tree.c 139.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/trace_events.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73
static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
74
static struct lock_class_key rcu_exp_sched_class[RCU_NUM_LVLS];
75

76 77 78 79 80 81 82 83
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
84 85
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
86
static char sname##_varname[] = #sname; \
87 88 89 90 91 92 93 94 95
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
96
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
97
struct rcu_state sname##_state = { \
98
	.level = { &sname##_state.node[0] }, \
99
	.rda = &sname##_data, \
100
	.call = cr, \
101
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
102 103
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
104
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
105 106
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
107
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
108
	.name = RCU_STATE_NAME(sname), \
109
	.abbr = sabbr, \
110
}
111

112 113
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
114

115
static struct rcu_state *const rcu_state_p;
116
static struct rcu_data __percpu *const rcu_data_p;
117
LIST_HEAD(rcu_struct_flavors);
118

119 120 121
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
122 123 124
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
125 126
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
127
module_param(rcu_fanout_leaf, int, 0444);
128
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
129 130
/* Number of rcu_nodes at specified level. */
static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
131 132
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

133 134 135 136
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
137
 * optimize synchronize_sched() to a simple barrier().  When this variable
138 139 140 141
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
142 143 144
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

145 146 147 148 149 150 151 152 153 154 155 156 157 158
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

159 160
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
161
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
162 163
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
164

165
/* rcuc/rcub kthread realtime priority */
166
#ifdef CONFIG_RCU_KTHREAD_PRIO
167
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
168 169 170
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
171 172
module_param(kthread_prio, int, 0644);

173
/* Delay in jiffies for grace-period initialization delays, debug only. */
174 175 176 177 178 179 180 181

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

182 183
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
184
module_param(gp_init_delay, int, 0644);
185 186 187
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
188

189 190 191 192 193 194 195
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

196 197 198 199 200 201 202 203 204 205
/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
206

207 208 209 210 211 212 213 214 215 216 217 218
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

219 220 221 222 223 224 225 226
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
227
	return READ_ONCE(rnp->qsmaskinitnext);
228 229
}

230
/*
231
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
232 233 234 235 236
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
237
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
238 239
}

240
/*
241
 * Note a quiescent state.  Because we do not need to know
242
 * how many quiescent states passed, just if there was at least
243
 * one since the start of the grace period, this just sets a flag.
244
 * The caller must have disabled preemption.
245
 */
246
void rcu_sched_qs(void)
247
{
248
	if (__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) {
249 250 251
		trace_rcu_grace_period(TPS("rcu_sched"),
				       __this_cpu_read(rcu_sched_data.gpnum),
				       TPS("cpuqs"));
252
		__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
253
	}
254 255
}

256
void rcu_bh_qs(void)
257
{
258
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
259 260 261
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
262
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
263
	}
264
}
265

266 267 268 269 270 271 272 273 274 275 276
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

277 278 279
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
 */
static void rcu_momentary_dyntick_idle(void)
{
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	local_irq_save(flags);

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
314 315
		if (READ_ONCE(rdp->mynode->completed) !=
		    READ_ONCE(rdp->cond_resched_completed))
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
	local_irq_restore(flags);
}

333 334 335
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
336
 * The caller must have disabled preemption.
337
 */
338
void rcu_note_context_switch(void)
339
{
340
	trace_rcu_utilization(TPS("Start context switch"));
341
	rcu_sched_qs();
342
	rcu_preempt_note_context_switch();
343 344
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
345
	trace_rcu_utilization(TPS("End context switch"));
346
}
347
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
348

349
/*
350
 * Register a quiescent state for all RCU flavors.  If there is an
351 352
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
353
 * RCU flavors in desperate need of a quiescent state, which will normally
354 355 356 357 358 359 360 361 362 363 364
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
 */
void rcu_all_qs(void)
{
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
	this_cpu_inc(rcu_qs_ctr);
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
365 366 367
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
368

E
Eric Dumazet 已提交
369 370 371
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
372

373 374
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
375 376 377 378

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

379 380 381 382 383 384 385
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

386
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
387
				  struct rcu_data *rdp);
388 389 390 391
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
392
static void force_quiescent_state(struct rcu_state *rsp);
393
static int rcu_pending(void);
394 395

/*
396
 * Return the number of RCU batches started thus far for debug & stats.
397
 */
398 399 400 401 402 403 404 405
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
406
 */
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
433
 */
434
unsigned long rcu_batches_completed_sched(void)
435
{
436
	return rcu_sched_state.completed;
437
}
438
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
439 440

/*
441
 * Return the number of RCU BH batches completed thus far for debug & stats.
442
 */
443
unsigned long rcu_batches_completed_bh(void)
444 445 446 447 448
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

449 450 451 452 453
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
454
	force_quiescent_state(rcu_state_p);
455 456 457
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

458 459 460 461 462
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
463
	force_quiescent_state(&rcu_bh_state);
464 465 466
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

467 468 469 470 471 472 473 474 475
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

491 492 493 494 495 496 497 498 499 500 501 502 503 504
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

505 506 507 508 509 510 511 512 513 514
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
515
		rsp = rcu_state_p;
516 517 518 519 520 521 522 523 524 525 526
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
527 528 529
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
530 531 532 533 534 535 536 537
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

538 539 540 541 542 543 544 545 546 547 548
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

549 550 551 552 553 554
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
555 556
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
557 558
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
575
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
576 577
	int *fp = &rnp->need_future_gp[idx];

578
	return READ_ONCE(*fp);
579 580
}

581
/*
582 583 584
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
585 586 587 588
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
589
	int i;
P
Paul E. McKenney 已提交
590

591 592
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
593
	if (rcu_future_needs_gp(rsp))
594
		return 1;  /* Yes, a no-CBs CPU needs one. */
595 596 597 598 599 600
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
601
		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
602 603 604
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
605 606
}

607
/*
608
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
609 610 611 612 613
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
614
static void rcu_eqs_enter_common(long long oldval, bool user)
615
{
616 617
	struct rcu_state *rsp;
	struct rcu_data *rdp;
618
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
619

620
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
621 622
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
623 624
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
625

626
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
627
		ftrace_dump(DUMP_ORIG);
628 629 630
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
631
	}
632 633 634 635
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
636
	rcu_prepare_for_idle();
637
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
638
	smp_mb__before_atomic();  /* See above. */
639
	atomic_inc(&rdtp->dynticks);
640
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
641 642
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     atomic_read(&rdtp->dynticks) & 0x1);
643
	rcu_dynticks_task_enter();
644 645

	/*
646
	 * It is illegal to enter an extended quiescent state while
647 648
	 * in an RCU read-side critical section.
	 */
649 650 651 652 653 654
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal idle entry in RCU read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
			 "Illegal idle entry in RCU-bh read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
			 "Illegal idle entry in RCU-sched read-side critical section.");
655
}
656

657 658 659
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
660
 */
661
static void rcu_eqs_enter(bool user)
662
{
663
	long long oldval;
664 665
	struct rcu_dynticks *rdtp;

666
	rdtp = this_cpu_ptr(&rcu_dynticks);
667
	oldval = rdtp->dynticks_nesting;
668 669
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
670
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
671
		rdtp->dynticks_nesting = 0;
672
		rcu_eqs_enter_common(oldval, user);
673
	} else {
674
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
675
	}
676
}
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
692 693 694
	unsigned long flags;

	local_irq_save(flags);
695
	rcu_eqs_enter(false);
696
	rcu_sysidle_enter(0);
697
	local_irq_restore(flags);
698
}
699
EXPORT_SYMBOL_GPL(rcu_idle_enter);
700

701
#ifdef CONFIG_NO_HZ_FULL
702 703 704 705 706 707 708 709 710 711
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
712
	rcu_eqs_enter(1);
713
}
714
#endif /* CONFIG_NO_HZ_FULL */
715

716 717 718 719 720 721
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
722
 *
723 724 725 726 727 728 729 730
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
731
 */
732
void rcu_irq_exit(void)
733 734
{
	unsigned long flags;
735
	long long oldval;
736 737 738
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
739
	rdtp = this_cpu_ptr(&rcu_dynticks);
740
	oldval = rdtp->dynticks_nesting;
741
	rdtp->dynticks_nesting--;
742 743
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting < 0);
744
	if (rdtp->dynticks_nesting)
745
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
746
	else
747 748
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
749 750 751 752
	local_irq_restore(flags);
}

/*
753
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
754 755 756 757 758
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
759
static void rcu_eqs_exit_common(long long oldval, int user)
760
{
761 762
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

763
	rcu_dynticks_task_exit();
764
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
765 766
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
767
	smp_mb__after_atomic();  /* See above. */
768 769
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(atomic_read(&rdtp->dynticks) & 0x1));
770
	rcu_cleanup_after_idle();
771
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
772 773
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
774 775
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
776

777
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
778
				  oldval, rdtp->dynticks_nesting);
779
		ftrace_dump(DUMP_ORIG);
780 781 782
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
783 784 785
	}
}

786 787 788
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
789
 */
790
static void rcu_eqs_exit(bool user)
791 792 793 794
{
	struct rcu_dynticks *rdtp;
	long long oldval;

795
	rdtp = this_cpu_ptr(&rcu_dynticks);
796
	oldval = rdtp->dynticks_nesting;
797
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
798
	if (oldval & DYNTICK_TASK_NEST_MASK) {
799
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
800
	} else {
801
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
802
		rcu_eqs_exit_common(oldval, user);
803
	}
804
}
805 806 807 808 809 810 811 812 813 814 815 816 817 818

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
819 820 821
	unsigned long flags;

	local_irq_save(flags);
822
	rcu_eqs_exit(false);
823
	rcu_sysidle_exit(0);
824
	local_irq_restore(flags);
825
}
826
EXPORT_SYMBOL_GPL(rcu_idle_exit);
827

828
#ifdef CONFIG_NO_HZ_FULL
829 830 831 832 833 834 835 836
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
837
	rcu_eqs_exit(1);
838
}
839
#endif /* CONFIG_NO_HZ_FULL */
840

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
867
	rdtp = this_cpu_ptr(&rcu_dynticks);
868 869
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
870 871
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
872
	if (oldval)
873
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
874
	else
875 876
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
877 878 879 880 881 882
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
883 884 885 886 887
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
888 889 890
 */
void rcu_nmi_enter(void)
{
891
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
892
	int incby = 2;
893

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
915 916 917 918 919
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
920 921 922 923
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
924 925 926
 */
void rcu_nmi_exit(void)
{
927
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
928

929 930 931 932 933 934 935 936 937 938 939 940 941 942
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
943
		return;
944 945 946 947
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
948
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
949
	smp_mb__before_atomic();  /* See above. */
950
	atomic_inc(&rdtp->dynticks);
951
	smp_mb__after_atomic();  /* Force delay to next write. */
952
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
953 954 955
}

/**
956 957 958 959 960 961 962
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
963
bool notrace __rcu_is_watching(void)
964 965 966 967 968 969
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
970
 *
971
 * If the current CPU is in its idle loop and is neither in an interrupt
972
 * or NMI handler, return true.
973
 */
974
bool notrace rcu_is_watching(void)
975
{
976
	bool ret;
977

978
	preempt_disable_notrace();
979
	ret = __rcu_is_watching();
980
	preempt_enable_notrace();
981
	return ret;
982
}
983
EXPORT_SYMBOL_GPL(rcu_is_watching);
984

985
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
986 987 988 989 990 991 992

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
993 994 995 996 997 998 999 1000 1001 1002 1003
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1004 1005 1006 1007 1008 1009
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1010 1011
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1012 1013 1014
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1015
		return true;
1016
	preempt_disable();
1017
	rdp = this_cpu_ptr(&rcu_sched_data);
1018
	rnp = rdp->mynode;
1019
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1020 1021 1022 1023 1024 1025
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1026
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1027

1028
/**
1029
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1030
 *
1031 1032 1033
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1034
 */
1035
static int rcu_is_cpu_rrupt_from_idle(void)
1036
{
1037
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1038 1039 1040 1041 1042
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1043
 * is in dynticks idle mode, which is an extended quiescent state.
1044
 */
1045 1046
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1047
{
1048
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1049
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1050 1051 1052 1053
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
		return 1;
	} else {
1054
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1055
				 rdp->mynode->gpnum))
1056
			WRITE_ONCE(rdp->gpwrap, true);
1057 1058
		return 0;
	}
1059 1060 1061 1062 1063 1064
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1065
 * for this same CPU, or by virtue of having been offline.
1066
 */
1067 1068
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1069
{
1070
	unsigned int curr;
1071
	int *rcrmp;
1072
	unsigned int snap;
1073

1074 1075
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
1076 1077 1078 1079 1080 1081 1082 1083 1084

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1085
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1086
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1087 1088 1089 1090
		rdp->dynticks_fqs++;
		return 1;
	}

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
1106
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1107 1108 1109
		rdp->offline_fqs++;
		return 1;
	}
1110 1111

	/*
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1131
	 */
1132 1133 1134
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1135
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1136 1137 1138
		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			WRITE_ONCE(rdp->cond_resched_completed,
				   READ_ONCE(rdp->mynode->completed));
1139
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1140 1141
			WRITE_ONCE(*rcrmp,
				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1142 1143 1144 1145 1146 1147 1148
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
			/* Time to beat on that CPU again! */
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
		}
1149 1150
	}

1151
	return 0;
1152 1153 1154 1155
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1156
	unsigned long j = jiffies;
1157
	unsigned long j1;
1158 1159 1160

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1161
	j1 = rcu_jiffies_till_stall_check();
1162
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1163
	rsp->jiffies_resched = j + j1 / 2;
1164
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1165 1166
}

1167 1168 1169 1170 1171 1172 1173 1174 1175
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1176
	gpa = READ_ONCE(rsp->gp_activity);
1177
	if (j - gpa > 2 * HZ)
1178
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x s%d ->state=%#lx\n",
1179
		       rsp->name, j - gpa,
1180 1181 1182
		       rsp->gpnum, rsp->completed,
		       rsp->gp_flags, rsp->gp_state,
		       rsp->gp_kthread ? rsp->gp_kthread->state : 0);
1183 1184
}

1185
/*
1186
 * Dump stacks of all tasks running on stalled CPUs.
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

1205
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1206 1207 1208 1209
{
	int cpu;
	long delta;
	unsigned long flags;
1210 1211
	unsigned long gpa;
	unsigned long j;
1212
	int ndetected = 0;
1213
	struct rcu_node *rnp = rcu_get_root(rsp);
1214
	long totqlen = 0;
1215 1216 1217

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
1218
	raw_spin_lock_irqsave(&rnp->lock, flags);
1219
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1220
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1221
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1222 1223
		return;
	}
1224 1225
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1226
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1227

1228 1229 1230 1231 1232
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1233
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1234
	       rsp->name);
1235
	print_cpu_stall_info_begin();
1236
	rcu_for_each_leaf_node(rsp, rnp) {
1237
		raw_spin_lock_irqsave(&rnp->lock, flags);
1238
		ndetected += rcu_print_task_stall(rnp);
1239 1240 1241 1242 1243 1244 1245 1246
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
1247
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1248
	}
1249 1250

	print_cpu_stall_info_end();
1251 1252
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1253
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1254
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1255
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1256
	if (ndetected) {
1257
		rcu_dump_cpu_stacks(rsp);
1258
	} else {
1259 1260
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1261 1262 1263
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1264
			gpa = READ_ONCE(rsp->gp_activity);
1265
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1266
			       rsp->name, j - gpa, j, gpa,
1267 1268
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1269 1270 1271 1272
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1273

1274
	/* Complain about tasks blocking the grace period. */
1275 1276
	rcu_print_detail_task_stall(rsp);

1277 1278
	rcu_check_gp_kthread_starvation(rsp);

1279
	force_quiescent_state(rsp);  /* Kick them all. */
1280 1281 1282 1283
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1284
	int cpu;
1285 1286
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1287
	long totqlen = 0;
1288

1289 1290 1291 1292 1293
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1294
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1295 1296 1297
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1298 1299
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1300 1301 1302
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1303 1304 1305

	rcu_check_gp_kthread_starvation(rsp);

1306
	rcu_dump_cpu_stacks(rsp);
1307

P
Paul E. McKenney 已提交
1308
	raw_spin_lock_irqsave(&rnp->lock, flags);
1309 1310 1311
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
P
Paul E. McKenney 已提交
1312
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1313

1314 1315 1316 1317 1318 1319 1320 1321
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1322 1323 1324 1325
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1326 1327 1328
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1329 1330
	unsigned long j;
	unsigned long js;
1331 1332
	struct rcu_node *rnp;

1333
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1334
		return;
1335
	j = jiffies;
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1354
	gpnum = READ_ONCE(rsp->gpnum);
1355
	smp_rmb(); /* Pick up ->gpnum first... */
1356
	js = READ_ONCE(rsp->jiffies_stall);
1357
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1358
	gps = READ_ONCE(rsp->gp_start);
1359
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1360
	completed = READ_ONCE(rsp->completed);
1361 1362 1363 1364
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1365
	rnp = rdp->mynode;
1366
	if (rcu_gp_in_progress(rsp) &&
1367
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1368 1369 1370 1371

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1372 1373
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1374

1375
		/* They had a few time units to dump stack, so complain. */
1376
		print_other_cpu_stall(rsp, gpnum);
1377 1378 1379
	}
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1391 1392 1393
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1394
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1395 1396
}

1397
/*
1398 1399 1400
 * Initialize the specified rcu_data structure's default callback list
 * to empty.  The default callback list is the one that is not used by
 * no-callbacks CPUs.
1401
 */
1402
static void init_default_callback_list(struct rcu_data *rdp)
1403 1404 1405 1406 1407 1408 1409 1410
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	if (init_nocb_callback_list(rdp))
		return;
	init_default_callback_list(rdp);
}

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1450 1451 1452 1453 1454
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1455
				unsigned long c, const char *s)
1456 1457 1458 1459 1460 1461 1462 1463 1464
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1465 1466
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1467 1468 1469
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1470 1471 1472
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1473 1474 1475
{
	unsigned long c;
	int i;
1476
	bool ret = false;
1477 1478 1479 1480 1481 1482 1483
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1484
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1485
	if (rnp->need_future_gp[c & 0x1]) {
1486
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1487
		goto out;
1488 1489 1490 1491 1492 1493 1494
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1495 1496 1497 1498 1499 1500 1501
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1502 1503
	 */
	if (rnp->gpnum != rnp->completed ||
1504
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1505
		rnp->need_future_gp[c & 0x1]++;
1506
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1507
		goto out;
1508 1509 1510 1511 1512 1513 1514
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1515
	if (rnp != rnp_root) {
1516
		raw_spin_lock(&rnp_root->lock);
1517 1518
		smp_mb__after_unlock_lock();
	}
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1536
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1537 1538 1539 1540 1541 1542 1543 1544
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1545
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1546
	} else {
1547
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1548
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1549 1550 1551 1552
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
1553 1554 1555 1556
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1574 1575
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1576 1577 1578
	return needmore;
}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1589
	    !READ_ONCE(rsp->gp_flags) ||
1590 1591 1592 1593 1594
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1595 1596 1597 1598 1599 1600 1601
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1602 1603
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1604 1605 1606
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1607
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1608 1609 1610 1611
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1612
	bool ret;
1613 1614 1615

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1616
		return false;
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1645
		return false;
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1656
	/* Record any needed additional grace periods. */
1657
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1658 1659 1660

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1661
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1662
	else
1663
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1664
	return ret;
1665 1666 1667 1668 1669 1670 1671 1672
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1673
 * Returns true if the RCU grace-period kthread needs to be awakened.
1674 1675 1676
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1677
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1678 1679 1680 1681 1682 1683
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1684
		return false;
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1708
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1709 1710
}

1711
/*
1712 1713 1714
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1715
 * Returns true if the grace-period kthread needs to be awakened.
1716
 */
1717 1718
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1719
{
1720 1721
	bool ret;

1722
	/* Handle the ends of any preceding grace periods first. */
1723
	if (rdp->completed == rnp->completed &&
1724
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1725

1726
		/* No grace period end, so just accelerate recent callbacks. */
1727
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1728

1729 1730 1731
	} else {

		/* Advance callbacks. */
1732
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1733 1734 1735

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1736
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1737
	}
1738

1739
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1740 1741 1742 1743 1744 1745
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1746
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1747
		rdp->cpu_no_qs.b.norm = true;
1748
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1749
		rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1750
		zero_cpu_stall_ticks(rdp);
1751
		WRITE_ONCE(rdp->gpwrap, false);
1752
	}
1753
	return ret;
1754 1755
}

1756
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1757 1758
{
	unsigned long flags;
1759
	bool needwake;
1760 1761 1762 1763
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1764 1765 1766
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1767 1768 1769 1770
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1771
	smp_mb__after_unlock_lock();
1772
	needwake = __note_gp_changes(rsp, rnp, rdp);
1773
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1774 1775
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1776 1777
}

1778 1779 1780 1781 1782 1783 1784
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

1785
/*
1786
 * Initialize a new grace period.  Return 0 if no grace period required.
1787
 */
1788
static int rcu_gp_init(struct rcu_state *rsp)
1789
{
1790
	unsigned long oldmask;
1791
	struct rcu_data *rdp;
1792
	struct rcu_node *rnp = rcu_get_root(rsp);
1793

1794
	WRITE_ONCE(rsp->gp_activity, jiffies);
1795
	raw_spin_lock_irq(&rnp->lock);
1796
	smp_mb__after_unlock_lock();
1797
	if (!READ_ONCE(rsp->gp_flags)) {
1798 1799 1800 1801
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1802
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1803

1804 1805 1806 1807 1808
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1809 1810 1811 1812 1813
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1814
	record_gp_stall_check_time(rsp);
1815 1816
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1817
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1818 1819
	raw_spin_unlock_irq(&rnp->lock);

1820 1821 1822 1823 1824 1825 1826
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
1827
		rcu_gp_slow(rsp, gp_preinit_delay);
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
		raw_spin_lock_irq(&rnp->lock);
		smp_mb__after_unlock_lock();
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
			raw_spin_unlock_irq(&rnp->lock);
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

		raw_spin_unlock_irq(&rnp->lock);
	}
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1884
		rcu_gp_slow(rsp, gp_init_delay);
1885
		raw_spin_lock_irq(&rnp->lock);
1886
		smp_mb__after_unlock_lock();
1887
		rdp = this_cpu_ptr(rsp->rda);
1888 1889
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1890
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1891
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1892
			WRITE_ONCE(rnp->completed, rsp->completed);
1893
		if (rnp == rdp->mynode)
1894
			(void)__note_gp_changes(rsp, rnp, rdp);
1895 1896 1897 1898 1899
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1900
		cond_resched_rcu_qs();
1901
		WRITE_ONCE(rsp->gp_activity, jiffies);
1902
	}
1903

1904 1905
	return 1;
}
1906

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
/*
 * Helper function for wait_event_interruptible_timeout() wakeup
 * at force-quiescent-state time.
 */
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rsp->gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

1927 1928 1929
/*
 * Do one round of quiescent-state forcing.
 */
1930
static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1931 1932
{
	int fqs_state = fqs_state_in;
1933 1934
	bool isidle = false;
	unsigned long maxj;
1935 1936
	struct rcu_node *rnp = rcu_get_root(rsp);

1937
	WRITE_ONCE(rsp->gp_activity, jiffies);
1938 1939 1940
	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
1941
		if (is_sysidle_rcu_state(rsp)) {
1942
			isidle = true;
1943 1944
			maxj = jiffies - ULONG_MAX / 4;
		}
1945 1946
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1947
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1948 1949 1950
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1951
		isidle = true;
1952
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1953 1954
	}
	/* Clear flag to prevent immediate re-entry. */
1955
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1956
		raw_spin_lock_irq(&rnp->lock);
1957
		smp_mb__after_unlock_lock();
1958 1959
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1960 1961 1962 1963 1964
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1965 1966 1967
/*
 * Clean up after the old grace period.
 */
1968
static void rcu_gp_cleanup(struct rcu_state *rsp)
1969 1970
{
	unsigned long gp_duration;
1971
	bool needgp = false;
1972
	int nocb = 0;
1973 1974
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1975

1976
	WRITE_ONCE(rsp->gp_activity, jiffies);
1977
	raw_spin_lock_irq(&rnp->lock);
1978
	smp_mb__after_unlock_lock();
1979 1980 1981
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1982

1983 1984 1985 1986 1987 1988 1989 1990
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1991
	raw_spin_unlock_irq(&rnp->lock);
1992

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2003
		raw_spin_lock_irq(&rnp->lock);
2004
		smp_mb__after_unlock_lock();
2005 2006
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
2007
		WRITE_ONCE(rnp->completed, rsp->gpnum);
2008 2009
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
2010
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2011
		/* smp_mb() provided by prior unlock-lock pair. */
2012
		nocb += rcu_future_gp_cleanup(rsp, rnp);
2013
		raw_spin_unlock_irq(&rnp->lock);
2014
		cond_resched_rcu_qs();
2015
		WRITE_ONCE(rsp->gp_activity, jiffies);
2016
		rcu_gp_slow(rsp, gp_cleanup_delay);
2017
	}
2018 2019
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
2020
	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
2021
	rcu_nocb_gp_set(rnp, nocb);
2022

2023
	/* Declare grace period done. */
2024
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2025
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2026
	rsp->fqs_state = RCU_GP_IDLE;
2027
	rdp = this_cpu_ptr(rsp->rda);
2028 2029 2030
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2031
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2032
		trace_rcu_grace_period(rsp->name,
2033
				       READ_ONCE(rsp->gpnum),
2034 2035
				       TPS("newreq"));
	}
2036 2037 2038 2039 2040 2041 2042 2043
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2044
	int fqs_state;
2045
	int gf;
2046
	unsigned long j;
2047
	int ret;
2048 2049 2050
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2051
	rcu_bind_gp_kthread();
2052 2053 2054 2055
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2056
			trace_rcu_grace_period(rsp->name,
2057
					       READ_ONCE(rsp->gpnum),
2058
					       TPS("reqwait"));
2059
			rsp->gp_state = RCU_GP_WAIT_GPS;
2060
			wait_event_interruptible(rsp->gp_wq,
2061
						 READ_ONCE(rsp->gp_flags) &
2062
						 RCU_GP_FLAG_INIT);
2063
			rsp->gp_state = RCU_GP_DONE_GPS;
2064
			/* Locking provides needed memory barrier. */
2065
			if (rcu_gp_init(rsp))
2066
				break;
2067
			cond_resched_rcu_qs();
2068
			WRITE_ONCE(rsp->gp_activity, jiffies);
2069
			WARN_ON(signal_pending(current));
2070
			trace_rcu_grace_period(rsp->name,
2071
					       READ_ONCE(rsp->gpnum),
2072
					       TPS("reqwaitsig"));
2073
		}
2074

2075 2076
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
2077 2078 2079 2080 2081
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2082
		ret = 0;
2083
		for (;;) {
2084 2085
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
2086
			trace_rcu_grace_period(rsp->name,
2087
					       READ_ONCE(rsp->gpnum),
2088
					       TPS("fqswait"));
2089
			rsp->gp_state = RCU_GP_WAIT_FQS;
2090
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
2091
					rcu_gp_fqs_check_wake(rsp, &gf), j);
2092
			rsp->gp_state = RCU_GP_DOING_FQS;
2093
			/* Locking provides needed memory barriers. */
2094
			/* If grace period done, leave loop. */
2095
			if (!READ_ONCE(rnp->qsmask) &&
2096
			    !rcu_preempt_blocked_readers_cgp(rnp))
2097
				break;
2098
			/* If time for quiescent-state forcing, do it. */
2099 2100
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2101
				trace_rcu_grace_period(rsp->name,
2102
						       READ_ONCE(rsp->gpnum),
2103
						       TPS("fqsstart"));
2104
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
2105
				trace_rcu_grace_period(rsp->name,
2106
						       READ_ONCE(rsp->gpnum),
2107
						       TPS("fqsend"));
2108
				cond_resched_rcu_qs();
2109
				WRITE_ONCE(rsp->gp_activity, jiffies);
2110 2111
			} else {
				/* Deal with stray signal. */
2112
				cond_resched_rcu_qs();
2113
				WRITE_ONCE(rsp->gp_activity, jiffies);
2114
				WARN_ON(signal_pending(current));
2115
				trace_rcu_grace_period(rsp->name,
2116
						       READ_ONCE(rsp->gpnum),
2117
						       TPS("fqswaitsig"));
2118
			}
2119 2120 2121 2122 2123 2124 2125 2126
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
2127
		}
2128 2129

		/* Handle grace-period end. */
2130
		rsp->gp_state = RCU_GP_CLEANUP;
2131
		rcu_gp_cleanup(rsp);
2132
		rsp->gp_state = RCU_GP_CLEANED;
2133 2134 2135
	}
}

2136 2137 2138
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2139
 * the root node's ->lock and hard irqs must be disabled.
2140 2141 2142 2143
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2144 2145
 *
 * Returns true if the grace-period kthread must be awakened.
2146
 */
2147
static bool
2148 2149
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2150
{
2151
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2152
		/*
2153
		 * Either we have not yet spawned the grace-period
2154 2155
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2156
		 * Either way, don't start a new grace period.
2157
		 */
2158
		return false;
2159
	}
2160 2161
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2162
			       TPS("newreq"));
2163

2164 2165
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2166
	 * could cause possible deadlocks with the rq->lock. Defer
2167
	 * the wakeup to our caller.
2168
	 */
2169
	return true;
2170 2171
}

2172 2173 2174 2175 2176 2177
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2178 2179
 *
 * Returns true if the grace-period kthread needs to be awakened.
2180
 */
2181
static bool rcu_start_gp(struct rcu_state *rsp)
2182 2183 2184
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2185
	bool ret = false;
2186 2187 2188 2189 2190 2191 2192 2193 2194

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2195 2196 2197
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2198 2199
}

2200
/*
P
Paul E. McKenney 已提交
2201 2202 2203
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
2204 2205
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
2206
 */
P
Paul E. McKenney 已提交
2207
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2208
	__releases(rcu_get_root(rsp)->lock)
2209
{
2210
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2211
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2212
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2213
	rcu_gp_kthread_wake(rsp);
2214 2215
}

2216
/*
P
Paul E. McKenney 已提交
2217 2218 2219
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2220 2221 2222 2223 2224
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2225 2226
 */
static void
P
Paul E. McKenney 已提交
2227
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2228
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2229 2230
	__releases(rnp->lock)
{
2231
	unsigned long oldmask = 0;
2232 2233
	struct rcu_node *rnp_c;

2234 2235
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2236
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2237

2238 2239 2240 2241
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
P
Paul E. McKenney 已提交
2242
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2243 2244
			return;
		}
2245
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2246
		rnp->qsmask &= ~mask;
2247 2248 2249 2250
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2251
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2252 2253

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
2254
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2255 2256 2257 2258 2259 2260 2261 2262 2263
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
2264
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2265
		rnp_c = rnp;
2266
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
2267
		raw_spin_lock_irqsave(&rnp->lock, flags);
2268
		smp_mb__after_unlock_lock();
2269
		oldmask = rnp_c->qsmask;
2270 2271 2272 2273
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2274
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2275
	 * to clean up and start the next grace period if one is needed.
2276
	 */
P
Paul E. McKenney 已提交
2277
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2278 2279
}

2280 2281 2282 2283 2284 2285 2286
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2287
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2288 2289 2290
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2291
	unsigned long gps;
2292 2293 2294
	unsigned long mask;
	struct rcu_node *rnp_p;

2295 2296
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2297 2298 2299 2300 2301 2302 2303
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2304 2305
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2306 2307 2308 2309 2310
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2311 2312
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2313 2314 2315 2316
	mask = rnp->grpmask;
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
	smp_mb__after_unlock_lock();
2317
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2318 2319
}

2320
/*
P
Paul E. McKenney 已提交
2321 2322 2323 2324 2325 2326 2327
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
2328 2329
 */
static void
2330
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2331 2332 2333
{
	unsigned long flags;
	unsigned long mask;
2334
	bool needwake;
2335 2336 2337
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
2338
	raw_spin_lock_irqsave(&rnp->lock, flags);
2339
	smp_mb__after_unlock_lock();
2340
	if ((rdp->cpu_no_qs.b.norm &&
2341 2342 2343
	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
	    rdp->gpwrap) {
2344 2345

		/*
2346 2347 2348 2349
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2350
		 */
2351
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2352
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
P
Paul E. McKenney 已提交
2353
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2354 2355 2356 2357
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
2358
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2359
	} else {
2360
		rdp->core_needs_qs = 0;
2361 2362 2363 2364 2365

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2366
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2367

2368 2369
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2370 2371
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2384 2385
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2386 2387 2388 2389 2390

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
2391
	if (!rdp->core_needs_qs)
2392 2393 2394 2395 2396 2397
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2398
	if (rdp->cpu_no_qs.b.norm &&
2399
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2400 2401
		return;

P
Paul E. McKenney 已提交
2402 2403 2404 2405
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2406
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2407 2408
}

2409
/*
2410 2411
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2412
 * ->orphan_lock.
2413
 */
2414 2415 2416
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2417
{
P
Paul E. McKenney 已提交
2418
	/* No-CBs CPUs do not have orphanable callbacks. */
2419
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2420 2421
		return;

2422 2423
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2424 2425
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2426
	 */
2427
	if (rdp->nxtlist != NULL) {
2428 2429 2430
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2431
		rdp->qlen_lazy = 0;
2432
		WRITE_ONCE(rdp->qlen, 0);
2433 2434 2435
	}

	/*
2436 2437 2438 2439 2440 2441 2442
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2443
	 */
2444 2445 2446 2447
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2448 2449 2450
	}

	/*
2451 2452 2453
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2454
	 */
2455
	if (rdp->nxtlist != NULL) {
2456 2457
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2458
	}
2459

2460 2461 2462 2463
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2464
	init_callback_list(rdp);
2465
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2466 2467 2468 2469
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2470
 * orphanage.  The caller must hold the ->orphan_lock.
2471
 */
2472
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2473 2474
{
	int i;
2475
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2476

P
Paul E. McKenney 已提交
2477
	/* No-CBs CPUs are handled specially. */
2478 2479
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2480 2481
		return;

2482 2483 2484 2485
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2486 2487
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

2526 2527 2528
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2529
	RCU_TRACE(mask = rdp->grpmask);
2530 2531
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2532
			       TPS("cpuofl"));
2533 2534
}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2557 2558
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2559 2560 2561 2562 2563 2564 2565 2566 2567
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
		smp_mb__after_unlock_lock(); /* GP memory ordering. */
		rnp->qsmaskinit &= ~mask;
2568
		rnp->qsmask &= ~mask;
2569 2570 2571 2572 2573 2574 2575 2576
		if (rnp->qsmaskinit) {
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			return;
		}
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
	}
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
/*
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

2589 2590 2591
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2592 2593 2594 2595 2596 2597 2598 2599
	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();	/* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

2600
/*
2601
 * The CPU has been completely removed, and some other CPU is reporting
2602 2603
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2604 2605
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2606
 */
2607
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2608
{
2609
	unsigned long flags;
2610
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2611
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2612

2613 2614 2615
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2616
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2617
	rcu_boost_kthread_setaffinity(rnp, -1);
2618

2619
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2620
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2621
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2622
	rcu_adopt_orphan_cbs(rsp, flags);
2623
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2624

2625 2626 2627
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2628 2629 2630 2631 2632 2633
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2634
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2635 2636 2637
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2638 2639
	long bl, count, count_lazy;
	int i;
2640

2641
	/* If no callbacks are ready, just return. */
2642
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2643
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2644
		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2645 2646
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2647
		return;
2648
	}
2649 2650 2651 2652 2653 2654

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2655
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2656
	bl = rdp->blimit;
2657
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2658 2659 2660 2661
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2662 2663 2664
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2665 2666 2667
	local_irq_restore(flags);

	/* Invoke callbacks. */
2668
	count = count_lazy = 0;
2669 2670 2671
	while (list) {
		next = list->next;
		prefetch(next);
2672
		debug_rcu_head_unqueue(list);
2673 2674
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2675
		list = next;
2676 2677 2678 2679
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2680 2681 2682 2683
			break;
	}

	local_irq_save(flags);
2684 2685 2686
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2687 2688 2689 2690 2691

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2692 2693 2694
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2695 2696 2697
			else
				break;
	}
2698 2699
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2700
	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2701
	rdp->n_cbs_invoked += count;
2702 2703 2704 2705 2706

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2707 2708 2709 2710 2711 2712
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2713
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2714

2715 2716
	local_irq_restore(flags);

2717
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2718
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2719
		invoke_rcu_core();
2720 2721 2722 2723 2724
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2725
 * Also schedule RCU core processing.
2726
 *
2727
 * This function must be called from hardirq context.  It is normally
2728 2729 2730
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
2731
void rcu_check_callbacks(int user)
2732
{
2733
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2734
	increment_cpu_stall_ticks();
2735
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2736 2737 2738 2739 2740

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2741
		 * a quiescent state, so note it.
2742 2743
		 *
		 * No memory barrier is required here because both
2744 2745 2746
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2747 2748
		 */

2749 2750
		rcu_sched_qs();
		rcu_bh_qs();
2751 2752 2753 2754 2755 2756 2757

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2758
		 * critical section, so note it.
2759 2760
		 */

2761
		rcu_bh_qs();
2762
	}
2763
	rcu_preempt_check_callbacks();
2764
	if (rcu_pending())
2765
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2766 2767
	if (user)
		rcu_note_voluntary_context_switch(current);
2768
	trace_rcu_utilization(TPS("End scheduler-tick"));
2769 2770 2771 2772 2773
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2774 2775
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2776
 * The caller must have suppressed start of new grace periods.
2777
 */
2778 2779 2780 2781
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2782 2783 2784 2785 2786
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2787
	struct rcu_node *rnp;
2788

2789
	rcu_for_each_leaf_node(rsp, rnp) {
2790
		cond_resched_rcu_qs();
2791
		mask = 0;
P
Paul E. McKenney 已提交
2792
		raw_spin_lock_irqsave(&rnp->lock, flags);
2793
		smp_mb__after_unlock_lock();
2794
		if (rnp->qsmask == 0) {
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2818
		}
2819
		cpu = rnp->grplo;
2820
		bit = 1;
2821
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2822 2823 2824 2825
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2826
		}
2827
		if (mask != 0) {
2828 2829
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2830 2831 2832
		} else {
			/* Nothing to do here, so just drop the lock. */
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2833 2834 2835 2836 2837 2838 2839 2840
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2841
static void force_quiescent_state(struct rcu_state *rsp)
2842 2843
{
	unsigned long flags;
2844 2845 2846 2847 2848
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2849
	rnp = __this_cpu_read(rsp->rda->mynode);
2850
	for (; rnp != NULL; rnp = rnp->parent) {
2851
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2852 2853 2854 2855
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2856
			rsp->n_force_qs_lh++;
2857 2858 2859 2860 2861
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2862

2863 2864
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2865
	smp_mb__after_unlock_lock();
2866
	raw_spin_unlock(&rnp_old->fqslock);
2867
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2868
		rsp->n_force_qs_lh++;
2869
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2870
		return;  /* Someone beat us to it. */
2871
	}
2872
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2873
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2874
	rcu_gp_kthread_wake(rsp);
2875 2876 2877
}

/*
2878 2879 2880
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2881 2882
 */
static void
2883
__rcu_process_callbacks(struct rcu_state *rsp)
2884 2885
{
	unsigned long flags;
2886
	bool needwake;
2887
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2888

2889 2890
	WARN_ON_ONCE(rdp->beenonline == 0);

2891 2892 2893 2894
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2895
	local_irq_save(flags);
2896
	if (cpu_needs_another_gp(rsp, rdp)) {
2897
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2898
		needwake = rcu_start_gp(rsp);
2899
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2900 2901
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2902 2903
	} else {
		local_irq_restore(flags);
2904 2905 2906
	}

	/* If there are callbacks ready, invoke them. */
2907
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2908
		invoke_rcu_callbacks(rsp, rdp);
2909 2910 2911

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2912 2913
}

2914
/*
2915
 * Do RCU core processing for the current CPU.
2916
 */
2917
static void rcu_process_callbacks(struct softirq_action *unused)
2918
{
2919 2920
	struct rcu_state *rsp;

2921 2922
	if (cpu_is_offline(smp_processor_id()))
		return;
2923
	trace_rcu_utilization(TPS("Start RCU core"));
2924 2925
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2926
	trace_rcu_utilization(TPS("End RCU core"));
2927 2928
}

2929
/*
2930 2931 2932
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2933
 * are running on the current CPU with softirqs disabled, the
2934
 * rcu_cpu_kthread_task cannot disappear out from under us.
2935
 */
2936
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2937
{
2938
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2939
		return;
2940 2941
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2942 2943
		return;
	}
2944
	invoke_rcu_callbacks_kthread();
2945 2946
}

2947
static void invoke_rcu_core(void)
2948
{
2949 2950
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2951 2952
}

2953 2954 2955 2956 2957
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2958
{
2959 2960
	bool needwake;

2961 2962 2963 2964
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2965
	if (!rcu_is_watching())
2966 2967
		invoke_rcu_core();

2968
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2969
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2970
		return;
2971

2972 2973 2974 2975 2976 2977 2978
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2979
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2980 2981

		/* Are we ignoring a completed grace period? */
2982
		note_gp_changes(rsp, rdp);
2983 2984 2985 2986 2987

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2988
			raw_spin_lock(&rnp_root->lock);
2989
			smp_mb__after_unlock_lock();
2990
			needwake = rcu_start_gp(rsp);
2991
			raw_spin_unlock(&rnp_root->lock);
2992 2993
			if (needwake)
				rcu_gp_kthread_wake(rsp);
2994 2995 2996 2997 2998
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2999
				force_quiescent_state(rsp);
3000 3001 3002
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
3003
	}
3004 3005
}

3006 3007 3008 3009 3010 3011 3012
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3013 3014 3015 3016 3017 3018
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3019 3020
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
3021
	   struct rcu_state *rsp, int cpu, bool lazy)
3022 3023 3024 3025
{
	unsigned long flags;
	struct rcu_data *rdp;

3026
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3027 3028
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3029
		WRITE_ONCE(head->func, rcu_leak_callback);
3030 3031 3032
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
3043
	rdp = this_cpu_ptr(rsp->rda);
3044 3045

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
3046 3047 3048 3049 3050
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3064
		WARN_ON_ONCE(!rcu_is_watching());
3065 3066
		if (!likely(rdp->nxtlist))
			init_default_callback_list(rdp);
3067
	}
3068
	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3069 3070
	if (lazy)
		rdp->qlen_lazy++;
3071 3072
	else
		rcu_idle_count_callbacks_posted();
3073 3074 3075
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3076

3077 3078
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3079
					 rdp->qlen_lazy, rdp->qlen);
3080
	else
3081
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3082

3083 3084
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3085 3086 3087 3088
	local_irq_restore(flags);
}

/*
3089
 * Queue an RCU-sched callback for invocation after a grace period.
3090
 */
3091
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3092
{
P
Paul E. McKenney 已提交
3093
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3094
}
3095
EXPORT_SYMBOL_GPL(call_rcu_sched);
3096 3097

/*
3098
 * Queue an RCU callback for invocation after a quicker grace period.
3099 3100 3101
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
3102
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3103 3104 3105
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
3116
	__call_rcu(head, func, rcu_state_p, -1, 1);
3117 3118 3119
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3131 3132
	int ret;

3133
	might_sleep();  /* Check for RCU read-side critical section. */
3134 3135 3136 3137
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3138 3139
}

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3174 3175 3176 3177 3178 3179 3180 3181 3182
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3183 3184 3185 3186
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3187 3188
	if (rcu_blocking_is_gp())
		return;
3189
	if (rcu_gp_is_expedited())
3190 3191 3192
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3204 3205 3206
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3207 3208 3209
 */
void synchronize_rcu_bh(void)
{
3210 3211 3212 3213
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3214 3215
	if (rcu_blocking_is_gp())
		return;
3216
	if (rcu_gp_is_expedited())
3217 3218 3219
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3220 3221 3222
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3243
	return smp_load_acquire(&rcu_state_p->gpnum);
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3269
	newstate = smp_load_acquire(&rcu_state_p->completed);
3270 3271 3272 3273 3274
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
/**
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_sched(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_sched()
	 * and cond_synchronize_sched().
	 */
	return smp_load_acquire(&rcu_sched_state.gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);

/**
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 *
 * If a full RCU-sched grace period has elapsed since the earlier call to
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 * synchronize_sched() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_sched(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_sched_state.completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(cond_synchronize_sched);

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
/* Adjust sequence number for start of update-side operation. */
static void rcu_seq_start(unsigned long *sp)
{
	WRITE_ONCE(*sp, *sp + 1);
	smp_mb(); /* Ensure update-side operation after counter increment. */
	WARN_ON_ONCE(!(*sp & 0x1));
}

/* Adjust sequence number for end of update-side operation. */
static void rcu_seq_end(unsigned long *sp)
{
	smp_mb(); /* Ensure update-side operation before counter increment. */
	WRITE_ONCE(*sp, *sp + 1);
	WARN_ON_ONCE(*sp & 0x1);
}

/* Take a snapshot of the update side's sequence number. */
static unsigned long rcu_seq_snap(unsigned long *sp)
{
	unsigned long s;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	s = (READ_ONCE(*sp) + 3) & ~0x1;
	smp_mb(); /* Above access must not bleed into critical section. */
	return s;
}

/*
 * Given a snapshot from rcu_seq_snap(), determine whether or not a
 * full update-side operation has occurred.
 */
static bool rcu_seq_done(unsigned long *sp, unsigned long s)
{
	return ULONG_CMP_GE(READ_ONCE(*sp), s);
}

/* Wrapper functions for expedited grace periods.  */
static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
{
	rcu_seq_start(&rsp->expedited_sequence);
}
static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
{
	rcu_seq_end(&rsp->expedited_sequence);
3371
	smp_mb(); /* Ensure that consecutive grace periods serialize. */
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
}
static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
{
	return rcu_seq_snap(&rsp->expedited_sequence);
}
static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
{
	return rcu_seq_done(&rsp->expedited_sequence, s);
}

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
/*
 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
 * recent CPU-online activity.  Note that these masks are not cleared
 * when CPUs go offline, so they reflect the union of all CPUs that have
 * ever been online.  This means that this function normally takes its
 * no-work-to-do fastpath.
 */
static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
{
	bool done;
	unsigned long flags;
	unsigned long mask;
	unsigned long oldmask;
	int ncpus = READ_ONCE(rsp->ncpus);
	struct rcu_node *rnp;
	struct rcu_node *rnp_up;

	/* If no new CPUs onlined since last time, nothing to do. */
	if (likely(ncpus == rsp->ncpus_snap))
		return;
	rsp->ncpus_snap = ncpus;

	/*
	 * Each pass through the following loop propagates newly onlined
	 * CPUs for the current rcu_node structure up the rcu_node tree.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		smp_mb__after_unlock_lock();
		if (rnp->expmaskinit == rnp->expmaskinitnext) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
			continue;  /* No new CPUs, nothing to do. */
		}

		/* Update this node's mask, track old value for propagation. */
		oldmask = rnp->expmaskinit;
		rnp->expmaskinit = rnp->expmaskinitnext;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);

		/* If was already nonzero, nothing to propagate. */
		if (oldmask)
			continue;

		/* Propagate the new CPU up the tree. */
		mask = rnp->grpmask;
		rnp_up = rnp->parent;
		done = false;
		while (rnp_up) {
			raw_spin_lock_irqsave(&rnp_up->lock, flags);
			smp_mb__after_unlock_lock();
			if (rnp_up->expmaskinit)
				done = true;
			rnp_up->expmaskinit |= mask;
			raw_spin_unlock_irqrestore(&rnp_up->lock, flags);
			if (done)
				break;
			mask = rnp_up->grpmask;
			rnp_up = rnp_up->parent;
		}
	}
}

/*
 * Reset the ->expmask values in the rcu_node tree in preparation for
 * a new expedited grace period.
 */
static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	sync_exp_reset_tree_hotplug(rsp);
	rcu_for_each_node_breadth_first(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		smp_mb__after_unlock_lock();
		WARN_ON_ONCE(rnp->expmask);
		rnp->expmask = rnp->expmaskinit;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

3463
/*
3464
 * Return non-zero if there is no RCU expedited grace period in progress
3465 3466 3467 3468 3469 3470 3471 3472 3473
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
3474
	return rnp->exp_tasks == NULL &&
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
	       READ_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
3486 3487
 * Caller must hold the root rcu_node's exp_funnel_mutex and the
 * specified rcu_node structure's ->lock.
3488
 */
3489 3490 3491
static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
				 bool wake, unsigned long flags)
	__releases(rnp->lock)
3492 3493 3494 3495 3496
{
	unsigned long mask;

	for (;;) {
		if (!sync_rcu_preempt_exp_done(rnp)) {
3497 3498 3499 3500
			if (!rnp->expmask)
				rcu_initiate_boost(rnp, flags);
			else
				raw_spin_unlock_irqrestore(&rnp->lock, flags);
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
			break;
		}
		if (rnp->parent == NULL) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
			if (wake) {
				smp_mb(); /* EGP done before wake_up(). */
				wake_up(&rsp->expedited_wq);
			}
			break;
		}
		mask = rnp->grpmask;
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
		rnp = rnp->parent;
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
		smp_mb__after_unlock_lock();
3516
		WARN_ON_ONCE(!(rnp->expmask & mask));
3517 3518 3519 3520
		rnp->expmask &= ~mask;
	}
}

3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
/*
 * Report expedited quiescent state for specified node.  This is a
 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
 *
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
					      struct rcu_node *rnp, bool wake)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();
	__rcu_report_exp_rnp(rsp, rnp, wake, flags);
}

/*
 * Report expedited quiescent state for multiple CPUs, all covered by the
 * specified leaf rcu_node structure.  Caller must hold the root
 * rcu_node's exp_funnel_mutex.
 */
static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
				    unsigned long mask, bool wake)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();
	WARN_ON_ONCE((rnp->expmask & mask) != mask);
	rnp->expmask &= ~mask;
	__rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
}

/*
 * Report expedited quiescent state for specified rcu_data (CPU).
 * Caller must hold the root rcu_node's exp_funnel_mutex.
 */
static void __maybe_unused rcu_report_exp_rdp(struct rcu_state *rsp,
					      struct rcu_data *rdp, bool wake)
{
	rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
}

3564 3565
/* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
3566
			       struct rcu_data *rdp,
3567
			       atomic_long_t *stat, unsigned long s)
3568
{
3569
	if (rcu_exp_gp_seq_done(rsp, s)) {
3570 3571
		if (rnp)
			mutex_unlock(&rnp->exp_funnel_mutex);
3572 3573
		else if (rdp)
			mutex_unlock(&rdp->exp_funnel_mutex);
3574 3575 3576 3577 3578 3579 3580 3581
		/* Ensure test happens before caller kfree(). */
		smp_mb__before_atomic(); /* ^^^ */
		atomic_long_inc(stat);
		return true;
	}
	return false;
}

3582 3583 3584 3585 3586 3587 3588
/*
 * Funnel-lock acquisition for expedited grace periods.  Returns a
 * pointer to the root rcu_node structure, or NULL if some other
 * task did the expedited grace period for us.
 */
static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
{
3589
	struct rcu_data *rdp;
3590 3591 3592
	struct rcu_node *rnp0;
	struct rcu_node *rnp1 = NULL;

3593
	/*
3594 3595 3596 3597
	 * First try directly acquiring the root lock in order to reduce
	 * latency in the common case where expedited grace periods are
	 * rare.  We check mutex_is_locked() to avoid pathological levels of
	 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3598
	 */
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
	rnp0 = rcu_get_root(rsp);
	if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
		if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
			if (sync_exp_work_done(rsp, rnp0, NULL,
					       &rsp->expedited_workdone0, s))
				return NULL;
			return rnp0;
		}
	}

3609 3610 3611 3612 3613 3614 3615 3616
	/*
	 * Each pass through the following loop works its way
	 * up the rcu_node tree, returning if others have done the
	 * work or otherwise falls through holding the root rnp's
	 * ->exp_funnel_mutex.  The mapping from CPU to rcu_node structure
	 * can be inexact, as it is just promoting locality and is not
	 * strictly needed for correctness.
	 */
3617 3618 3619 3620 3621
	rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
	if (sync_exp_work_done(rsp, NULL, NULL, &rsp->expedited_workdone1, s))
		return NULL;
	mutex_lock(&rdp->exp_funnel_mutex);
	rnp0 = rdp->mynode;
3622
	for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3623 3624
		if (sync_exp_work_done(rsp, rnp1, rdp,
				       &rsp->expedited_workdone2, s))
3625 3626 3627 3628
			return NULL;
		mutex_lock(&rnp0->exp_funnel_mutex);
		if (rnp1)
			mutex_unlock(&rnp1->exp_funnel_mutex);
3629 3630
		else
			mutex_unlock(&rdp->exp_funnel_mutex);
3631 3632
		rnp1 = rnp0;
	}
3633 3634
	if (sync_exp_work_done(rsp, rnp1, rdp,
			       &rsp->expedited_workdone3, s))
3635 3636 3637 3638
		return NULL;
	return rnp1;
}

3639
/* Invoked on each online non-idle CPU for expedited quiescent state. */
3640 3641
static int synchronize_sched_expedited_cpu_stop(void *data)
{
3642 3643
	struct rcu_data *rdp = data;
	struct rcu_state *rsp = rdp->rsp;
3644

3645 3646
	/* Report the quiescent state. */
	rcu_report_exp_rdp(rsp, rdp, true);
3647 3648 3649
	return 0;
}

3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
/*
 * Select the nodes that the upcoming expedited grace period needs
 * to wait for.
 */
static void sync_sched_exp_select_cpus(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
	unsigned long mask_ofl_test;
	unsigned long mask_ofl_ipi;
	struct rcu_data *rdp;
	struct rcu_node *rnp;

	sync_exp_reset_tree(rsp);
	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		smp_mb__after_unlock_lock();

		/* Each pass checks a CPU for identity, offline, and idle. */
		mask_ofl_test = 0;
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

			if (raw_smp_processor_id() == cpu ||
			    cpu_is_offline(cpu) ||
			    !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
				mask_ofl_test |= rdp->grpmask;
		}
		mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;

		/*
		 * Need to wait for any blocked tasks as well.  Note that
		 * additional blocking tasks will also block the expedited
		 * GP until such time as the ->expmask bits are cleared.
		 */
		if (rcu_preempt_has_tasks(rnp))
			rnp->exp_tasks = rnp->blkd_tasks.next;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);

		/* IPI the remaining CPUs for expedited quiescent state. */
		mask = 1;
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
			if (!(mask_ofl_ipi & mask))
				continue;
			rdp = per_cpu_ptr(rsp->rda, cpu);
			stop_one_cpu_nowait(cpu, synchronize_sched_expedited_cpu_stop,
					    rdp, &rdp->exp_stop_work);
			mask_ofl_ipi &= ~mask;
		}
		/* Report quiescent states for those that went offline. */
		mask_ofl_test |= mask_ofl_ipi;
		if (mask_ofl_test)
			rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
	}
}

3708 3709 3710 3711 3712
static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
{
	int cpu;
	unsigned long jiffies_stall;
	unsigned long jiffies_start;
3713 3714 3715
	unsigned long mask;
	struct rcu_node *rnp;
	struct rcu_node *rnp_root = rcu_get_root(rsp);
3716 3717 3718 3719 3720 3721 3722 3723
	int ret;

	jiffies_stall = rcu_jiffies_till_stall_check();
	jiffies_start = jiffies;

	for (;;) {
		ret = wait_event_interruptible_timeout(
				rsp->expedited_wq,
3724
				sync_rcu_preempt_exp_done(rnp_root),
3725 3726 3727 3728 3729 3730
				jiffies_stall);
		if (ret > 0)
			return;
		if (ret < 0) {
			/* Hit a signal, disable CPU stall warnings. */
			wait_event(rsp->expedited_wq,
3731
				   sync_rcu_preempt_exp_done(rnp_root));
3732 3733 3734 3735
			return;
		}
		pr_err("INFO: %s detected expedited stalls on CPUs: {",
		       rsp->name);
3736 3737 3738 3739 3740 3741 3742 3743
		rcu_for_each_leaf_node(rsp, rnp) {
			mask = 1;
			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
				if (!(rnp->expmask & mask))
					continue;
				pr_cont(" %d", cpu);
			}
			mask <<= 1;
3744 3745 3746
		}
		pr_cont(" } %lu jiffies s: %lu\n",
			jiffies - jiffies_start, rsp->expedited_sequence);
3747 3748 3749 3750 3751 3752 3753
		rcu_for_each_leaf_node(rsp, rnp) {
			mask = 1;
			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
				if (!(rnp->expmask & mask))
					continue;
				dump_cpu_task(cpu);
			}
3754 3755 3756 3757 3758
		}
		jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
	}
}

3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
3769
 *
3770 3771 3772
 * This implementation can be thought of as an application of sequence
 * locking to expedited grace periods, but using the sequence counter to
 * determine when someone else has already done the work instead of for
3773
 * retrying readers.
3774 3775 3776
 */
void synchronize_sched_expedited(void)
{
3777
	unsigned long s;
3778
	struct rcu_node *rnp;
3779
	struct rcu_state *rsp = &rcu_sched_state;
3780

3781
	/* Take a snapshot of the sequence number.  */
3782
	s = rcu_exp_gp_seq_snap(rsp);
3783

3784 3785 3786 3787 3788 3789
	if (!try_get_online_cpus()) {
		/* CPU hotplug operation in flight, fall back to normal GP. */
		wait_rcu_gp(call_rcu_sched);
		atomic_long_inc(&rsp->expedited_normal);
		return;
	}
3790
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3791

3792
	rnp = exp_funnel_lock(rsp, s);
3793 3794
	if (rnp == NULL) {
		put_online_cpus();
3795
		return;  /* Someone else did our work for us. */
3796 3797
	}

3798
	rcu_exp_gp_seq_start(rsp);
3799 3800
	sync_sched_exp_select_cpus(rsp);
	synchronize_sched_expedited_wait(rsp);
3801

3802
	rcu_exp_gp_seq_end(rsp);
3803
	mutex_unlock(&rnp->exp_funnel_mutex);
3804 3805 3806 3807 3808

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3809 3810 3811 3812 3813 3814 3815 3816 3817
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3818 3819
	struct rcu_node *rnp = rdp->mynode;

3820 3821 3822 3823 3824
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3825 3826 3827 3828
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3829
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3830
	if (rcu_scheduler_fully_active &&
3831
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3832
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3833 3834
		rdp->n_rp_core_needs_qs++;
	} else if (rdp->core_needs_qs &&
3835
		   (!rdp->cpu_no_qs.b.norm ||
3836
		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3837
		rdp->n_rp_report_qs++;
3838
		return 1;
3839
	}
3840 3841

	/* Does this CPU have callbacks ready to invoke? */
3842 3843
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3844
		return 1;
3845
	}
3846 3847

	/* Has RCU gone idle with this CPU needing another grace period? */
3848 3849
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3850
		return 1;
3851
	}
3852 3853

	/* Has another RCU grace period completed?  */
3854
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3855
		rdp->n_rp_gp_completed++;
3856
		return 1;
3857
	}
3858 3859

	/* Has a new RCU grace period started? */
3860 3861
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3862
		rdp->n_rp_gp_started++;
3863
		return 1;
3864
	}
3865

3866 3867 3868 3869 3870 3871
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3872
	/* nothing to do */
3873
	rdp->n_rp_need_nothing++;
3874 3875 3876 3877 3878 3879 3880 3881
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3882
static int rcu_pending(void)
3883
{
3884 3885 3886
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3887
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3888 3889
			return 1;
	return 0;
3890 3891 3892
}

/*
3893 3894 3895
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3896
 */
3897
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3898
{
3899 3900 3901
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3902 3903
	struct rcu_state *rsp;

3904
	for_each_rcu_flavor(rsp) {
3905
		rdp = this_cpu_ptr(rsp->rda);
3906 3907 3908 3909
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3910
			al = false;
3911 3912
			break;
		}
3913 3914 3915 3916
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3917 3918
}

3919 3920 3921 3922
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3923
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3924 3925 3926 3927 3928 3929
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3930 3931 3932 3933
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3934
static void rcu_barrier_callback(struct rcu_head *rhp)
3935
{
3936 3937 3938
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3939
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3940
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3941
		complete(&rsp->barrier_completion);
3942
	} else {
3943
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3944
	}
3945 3946 3947 3948 3949 3950 3951
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3952
	struct rcu_state *rsp = type;
3953
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3954

3955
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3956
	atomic_inc(&rsp->barrier_cpu_count);
3957
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3958 3959 3960 3961 3962 3963
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3964
static void _rcu_barrier(struct rcu_state *rsp)
3965
{
3966 3967
	int cpu;
	struct rcu_data *rdp;
3968
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3969

3970
	_rcu_barrier_trace(rsp, "Begin", -1, s);
3971

3972
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3973
	mutex_lock(&rsp->barrier_mutex);
3974

3975 3976 3977
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3978 3979 3980 3981 3982
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

3983 3984 3985
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3986

3987
	/*
3988 3989
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3990 3991
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3992
	 */
3993
	init_completion(&rsp->barrier_completion);
3994
	atomic_set(&rsp->barrier_cpu_count, 1);
3995
	get_online_cpus();
3996 3997

	/*
3998 3999 4000
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
4001
	 */
P
Paul E. McKenney 已提交
4002
	for_each_possible_cpu(cpu) {
4003
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
4004
			continue;
4005
		rdp = per_cpu_ptr(rsp->rda, cpu);
4006
		if (rcu_is_nocb_cpu(cpu)) {
4007 4008
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4009
						   rsp->barrier_sequence);
4010 4011
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4012
						   rsp->barrier_sequence);
4013
				smp_mb__before_atomic();
4014 4015 4016 4017
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
4018
		} else if (READ_ONCE(rdp->qlen)) {
4019
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
4020
					   rsp->barrier_sequence);
4021
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4022
		} else {
4023
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4024
					   rsp->barrier_sequence);
4025 4026
		}
	}
4027
	put_online_cpus();
4028 4029 4030 4031 4032

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
4033
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4034
		complete(&rsp->barrier_completion);
4035 4036

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4037
	wait_for_completion(&rsp->barrier_completion);
4038

4039 4040 4041 4042
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

4043
	/* Other rcu_barrier() invocations can now safely proceed. */
4044
	mutex_unlock(&rsp->barrier_mutex);
4045 4046 4047 4048 4049 4050 4051
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
4052
	_rcu_barrier(&rcu_bh_state);
4053 4054 4055 4056 4057 4058 4059 4060
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
4061
	_rcu_barrier(&rcu_sched_state);
4062 4063 4064
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
		raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
		rnp->qsmaskinit |= mask;
		raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
	}
}

4087
/*
4088
 * Do boot-time initialization of a CPU's per-CPU RCU data.
4089
 */
4090 4091
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4092
{
4093
	static struct lock_class_key rcu_exp_sched_rdp_class;
4094
	unsigned long flags;
4095
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4096 4097 4098
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
4099
	raw_spin_lock_irqsave(&rnp->lock, flags);
4100 4101
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4102
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4103
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4104
	rdp->cpu = cpu;
4105
	rdp->rsp = rsp;
4106
	mutex_init(&rdp->exp_funnel_mutex);
P
Paul E. McKenney 已提交
4107
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
4108
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
4109 4110 4111 4112
	if (rsp == &rcu_sched_state)
		lockdep_set_class_and_name(&rdp->exp_funnel_mutex,
					   &rcu_exp_sched_rdp_class,
					   "rcu_data_exp_sched");
4113 4114 4115 4116 4117 4118 4119
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4120
 */
4121
static void
4122
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4123 4124 4125
{
	unsigned long flags;
	unsigned long mask;
4126
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4127 4128 4129
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
4130
	raw_spin_lock_irqsave(&rnp->lock, flags);
4131 4132
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
4133
	rdp->blimit = blimit;
4134 4135
	if (!rdp->nxtlist)
		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
4136
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4137
	rcu_sysidle_init_percpu_data(rdp->dynticks);
4138 4139
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
4140
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
4141

4142 4143 4144 4145 4146
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
4147 4148
	rnp = rdp->mynode;
	mask = rdp->grpmask;
4149 4150 4151
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
	smp_mb__after_unlock_lock();
	rnp->qsmaskinitnext |= mask;
4152 4153 4154 4155
	rnp->expmaskinitnext |= mask;
	if (!rdp->beenonline)
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
	rdp->beenonline = true;	 /* We have now been online. */
4156 4157
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
4158
	rdp->cpu_no_qs.b.norm = true;
4159
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4160
	rdp->core_needs_qs = false;
4161 4162
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
4163 4164
}

4165
static void rcu_prepare_cpu(int cpu)
4166
{
4167 4168 4169
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
4170
		rcu_init_percpu_data(cpu, rsp);
4171 4172 4173
}

/*
4174
 * Handle CPU online/offline notification events.
4175
 */
4176 4177
int rcu_cpu_notify(struct notifier_block *self,
		   unsigned long action, void *hcpu)
4178 4179
{
	long cpu = (long)hcpu;
4180
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4181
	struct rcu_node *rnp = rdp->mynode;
4182
	struct rcu_state *rsp;
4183 4184 4185 4186

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
4187 4188
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
4189
		rcu_spawn_all_nocb_kthreads(cpu);
4190 4191
		break;
	case CPU_ONLINE:
4192
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
4193
		rcu_boost_kthread_setaffinity(rnp, -1);
4194 4195
		break;
	case CPU_DOWN_PREPARE:
4196
		rcu_boost_kthread_setaffinity(rnp, cpu);
4197
		break;
4198 4199
	case CPU_DYING:
	case CPU_DYING_FROZEN:
4200 4201
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
4202
		break;
4203 4204 4205 4206 4207
	case CPU_DYING_IDLE:
		for_each_rcu_flavor(rsp) {
			rcu_cleanup_dying_idle_cpu(cpu, rsp);
		}
		break;
4208 4209 4210 4211
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
4212
		for_each_rcu_flavor(rsp) {
4213
			rcu_cleanup_dead_cpu(cpu, rsp);
4214 4215
			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
		}
4216 4217 4218 4219
		break;
	default:
		break;
	}
4220
	return NOTIFY_OK;
4221 4222
}

4223 4224 4225 4226 4227 4228 4229
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4230
			rcu_expedite_gp();
4231 4232 4233
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
4234 4235
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
4236 4237 4238 4239 4240 4241 4242
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

4243
/*
4244
 * Spawn the kthreads that handle each RCU flavor's grace periods.
4245 4246 4247 4248
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
4249
	int kthread_prio_in = kthread_prio;
4250 4251
	struct rcu_node *rnp;
	struct rcu_state *rsp;
4252
	struct sched_param sp;
4253 4254
	struct task_struct *t;

4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

4266
	rcu_scheduler_fully_active = 1;
4267
	for_each_rcu_flavor(rsp) {
4268
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4269 4270 4271 4272
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
4273 4274 4275 4276 4277
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
		wake_up_process(t);
4278 4279
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
4280
	rcu_spawn_nocb_kthreads();
4281
	rcu_spawn_boost_kthreads();
4282 4283 4284 4285
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

4301 4302
/*
 * Compute the per-level fanout, either using the exact fanout specified
4303
 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4304
 */
4305
static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4306 4307 4308
{
	int i;

4309
	if (rcu_fanout_exact) {
4310
		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4311
		for (i = rcu_num_lvls - 2; i >= 0; i--)
4312
			levelspread[i] = RCU_FANOUT;
4313 4314 4315 4316 4317 4318
	} else {
		int ccur;
		int cprv;

		cprv = nr_cpu_ids;
		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4319 4320
			ccur = levelcnt[i];
			levelspread[i] = (cprv + ccur - 1) / ccur;
4321 4322
			cprv = ccur;
		}
4323 4324 4325 4326 4327 4328
	}
}

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
4329 4330
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
4331
{
4332 4333
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4334
	static const char * const exp[] = RCU_EXP_NAME_INIT;
4335
	static const char * const exp_sched[] = RCU_EXP_SCHED_NAME_INIT;
4336
	static u8 fl_mask = 0x1;
4337 4338 4339

	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4340 4341 4342 4343 4344
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4345
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4346

4347 4348 4349
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4350

4351 4352
	/* Initialize the level-tracking arrays. */

4353
	for (i = 0; i < rcu_num_lvls; i++)
4354
		levelcnt[i] = num_rcu_lvl[i];
4355
	for (i = 1; i < rcu_num_lvls; i++)
4356 4357
		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
	rcu_init_levelspread(levelspread, levelcnt);
4358 4359
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
4360 4361 4362

	/* Initialize the elements themselves, starting from the leaves. */

4363
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4364
		cpustride *= levelspread[i];
4365
		rnp = rsp->level[i];
4366
		for (j = 0; j < levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
4367
			raw_spin_lock_init(&rnp->lock);
4368 4369
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
4370 4371 4372
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4373 4374
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4375 4376 4377 4378
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4379 4380
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4381 4382 4383 4384 4385
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4386
				rnp->grpnum = j % levelspread[i - 1];
4387 4388
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4389
					      j / levelspread[i - 1];
4390 4391
			}
			rnp->level = i;
4392
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4393
			rcu_init_one_nocb(rnp);
4394
			mutex_init(&rnp->exp_funnel_mutex);
4395 4396 4397 4398 4399 4400 4401 4402
			if (rsp == &rcu_sched_state)
				lockdep_set_class_and_name(
					&rnp->exp_funnel_mutex,
					&rcu_exp_sched_class[i], exp_sched[i]);
			else
				lockdep_set_class_and_name(
					&rnp->exp_funnel_mutex,
					&rcu_exp_class[i], exp[i]);
4403 4404
		}
	}
4405

4406
	init_waitqueue_head(&rsp->gp_wq);
4407
	init_waitqueue_head(&rsp->expedited_wq);
4408
	rnp = rsp->level[rcu_num_lvls - 1];
4409
	for_each_possible_cpu(i) {
4410
		while (i > rnp->grphi)
4411
			rnp++;
4412
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4413 4414
		rcu_boot_init_percpu_data(i, rsp);
	}
4415
	list_add(&rsp->flavors, &rcu_struct_flavors);
4416 4417
}

4418 4419
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4420
 * replace the definitions in tree.h because those are needed to size
4421 4422 4423 4424
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4425
	ulong d;
4426
	int i;
4427
	int rcu_capacity[RCU_NUM_LVLS];
4428

4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4442
	/* If the compile-time values are accurate, just leave. */
4443
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4444
	    nr_cpu_ids == NR_CPUS)
4445
		return;
4446 4447
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4448 4449 4450 4451 4452

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
4453 4454
	 * the rcu_node masks.  Complain and fall back to the compile-
	 * time values if these limits are exceeded.
4455
	 */
4456
	if (rcu_fanout_leaf < RCU_FANOUT_LEAF ||
4457
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4458
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4459 4460 4461 4462 4463 4464
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4465
	 * with the given number of levels.
4466
	 */
4467
	rcu_capacity[0] = rcu_fanout_leaf;
4468
	for (i = 1; i < RCU_NUM_LVLS; i++)
4469
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4470 4471

	/*
4472 4473
	 * The tree must be able to accommodate the configured number of CPUs.
	 * If this limit is exceeded than we have a serious problem elsewhere.
4474
	 */
4475
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1])
4476
		panic("rcu_init_geometry: rcu_capacity[] is too small");
4477

4478
	/* Calculate the number of levels in the tree. */
4479
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4480
	}
4481
	rcu_num_lvls = i + 1;
4482

4483
	/* Calculate the number of rcu_nodes at each level of the tree. */
4484
	for (i = 0; i < rcu_num_lvls; i++) {
4485
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4486 4487
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4488 4489 4490

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4491
	for (i = 0; i < rcu_num_lvls; i++)
4492 4493 4494
		rcu_num_nodes += num_rcu_lvl[i];
}

4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4517
void __init rcu_init(void)
4518
{
P
Paul E. McKenney 已提交
4519
	int cpu;
4520

4521 4522
	rcu_early_boot_tests();

4523
	rcu_bootup_announce();
4524
	rcu_init_geometry();
4525
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
4526
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
4527 4528
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4529
	__rcu_init_preempt();
J
Jiang Fang 已提交
4530
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4531 4532 4533 4534 4535 4536 4537

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
4538
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
4539 4540
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4541 4542
}

4543
#include "tree_plugin.h"