860
	unsigned long flags;
2861
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2862
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2863

2864 2865 2866
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2867
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2868
	rcu_boost_kthread_setaffinity(rnp, -1);
2869

2870
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2871
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2872
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2873
	rcu_adopt_orphan_cbs(rsp, flags);
2874
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2875

2876 2877 2878
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2879 2880 2881 2882 2883 2884
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2885
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2886 2887 2888
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2889 2890
	long bl, count, count_lazy;
	int i;
2891

2892
	/* If no callbacks are ready, just return. */
2893
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2894
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2895
		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2896 2897
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2898
		return;
2899
	}
2900 2901 2902 2903 2904 2905

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2906
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2907
	bl = rdp->blimit;
2908
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2909 2910 2911 2912
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2913 2914 2915
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2916 2917 2918
	local_irq_restore(flags);

	/* Invoke callbacks. */
2919
	count = count_lazy = 0;
2920 2921 2922
	while (list) {
		next = list->next;
		prefetch(next);
2923
		debug_rcu_head_unqueue(list);
2924 2925
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2926
		list = next;
2927 2928 2929 2930
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2931 2932 2933 2934
			break;
	}

	local_irq_save(flags);
2935 2936 2937
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2938 2939 2940 2941 2942

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2943 2944 2945
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2946 2947 2948
			else
				break;
	}
2949 2950
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2951
	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2952
	rdp->n_cbs_invoked += count;
2953 2954 2955 2956 2957

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2958 2959 2960 2961 2962 2963
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2964
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2965

2966 2967
	local_irq_restore(flags);

2968
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2969
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2970
		invoke_rcu_core();
2971 2972 2973 2974 2975
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2976
 * Also schedule RCU core processing.
2977
 *
2978
 * This function must be called from hardirq context.  It is normally
2979
 * invoked from the scheduling-clock interrupt.
2980
 */
2981
void rcu_check_callbacks(int user)
2982
{
2983
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2984
	increment_cpu_stall_ticks();
2985
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2986 2987 2988 2989 2990

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2991
		 * a quiescent state, so note it.
2992 2993
		 *
		 * No memory barrier is required here because both
2994 2995 2996
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2997 2998
		 */

2999 3000
		rcu_sched_qs();
		rcu_bh_qs();
3001 3002 3003 3004 3005 3006 3007

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
3008
		 * critical section, so note it.
3009 3010
		 */

3011
		rcu_bh_qs();
3012
	}
3013
	rcu_preempt_check_callbacks();
3014
	if (rcu_pending())
3015
		invoke_rcu_core();
P
Paul E. McKenney 已提交
3016 3017
	if (user)
		rcu_note_voluntary_context_switch(current);
3018
	trace_rcu_utilization(TPS("End scheduler-tick"));
3019 3020 3021 3022 3023
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
3024 3025
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
3026
 * The caller must have suppressed start of new grace periods.
3027
 */
3028 3029 3030 3031
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
3032 3033 3034 3035
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
3036
	struct rcu_node *rnp;
3037

3038
	rcu_for_each_leaf_node(rsp, rnp) {
3039
		cond_resched_rcu_qs();
3040
		mask = 0;
3041
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3042
		if (rnp->qsmask == 0) {
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
3066
		}
3067 3068
		for_each_leaf_node_possible_cpu(rnp, cpu) {
			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
3069 3070 3071 3072
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
3073
		}
3074
		if (mask != 0) {
3075 3076
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
3077 3078
		} else {
			/* Nothing to do here, so just drop the lock. */
B
Boqun Feng 已提交
3079
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3080 3081 3082 3083 3084 3085 3086 3087
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
3088
static void force_quiescent_state(struct rcu_state *rsp)
3089 3090
{
	unsigned long flags;
3091 3092 3093 3094 3095
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
3096
	rnp = __this_cpu_read(rsp->rda->mynode);
3097
	for (; rnp != NULL; rnp = rnp->parent) {
3098
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
3099 3100 3101 3102
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
3103
			rsp->n_force_qs_lh++;
3104 3105 3106 3107 3108
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
3109

3110
	/* Reached the root of the rcu_node tree, acquire lock. */
3111
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
3112
	raw_spin_unlock(&rnp_old->fqslock);
3113
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
3114
		rsp->n_force_qs_lh++;
B
Boqun Feng 已提交
3115
		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3116
		return;  /* Someone beat us to it. */
3117
	}
3118
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
3119
	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3120
	rcu_gp_kthread_wake(rsp);
3121 3122 3123
}

/*
3124 3125 3126
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
3127 3128
 */
static void
3129
__rcu_process_callbacks(struct rcu_state *rsp)
3130 3131
{
	unsigned long flags;
3132
	bool needwake;
3133
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3134

3135 3136
	WARN_ON_ONCE(rdp->beenonline == 0);

3137 3138 3139 3140
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
3141
	local_irq_save(flags);
3142
	if (cpu_needs_another_gp(rsp, rdp)) {
3143
		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3144
		needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3145
		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3146 3147
		if (needwake)
			rcu_gp_kthread_wake(rsp);
3148 3149
	} else {
		local_irq_restore(flags);
3150 3151 3152
	}

	/* If there are callbacks ready, invoke them. */
3153
	if (cpu_has_callbacks_ready_to_invoke(rdp))
3154
		invoke_rcu_callbacks(rsp, rdp);
3155 3156 3157

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
3158 3159
}

3160
/*
3161
 * Do RCU core processing for the current CPU.
3162
 */
3163
static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3164
{
3165 3166
	struct rcu_state *rsp;

3167 3168
	if (cpu_is_offline(smp_processor_id()))
		return;
3169
	trace_rcu_utilization(TPS("Start RCU core"));
3170 3171
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
3172
	trace_rcu_utilization(TPS("End RCU core"));
3173 3174
}

3175
/*
3176 3177 3178
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
3179
 * are running on the current CPU with softirqs disabled, the
3180
 * rcu_cpu_kthread_task cannot disappear out from under us.
3181
 */
3182
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3183
{
3184
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3185
		return;
3186 3187
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
3188 3189
		return;
	}
3190
	invoke_rcu_callbacks_kthread();
3191 3192
}

3193
static void invoke_rcu_core(void)
3194
{
3195 3196
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
3197 3198
}

3199 3200 3201 3202 3203
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
3204
{
3205 3206
	bool needwake;

3207 3208 3209 3210
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
3211
	if (!rcu_is_watching())
3212 3213
		invoke_rcu_core();

3214
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3215
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3216
		return;
3217

3218 3219 3220 3221 3222 3223 3224
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
3225
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3226 3227

		/* Are we ignoring a completed grace period? */
3228
		note_gp_changes(rsp, rdp);
3229 3230 3231 3232 3233

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

3234
			raw_spin_lock_rcu_node(rnp_root);
3235
			needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3236
			raw_spin_unlock_rcu_node(rnp_root);
3237 3238
			if (needwake)
				rcu_gp_kthread_wake(rsp);
3239 3240 3241 3242 3243
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3244
				force_quiescent_state(rsp);
3245 3246 3247
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
3248
	}
3249 3250
}

3251 3252 3253 3254 3255 3256 3257
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3258 3259 3260 3261 3262 3263
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3264
static void
3265
__call_rcu(struct rcu_head *head, rcu_callback_t func,
P
Paul E. McKenney 已提交
3266
	   struct rcu_state *rsp, int cpu, bool lazy)
3267 3268 3269 3270
{
	unsigned long flags;
	struct rcu_data *rdp;

3271 3272 3273
	/* Misaligned rcu_head! */
	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));

3274 3275
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3276
		WRITE_ONCE(head->func, rcu_leak_callback);
3277 3278 3279
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3280 3281 3282
	head->func = func;
	head->next = NULL;
	local_irq_save(flags);
3283
	rdp = this_cpu_ptr(rsp->rda);
3284 3285

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
3286 3287 3288 3289 3290
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3304
		WARN_ON_ONCE(!rcu_is_watching());
3305 3306
		if (!likely(rdp->nxtlist))
			init_default_callback_list(rdp);
3307
	}
3308
	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3309 3310
	if (lazy)
		rdp->qlen_lazy++;
3311 3312
	else
		rcu_idle_count_callbacks_posted();
3313 3314 3315
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3316

3317 3318
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3319
					 rdp->qlen_lazy, rdp->qlen);
3320
	else
3321
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3322

3323 3324
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3325 3326 3327 3328
	local_irq_restore(flags);
}

/*
3329
 * Queue an RCU-sched callback for invocation after a grace period.
3330
 */
3331
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3332
{
P
Paul E. McKenney 已提交
3333
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3334
}
3335
EXPORT_SYMBOL_GPL(call_rcu_sched);
3336 3337

/*
3338
 * Queue an RCU callback for invocation after a quicker grace period.
3339
 */
3340
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3341
{
P
Paul E. McKenney 已提交
3342
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3343 3344 3345
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3346 3347 3348 3349 3350 3351 3352 3353
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
3354
		    rcu_callback_t func)
3355
{
3356
	__call_rcu(head, func, rcu_state_p, -1, 1);
3357 3358 3359
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3371 3372
	int ret;

3373
	might_sleep();  /* Check for RCU read-side critical section. */
3374 3375 3376 3377
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3378 3379
}

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3414 3415 3416 3417 3418 3419 3420 3421 3422
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3423 3424 3425 3426
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3427 3428
	if (rcu_blocking_is_gp())
		return;
3429
	if (rcu_gp_is_expedited())
3430 3431 3432
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3444 3445 3446
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3447 3448 3449
 */
void synchronize_rcu_bh(void)
{
3450 3451 3452 3453
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3454 3455
	if (rcu_blocking_is_gp())
		return;
3456
	if (rcu_gp_is_expedited())
3457 3458 3459
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3460 3461 3462
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3483
	return smp_load_acquire(&rcu_state_p->gpnum);
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3509
	newstate = smp_load_acquire(&rcu_state_p->completed);
3510 3511 3512 3513 3514
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
/**
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_sched(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_sched()
	 * and cond_synchronize_sched().
	 */
	return smp_load_acquire(&rcu_sched_state.gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);

/**
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 *
 * If a full RCU-sched grace period has elapsed since the earlier call to
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 * synchronize_sched() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_sched(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_sched_state.completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(cond_synchronize_sched);

3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
/* Adjust sequence number for start of update-side operation. */
static void rcu_seq_start(unsigned long *sp)
{
	WRITE_ONCE(*sp, *sp + 1);
	smp_mb(); /* Ensure update-side operation after counter increment. */
	WARN_ON_ONCE(!(*sp & 0x1));
}

/* Adjust sequence number for end of update-side operation. */
static void rcu_seq_end(unsigned long *sp)
{
	smp_mb(); /* Ensure update-side operation before counter increment. */
	WRITE_ONCE(*sp, *sp + 1);
	WARN_ON_ONCE(*sp & 0x1);
}

/* Take a snapshot of the update side's sequence number. */
static unsigned long rcu_seq_snap(unsigned long *sp)
{
	unsigned long s;

	s = (READ_ONCE(*sp) + 3) & ~0x1;
	smp_mb(); /* Above access must not bleed into critical section. */
	return s;
}

/*
 * Given a snapshot from rcu_seq_snap(), determine whether or not a
 * full update-side operation has occurred.
 */
static bool rcu_seq_done(unsigned long *sp, unsigned long s)
{
	return ULONG_CMP_GE(READ_ONCE(*sp), s);
}

3602 3603 3604 3605 3606 3607 3608 3609 3610
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3611 3612
	struct rcu_node *rnp = rdp->mynode;

3613 3614 3615 3616 3617
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3618 3619 3620 3621
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3622
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3623
	if (rcu_scheduler_fully_active &&
3624
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3625
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3626
		rdp->n_rp_core_needs_qs++;
3627
	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3628
		rdp->n_rp_report_qs++;
3629
		return 1;
3630
	}
3631 3632

	/* Does this CPU have callbacks ready to invoke? */
3633 3634
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3635
		return 1;
3636
	}
3637 3638

	/* Has RCU gone idle with this CPU needing another grace period? */
3639 3640
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3641
		return 1;
3642
	}
3643 3644

	/* Has another RCU grace period completed?  */
3645
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3646
		rdp->n_rp_gp_completed++;
3647
		return 1;
3648
	}
3649 3650

	/* Has a new RCU grace period started? */
3651 3652
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3653
		rdp->n_rp_gp_started++;
3654
		return 1;
3655
	}
3656

3657 3658 3659 3660 3661 3662
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3663
	/* nothing to do */
3664
	rdp->n_rp_need_nothing++;
3665 3666 3667 3668 3669 3670 3671 3672
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3673
static int rcu_pending(void)
3674
{
3675 3676 3677
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3678
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3679 3680
			return 1;
	return 0;
3681 3682 3683
}

/*
3684 3685 3686
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3687
 */
3688
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3689
{
3690 3691 3692
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3693 3694
	struct rcu_state *rsp;

3695
	for_each_rcu_flavor(rsp) {
3696
		rdp = this_cpu_ptr(rsp->rda);
3697 3698 3699 3700
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3701
			al = false;
3702 3703
			break;
		}
3704 3705 3706 3707
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3708 3709
}

3710 3711 3712 3713
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3714
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3715 3716 3717 3718 3719 3720
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3721 3722 3723 3724
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3725
static void rcu_barrier_callback(struct rcu_head *rhp)
3726
{
3727 3728 3729
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3730
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3731
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3732
		complete(&rsp->barrier_completion);
3733
	} else {
3734
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3735
	}
3736 3737 3738 3739 3740 3741 3742
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3743
	struct rcu_state *rsp = type;
3744
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3745

3746
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3747
	atomic_inc(&rsp->barrier_cpu_count);
3748
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3749 3750 3751 3752 3753 3754
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3755
static void _rcu_barrier(struct rcu_state *rsp)
3756
{
3757 3758
	int cpu;
	struct rcu_data *rdp;
3759
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3760

3761
	_rcu_barrier_trace(rsp, "Begin", -1, s);
3762

3763
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3764
	mutex_lock(&rsp->barrier_mutex);
3765

3766 3767 3768
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3769 3770 3771 3772 3773
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

3774 3775 3776
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3777

3778
	/*
3779 3780
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3781 3782
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3783
	 */
3784
	init_completion(&rsp->barrier_completion);
3785
	atomic_set(&rsp->barrier_cpu_count, 1);
3786
	get_online_cpus();
3787 3788

	/*
3789 3790 3791
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3792
	 */
P
Paul E. McKenney 已提交
3793
	for_each_possible_cpu(cpu) {
3794
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3795
			continue;
3796
		rdp = per_cpu_ptr(rsp->rda, cpu);
3797
		if (rcu_is_nocb_cpu(cpu)) {
3798 3799
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3800
						   rsp->barrier_sequence);
3801 3802
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3803
						   rsp->barrier_sequence);
3804
				smp_mb__before_atomic();
3805 3806 3807 3808
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
3809
		} else if (READ_ONCE(rdp->qlen)) {
3810
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3811
					   rsp->barrier_sequence);
3812
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3813
		} else {
3814
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3815
					   rsp->barrier_sequence);
3816 3817
		}
	}
3818
	put_online_cpus();
3819 3820 3821 3822 3823

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3824
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3825
		complete(&rsp->barrier_completion);
3826 3827

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3828
	wait_for_completion(&rsp->barrier_completion);
3829

3830 3831 3832 3833
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

3834
	/* Other rcu_barrier() invocations can now safely proceed. */
3835
	mutex_unlock(&rsp->barrier_mutex);
3836 3837 3838 3839 3840 3841 3842
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3843
	_rcu_barrier(&rcu_bh_state);
3844 3845 3846 3847 3848 3849 3850 3851
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3852
	_rcu_barrier(&rcu_sched_state);
3853 3854 3855
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
3872
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3873
		rnp->qsmaskinit |= mask;
B
Boqun Feng 已提交
3874
		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3875 3876 3877
	}
}

3878
/*
3879
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3880
 */
3881 3882
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3883 3884
{
	unsigned long flags;
3885
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3886 3887 3888
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3889
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3890
	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3891
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3892
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3893
	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3894
	rdp->cpu = cpu;
3895
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3896
	rcu_boot_init_nocb_percpu_data(rdp);
B
Boqun Feng 已提交
3897
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3898 3899 3900 3901 3902 3903 3904
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3905
 */
3906
static void
3907
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3908 3909
{
	unsigned long flags;
3910
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3911 3912 3913
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3914
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3915 3916
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3917
	rdp->blimit = blimit;
3918 3919
	if (!rdp->nxtlist)
		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3920
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3921
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3922
	rcu_dynticks_eqs_online();
B
Boqun Feng 已提交
3923
	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3924

3925 3926 3927 3928 3929
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
3930
	rnp = rdp->mynode;
3931
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3932 3933 3934
	if (!rdp->beenonline)
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
	rdp->beenonline = true;	 /* We have now been online. */
3935 3936
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
3937
	rdp->cpu_no_qs.b.norm = true;
3938
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3939
	rdp->core_needs_qs = false;
3940
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
B
Boqun Feng 已提交
3941
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3942 3943
}

3944
int rcutree_prepare_cpu(unsigned int cpu)
3945
{
3946 3947 3948
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3949
		rcu_init_percpu_data(cpu, rsp);
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995

	rcu_prepare_kthreads(cpu);
	rcu_spawn_all_nocb_kthreads(cpu);

	return 0;
}

static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);

	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
}

int rcutree_online_cpu(unsigned int cpu)
{
	sync_sched_exp_online_cleanup(cpu);
	rcutree_affinity_setting(cpu, -1);
	return 0;
}

int rcutree_offline_cpu(unsigned int cpu)
{
	rcutree_affinity_setting(cpu, cpu);
	return 0;
}


int rcutree_dying_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_cpu(rsp);
	return 0;
}

int rcutree_dead_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		rcu_cleanup_dead_cpu(cpu, rsp);
		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
	}
	return 0;
3996 3997
}

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
/*
 * Mark the specified CPU as being online so that subsequent grace periods
 * (both expedited and normal) will wait on it.  Note that this means that
 * incoming CPUs are not allowed to use RCU read-side critical sections
 * until this function is called.  Failing to observe this restriction
 * will result in lockdep splats.
 */
void rcu_cpu_starting(unsigned int cpu)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
4014
		rdp = per_cpu_ptr(rsp->rda, cpu);
4015 4016 4017 4018 4019 4020 4021 4022 4023
		rnp = rdp->mynode;
		mask = rdp->grpmask;
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
		rnp->qsmaskinitnext |= mask;
		rnp->expmaskinitnext |= mask;
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	}
}

4024 4025
#ifdef CONFIG_HOTPLUG_CPU
/*
4026 4027 4028
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
4044
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
}

void rcu_report_dead(unsigned int cpu)
{
	struct rcu_state *rsp;

	/* QS for any half-done expedited RCU-sched GP. */
	preempt_disable();
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(rcu_sched_state.rda), true);
	preempt_enable();
	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_idle_cpu(cpu, rsp);
}
#endif

4061 4062 4063 4064 4065 4066 4067
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4068
			rcu_expedite_gp();
4069 4070 4071
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
4072 4073
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
4074 4075 4076 4077 4078 4079 4080
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

4081
/*
4082
 * Spawn the kthreads that handle each RCU flavor's grace periods.
4083 4084 4085 4086
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
4087
	int kthread_prio_in = kthread_prio;
4088 4089
	struct rcu_node *rnp;
	struct rcu_state *rsp;
4090
	struct sched_param sp;
4091 4092
	struct task_struct *t;

4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

4104
	rcu_scheduler_fully_active = 1;
4105
	for_each_rcu_flavor(rsp) {
4106
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4107 4108
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
4109
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4110
		rsp->gp_kthread = t;
4111 4112 4113 4114
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
B
Boqun Feng 已提交
4115
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4116
		wake_up_process(t);
4117
	}
4118
	rcu_spawn_nocb_kthreads();
4119
	rcu_spawn_boost_kthreads();
4120 4121 4122 4123
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

4124
/*
4125 4126 4127 4128 4129 4130 4131 4132
 * This function is invoked towards the end of the scheduler's
 * initialization process.  Before this is called, the idle task might
 * contain synchronous grace-period primitives (during which time, this idle
 * task is booting the system, and such primitives are no-ops).  After this
 * function is called, any synchronous grace-period primitives are run as
 * expedited, with the requesting task driving the grace period forward.
 * A later core_initcall() rcu_exp_runtime_mode() will switch to full
 * runtime RCU functionality.
4133 4134 4135 4136 4137
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
4138 4139 4140
	rcu_test_sync_prims();
	rcu_scheduler_active = RCU_SCHEDULER_INIT;
	rcu_test_sync_prims();
4141 4142
}

4143 4144
/*
 * Compute the per-level fanout, either using the exact fanout specified
4145
 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4146
 */
4147
static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4148 4149 4150
{
	int i;

4151
	if (rcu_fanout_exact) {
4152
		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4153
		for (i = rcu_num_lvls - 2; i >= 0; i--)
4154
			levelspread[i] = RCU_FANOUT;
4155 4156 4157 4158 4159 4160
	} else {
		int ccur;
		int cprv;

		cprv = nr_cpu_ids;
		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4161 4162
			ccur = levelcnt[i];
			levelspread[i] = (cprv + ccur - 1) / ccur;
4163 4164
			cprv = ccur;
		}
4165 4166 4167 4168 4169 4170
	}
}

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
4171
static void __init rcu_init_one(struct rcu_state *rsp)
4172
{
4173 4174
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4175 4176
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4177
	static u8 fl_mask = 0x1;
4178 4179 4180

	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4181 4182 4183 4184 4185
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4186
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4187

4188 4189 4190
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4191

4192 4193
	/* Initialize the level-tracking arrays. */

4194
	for (i = 0; i < rcu_num_lvls; i++)
4195
		levelcnt[i] = num_rcu_lvl[i];
4196
	for (i = 1; i < rcu_num_lvls; i++)
4197 4198
		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
	rcu_init_levelspread(levelspread, levelcnt);
4199 4200
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
4201 4202 4203

	/* Initialize the elements themselves, starting from the leaves. */

4204
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4205
		cpustride *= levelspread[i];
4206
		rnp = rsp->level[i];
4207
		for (j = 0; j < levelcnt[i]; j++, rnp++) {
B
Boqun Feng 已提交
4208 4209
			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4210
						   &rcu_node_class[i], buf[i]);
4211 4212 4213
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4214 4215
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4216 4217 4218 4219
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4220 4221
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4222 4223 4224 4225 4226
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4227
				rnp->grpnum = j % levelspread[i - 1];
4228 4229
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4230
					      j / levelspread[i - 1];
4231 4232
			}
			rnp->level = i;
4233
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4234
			rcu_init_one_nocb(rnp);
4235 4236
			init_waitqueue_head(&rnp->exp_wq[0]);
			init_waitqueue_head(&rnp->exp_wq[1]);
4237 4238
			init_waitqueue_head(&rnp->exp_wq[2]);
			init_waitqueue_head(&rnp->exp_wq[3]);
4239
			spin_lock_init(&rnp->exp_lock);
4240 4241
		}
	}
4242

4243 4244
	init_swait_queue_head(&rsp->gp_wq);
	init_swait_queue_head(&rsp->expedited_wq);
4245
	rnp = rsp->level[rcu_num_lvls - 1];
4246
	for_each_possible_cpu(i) {
4247
		while (i > rnp->grphi)
4248
			rnp++;
4249
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4250 4251
		rcu_boot_init_percpu_data(i, rsp);
	}
4252
	list_add(&rsp->flavors, &rcu_struct_flavors);
4253 4254
}

4255 4256
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4257
 * replace the definitions in tree.h because those are needed to size
4258 4259 4260 4261
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4262
	ulong d;
4263
	int i;
4264
	int rcu_capacity[RCU_NUM_LVLS];
4265

4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4279
	/* If the compile-time values are accurate, just leave. */
4280
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4281
	    nr_cpu_ids == NR_CPUS)
4282
		return;
4283 4284
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4285 4286

	/*
4287 4288 4289 4290
	 * The boot-time rcu_fanout_leaf parameter must be at least two
	 * and cannot exceed the number of bits in the rcu_node masks.
	 * Complain and fall back to the compile-time values if this
	 * limit is exceeded.
4291
	 */
4292
	if (rcu_fanout_leaf < 2 ||
4293
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4294
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4295 4296 4297 4298 4299 4300
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4301
	 * with the given number of levels.
4302
	 */
4303
	rcu_capacity[0] = rcu_fanout_leaf;
4304
	for (i = 1; i < RCU_NUM_LVLS; i++)
4305
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4306 4307

	/*
4308
	 * The tree must be able to accommodate the configured number of CPUs.
4309
	 * If this limit is exceeded, fall back to the compile-time values.
4310
	 */
4311 4312 4313 4314 4315
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}
4316

4317
	/* Calculate the number of levels in the tree. */
4318
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4319
	}
4320
	rcu_num_lvls = i + 1;
4321

4322
	/* Calculate the number of rcu_nodes at each level of the tree. */
4323
	for (i = 0; i < rcu_num_lvls; i++) {
4324
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4325 4326
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4327 4328 4329

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4330
	for (i = 0; i < rcu_num_lvls; i++)
4331 4332 4333
		rcu_num_nodes += num_rcu_lvl[i];
}

4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4356
void __init rcu_init(void)
4357
{
P
Paul E. McKenney 已提交
4358
	int cpu;
4359

4360 4361
	rcu_early_boot_tests();

4362
	rcu_bootup_announce();
4363
	rcu_init_geometry();
4364 4365
	rcu_init_one(&rcu_bh_state);
	rcu_init_one(&rcu_sched_state);
4366 4367
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4368
	__rcu_init_preempt();
J
Jiang Fang 已提交
4369
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4370 4371 4372 4373 4374 4375

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
4376
	pm_notifier(rcu_pm_notify, 0);
4377
	for_each_online_cpu(cpu) {
4378
		rcutree_prepare_cpu(cpu);
4379 4380
		rcu_cpu_starting(cpu);
	}
4381 4382
}

4383
#include "tree_exp.h"
4384
#include "tree_plugin.h"