tree.c 132.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
35
#include <linux/rcupdate_wait.h>
36 37
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53 54
#include <linux/delay.h>
#include <linux/stop_machine.h>
55
#include <linux/random.h>
56
#include <linux/trace_events.h>
57
#include <linux/suspend.h>
58

59
#include "tree.h"
60
#include "rcu.h"
61

62 63 64 65 66
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

67 68
/* Data structures. */

69 70 71 72 73 74 75 76
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
77 78
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
79
static char sname##_varname[] = #sname; \
80 81 82 83 84 85 86 87 88
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
89
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
90
struct rcu_state sname##_state = { \
91
	.level = { &sname##_state.node[0] }, \
92
	.rda = &sname##_data, \
93
	.call = cr, \
94
	.gp_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
95 96
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
97
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
98 99
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
100
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101
	.name = RCU_STATE_NAME(sname), \
102
	.abbr = sabbr, \
103
	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104
	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
105
}
106

107 108
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109

110
static struct rcu_state *const rcu_state_p;
111
LIST_HEAD(rcu_struct_flavors);
112

113 114 115
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
116 117 118
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
119 120
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121
module_param(rcu_fanout_leaf, int, 0444);
122
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 124
/* Number of rcu_nodes at specified level. */
static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126 127
/* panic() on RCU Stall sysctl. */
int sysctl_panic_on_rcu_stall __read_mostly;
128

129
/*
130 131 132 133
 * The rcu_scheduler_active variable is initialized to the value
 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 * RCU can assume that there is but one task, allowing RCU to (for example)
134
 * optimize synchronize_rcu() to a simple barrier().  When this variable
135 136 137 138 139
 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 * to detect real grace periods.  This variable is also used to suppress
 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 * is fully initialized, including all of its kthreads having been spawned.
140
 */
141 142 143
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

144 145 146 147 148 149 150 151 152 153 154 155 156 157
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

158 159
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
160
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 162
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163 164
static void rcu_report_exp_rdp(struct rcu_state *rsp,
			       struct rcu_data *rdp, bool wake);
165
static void sync_sched_exp_online_cleanup(int cpu);
166

167
/* rcuc/rcub kthread realtime priority */
168
#ifdef CONFIG_RCU_KTHREAD_PRIO
169
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
170 171 172
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
173 174
module_param(kthread_prio, int, 0644);

175
/* Delay in jiffies for grace-period initialization delays, debug only. */
176 177 178 179 180 181 182 183

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

184 185
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
186
module_param(gp_init_delay, int, 0644);
187 188 189
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
190

191 192 193 194 195 196 197
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

198 199 200 201 202 203 204 205 206 207
/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
208

209 210 211 212 213 214 215 216 217 218 219 220
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

221 222 223 224 225 226 227 228
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
229
	return READ_ONCE(rnp->qsmaskinitnext);
230 231
}

232
/*
233
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
234 235 236 237 238
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
239
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
240 241
}

242
/*
243
 * Note a quiescent state.  Because we do not need to know
244
 * how many quiescent states passed, just if there was at least
245
 * one since the start of the grace period, this just sets a flag.
246
 * The caller must have disabled preemption.
247
 */
248
void rcu_sched_qs(void)
249
{
250 251 252 253 254 255 256 257
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
		return;
	trace_rcu_grace_period(TPS("rcu_sched"),
			       __this_cpu_read(rcu_sched_data.gpnum),
			       TPS("cpuqs"));
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
258 259 260
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(&rcu_sched_data), true);
261 262
}

263
void rcu_bh_qs(void)
264
{
265
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
266 267 268
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
269
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
270
	}
271
}
272

273 274 275 276 277 278 279 280 281 282 283
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
/*
 * Record entry into an extended quiescent state.  This is only to be
 * called when not already in an extended quiescent state.
 */
static void rcu_dynticks_eqs_enter(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
	int special;

	/*
	 * CPUs seeing atomic_inc_return() must see prior RCU read-side
	 * critical sections, and we also must force ordering with the
	 * next idle sojourn.
	 */
	special = atomic_inc_return(&rdtp->dynticks);
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && special & 0x1);
}

/*
 * Record exit from an extended quiescent state.  This is only to be
 * called from an extended quiescent state.
 */
static void rcu_dynticks_eqs_exit(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
	int special;

	/*
	 * CPUs seeing atomic_inc_return() must see prior idle sojourns,
	 * and we also must force ordering with the next RCU read-side
	 * critical section.
	 */
	special = atomic_inc_return(&rdtp->dynticks);
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(special & 0x1));
}

/*
 * Reset the current CPU's ->dynticks counter to indicate that the
 * newly onlined CPU is no longer in an extended quiescent state.
 * This will either leave the counter unchanged, or increment it
 * to the next non-quiescent value.
 *
 * The non-atomic test/increment sequence works because the upper bits
 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 * or when the corresponding CPU is offline.
 */
static void rcu_dynticks_eqs_online(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

	if (atomic_read(&rdtp->dynticks) & 0x1)
		return;
	atomic_add(0x1, &rdtp->dynticks);
}

339 340 341 342 343 344 345 346 347 348 349 350
/*
 * Is the current CPU in an extended quiescent state?
 *
 * No ordering, as we are sampling CPU-local information.
 */
bool rcu_dynticks_curr_cpu_in_eqs(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

	return !(atomic_read(&rdtp->dynticks) & 0x1);
}

351 352 353 354
/*
 * Snapshot the ->dynticks counter with full ordering so as to allow
 * stable comparison of this counter with past and future snapshots.
 */
355
int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
356 357 358 359 360 361
{
	int snap = atomic_add_return(0, &rdtp->dynticks);

	return snap;
}

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
/*
 * Return true if the snapshot returned from rcu_dynticks_snap()
 * indicates that RCU is in an extended quiescent state.
 */
static bool rcu_dynticks_in_eqs(int snap)
{
	return !(snap & 0x1);
}

/*
 * Return true if the CPU corresponding to the specified rcu_dynticks
 * structure has spent some time in an extended quiescent state since
 * rcu_dynticks_snap() returned the specified snapshot.
 */
static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
{
	return snap != rcu_dynticks_snap(rdtp);
}

381 382 383 384 385 386 387 388 389 390 391 392 393
/*
 * Do a double-increment of the ->dynticks counter to emulate a
 * momentary idle-CPU quiescent state.
 */
static void rcu_dynticks_momentary_idle(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
	int special = atomic_add_return(2, &rdtp->dynticks);

	/* It is illegal to call this from idle state. */
	WARN_ON_ONCE(!(special & 0x1));
}

394 395 396
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

397 398 399 400 401 402 403 404 405 406
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
407 408
 *
 * The caller must have disabled interrupts.
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
 */
static void rcu_momentary_dyntick_idle(void)
{
	struct rcu_data *rdp;
	int resched_mask;
	struct rcu_state *rsp;

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
429 430
		if (READ_ONCE(rdp->mynode->completed) !=
		    READ_ONCE(rdp->cond_resched_completed))
431 432 433 434 435 436 437 438
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
439
		rcu_dynticks_momentary_idle();
440 441 442 443
		break;
	}
}

444 445 446
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
447
 * The caller must have disabled interrupts.
448
 */
449
void rcu_note_context_switch(void)
450
{
451
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
452
	trace_rcu_utilization(TPS("Start context switch"));
453
	rcu_sched_qs();
454
	rcu_preempt_note_context_switch();
455 456
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
457
	trace_rcu_utilization(TPS("End context switch"));
458
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
459
}
460
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
461

462
/*
463
 * Register a quiescent state for all RCU flavors.  If there is an
464 465
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
466
 * RCU flavors in desperate need of a quiescent state, which will normally
467 468
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
469 470 471 472 473
 *
 * The barrier() calls are redundant in the common case when this is
 * called externally, but just in case this is called from within this
 * file.
 *
474 475 476
 */
void rcu_all_qs(void)
{
477 478
	unsigned long flags;

479
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
480 481
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
		local_irq_save(flags);
482
		rcu_momentary_dyntick_idle();
483 484
		local_irq_restore(flags);
	}
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
		/*
		 * Yes, we just checked a per-CPU variable with preemption
		 * enabled, so we might be migrated to some other CPU at
		 * this point.  That is OK because in that case, the
		 * migration will supply the needed quiescent state.
		 * We might end up needlessly disabling preemption and
		 * invoking rcu_sched_qs() on the destination CPU, but
		 * the probability and cost are both quite low, so this
		 * should not be a problem in practice.
		 */
		preempt_disable();
		rcu_sched_qs();
		preempt_enable();
	}
500
	this_cpu_inc(rcu_qs_ctr);
501
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
502 503 504
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
505 506 507
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
508

E
Eric Dumazet 已提交
509 510 511
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
512

513 514
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
515
static bool rcu_kick_kthreads;
516 517 518

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);
519
module_param(rcu_kick_kthreads, bool, 0644);
520

521 522 523 524 525 526 527
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

528
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
529
				  struct rcu_data *rdp);
530 531 532 533
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
534
static void force_quiescent_state(struct rcu_state *rsp);
535
static int rcu_pending(void);
536 537

/*
538
 * Return the number of RCU batches started thus far for debug & stats.
539
 */
540 541 542 543 544 545 546 547
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
548
 */
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
575
 */
576
unsigned long rcu_batches_completed_sched(void)
577
{
578
	return rcu_sched_state.completed;
579
}
580
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
581 582

/*
583
 * Return the number of RCU BH batches completed thus far for debug & stats.
584
 */
585
unsigned long rcu_batches_completed_bh(void)
586 587 588 589 590
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
/*
 * Return the number of RCU expedited batches completed thus far for
 * debug & stats.  Odd numbers mean that a batch is in progress, even
 * numbers mean idle.  The value returned will thus be roughly double
 * the cumulative batches since boot.
 */
unsigned long rcu_exp_batches_completed(void)
{
	return rcu_state_p->expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);

/*
 * Return the number of RCU-sched expedited batches completed thus far
 * for debug & stats.  Similar to rcu_exp_batches_completed().
 */
unsigned long rcu_exp_batches_completed_sched(void)
{
	return rcu_sched_state.expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);

613 614 615 616 617
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
618
	force_quiescent_state(rcu_state_p);
619 620 621
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

622 623 624 625 626
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
627
	force_quiescent_state(&rcu_bh_state);
628 629 630
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

631 632 633 634 635 636 637 638 639
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

655 656 657 658 659 660 661 662 663 664 665 666 667 668
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

669 670 671 672 673 674 675 676 677 678
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
679
		rsp = rcu_state_p;
680 681 682 683 684 685 686 687 688 689 690
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
691 692 693
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
694 695 696 697 698 699 700 701
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

702 703 704 705 706 707 708 709 710 711 712
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

713 714 715 716 717 718
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
719
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
720
	       rdp->nxttail[RCU_NEXT_TAIL] != NULL;
721 722
}

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
739
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
740 741
	int *fp = &rnp->need_future_gp[idx];

742
	return READ_ONCE(*fp);
743 744
}

745
/*
746 747 748
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
749
 */
750
static bool
751 752
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
753
	int i;
P
Paul E. McKenney 已提交
754

755
	if (rcu_gp_in_progress(rsp))
756
		return false;  /* No, a grace period is already in progress. */
757
	if (rcu_future_needs_gp(rsp))
758
		return true;  /* Yes, a no-CBs CPU needs one. */
759
	if (!rdp->nxttail[RCU_NEXT_TAIL])
760
		return false;  /* No, this is a no-CBs (or offline) CPU. */
761
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
762
		return true;  /* Yes, CPU has newly registered callbacks. */
763 764
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
765
		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
766
				 rdp->nxtcompleted[i]))
767 768
			return true;  /* Yes, CBs for future grace period. */
	return false; /* No grace period needed. */
769 770
}

771
/*
772
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
773 774 775 776 777
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
778
static void rcu_eqs_enter_common(long long oldval, bool user)
779
{
780 781
	struct rcu_state *rsp;
	struct rcu_data *rdp;
782
	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
783

784
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
785 786
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
787 788
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
789

790
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
791
		rcu_ftrace_dump(DUMP_ORIG);
792 793 794
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
795
	}
796 797 798 799
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
800
	rcu_prepare_for_idle();
801
	rcu_dynticks_eqs_enter();
802
	rcu_dynticks_task_enter();
803 804

	/*
805
	 * It is illegal to enter an extended quiescent state while
806 807
	 * in an RCU read-side critical section.
	 */
808 809 810 811 812 813
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal idle entry in RCU read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
			 "Illegal idle entry in RCU-bh read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
			 "Illegal idle entry in RCU-sched read-side critical section.");
814
}
815

816 817 818
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
819
 */
820
static void rcu_eqs_enter(bool user)
821
{
822
	long long oldval;
823 824
	struct rcu_dynticks *rdtp;

825
	rdtp = this_cpu_ptr(&rcu_dynticks);
826
	oldval = rdtp->dynticks_nesting;
827 828
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
829
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
830
		rdtp->dynticks_nesting = 0;
831
		rcu_eqs_enter_common(oldval, user);
832
	} else {
833
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
834
	}
835
}
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
851 852 853
	unsigned long flags;

	local_irq_save(flags);
854
	rcu_eqs_enter(false);
855
	rcu_sysidle_enter(0);
856
	local_irq_restore(flags);
857
}
858
EXPORT_SYMBOL_GPL(rcu_idle_enter);
859

860
#ifdef CONFIG_NO_HZ_FULL
861 862 863 864 865 866 867 868 869 870
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
871
	rcu_eqs_enter(1);
872
}
873
#endif /* CONFIG_NO_HZ_FULL */
874

875 876 877 878 879
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
880
 * sections can occur.  The caller must have disabled interrupts.
881
 *
882 883 884 885 886 887 888 889
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
890
 */
891
void rcu_irq_exit(void)
892
{
893
	long long oldval;
894 895
	struct rcu_dynticks *rdtp;

896
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
897
	rdtp = this_cpu_ptr(&rcu_dynticks);
898
	oldval = rdtp->dynticks_nesting;
899
	rdtp->dynticks_nesting--;
900 901
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting < 0);
902
	if (rdtp->dynticks_nesting)
903
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
904
	else
905 906
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
907 908 909 910 911 912 913 914 915 916 917
}

/*
 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 */
void rcu_irq_exit_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_exit();
918 919 920 921
	local_irq_restore(flags);
}

/*
922
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
923 924 925 926 927
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
928
static void rcu_eqs_exit_common(long long oldval, int user)
929
{
930
	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
931

932
	rcu_dynticks_task_exit();
933
	rcu_dynticks_eqs_exit();
934
	rcu_cleanup_after_idle();
935
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
936 937
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
938 939
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
940

941
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
942
				  oldval, rdtp->dynticks_nesting);
943
		rcu_ftrace_dump(DUMP_ORIG);
944 945 946
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
947 948 949
	}
}

950 951 952
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
953
 */
954
static void rcu_eqs_exit(bool user)
955 956 957 958
{
	struct rcu_dynticks *rdtp;
	long long oldval;

959
	rdtp = this_cpu_ptr(&rcu_dynticks);
960
	oldval = rdtp->dynticks_nesting;
961
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
962
	if (oldval & DYNTICK_TASK_NEST_MASK) {
963
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
964
	} else {
965
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
966
		rcu_eqs_exit_common(oldval, user);
967
	}
968
}
969 970 971 972 973 974 975 976 977 978 979 980 981 982

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
983 984 985
	unsigned long flags;

	local_irq_save(flags);
986
	rcu_eqs_exit(false);
987
	rcu_sysidle_exit(0);
988
	local_irq_restore(flags);
989
}
990
EXPORT_SYMBOL_GPL(rcu_idle_exit);
991

992
#ifdef CONFIG_NO_HZ_FULL
993 994 995 996 997 998 999 1000
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
1001
	rcu_eqs_exit(1);
1002
}
1003
#endif /* CONFIG_NO_HZ_FULL */
1004

1005 1006 1007 1008 1009
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
1010
 * sections can occur.  The caller must have disabled interrupts.
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	struct rcu_dynticks *rdtp;
	long long oldval;

1029
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1030
	rdtp = this_cpu_ptr(&rcu_dynticks);
1031 1032
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
1033 1034
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
1035
	if (oldval)
1036
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1037
	else
1038 1039
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
}

/*
 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 */
void rcu_irq_enter_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_enter();
1051 1052 1053 1054 1055 1056
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
1057 1058 1059 1060 1061
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
1062 1063 1064
 */
void rcu_nmi_enter(void)
{
1065
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1066
	int incby = 2;
1067

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
1079
	if (rcu_dynticks_curr_cpu_in_eqs()) {
1080
		rcu_dynticks_eqs_exit();
1081 1082 1083 1084
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
1085 1086 1087 1088 1089
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
1090 1091 1092 1093
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
1094 1095 1096
 */
void rcu_nmi_exit(void)
{
1097
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1098

1099 1100 1101 1102 1103 1104
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1105
	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1106 1107 1108 1109 1110 1111 1112

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
1113
		return;
1114 1115 1116 1117
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
1118
	rcu_dynticks_eqs_enter();
1119 1120 1121
}

/**
1122 1123 1124 1125 1126 1127 1128
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
1129
bool notrace __rcu_is_watching(void)
1130
{
1131
	return !rcu_dynticks_curr_cpu_in_eqs();
1132 1133 1134 1135
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1136
 *
1137
 * If the current CPU is in its idle loop and is neither in an interrupt
1138
 * or NMI handler, return true.
1139
 */
1140
bool notrace rcu_is_watching(void)
1141
{
1142
	bool ret;
1143

1144
	preempt_disable_notrace();
1145
	ret = __rcu_is_watching();
1146
	preempt_enable_notrace();
1147
	return ret;
1148
}
1149
EXPORT_SYMBOL_GPL(rcu_is_watching);
1150

1151
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1152 1153 1154 1155 1156 1157 1158

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
1159 1160 1161 1162 1163 1164
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
1165 1166
 * the fact that a CPU enters the scheduler after completing the teardown
 * of the CPU.
1167
 *
1168 1169
 * This is also why RCU internally marks CPUs online during in the
 * preparation phase and offline after the CPU has been taken down.
1170 1171 1172 1173 1174 1175
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1176 1177
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1178 1179 1180
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1181
		return true;
1182
	preempt_disable();
1183
	rdp = this_cpu_ptr(&rcu_sched_data);
1184
	rnp = rdp->mynode;
1185
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1186 1187 1188 1189 1190 1191
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1192
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1193

1194
/**
1195
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1196
 *
1197 1198 1199
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1200
 */
1201
static int rcu_is_cpu_rrupt_from_idle(void)
1202
{
1203
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1204 1205 1206 1207 1208
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1209
 * is in dynticks idle mode, which is an extended quiescent state.
1210
 */
1211 1212
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1213
{
1214
	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1215
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1216
	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1217
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1218
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1219
				 rdp->mynode->gpnum))
1220
			WRITE_ONCE(rdp->gpwrap, true);
1221
		return 1;
1222
	}
1223
	return 0;
1224 1225 1226 1227 1228 1229
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1230
 * for this same CPU, or by virtue of having been offline.
1231
 */
1232 1233
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1234
{
1235
	unsigned long jtsq;
1236
	int *rcrmp;
1237 1238
	unsigned long rjtsc;
	struct rcu_node *rnp;
1239 1240 1241 1242 1243 1244 1245 1246 1247

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1248
	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1249
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1250 1251 1252 1253
		rdp->dynticks_fqs++;
		return 1;
	}

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	/* Compute and saturate jiffies_till_sched_qs. */
	jtsq = jiffies_till_sched_qs;
	rjtsc = rcu_jiffies_till_stall_check();
	if (jtsq > rjtsc / 2) {
		WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
		jtsq = rjtsc / 2;
	} else if (jtsq < 1) {
		WRITE_ONCE(jiffies_till_sched_qs, 1);
		jtsq = 1;
	}

1265
	/*
1266 1267 1268 1269
	 * Has this CPU encountered a cond_resched_rcu_qs() since the
	 * beginning of the grace period?  For this to be the case,
	 * the CPU has to have noticed the current grace period.  This
	 * might not be the case for nohz_full CPUs looping in the kernel.
1270
	 */
1271 1272 1273 1274 1275 1276 1277 1278
	rnp = rdp->mynode;
	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_qs_ctr, rdp->cpu) &&
	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
		return 1;
	}

1279 1280
	/* Check for the CPU being offline. */
	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1281
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1282 1283 1284
		rdp->offline_fqs++;
		return 1;
	}
1285 1286

	/*
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1306
	 */
1307
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1308 1309
	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
	    time_after(jiffies, rdp->rsp->jiffies_resched)) {
1310 1311 1312
		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			WRITE_ONCE(rdp->cond_resched_completed,
				   READ_ONCE(rdp->mynode->completed));
1313
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1314 1315
			WRITE_ONCE(*rcrmp,
				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1316
		}
1317
		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1318 1319
	}

1320 1321 1322 1323 1324 1325
	/*
	 * If more than halfway to RCU CPU stall-warning time, do
	 * a resched_cpu() to try to loosen things up a bit.
	 */
	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
		resched_cpu(rdp->cpu);
1326

1327
	return 0;
1328 1329 1330 1331
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1332
	unsigned long j = jiffies;
1333
	unsigned long j1;
1334 1335 1336

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1337
	j1 = rcu_jiffies_till_stall_check();
1338
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1339
	rsp->jiffies_resched = j + j1 / 2;
1340
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1341 1342
}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
/*
 * Convert a ->gp_state value to a character string.
 */
static const char *gp_state_getname(short gs)
{
	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
		return "???";
	return gp_state_names[gs];
}

1353 1354 1355 1356 1357 1358 1359 1360 1361
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1362
	gpa = READ_ONCE(rsp->gp_activity);
1363
	if (j - gpa > 2 * HZ) {
1364
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1365
		       rsp->name, j - gpa,
1366
		       rsp->gpnum, rsp->completed,
1367 1368
		       rsp->gp_flags,
		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1369
		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1370
		if (rsp->gp_kthread) {
1371
			sched_show_task(rsp->gp_kthread);
1372 1373
			wake_up_process(rsp->gp_kthread);
		}
1374
	}
1375 1376
}

1377
/*
1378 1379 1380 1381
 * Dump stacks of all tasks running on stalled CPUs.  First try using
 * NMIs, but fall back to manual remote stack tracing on architectures
 * that don't support NMI-based stack dumps.  The NMI-triggered stack
 * traces are more accurate because they are printed by the target CPU.
1382 1383 1384 1385 1386 1387 1388 1389
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
1390
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1391 1392 1393
		for_each_leaf_node_possible_cpu(rnp, cpu)
			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
				if (!trigger_single_cpu_backtrace(cpu))
1394
					dump_cpu_task(cpu);
B
Boqun Feng 已提交
1395
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1396 1397 1398
	}
}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
/*
 * If too much time has passed in the current grace period, and if
 * so configured, go kick the relevant kthreads.
 */
static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
{
	unsigned long j;

	if (!rcu_kick_kthreads)
		return;
	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1410 1411
	if (time_after(jiffies, j) && rsp->gp_kthread &&
	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1412
		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1413
		rcu_ftrace_dump(DUMP_ALL);
1414 1415 1416 1417 1418
		wake_up_process(rsp->gp_kthread);
		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
	}
}

1419 1420 1421 1422 1423 1424
static inline void panic_on_rcu_stall(void)
{
	if (sysctl_panic_on_rcu_stall)
		panic("RCU Stall\n");
}

1425
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1426 1427 1428 1429
{
	int cpu;
	long delta;
	unsigned long flags;
1430 1431
	unsigned long gpa;
	unsigned long j;
1432
	int ndetected = 0;
1433
	struct rcu_node *rnp = rcu_get_root(rsp);
1434
	long totqlen = 0;
1435

1436 1437 1438 1439 1440
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1441 1442
	/* Only let one CPU complain about others per time interval. */

1443
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1444
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1445
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
B
Boqun Feng 已提交
1446
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1447 1448
		return;
	}
1449 1450
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1451
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1452

1453 1454 1455 1456 1457
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1458
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1459
	       rsp->name);
1460
	print_cpu_stall_info_begin();
1461
	rcu_for_each_leaf_node(rsp, rnp) {
1462
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1463
		ndetected += rcu_print_task_stall(rnp);
1464
		if (rnp->qsmask != 0) {
1465 1466 1467
			for_each_leaf_node_possible_cpu(rnp, cpu)
				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
					print_cpu_stall_info(rsp, cpu);
1468 1469 1470
					ndetected++;
				}
		}
B
Boqun Feng 已提交
1471
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1472
	}
1473 1474

	print_cpu_stall_info_end();
1475 1476
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1477
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1478
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1479
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1480
	if (ndetected) {
1481
		rcu_dump_cpu_stacks(rsp);
1482 1483 1484

		/* Complain about tasks blocking the grace period. */
		rcu_print_detail_task_stall(rsp);
1485
	} else {
1486 1487
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1488 1489 1490
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1491
			gpa = READ_ONCE(rsp->gp_activity);
1492
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1493
			       rsp->name, j - gpa, j, gpa,
1494 1495
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1496 1497 1498 1499
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1500

1501 1502
	rcu_check_gp_kthread_starvation(rsp);

1503 1504
	panic_on_rcu_stall();

1505
	force_quiescent_state(rsp);  /* Kick them all. */
1506 1507 1508 1509
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1510
	int cpu;
1511 1512
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1513
	long totqlen = 0;
1514

1515 1516 1517 1518 1519
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1520 1521 1522 1523 1524
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1525
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1526 1527 1528
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1529 1530
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1531 1532 1533
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1534 1535 1536

	rcu_check_gp_kthread_starvation(rsp);

1537
	rcu_dump_cpu_stacks(rsp);
1538

1539
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1540 1541 1542
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1543
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1544

1545 1546
	panic_on_rcu_stall();

1547 1548 1549 1550 1551 1552 1553 1554
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1555 1556 1557 1558
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1559 1560 1561
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1562 1563
	unsigned long j;
	unsigned long js;
1564 1565
	struct rcu_node *rnp;

1566 1567
	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
	    !rcu_gp_in_progress(rsp))
1568
		return;
1569
	rcu_stall_kick_kthreads(rsp);
1570
	j = jiffies;
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1589
	gpnum = READ_ONCE(rsp->gpnum);
1590
	smp_rmb(); /* Pick up ->gpnum first... */
1591
	js = READ_ONCE(rsp->jiffies_stall);
1592
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1593
	gps = READ_ONCE(rsp->gp_start);
1594
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1595
	completed = READ_ONCE(rsp->completed);
1596 1597 1598 1599
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1600
	rnp = rdp->mynode;
1601
	if (rcu_gp_in_progress(rsp) &&
1602
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1603 1604 1605 1606

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1607 1608
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1609

1610
		/* They had a few time units to dump stack, so complain. */
1611
		print_other_cpu_stall(rsp, gpnum);
1612 1613 1614
	}
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1626 1627 1628
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1629
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1630 1631
}

1632
/*
1633 1634 1635
 * Initialize the specified rcu_data structure's default callback list
 * to empty.  The default callback list is the one that is not used by
 * no-callbacks CPUs.
1636
 */
1637
static void init_default_callback_list(struct rcu_data *rdp)
1638 1639 1640 1641 1642 1643 1644 1645
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	if (init_nocb_callback_list(rdp))
		return;
	init_default_callback_list(rdp);
}

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1685 1686 1687 1688 1689
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1690
				unsigned long c, const char *s)
1691 1692 1693 1694 1695 1696 1697 1698 1699
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1700 1701
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1702 1703 1704
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1705 1706 1707
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1708 1709 1710
{
	unsigned long c;
	int i;
1711
	bool ret = false;
1712 1713 1714 1715 1716 1717 1718
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1719
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1720
	if (rnp->need_future_gp[c & 0x1]) {
1721
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1722
		goto out;
1723 1724 1725 1726 1727 1728 1729
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1730 1731 1732 1733 1734 1735 1736
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1737 1738
	 */
	if (rnp->gpnum != rnp->completed ||
1739
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1740
		rnp->need_future_gp[c & 0x1]++;
1741
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1742
		goto out;
1743 1744 1745 1746 1747 1748 1749
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1750 1751
	if (rnp != rnp_root)
		raw_spin_lock_rcu_node(rnp_root);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1769
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1770 1771 1772 1773 1774 1775 1776 1777
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1778
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1779
	} else {
1780
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1781
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1782 1783 1784
	}
unlock_out:
	if (rnp != rnp_root)
B
Boqun Feng 已提交
1785
		raw_spin_unlock_rcu_node(rnp_root);
1786 1787 1788 1789
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1806 1807
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1808 1809 1810
	return needmore;
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1821
	    !READ_ONCE(rsp->gp_flags) ||
1822 1823
	    !rsp->gp_kthread)
		return;
1824
	swake_up(&rsp->gp_wq);
1825 1826
}

1827 1828 1829 1830 1831 1832 1833
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1834 1835
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1836 1837 1838
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1839
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1840 1841 1842 1843
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1844
	bool ret;
1845 1846 1847

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1848
		return false;
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1877
		return false;
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1888
	/* Record any needed additional grace periods. */
1889
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1890 1891 1892

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1893
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1894
	else
1895
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1896
	return ret;
1897 1898 1899 1900 1901 1902 1903 1904
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1905
 * Returns true if the RCU grace-period kthread needs to be awakened.
1906 1907 1908
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1909
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1910 1911 1912 1913 1914 1915
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1916
		return false;
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1940
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1941 1942
}

1943
/*
1944 1945 1946
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1947
 * Returns true if the grace-period kthread needs to be awakened.
1948
 */
1949 1950
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1951
{
1952
	bool ret;
1953
	bool need_gp;
1954

1955
	/* Handle the ends of any preceding grace periods first. */
1956
	if (rdp->completed == rnp->completed &&
1957
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1958

1959
		/* No grace period end, so just accelerate recent callbacks. */
1960
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1961

1962 1963 1964
	} else {

		/* Advance callbacks. */
1965
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1966 1967 1968

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1969
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1970
	}
1971

1972
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1973 1974 1975 1976 1977 1978
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1979
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1980 1981
		need_gp = !!(rnp->qsmask & rdp->grpmask);
		rdp->cpu_no_qs.b.norm = need_gp;
1982
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1983
		rdp->core_needs_qs = need_gp;
1984
		zero_cpu_stall_ticks(rdp);
1985
		WRITE_ONCE(rdp->gpwrap, false);
1986
	}
1987
	return ret;
1988 1989
}

1990
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1991 1992
{
	unsigned long flags;
1993
	bool needwake;
1994 1995 1996 1997
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1998 1999 2000
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2001
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
2002 2003 2004
		local_irq_restore(flags);
		return;
	}
2005
	needwake = __note_gp_changes(rsp, rnp, rdp);
B
Boqun Feng 已提交
2006
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2007 2008
	if (needwake)
		rcu_gp_kthread_wake(rsp);
2009 2010
}

2011 2012 2013 2014 2015 2016 2017
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

2018
/*
2019
 * Initialize a new grace period.  Return false if no grace period required.
2020
 */
2021
static bool rcu_gp_init(struct rcu_state *rsp)
2022
{
2023
	unsigned long oldmask;
2024
	struct rcu_data *rdp;
2025
	struct rcu_node *rnp = rcu_get_root(rsp);
2026

2027
	WRITE_ONCE(rsp->gp_activity, jiffies);
2028
	raw_spin_lock_irq_rcu_node(rnp);
2029
	if (!READ_ONCE(rsp->gp_flags)) {
2030
		/* Spurious wakeup, tell caller to go back to sleep.  */
B
Boqun Feng 已提交
2031
		raw_spin_unlock_irq_rcu_node(rnp);
2032
		return false;
2033
	}
2034
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
2035

2036 2037 2038 2039 2040
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
B
Boqun Feng 已提交
2041
		raw_spin_unlock_irq_rcu_node(rnp);
2042
		return false;
2043 2044 2045
	}

	/* Advance to a new grace period and initialize state. */
2046
	record_gp_stall_check_time(rsp);
2047 2048
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
2049
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
B
Boqun Feng 已提交
2050
	raw_spin_unlock_irq_rcu_node(rnp);
2051

2052 2053 2054 2055 2056 2057 2058
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
2059
		rcu_gp_slow(rsp, gp_preinit_delay);
2060
		raw_spin_lock_irq_rcu_node(rnp);
2061 2062 2063
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
B
Boqun Feng 已提交
2064
			raw_spin_unlock_irq_rcu_node(rnp);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

B
Boqun Feng 已提交
2098
		raw_spin_unlock_irq_rcu_node(rnp);
2099
	}
2100 2101 2102 2103 2104 2105 2106 2107

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
2108
	 * leaf node has been initialized.
2109 2110 2111 2112 2113
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2114
		rcu_gp_slow(rsp, gp_init_delay);
2115
		raw_spin_lock_irq_rcu_node(rnp);
2116
		rdp = this_cpu_ptr(rsp->rda);
2117 2118
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
2119
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2120
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2121
			WRITE_ONCE(rnp->completed, rsp->completed);
2122
		if (rnp == rdp->mynode)
2123
			(void)__note_gp_changes(rsp, rnp, rdp);
2124 2125 2126 2127
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
B
Boqun Feng 已提交
2128
		raw_spin_unlock_irq_rcu_node(rnp);
2129
		cond_resched_rcu_qs();
2130
		WRITE_ONCE(rsp->gp_activity, jiffies);
2131
	}
2132

2133
	return true;
2134
}
2135

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
/*
 * Helper function for wait_event_interruptible_timeout() wakeup
 * at force-quiescent-state time.
 */
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rsp->gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

2156 2157 2158
/*
 * Do one round of quiescent-state forcing.
 */
2159
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2160
{
2161 2162
	bool isidle = false;
	unsigned long maxj;
2163 2164
	struct rcu_node *rnp = rcu_get_root(rsp);

2165
	WRITE_ONCE(rsp->gp_activity, jiffies);
2166
	rsp->n_force_qs++;
2167
	if (first_time) {
2168
		/* Collect dyntick-idle snapshots. */
2169
		if (is_sysidle_rcu_state(rsp)) {
2170
			isidle = true;
2171 2172
			maxj = jiffies - ULONG_MAX / 4;
		}
2173 2174
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
2175
		rcu_sysidle_report_gp(rsp, isidle, maxj);
2176 2177
	} else {
		/* Handle dyntick-idle and offline CPUs. */
2178
		isidle = true;
2179
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2180 2181
	}
	/* Clear flag to prevent immediate re-entry. */
2182
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2183
		raw_spin_lock_irq_rcu_node(rnp);
2184 2185
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2186
		raw_spin_unlock_irq_rcu_node(rnp);
2187 2188 2189
	}
}

2190 2191 2192
/*
 * Clean up after the old grace period.
 */
2193
static void rcu_gp_cleanup(struct rcu_state *rsp)
2194 2195
{
	unsigned long gp_duration;
2196
	bool needgp = false;
2197
	int nocb = 0;
2198 2199
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
2200
	struct swait_queue_head *sq;
2201

2202
	WRITE_ONCE(rsp->gp_activity, jiffies);
2203
	raw_spin_lock_irq_rcu_node(rnp);
2204 2205 2206
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
2207

2208 2209 2210 2211 2212 2213 2214 2215
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
B
Boqun Feng 已提交
2216
	raw_spin_unlock_irq_rcu_node(rnp);
2217

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2228
		raw_spin_lock_irq_rcu_node(rnp);
2229 2230
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
2231
		WRITE_ONCE(rnp->completed, rsp->gpnum);
2232 2233
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
2234
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2235
		/* smp_mb() provided by prior unlock-lock pair. */
2236
		nocb += rcu_future_gp_cleanup(rsp, rnp);
2237
		sq = rcu_nocb_gp_get(rnp);
B
Boqun Feng 已提交
2238
		raw_spin_unlock_irq_rcu_node(rnp);
2239
		rcu_nocb_gp_cleanup(sq);
2240
		cond_resched_rcu_qs();
2241
		WRITE_ONCE(rsp->gp_activity, jiffies);
2242
		rcu_gp_slow(rsp, gp_cleanup_delay);
2243
	}
2244
	rnp = rcu_get_root(rsp);
2245
	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2246
	rcu_nocb_gp_set(rnp, nocb);
2247

2248
	/* Declare grace period done. */
2249
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2250
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2251
	rsp->gp_state = RCU_GP_IDLE;
2252
	rdp = this_cpu_ptr(rsp->rda);
2253 2254 2255
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2256
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2257
		trace_rcu_grace_period(rsp->name,
2258
				       READ_ONCE(rsp->gpnum),
2259 2260
				       TPS("newreq"));
	}
B
Boqun Feng 已提交
2261
	raw_spin_unlock_irq_rcu_node(rnp);
2262 2263 2264 2265 2266 2267 2268
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2269
	bool first_gp_fqs;
2270
	int gf;
2271
	unsigned long j;
2272
	int ret;
2273 2274 2275
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2276
	rcu_bind_gp_kthread();
2277 2278 2279 2280
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2281
			trace_rcu_grace_period(rsp->name,
2282
					       READ_ONCE(rsp->gpnum),
2283
					       TPS("reqwait"));
2284
			rsp->gp_state = RCU_GP_WAIT_GPS;
2285
			swait_event_interruptible(rsp->gp_wq,
2286
						 READ_ONCE(rsp->gp_flags) &
2287
						 RCU_GP_FLAG_INIT);
2288
			rsp->gp_state = RCU_GP_DONE_GPS;
2289
			/* Locking provides needed memory barrier. */
2290
			if (rcu_gp_init(rsp))
2291
				break;
2292
			cond_resched_rcu_qs();
2293
			WRITE_ONCE(rsp->gp_activity, jiffies);
2294
			WARN_ON(signal_pending(current));
2295
			trace_rcu_grace_period(rsp->name,
2296
					       READ_ONCE(rsp->gpnum),
2297
					       TPS("reqwaitsig"));
2298
		}
2299

2300
		/* Handle quiescent-state forcing. */
2301
		first_gp_fqs = true;
2302 2303 2304 2305 2306
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2307
		ret = 0;
2308
		for (;;) {
2309
			if (!ret) {
2310
				rsp->jiffies_force_qs = jiffies + j;
2311 2312 2313
				WRITE_ONCE(rsp->jiffies_kick_kthreads,
					   jiffies + 3 * j);
			}
2314
			trace_rcu_grace_period(rsp->name,
2315
					       READ_ONCE(rsp->gpnum),
2316
					       TPS("fqswait"));
2317
			rsp->gp_state = RCU_GP_WAIT_FQS;
2318
			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2319
					rcu_gp_fqs_check_wake(rsp, &gf), j);
2320
			rsp->gp_state = RCU_GP_DOING_FQS;
2321
			/* Locking provides needed memory barriers. */
2322
			/* If grace period done, leave loop. */
2323
			if (!READ_ONCE(rnp->qsmask) &&
2324
			    !rcu_preempt_blocked_readers_cgp(rnp))
2325
				break;
2326
			/* If time for quiescent-state forcing, do it. */
2327 2328
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2329
				trace_rcu_grace_period(rsp->name,
2330
						       READ_ONCE(rsp->gpnum),
2331
						       TPS("fqsstart"));
2332 2333
				rcu_gp_fqs(rsp, first_gp_fqs);
				first_gp_fqs = false;
2334
				trace_rcu_grace_period(rsp->name,
2335
						       READ_ONCE(rsp->gpnum),
2336
						       TPS("fqsend"));
2337
				cond_resched_rcu_qs();
2338
				WRITE_ONCE(rsp->gp_activity, jiffies);
2339 2340 2341 2342 2343 2344 2345 2346 2347
				ret = 0; /* Force full wait till next FQS. */
				j = jiffies_till_next_fqs;
				if (j > HZ) {
					j = HZ;
					jiffies_till_next_fqs = HZ;
				} else if (j < 1) {
					j = 1;
					jiffies_till_next_fqs = 1;
				}
2348 2349
			} else {
				/* Deal with stray signal. */
2350
				cond_resched_rcu_qs();
2351
				WRITE_ONCE(rsp->gp_activity, jiffies);
2352
				WARN_ON(signal_pending(current));
2353
				trace_rcu_grace_period(rsp->name,
2354
						       READ_ONCE(rsp->gpnum),
2355
						       TPS("fqswaitsig"));
2356 2357 2358 2359 2360 2361
				ret = 1; /* Keep old FQS timing. */
				j = jiffies;
				if (time_after(jiffies, rsp->jiffies_force_qs))
					j = 1;
				else
					j = rsp->jiffies_force_qs - j;
2362
			}
2363
		}
2364 2365

		/* Handle grace-period end. */
2366
		rsp->gp_state = RCU_GP_CLEANUP;
2367
		rcu_gp_cleanup(rsp);
2368
		rsp->gp_state = RCU_GP_CLEANED;
2369 2370 2371
	}
}

2372 2373 2374
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2375
 * the root node's ->lock and hard irqs must be disabled.
2376 2377 2378 2379
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2380 2381
 *
 * Returns true if the grace-period kthread must be awakened.
2382
 */
2383
static bool
2384 2385
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2386
{
2387
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2388
		/*
2389
		 * Either we have not yet spawned the grace-period
2390 2391
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2392
		 * Either way, don't start a new grace period.
2393
		 */
2394
		return false;
2395
	}
2396 2397
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2398
			       TPS("newreq"));
2399

2400 2401
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2402
	 * could cause possible deadlocks with the rq->lock. Defer
2403
	 * the wakeup to our caller.
2404
	 */
2405
	return true;
2406 2407
}

2408 2409 2410 2411 2412 2413
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2414 2415
 *
 * Returns true if the grace-period kthread needs to be awakened.
2416
 */
2417
static bool rcu_start_gp(struct rcu_state *rsp)
2418 2419 2420
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2421
	bool ret = false;
2422 2423 2424 2425 2426 2427 2428 2429 2430

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2431 2432 2433
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2434 2435
}

2436
/*
2437 2438 2439 2440 2441 2442 2443
 * Report a full set of quiescent states to the specified rcu_state data
 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
 * kthread if another grace period is required.  Whether we wake
 * the grace-period kthread or it awakens itself for the next round
 * of quiescent-state forcing, that kthread will clean up after the
 * just-completed grace period.  Note that the caller must hold rnp->lock,
 * which is released before return.
2444
 */
P
Paul E. McKenney 已提交
2445
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2446
	__releases(rcu_get_root(rsp)->lock)
2447
{
2448
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2449
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2450
	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2451
	rcu_gp_kthread_wake(rsp);
2452 2453
}

2454
/*
P
Paul E. McKenney 已提交
2455 2456 2457
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2458 2459 2460 2461 2462
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2463 2464
 */
static void
P
Paul E. McKenney 已提交
2465
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2466
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2467 2468
	__releases(rnp->lock)
{
2469
	unsigned long oldmask = 0;
2470 2471
	struct rcu_node *rnp_c;

2472 2473
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2474
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2475

2476 2477 2478 2479
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
B
Boqun Feng 已提交
2480
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2481 2482
			return;
		}
2483
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2484
		rnp->qsmask &= ~mask;
2485 2486 2487 2488
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2489
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2490 2491

			/* Other bits still set at this level, so done. */
B
Boqun Feng 已提交
2492
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2493 2494 2495 2496 2497 2498 2499 2500 2501
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
B
Boqun Feng 已提交
2502
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2503
		rnp_c = rnp;
2504
		rnp = rnp->parent;
2505
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2506
		oldmask = rnp_c->qsmask;
2507 2508 2509 2510
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2511
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2512
	 * to clean up and start the next grace period if one is needed.
2513
	 */
P
Paul E. McKenney 已提交
2514
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2515 2516
}

2517 2518 2519 2520 2521 2522 2523
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2524
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2525 2526 2527
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2528
	unsigned long gps;
2529 2530 2531
	unsigned long mask;
	struct rcu_node *rnp_p;

2532 2533
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
B
Boqun Feng 已提交
2534
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2535 2536 2537 2538 2539 2540
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2541 2542
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2543 2544 2545 2546 2547
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2548 2549
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2550
	mask = rnp->grpmask;
B
Boqun Feng 已提交
2551
	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2552
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2553
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2554 2555
}

2556
/*
P
Paul E. McKenney 已提交
2557
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2558
 * structure.  This must be called from the specified CPU.
2559 2560
 */
static void
2561
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2562 2563 2564
{
	unsigned long flags;
	unsigned long mask;
2565
	bool needwake;
2566 2567 2568
	struct rcu_node *rnp;

	rnp = rdp->mynode;
2569
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2570 2571
	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2572 2573

		/*
2574 2575 2576 2577
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2578
		 */
2579
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2580
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
B
Boqun Feng 已提交
2581
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2582 2583 2584 2585
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
B
Boqun Feng 已提交
2586
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2587
	} else {
2588
		rdp->core_needs_qs = false;
2589 2590 2591 2592 2593

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2594
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2595

2596 2597
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2598 2599
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2612 2613
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2614 2615 2616 2617 2618

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
2619
	if (!rdp->core_needs_qs)
2620 2621 2622 2623 2624 2625
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2626
	if (rdp->cpu_no_qs.b.norm)
2627 2628
		return;

P
Paul E. McKenney 已提交
2629 2630 2631 2632
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2633
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2634 2635
}

2636
/*
2637 2638
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2639
 * ->orphan_lock.
2640
 */
2641 2642 2643
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2644
{
P
Paul E. McKenney 已提交
2645
	/* No-CBs CPUs do not have orphanable callbacks. */
2646
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2647 2648
		return;

2649 2650
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2651 2652
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2653
	 */
2654
	if (rdp->nxtlist != NULL) {
2655 2656 2657
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2658
		rdp->qlen_lazy = 0;
2659
		WRITE_ONCE(rdp->qlen, 0);
2660 2661 2662
	}

	/*
2663 2664 2665 2666 2667 2668 2669
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2670
	 */
2671 2672 2673 2674
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2675 2676 2677
	}

	/*
2678 2679 2680
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2681
	 */
2682
	if (rdp->nxtlist != NULL) {
2683 2684
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2685
	}
2686

2687 2688 2689 2690
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2691
	init_callback_list(rdp);
2692
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2693 2694 2695 2696
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2697
 * orphanage.  The caller must hold the ->orphan_lock.
2698
 */
2699
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2700 2701
{
	int i;
2702
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2703

P
Paul E. McKenney 已提交
2704
	/* No-CBs CPUs are handled specially. */
2705 2706
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2707 2708
		return;

2709 2710 2711 2712
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2713 2714
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

2753 2754 2755
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2756
	RCU_TRACE(mask = rdp->grpmask);
2757 2758
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2759
			       TPS("cpuofl"));
2760 2761
}

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2784 2785
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2786 2787 2788 2789 2790 2791
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
2792
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2793
		rnp->qsmaskinit &= ~mask;
2794
		rnp->qsmask &= ~mask;
2795
		if (rnp->qsmaskinit) {
B
Boqun Feng 已提交
2796 2797
			raw_spin_unlock_rcu_node(rnp);
			/* irqs remain disabled. */
2798 2799
			return;
		}
B
Boqun Feng 已提交
2800
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2801 2802 2803
	}
}

2804
/*
2805
 * The CPU has been completely removed, and some other CPU is reporting
2806 2807
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2808 2809
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2810
 */
2811
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2812
{
2813
	unsigned long flags;
2814
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2815
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2816

2817 2818 2819
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2820
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2821
	rcu_boost_kthread_setaffinity(rnp, -1);
2822

2823
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2824
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2825
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2826
	rcu_adopt_orphan_cbs(rsp, flags);
2827
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2828

2829 2830 2831
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2832 2833 2834 2835 2836 2837
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2838
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2839 2840 2841
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2842 2843
	long bl, count, count_lazy;
	int i;
2844

2845
	/* If no callbacks are ready, just return. */
2846
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2847
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2848
		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2849 2850
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2851
		return;
2852
	}
2853 2854 2855 2856 2857 2858

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2859
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2860
	bl = rdp->blimit;
2861
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2862 2863 2864 2865
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2866 2867 2868
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2869 2870 2871
	local_irq_restore(flags);

	/* Invoke callbacks. */
2872
	count = count_lazy = 0;
2873 2874 2875
	while (list) {
		next = list->next;
		prefetch(next);
2876
		debug_rcu_head_unqueue(list);
2877 2878
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2879
		list = next;
2880 2881 2882 2883
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2884 2885 2886 2887
			break;
	}

	local_irq_save(flags);
2888 2889 2890
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2891 2892 2893 2894 2895

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2896 2897 2898
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2899 2900 2901
			else
				break;
	}
2902 2903
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2904
	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2905
	rdp->n_cbs_invoked += count;
2906 2907 2908 2909 2910

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2911 2912 2913 2914 2915 2916
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2917
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2918

2919 2920
	local_irq_restore(flags);

2921
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2922
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2923
		invoke_rcu_core();
2924 2925 2926 2927 2928
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2929
 * Also schedule RCU core processing.
2930
 *
2931
 * This function must be called from hardirq context.  It is normally
2932
 * invoked from the scheduling-clock interrupt.
2933
 */
2934
void rcu_check_callbacks(int user)
2935
{
2936
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2937
	increment_cpu_stall_ticks();
2938
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2939 2940 2941 2942 2943

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2944
		 * a quiescent state, so note it.
2945 2946
		 *
		 * No memory barrier is required here because both
2947 2948 2949
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2950 2951
		 */

2952 2953
		rcu_sched_qs();
		rcu_bh_qs();
2954 2955 2956 2957 2958 2959 2960

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2961
		 * critical section, so note it.
2962 2963
		 */

2964
		rcu_bh_qs();
2965
	}
2966
	rcu_preempt_check_callbacks();
2967
	if (rcu_pending())
2968
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2969 2970
	if (user)
		rcu_note_voluntary_context_switch(current);
2971
	trace_rcu_utilization(TPS("End scheduler-tick"));
2972 2973 2974 2975 2976
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2977 2978
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2979
 * The caller must have suppressed start of new grace periods.
2980
 */
2981 2982 2983 2984
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2985 2986 2987 2988
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
2989
	struct rcu_node *rnp;
2990

2991
	rcu_for_each_leaf_node(rsp, rnp) {
2992
		cond_resched_rcu_qs();
2993
		mask = 0;
2994
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2995
		if (rnp->qsmask == 0) {
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
3019
		}
3020 3021
		for_each_leaf_node_possible_cpu(rnp, cpu) {
			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
3022 3023 3024 3025
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
3026
		}
3027
		if (mask != 0) {
3028 3029
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
3030 3031
		} else {
			/* Nothing to do here, so just drop the lock. */
B
Boqun Feng 已提交
3032
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3033 3034 3035 3036 3037 3038 3039 3040
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
3041
static void force_quiescent_state(struct rcu_state *rsp)
3042 3043
{
	unsigned long flags;
3044 3045 3046 3047 3048
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
3049
	rnp = __this_cpu_read(rsp->rda->mynode);
3050
	for (; rnp != NULL; rnp = rnp->parent) {
3051
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
3052 3053 3054 3055
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
3056
			rsp->n_force_qs_lh++;
3057 3058 3059 3060 3061
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
3062

3063
	/* Reached the root of the rcu_node tree, acquire lock. */
3064
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
3065
	raw_spin_unlock(&rnp_old->fqslock);
3066
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
3067
		rsp->n_force_qs_lh++;
B
Boqun Feng 已提交
3068
		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3069
		return;  /* Someone beat us to it. */
3070
	}
3071
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
3072
	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
3073
	rcu_gp_kthread_wake(rsp);
3074 3075 3076
}

/*
3077 3078 3079
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
3080 3081
 */
static void
3082
__rcu_process_callbacks(struct rcu_state *rsp)
3083 3084
{
	unsigned long flags;
3085
	bool needwake;
3086
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3087

3088 3089
	WARN_ON_ONCE(rdp->beenonline == 0);

3090 3091 3092 3093
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
3094
	local_irq_save(flags);
3095
	if (cpu_needs_another_gp(rsp, rdp)) {
3096
		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3097
		needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3098
		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3099 3100
		if (needwake)
			rcu_gp_kthread_wake(rsp);
3101 3102
	} else {
		local_irq_restore(flags);
3103 3104 3105
	}

	/* If there are callbacks ready, invoke them. */
3106
	if (cpu_has_callbacks_ready_to_invoke(rdp))
3107
		invoke_rcu_callbacks(rsp, rdp);
3108 3109 3110

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
3111 3112
}

3113
/*
3114
 * Do RCU core processing for the current CPU.
3115
 */
3116
static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3117
{
3118 3119
	struct rcu_state *rsp;

3120 3121
	if (cpu_is_offline(smp_processor_id()))
		return;
3122
	trace_rcu_utilization(TPS("Start RCU core"));
3123 3124
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
3125
	trace_rcu_utilization(TPS("End RCU core"));
3126 3127
}

3128
/*
3129 3130 3131
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
3132
 * are running on the current CPU with softirqs disabled, the
3133
 * rcu_cpu_kthread_task cannot disappear out from under us.
3134
 */
3135
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3136
{
3137
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3138
		return;
3139 3140
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
3141 3142
		return;
	}
3143
	invoke_rcu_callbacks_kthread();
3144 3145
}

3146
static void invoke_rcu_core(void)
3147
{
3148 3149
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
3150 3151
}

3152 3153 3154 3155 3156
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
3157
{
3158 3159
	bool needwake;

3160 3161 3162 3163
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
3164
	if (!rcu_is_watching())
3165 3166
		invoke_rcu_core();

3167
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3168
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3169
		return;
3170

3171 3172 3173 3174 3175 3176 3177
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
3178
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3179 3180

		/* Are we ignoring a completed grace period? */
3181
		note_gp_changes(rsp, rdp);
3182 3183 3184 3185 3186

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

3187
			raw_spin_lock_rcu_node(rnp_root);
3188
			needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3189
			raw_spin_unlock_rcu_node(rnp_root);
3190 3191
			if (needwake)
				rcu_gp_kthread_wake(rsp);
3192 3193 3194 3195 3196
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3197
				force_quiescent_state(rsp);
3198 3199 3200
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
3201
	}
3202 3203
}

3204 3205 3206 3207 3208 3209 3210
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3211 3212 3213 3214 3215 3216
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3217
static void
3218
__call_rcu(struct rcu_head *head, rcu_callback_t func,
P
Paul E. McKenney 已提交
3219
	   struct rcu_state *rsp, int cpu, bool lazy)
3220 3221 3222 3223
{
	unsigned long flags;
	struct rcu_data *rdp;

3224 3225 3226
	/* Misaligned rcu_head! */
	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));

3227 3228
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3229
		WRITE_ONCE(head->func, rcu_leak_callback);
3230 3231 3232
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3233 3234 3235
	head->func = func;
	head->next = NULL;
	local_irq_save(flags);
3236
	rdp = this_cpu_ptr(rsp->rda);
3237 3238

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
3239 3240 3241 3242 3243
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3257
		WARN_ON_ONCE(!rcu_is_watching());
3258 3259
		if (!likely(rdp->nxtlist))
			init_default_callback_list(rdp);
3260
	}
3261
	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3262 3263
	if (lazy)
		rdp->qlen_lazy++;
3264 3265
	else
		rcu_idle_count_callbacks_posted();
3266 3267 3268
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3269

3270 3271
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3272
					 rdp->qlen_lazy, rdp->qlen);
3273
	else
3274
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3275

3276 3277
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3278 3279 3280 3281
	local_irq_restore(flags);
}

/*
3282
 * Queue an RCU-sched callback for invocation after a grace period.
3283
 */
3284
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3285
{
P
Paul E. McKenney 已提交
3286
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3287
}
3288
EXPORT_SYMBOL_GPL(call_rcu_sched);
3289 3290

/*
3291
 * Queue an RCU callback for invocation after a quicker grace period.
3292
 */
3293
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3294
{
P
Paul E. McKenney 已提交
3295
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3296 3297 3298
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3299 3300 3301 3302 3303 3304 3305 3306
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
3307
		    rcu_callback_t func)
3308
{
3309
	__call_rcu(head, func, rcu_state_p, -1, 1);
3310 3311 3312
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3324 3325
	int ret;

3326
	might_sleep();  /* Check for RCU read-side critical section. */
3327 3328 3329 3330
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3331 3332
}

3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3367 3368 3369 3370 3371 3372 3373 3374 3375
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3376 3377 3378 3379
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3380 3381
	if (rcu_blocking_is_gp())
		return;
3382
	if (rcu_gp_is_expedited())
3383 3384 3385
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3397 3398 3399
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3400 3401 3402
 */
void synchronize_rcu_bh(void)
{
3403 3404 3405 3406
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3407 3408
	if (rcu_blocking_is_gp())
		return;
3409
	if (rcu_gp_is_expedited())
3410 3411 3412
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3413 3414 3415
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3436
	return smp_load_acquire(&rcu_state_p->gpnum);
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3462
	newstate = smp_load_acquire(&rcu_state_p->completed);
3463 3464 3465 3466 3467
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
/**
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_sched(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_sched()
	 * and cond_synchronize_sched().
	 */
	return smp_load_acquire(&rcu_sched_state.gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);

/**
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 *
 * If a full RCU-sched grace period has elapsed since the earlier call to
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 * synchronize_sched() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_sched(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_sched_state.completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(cond_synchronize_sched);

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
/* Adjust sequence number for start of update-side operation. */
static void rcu_seq_start(unsigned long *sp)
{
	WRITE_ONCE(*sp, *sp + 1);
	smp_mb(); /* Ensure update-side operation after counter increment. */
	WARN_ON_ONCE(!(*sp & 0x1));
}

/* Adjust sequence number for end of update-side operation. */
static void rcu_seq_end(unsigned long *sp)
{
	smp_mb(); /* Ensure update-side operation before counter increment. */
	WRITE_ONCE(*sp, *sp + 1);
	WARN_ON_ONCE(*sp & 0x1);
}

/* Take a snapshot of the update side's sequence number. */
static unsigned long rcu_seq_snap(unsigned long *sp)
{
	unsigned long s;

	s = (READ_ONCE(*sp) + 3) & ~0x1;
	smp_mb(); /* Above access must not bleed into critical section. */
	return s;
}

/*
 * Given a snapshot from rcu_seq_snap(), determine whether or not a
 * full update-side operation has occurred.
 */
static bool rcu_seq_done(unsigned long *sp, unsigned long s)
{
	return ULONG_CMP_GE(READ_ONCE(*sp), s);
}

3555 3556 3557 3558 3559 3560 3561 3562 3563
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3564 3565
	struct rcu_node *rnp = rdp->mynode;

3566 3567 3568 3569 3570
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3571 3572 3573 3574
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3575
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3576
	if (rcu_scheduler_fully_active &&
3577
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3578
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3579
		rdp->n_rp_core_needs_qs++;
3580
	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3581
		rdp->n_rp_report_qs++;
3582
		return 1;
3583
	}
3584 3585

	/* Does this CPU have callbacks ready to invoke? */
3586 3587
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3588
		return 1;
3589
	}
3590 3591

	/* Has RCU gone idle with this CPU needing another grace period? */
3592 3593
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3594
		return 1;
3595
	}
3596 3597

	/* Has another RCU grace period completed?  */
3598
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3599
		rdp->n_rp_gp_completed++;
3600
		return 1;
3601
	}
3602 3603

	/* Has a new RCU grace period started? */
3604 3605
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3606
		rdp->n_rp_gp_started++;
3607
		return 1;
3608
	}
3609

3610 3611 3612 3613 3614 3615
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3616
	/* nothing to do */
3617
	rdp->n_rp_need_nothing++;
3618 3619 3620 3621 3622 3623 3624 3625
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3626
static int rcu_pending(void)
3627
{
3628 3629 3630
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3631
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3632 3633
			return 1;
	return 0;
3634 3635 3636
}

/*
3637 3638 3639
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3640
 */
3641
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3642
{
3643 3644 3645
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3646 3647
	struct rcu_state *rsp;

3648
	for_each_rcu_flavor(rsp) {
3649
		rdp = this_cpu_ptr(rsp->rda);
3650 3651 3652 3653
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3654
			al = false;
3655 3656
			break;
		}
3657 3658 3659 3660
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3661 3662
}

3663 3664 3665 3666
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3667
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3668 3669 3670 3671 3672 3673
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3674 3675 3676 3677
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3678
static void rcu_barrier_callback(struct rcu_head *rhp)
3679
{
3680 3681 3682
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3683
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3684
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3685
		complete(&rsp->barrier_completion);
3686
	} else {
3687
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3688
	}
3689 3690 3691 3692 3693 3694 3695
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3696
	struct rcu_state *rsp = type;
3697
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3698

3699
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3700
	atomic_inc(&rsp->barrier_cpu_count);
3701
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3702 3703 3704 3705 3706 3707
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3708
static void _rcu_barrier(struct rcu_state *rsp)
3709
{
3710 3711
	int cpu;
	struct rcu_data *rdp;
3712
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3713

3714
	_rcu_barrier_trace(rsp, "Begin", -1, s);
3715

3716
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3717
	mutex_lock(&rsp->barrier_mutex);
3718

3719 3720 3721
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3722 3723 3724 3725 3726
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

3727 3728 3729
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3730

3731
	/*
3732 3733
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3734 3735
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3736
	 */
3737
	init_completion(&rsp->barrier_completion);
3738
	atomic_set(&rsp->barrier_cpu_count, 1);
3739
	get_online_cpus();
3740 3741

	/*
3742 3743 3744
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3745
	 */
P
Paul E. McKenney 已提交
3746
	for_each_possible_cpu(cpu) {
3747
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3748
			continue;
3749
		rdp = per_cpu_ptr(rsp->rda, cpu);
3750
		if (rcu_is_nocb_cpu(cpu)) {
3751 3752
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3753
						   rsp->barrier_sequence);
3754 3755
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3756
						   rsp->barrier_sequence);
3757
				smp_mb__before_atomic();
3758 3759 3760 3761
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
3762
		} else if (READ_ONCE(rdp->qlen)) {
3763
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3764
					   rsp->barrier_sequence);
3765
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3766
		} else {
3767
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3768
					   rsp->barrier_sequence);
3769 3770
		}
	}
3771
	put_online_cpus();
3772 3773 3774 3775 3776

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3777
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3778
		complete(&rsp->barrier_completion);
3779 3780

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3781
	wait_for_completion(&rsp->barrier_completion);
3782

3783 3784 3785 3786
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

3787
	/* Other rcu_barrier() invocations can now safely proceed. */
3788
	mutex_unlock(&rsp->barrier_mutex);
3789 3790 3791 3792 3793 3794 3795
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3796
	_rcu_barrier(&rcu_bh_state);
3797 3798 3799 3800 3801 3802 3803 3804
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3805
	_rcu_barrier(&rcu_sched_state);
3806 3807 3808
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
3825
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3826
		rnp->qsmaskinit |= mask;
B
Boqun Feng 已提交
3827
		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3828 3829 3830
	}
}

3831
/*
3832
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3833
 */
3834 3835
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3836 3837
{
	unsigned long flags;
3838
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3839 3840 3841
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3842
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3843
	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3844
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3845
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3846
	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3847
	rdp->cpu = cpu;
3848
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3849
	rcu_boot_init_nocb_percpu_data(rdp);
B
Boqun Feng 已提交
3850
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3851 3852 3853 3854 3855 3856 3857
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3858
 */
3859
static void
3860
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3861 3862
{
	unsigned long flags;
3863
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3864 3865 3866
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3867
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3868 3869
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3870
	rdp->blimit = blimit;
3871 3872
	if (!rdp->nxtlist)
		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3873
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3874
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3875
	rcu_dynticks_eqs_online();
B
Boqun Feng 已提交
3876
	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3877

3878 3879 3880 3881 3882
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
3883
	rnp = rdp->mynode;
3884
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3885 3886 3887
	if (!rdp->beenonline)
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
	rdp->beenonline = true;	 /* We have now been online. */
3888 3889
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
3890
	rdp->cpu_no_qs.b.norm = true;
3891
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3892
	rdp->core_needs_qs = false;
3893
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
B
Boqun Feng 已提交
3894
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3895 3896
}

3897
int rcutree_prepare_cpu(unsigned int cpu)
3898
{
3899 3900 3901
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3902
		rcu_init_percpu_data(cpu, rsp);
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948

	rcu_prepare_kthreads(cpu);
	rcu_spawn_all_nocb_kthreads(cpu);

	return 0;
}

static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);

	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
}

int rcutree_online_cpu(unsigned int cpu)
{
	sync_sched_exp_online_cleanup(cpu);
	rcutree_affinity_setting(cpu, -1);
	return 0;
}

int rcutree_offline_cpu(unsigned int cpu)
{
	rcutree_affinity_setting(cpu, cpu);
	return 0;
}


int rcutree_dying_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_cpu(rsp);
	return 0;
}

int rcutree_dead_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		rcu_cleanup_dead_cpu(cpu, rsp);
		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
	}
	return 0;
3949 3950
}

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
/*
 * Mark the specified CPU as being online so that subsequent grace periods
 * (both expedited and normal) will wait on it.  Note that this means that
 * incoming CPUs are not allowed to use RCU read-side critical sections
 * until this function is called.  Failing to observe this restriction
 * will result in lockdep splats.
 */
void rcu_cpu_starting(unsigned int cpu)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
3967
		rdp = per_cpu_ptr(rsp->rda, cpu);
3968 3969 3970 3971 3972 3973 3974 3975 3976
		rnp = rdp->mynode;
		mask = rdp->grpmask;
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
		rnp->qsmaskinitnext |= mask;
		rnp->expmaskinitnext |= mask;
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	}
}

3977 3978
#ifdef CONFIG_HOTPLUG_CPU
/*
3979 3980 3981
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
3997
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
}

void rcu_report_dead(unsigned int cpu)
{
	struct rcu_state *rsp;

	/* QS for any half-done expedited RCU-sched GP. */
	preempt_disable();
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(rcu_sched_state.rda), true);
	preempt_enable();
	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_idle_cpu(cpu, rsp);
}
#endif

4014 4015 4016 4017 4018 4019 4020
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4021
			rcu_expedite_gp();
4022 4023 4024
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
4025 4026
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
4027 4028 4029 4030 4031 4032 4033
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

4034
/*
4035
 * Spawn the kthreads that handle each RCU flavor's grace periods.
4036 4037 4038 4039
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
4040
	int kthread_prio_in = kthread_prio;
4041 4042
	struct rcu_node *rnp;
	struct rcu_state *rsp;
4043
	struct sched_param sp;
4044 4045
	struct task_struct *t;

4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

4057
	rcu_scheduler_fully_active = 1;
4058
	for_each_rcu_flavor(rsp) {
4059
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4060 4061
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
4062
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4063
		rsp->gp_kthread = t;
4064 4065 4066 4067
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
B
Boqun Feng 已提交
4068
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4069
		wake_up_process(t);
4070
	}
4071
	rcu_spawn_nocb_kthreads();
4072
	rcu_spawn_boost_kthreads();
4073 4074 4075 4076
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

4077
/*
4078 4079 4080 4081 4082 4083 4084 4085
 * This function is invoked towards the end of the scheduler's
 * initialization process.  Before this is called, the idle task might
 * contain synchronous grace-period primitives (during which time, this idle
 * task is booting the system, and such primitives are no-ops).  After this
 * function is called, any synchronous grace-period primitives are run as
 * expedited, with the requesting task driving the grace period forward.
 * A later core_initcall() rcu_exp_runtime_mode() will switch to full
 * runtime RCU functionality.
4086 4087 4088 4089 4090
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
4091 4092 4093
	rcu_test_sync_prims();
	rcu_scheduler_active = RCU_SCHEDULER_INIT;
	rcu_test_sync_prims();
4094 4095
}

4096 4097
/*
 * Compute the per-level fanout, either using the exact fanout specified
4098
 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4099
 */
4100
static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4101 4102 4103
{
	int i;

4104
	if (rcu_fanout_exact) {
4105
		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4106
		for (i = rcu_num_lvls - 2; i >= 0; i--)
4107
			levelspread[i] = RCU_FANOUT;
4108 4109 4110 4111 4112 4113
	} else {
		int ccur;
		int cprv;

		cprv = nr_cpu_ids;
		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4114 4115
			ccur = levelcnt[i];
			levelspread[i] = (cprv + ccur - 1) / ccur;
4116 4117
			cprv = ccur;
		}
4118 4119 4120 4121 4122 4123
	}
}

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
4124
static void __init rcu_init_one(struct rcu_state *rsp)
4125
{
4126 4127
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4128 4129
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4130
	static u8 fl_mask = 0x1;
4131 4132 4133

	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4134 4135 4136 4137 4138
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4139
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4140

4141 4142 4143
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4144

4145 4146
	/* Initialize the level-tracking arrays. */

4147
	for (i = 0; i < rcu_num_lvls; i++)
4148
		levelcnt[i] = num_rcu_lvl[i];
4149
	for (i = 1; i < rcu_num_lvls; i++)
4150 4151
		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
	rcu_init_levelspread(levelspread, levelcnt);
4152 4153
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
4154 4155 4156

	/* Initialize the elements themselves, starting from the leaves. */

4157
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4158
		cpustride *= levelspread[i];
4159
		rnp = rsp->level[i];
4160
		for (j = 0; j < levelcnt[i]; j++, rnp++) {
B
Boqun Feng 已提交
4161 4162
			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4163
						   &rcu_node_class[i], buf[i]);
4164 4165 4166
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4167 4168
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4169 4170 4171 4172
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4173 4174
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4175 4176 4177 4178 4179
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4180
				rnp->grpnum = j % levelspread[i - 1];
4181 4182
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4183
					      j / levelspread[i - 1];
4184 4185
			}
			rnp->level = i;
4186
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4187
			rcu_init_one_nocb(rnp);
4188 4189
			init_waitqueue_head(&rnp->exp_wq[0]);
			init_waitqueue_head(&rnp->exp_wq[1]);
4190 4191
			init_waitqueue_head(&rnp->exp_wq[2]);
			init_waitqueue_head(&rnp->exp_wq[3]);
4192
			spin_lock_init(&rnp->exp_lock);
4193 4194
		}
	}
4195

4196 4197
	init_swait_queue_head(&rsp->gp_wq);
	init_swait_queue_head(&rsp->expedited_wq);
4198
	rnp = rsp->level[rcu_num_lvls - 1];
4199
	for_each_possible_cpu(i) {
4200
		while (i > rnp->grphi)
4201
			rnp++;
4202
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4203 4204
		rcu_boot_init_percpu_data(i, rsp);
	}
4205
	list_add(&rsp->flavors, &rcu_struct_flavors);
4206 4207
}

4208 4209
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4210
 * replace the definitions in tree.h because those are needed to size
4211 4212 4213 4214
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4215
	ulong d;
4216
	int i;
4217
	int rcu_capacity[RCU_NUM_LVLS];
4218

4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4232
	/* If the compile-time values are accurate, just leave. */
4233
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4234
	    nr_cpu_ids == NR_CPUS)
4235
		return;
4236 4237
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4238 4239

	/*
4240 4241 4242 4243
	 * The boot-time rcu_fanout_leaf parameter must be at least two
	 * and cannot exceed the number of bits in the rcu_node masks.
	 * Complain and fall back to the compile-time values if this
	 * limit is exceeded.
4244
	 */
4245
	if (rcu_fanout_leaf < 2 ||
4246
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4247
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4248 4249 4250 4251 4252 4253
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4254
	 * with the given number of levels.
4255
	 */
4256
	rcu_capacity[0] = rcu_fanout_leaf;
4257
	for (i = 1; i < RCU_NUM_LVLS; i++)
4258
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4259 4260

	/*
4261
	 * The tree must be able to accommodate the configured number of CPUs.
4262
	 * If this limit is exceeded, fall back to the compile-time values.
4263
	 */
4264 4265 4266 4267 4268
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}
4269

4270
	/* Calculate the number of levels in the tree. */
4271
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4272
	}
4273
	rcu_num_lvls = i + 1;
4274

4275
	/* Calculate the number of rcu_nodes at each level of the tree. */
4276
	for (i = 0; i < rcu_num_lvls; i++) {
4277
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4278 4279
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4280 4281 4282

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4283
	for (i = 0; i < rcu_num_lvls; i++)
4284 4285 4286
		rcu_num_nodes += num_rcu_lvl[i];
}

4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4309
void __init rcu_init(void)
4310
{
P
Paul E. McKenney 已提交
4311
	int cpu;
4312

4313 4314
	rcu_early_boot_tests();

4315
	rcu_bootup_announce();
4316
	rcu_init_geometry();
4317 4318
	rcu_init_one(&rcu_bh_state);
	rcu_init_one(&rcu_sched_state);
4319 4320
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4321
	__rcu_init_preempt();
J
Jiang Fang 已提交
4322
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4323 4324 4325 4326 4327 4328

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
4329
	pm_notifier(rcu_pm_notify, 0);
4330
	for_each_online_cpu(cpu) {
4331
		rcutree_prepare_cpu(cpu);
4332 4333
		rcu_cpu_starting(cpu);
	}
4334 4335
}

4336
#include "tree_exp.h"
4337
#include "tree_plugin.h"