tree.c 130.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
35
#include <linux/rcupdate_wait.h>
36 37
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/sched/debug.h>
39
#include <linux/nmi.h>
40
#include <linux/atomic.h>
41
#include <linux/bitops.h>
42
#include <linux/export.h>
43 44 45 46 47 48 49
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <uapi/linux/sched/types.h>
54
#include <linux/prefetch.h>
55 56
#include <linux/delay.h>
#include <linux/stop_machine.h>
57
#include <linux/random.h>
58
#include <linux/trace_events.h>
59
#include <linux/suspend.h>
60

61
#include "tree.h"
62
#include "rcu.h"
63

64 65 66 67 68
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71 72 73 74 75 76 77 78
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
79 80
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
81
static char sname##_varname[] = #sname; \
82 83 84 85 86 87 88 89 90
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
91
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92
struct rcu_state sname##_state = { \
93
	.level = { &sname##_state.node[0] }, \
94
	.rda = &sname##_data, \
95
	.call = cr, \
96
	.gp_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
97 98
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
99
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 101
	.orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
	.orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
102
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103
	.name = RCU_STATE_NAME(sname), \
104
	.abbr = sabbr, \
105
	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106
	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107
}
108

109 110
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
111

112
static struct rcu_state *const rcu_state_p;
113
LIST_HEAD(rcu_struct_flavors);
114

115 116 117
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
118 119 120
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
121 122
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
123
module_param(rcu_fanout_leaf, int, 0444);
124
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
125
/* Number of rcu_nodes at specified level. */
126
int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
127
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128 129
/* panic() on RCU Stall sysctl. */
int sysctl_panic_on_rcu_stall __read_mostly;
130

131
/*
132 133 134 135
 * The rcu_scheduler_active variable is initialized to the value
 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 * RCU can assume that there is but one task, allowing RCU to (for example)
136
 * optimize synchronize_rcu() to a simple barrier().  When this variable
137 138 139 140 141
 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 * to detect real grace periods.  This variable is also used to suppress
 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 * is fully initialized, including all of its kthreads having been spawned.
142
 */
143 144 145
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

160 161
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
162
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
163 164
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
165 166
static void rcu_report_exp_rdp(struct rcu_state *rsp,
			       struct rcu_data *rdp, bool wake);
167
static void sync_sched_exp_online_cleanup(int cpu);
168

169
/* rcuc/rcub kthread realtime priority */
170
#ifdef CONFIG_RCU_KTHREAD_PRIO
171
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
172 173 174
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
175 176
module_param(kthread_prio, int, 0644);

177
/* Delay in jiffies for grace-period initialization delays, debug only. */
178 179 180 181 182 183 184 185

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

186 187
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
188
module_param(gp_init_delay, int, 0644);
189 190 191
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
192

193 194 195 196 197 198 199
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

200 201
/*
 * Number of grace periods between delays, normalized by the duration of
202
 * the delay.  The longer the delay, the more the grace periods between
203 204 205 206 207 208 209
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
210

211 212 213 214 215 216 217 218 219 220 221 222
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

223 224 225 226 227 228 229 230
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
231
	return READ_ONCE(rnp->qsmaskinitnext);
232 233
}

234
/*
235
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
236 237 238 239 240
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
241
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
242 243
}

244
/*
245
 * Note a quiescent state.  Because we do not need to know
246
 * how many quiescent states passed, just if there was at least
247
 * one since the start of the grace period, this just sets a flag.
248
 * The caller must have disabled preemption.
249
 */
250
void rcu_sched_qs(void)
251
{
252 253 254 255 256 257 258 259
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
		return;
	trace_rcu_grace_period(TPS("rcu_sched"),
			       __this_cpu_read(rcu_sched_data.gpnum),
			       TPS("cpuqs"));
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
260 261 262
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(&rcu_sched_data), true);
263 264
}

265
void rcu_bh_qs(void)
266
{
267
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
268 269 270
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
271
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
272
	}
273
}
274

275 276 277 278 279 280 281 282 283
/*
 * Steal a bit from the bottom of ->dynticks for idle entry/exit
 * control.  Initially this is for TLB flushing.
 */
#define RCU_DYNTICK_CTRL_MASK 0x1
#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
#ifndef rcu_eqs_special_exit
#define rcu_eqs_special_exit() do { } while (0)
#endif
284 285 286

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
287
	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
288 289 290 291 292 293
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

294 295 296 297 298 299 300
/*
 * Record entry into an extended quiescent state.  This is only to be
 * called when not already in an extended quiescent state.
 */
static void rcu_dynticks_eqs_enter(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
301
	int seq;
302 303

	/*
304
	 * CPUs seeing atomic_add_return() must see prior RCU read-side
305 306 307
	 * critical sections, and we also must force ordering with the
	 * next idle sojourn.
	 */
308 309 310 311 312 313 314
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
	/* Better be in an extended quiescent state! */
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (seq & RCU_DYNTICK_CTRL_CTR));
	/* Better not have special action (TLB flush) pending! */
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (seq & RCU_DYNTICK_CTRL_MASK));
315 316 317 318 319 320 321 322 323
}

/*
 * Record exit from an extended quiescent state.  This is only to be
 * called from an extended quiescent state.
 */
static void rcu_dynticks_eqs_exit(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
324
	int seq;
325 326

	/*
327
	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
328 329 330
	 * and we also must force ordering with the next RCU read-side
	 * critical section.
	 */
331 332 333 334 335 336 337 338 339
	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(seq & RCU_DYNTICK_CTRL_CTR));
	if (seq & RCU_DYNTICK_CTRL_MASK) {
		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
		smp_mb__after_atomic(); /* _exit after clearing mask. */
		/* Prefer duplicate flushes to losing a flush. */
		rcu_eqs_special_exit();
	}
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
}

/*
 * Reset the current CPU's ->dynticks counter to indicate that the
 * newly onlined CPU is no longer in an extended quiescent state.
 * This will either leave the counter unchanged, or increment it
 * to the next non-quiescent value.
 *
 * The non-atomic test/increment sequence works because the upper bits
 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 * or when the corresponding CPU is offline.
 */
static void rcu_dynticks_eqs_online(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

356
	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
357
		return;
358
	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
359 360
}

361 362 363 364 365 366 367 368 369
/*
 * Is the current CPU in an extended quiescent state?
 *
 * No ordering, as we are sampling CPU-local information.
 */
bool rcu_dynticks_curr_cpu_in_eqs(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

370
	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
371 372
}

373 374 375 376
/*
 * Snapshot the ->dynticks counter with full ordering so as to allow
 * stable comparison of this counter with past and future snapshots.
 */
377
int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
378 379 380
{
	int snap = atomic_add_return(0, &rdtp->dynticks);

381
	return snap & ~RCU_DYNTICK_CTRL_MASK;
382 383
}

384 385 386 387 388 389
/*
 * Return true if the snapshot returned from rcu_dynticks_snap()
 * indicates that RCU is in an extended quiescent state.
 */
static bool rcu_dynticks_in_eqs(int snap)
{
390
	return !(snap & RCU_DYNTICK_CTRL_CTR);
391 392 393 394 395 396 397 398 399 400 401 402
}

/*
 * Return true if the CPU corresponding to the specified rcu_dynticks
 * structure has spent some time in an extended quiescent state since
 * rcu_dynticks_snap() returned the specified snapshot.
 */
static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
{
	return snap != rcu_dynticks_snap(rdtp);
}

403 404 405 406 407 408 409
/*
 * Do a double-increment of the ->dynticks counter to emulate a
 * momentary idle-CPU quiescent state.
 */
static void rcu_dynticks_momentary_idle(void)
{
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
410 411
	int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
					&rdtp->dynticks);
412 413

	/* It is illegal to call this from idle state. */
414
	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
415 416
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
/*
 * Set the special (bottom) bit of the specified CPU so that it
 * will take special action (such as flushing its TLB) on the
 * next exit from an extended quiescent state.  Returns true if
 * the bit was successfully set, or false if the CPU was not in
 * an extended quiescent state.
 */
bool rcu_eqs_special_set(int cpu)
{
	int old;
	int new;
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

	do {
		old = atomic_read(&rdtp->dynticks);
		if (old & RCU_DYNTICK_CTRL_CTR)
			return false;
		new = old | RCU_DYNTICK_CTRL_MASK;
	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
	return true;
437
}
438

439 440 441 442 443 444 445
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
446
 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
447 448
 *
 * The caller must have disabled interrupts.
449 450 451
 */
static void rcu_momentary_dyntick_idle(void)
{
452 453
	raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
	rcu_dynticks_momentary_idle();
454 455
}

456 457 458
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
459
 * The caller must have disabled interrupts.
460
 */
461
void rcu_note_context_switch(bool preempt)
462
{
463
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
464
	trace_rcu_utilization(TPS("Start context switch"));
465
	rcu_sched_qs();
466
	rcu_preempt_note_context_switch();
467 468 469 470
	/* Load rcu_urgent_qs before other flags. */
	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
		goto out;
	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
471
	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
472
		rcu_momentary_dyntick_idle();
473
	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
474 475
	if (!preempt)
		rcu_note_voluntary_context_switch_lite(current);
476
out:
477
	trace_rcu_utilization(TPS("End context switch"));
478
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
479
}
480
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
481

482
/*
483
 * Register a quiescent state for all RCU flavors.  If there is an
484 485
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
486
 * RCU flavors in desperate need of a quiescent state, which will normally
487 488
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
489 490 491 492 493
 *
 * The barrier() calls are redundant in the common case when this is
 * called externally, but just in case this is called from within this
 * file.
 *
494 495 496
 */
void rcu_all_qs(void)
{
497 498
	unsigned long flags;

499 500 501 502 503 504 505 506 507
	if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
		return;
	preempt_disable();
	/* Load rcu_urgent_qs before other flags. */
	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
		preempt_enable();
		return;
	}
	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
508
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
509
	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
510
		local_irq_save(flags);
511
		rcu_momentary_dyntick_idle();
512 513
		local_irq_restore(flags);
	}
514
	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
515
		rcu_sched_qs();
516
	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
517
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
518
	preempt_enable();
519 520 521
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
522 523 524
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
525

E
Eric Dumazet 已提交
526 527 528
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
529

530 531
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
532
static bool rcu_kick_kthreads;
533 534 535

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);
536
module_param(rcu_kick_kthreads, bool, 0644);
537

538 539 540 541 542 543 544
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

545
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
546
				  struct rcu_data *rdp);
547 548 549 550
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
551
static void force_quiescent_state(struct rcu_state *rsp);
552
static int rcu_pending(void);
553 554

/*
555
 * Return the number of RCU batches started thus far for debug & stats.
556
 */
557 558 559 560 561 562 563 564
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
565
 */
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
592
 */
593
unsigned long rcu_batches_completed_sched(void)
594
{
595
	return rcu_sched_state.completed;
596
}
597
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
598 599

/*
600
 * Return the number of RCU BH batches completed thus far for debug & stats.
601
 */
602
unsigned long rcu_batches_completed_bh(void)
603 604 605 606 607
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/*
 * Return the number of RCU expedited batches completed thus far for
 * debug & stats.  Odd numbers mean that a batch is in progress, even
 * numbers mean idle.  The value returned will thus be roughly double
 * the cumulative batches since boot.
 */
unsigned long rcu_exp_batches_completed(void)
{
	return rcu_state_p->expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);

/*
 * Return the number of RCU-sched expedited batches completed thus far
 * for debug & stats.  Similar to rcu_exp_batches_completed().
 */
unsigned long rcu_exp_batches_completed_sched(void)
{
	return rcu_sched_state.expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);

630 631 632 633 634
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
635
	force_quiescent_state(rcu_state_p);
636 637 638
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

639 640 641 642 643
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
644
	force_quiescent_state(&rcu_bh_state);
645 646 647
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

648 649 650 651 652 653 654 655 656
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

672 673 674 675 676 677 678 679 680 681 682 683 684 685
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

686 687 688 689 690 691 692 693 694 695
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
696
		rsp = rcu_state_p;
697 698 699 700 701 702 703 704 705 706 707
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
708 709 710
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
711 712 713 714 715 716 717 718
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

719 720 721 722 723 724 725 726 727 728 729
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
746
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
747 748
	int *fp = &rnp->need_future_gp[idx];

749
	return READ_ONCE(*fp);
750 751
}

752
/*
753 754 755
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
756
 */
757
static bool
758 759
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
760
	if (rcu_gp_in_progress(rsp))
761
		return false;  /* No, a grace period is already in progress. */
762
	if (rcu_future_needs_gp(rsp))
763
		return true;  /* Yes, a no-CBs CPU needs one. */
764
	if (!rcu_segcblist_is_enabled(&rdp->cblist))
765
		return false;  /* No, this is a no-CBs (or offline) CPU. */
766
	if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
767
		return true;  /* Yes, CPU has newly registered callbacks. */
768 769 770
	if (rcu_segcblist_future_gp_needed(&rdp->cblist,
					   READ_ONCE(rsp->completed)))
		return true;  /* Yes, CBs for future grace period. */
771
	return false; /* No grace period needed. */
772 773
}

774
/*
775
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
776 777 778 779 780
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
781
static void rcu_eqs_enter_common(long long oldval, bool user)
782
{
783 784
	struct rcu_state *rsp;
	struct rcu_data *rdp;
785
	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
786

787
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
788 789
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
790 791
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
792

793
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
794
		rcu_ftrace_dump(DUMP_ORIG);
795 796 797
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
798
	}
799 800 801 802
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
803
	rcu_prepare_for_idle();
804
	rcu_dynticks_eqs_enter();
805
	rcu_dynticks_task_enter();
806 807

	/*
808
	 * It is illegal to enter an extended quiescent state while
809 810
	 * in an RCU read-side critical section.
	 */
811 812 813 814 815 816
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal idle entry in RCU read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
			 "Illegal idle entry in RCU-bh read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
			 "Illegal idle entry in RCU-sched read-side critical section.");
817
}
818

819 820 821
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
822
 */
823
static void rcu_eqs_enter(bool user)
824
{
825
	long long oldval;
826 827
	struct rcu_dynticks *rdtp;

828
	rdtp = this_cpu_ptr(&rcu_dynticks);
829
	oldval = rdtp->dynticks_nesting;
830 831
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
832
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
833
		rdtp->dynticks_nesting = 0;
834
		rcu_eqs_enter_common(oldval, user);
835
	} else {
836
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
837
	}
838
}
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
854 855 856
	unsigned long flags;

	local_irq_save(flags);
857
	rcu_eqs_enter(false);
858
	rcu_sysidle_enter(0);
859
	local_irq_restore(flags);
860
}
861
EXPORT_SYMBOL_GPL(rcu_idle_enter);
862

863
#ifdef CONFIG_NO_HZ_FULL
864 865 866 867 868 869 870 871 872 873
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
874
	rcu_eqs_enter(1);
875
}
876
#endif /* CONFIG_NO_HZ_FULL */
877

878 879 880 881 882
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
883
 * sections can occur.  The caller must have disabled interrupts.
884
 *
885 886 887 888 889 890 891 892
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
893
 */
894
void rcu_irq_exit(void)
895
{
896
	long long oldval;
897 898
	struct rcu_dynticks *rdtp;

899
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
900
	rdtp = this_cpu_ptr(&rcu_dynticks);
901
	oldval = rdtp->dynticks_nesting;
902
	rdtp->dynticks_nesting--;
903 904
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting < 0);
905
	if (rdtp->dynticks_nesting)
906
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
907
	else
908 909
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
910 911 912 913 914 915 916 917 918 919 920
}

/*
 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 */
void rcu_irq_exit_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_exit();
921 922 923 924
	local_irq_restore(flags);
}

/*
925
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
926 927 928 929 930
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
931
static void rcu_eqs_exit_common(long long oldval, int user)
932
{
933
	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
934

935
	rcu_dynticks_task_exit();
936
	rcu_dynticks_eqs_exit();
937
	rcu_cleanup_after_idle();
938
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
939 940
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
941 942
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
943

944
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
945
				  oldval, rdtp->dynticks_nesting);
946
		rcu_ftrace_dump(DUMP_ORIG);
947 948 949
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
950 951 952
	}
}

953 954 955
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
956
 */
957
static void rcu_eqs_exit(bool user)
958 959 960 961
{
	struct rcu_dynticks *rdtp;
	long long oldval;

962
	rdtp = this_cpu_ptr(&rcu_dynticks);
963
	oldval = rdtp->dynticks_nesting;
964
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
965
	if (oldval & DYNTICK_TASK_NEST_MASK) {
966
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
967
	} else {
968
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
969
		rcu_eqs_exit_common(oldval, user);
970
	}
971
}
972 973 974 975 976 977 978 979 980 981 982 983 984 985

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
986 987 988
	unsigned long flags;

	local_irq_save(flags);
989
	rcu_eqs_exit(false);
990
	rcu_sysidle_exit(0);
991
	local_irq_restore(flags);
992
}
993
EXPORT_SYMBOL_GPL(rcu_idle_exit);
994

995
#ifdef CONFIG_NO_HZ_FULL
996 997 998 999 1000 1001 1002 1003
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
1004
	rcu_eqs_exit(1);
1005
}
1006
#endif /* CONFIG_NO_HZ_FULL */
1007

1008 1009 1010 1011 1012
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
1013
 * sections can occur.  The caller must have disabled interrupts.
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	struct rcu_dynticks *rdtp;
	long long oldval;

1032
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1033
	rdtp = this_cpu_ptr(&rcu_dynticks);
1034 1035
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
1036 1037
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
1038
	if (oldval)
1039
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1040
	else
1041 1042
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
}

/*
 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 */
void rcu_irq_enter_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_enter();
1054 1055 1056 1057 1058 1059
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
1060 1061 1062 1063 1064
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
1065 1066 1067
 */
void rcu_nmi_enter(void)
{
1068
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1069
	int incby = 2;
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
1082
	if (rcu_dynticks_curr_cpu_in_eqs()) {
1083
		rcu_dynticks_eqs_exit();
1084 1085 1086 1087
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
1088 1089 1090 1091 1092
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
1093 1094 1095 1096
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
1097 1098 1099
 */
void rcu_nmi_exit(void)
{
1100
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1101

1102 1103 1104 1105 1106 1107
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1108
	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1109 1110 1111 1112 1113 1114 1115

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
1116
		return;
1117 1118 1119 1120
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
1121
	rcu_dynticks_eqs_enter();
1122 1123 1124
}

/**
1125 1126 1127 1128 1129 1130 1131
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
1132
bool notrace __rcu_is_watching(void)
1133
{
1134
	return !rcu_dynticks_curr_cpu_in_eqs();
1135 1136 1137 1138
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1139
 *
1140
 * If the current CPU is in its idle loop and is neither in an interrupt
1141
 * or NMI handler, return true.
1142
 */
1143
bool notrace rcu_is_watching(void)
1144
{
1145
	bool ret;
1146

1147
	preempt_disable_notrace();
1148
	ret = __rcu_is_watching();
1149
	preempt_enable_notrace();
1150
	return ret;
1151
}
1152
EXPORT_SYMBOL_GPL(rcu_is_watching);
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/*
 * If a holdout task is actually running, request an urgent quiescent
 * state from its CPU.  This is unsynchronized, so migrations can cause
 * the request to go to the wrong CPU.  Which is OK, all that will happen
 * is that the CPU's next context switch will be a bit slower and next
 * time around this task will generate another request.
 */
void rcu_request_urgent_qs_task(struct task_struct *t)
{
	int cpu;

	barrier();
	cpu = task_cpu(t);
	if (!task_curr(t))
		return; /* This task is not running on that CPU. */
	smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
}

1172
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1173 1174 1175 1176 1177 1178 1179

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
1180 1181 1182 1183 1184 1185
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
1186 1187
 * the fact that a CPU enters the scheduler after completing the teardown
 * of the CPU.
1188
 *
1189 1190
 * This is also why RCU internally marks CPUs online during in the
 * preparation phase and offline after the CPU has been taken down.
1191 1192 1193 1194 1195 1196
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1197 1198
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1199 1200 1201
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1202
		return true;
1203
	preempt_disable();
1204
	rdp = this_cpu_ptr(&rcu_sched_data);
1205
	rnp = rdp->mynode;
1206
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1207 1208 1209 1210 1211 1212
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1213
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1214

1215
/**
1216
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1217
 *
1218 1219 1220
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1221
 */
1222
static int rcu_is_cpu_rrupt_from_idle(void)
1223
{
1224
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1225 1226 1227 1228 1229
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1230
 * is in dynticks idle mode, which is an extended quiescent state.
1231
 */
1232 1233
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1234
{
1235
	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1236
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1237
	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1238
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1239
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1240
				 rdp->mynode->gpnum))
1241
			WRITE_ONCE(rdp->gpwrap, true);
1242
		return 1;
1243
	}
1244
	return 0;
1245 1246 1247 1248 1249 1250
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1251
 * for this same CPU, or by virtue of having been offline.
1252
 */
1253 1254
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1255
{
1256
	unsigned long jtsq;
1257
	bool *rnhqp;
1258
	bool *ruqp;
1259 1260
	unsigned long rjtsc;
	struct rcu_node *rnp;
1261 1262 1263 1264 1265 1266 1267 1268 1269

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1270
	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1271
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1272 1273 1274 1275
		rdp->dynticks_fqs++;
		return 1;
	}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	/* Compute and saturate jiffies_till_sched_qs. */
	jtsq = jiffies_till_sched_qs;
	rjtsc = rcu_jiffies_till_stall_check();
	if (jtsq > rjtsc / 2) {
		WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
		jtsq = rjtsc / 2;
	} else if (jtsq < 1) {
		WRITE_ONCE(jiffies_till_sched_qs, 1);
		jtsq = 1;
	}

1287
	/*
1288 1289 1290 1291
	 * Has this CPU encountered a cond_resched_rcu_qs() since the
	 * beginning of the grace period?  For this to be the case,
	 * the CPU has to have noticed the current grace period.  This
	 * might not be the case for nohz_full CPUs looping in the kernel.
1292
	 */
1293
	rnp = rdp->mynode;
1294
	ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1295
	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1296
	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1297 1298 1299
	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
		return 1;
1300 1301 1302
	} else {
		/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
		smp_store_release(ruqp, true);
1303 1304
	}

1305 1306
	/* Check for the CPU being offline. */
	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1307
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1308 1309 1310
		rdp->offline_fqs++;
		return 1;
	}
1311 1312

	/*
1313 1314 1315 1316 1317 1318
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
1319
	 * rcu_need_heavy_qs variable are safe.  Yes, setting of
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1332
	 */
1333 1334 1335 1336 1337
	rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
	if (!READ_ONCE(*rnhqp) &&
	    (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
	     time_after(jiffies, rdp->rsp->jiffies_resched))) {
		WRITE_ONCE(*rnhqp, true);
1338 1339
		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
		smp_store_release(ruqp, true);
1340
		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1341 1342
	}

1343 1344 1345 1346 1347 1348
	/*
	 * If more than halfway to RCU CPU stall-warning time, do
	 * a resched_cpu() to try to loosen things up a bit.
	 */
	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
		resched_cpu(rdp->cpu);
1349

1350
	return 0;
1351 1352 1353 1354
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1355
	unsigned long j = jiffies;
1356
	unsigned long j1;
1357 1358 1359

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1360
	j1 = rcu_jiffies_till_stall_check();
1361
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1362
	rsp->jiffies_resched = j + j1 / 2;
1363
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1364 1365
}

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
/*
 * Convert a ->gp_state value to a character string.
 */
static const char *gp_state_getname(short gs)
{
	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
		return "???";
	return gp_state_names[gs];
}

1376 1377 1378 1379 1380 1381 1382 1383 1384
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1385
	gpa = READ_ONCE(rsp->gp_activity);
1386
	if (j - gpa > 2 * HZ) {
1387
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1388
		       rsp->name, j - gpa,
1389
		       rsp->gpnum, rsp->completed,
1390 1391
		       rsp->gp_flags,
		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1392
		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1393
		if (rsp->gp_kthread) {
1394
			sched_show_task(rsp->gp_kthread);
1395 1396
			wake_up_process(rsp->gp_kthread);
		}
1397
	}
1398 1399
}

1400
/*
1401 1402 1403 1404
 * Dump stacks of all tasks running on stalled CPUs.  First try using
 * NMIs, but fall back to manual remote stack tracing on architectures
 * that don't support NMI-based stack dumps.  The NMI-triggered stack
 * traces are more accurate because they are printed by the target CPU.
1405 1406 1407 1408 1409 1410 1411 1412
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
1413
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1414 1415 1416
		for_each_leaf_node_possible_cpu(rnp, cpu)
			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
				if (!trigger_single_cpu_backtrace(cpu))
1417
					dump_cpu_task(cpu);
B
Boqun Feng 已提交
1418
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1419 1420 1421
	}
}

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
/*
 * If too much time has passed in the current grace period, and if
 * so configured, go kick the relevant kthreads.
 */
static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
{
	unsigned long j;

	if (!rcu_kick_kthreads)
		return;
	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1433 1434
	if (time_after(jiffies, j) && rsp->gp_kthread &&
	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1435
		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1436
		rcu_ftrace_dump(DUMP_ALL);
1437 1438 1439 1440 1441
		wake_up_process(rsp->gp_kthread);
		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
	}
}

1442 1443 1444 1445 1446 1447
static inline void panic_on_rcu_stall(void)
{
	if (sysctl_panic_on_rcu_stall)
		panic("RCU Stall\n");
}

1448
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1449 1450 1451 1452
{
	int cpu;
	long delta;
	unsigned long flags;
1453 1454
	unsigned long gpa;
	unsigned long j;
1455
	int ndetected = 0;
1456
	struct rcu_node *rnp = rcu_get_root(rsp);
1457
	long totqlen = 0;
1458

1459 1460 1461 1462 1463
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1464 1465
	/* Only let one CPU complain about others per time interval. */

1466
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1467
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1468
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
B
Boqun Feng 已提交
1469
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1470 1471
		return;
	}
1472 1473
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1474
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1475

1476 1477 1478 1479 1480
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1481
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1482
	       rsp->name);
1483
	print_cpu_stall_info_begin();
1484
	rcu_for_each_leaf_node(rsp, rnp) {
1485
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1486
		ndetected += rcu_print_task_stall(rnp);
1487
		if (rnp->qsmask != 0) {
1488 1489 1490
			for_each_leaf_node_possible_cpu(rnp, cpu)
				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
					print_cpu_stall_info(rsp, cpu);
1491 1492 1493
					ndetected++;
				}
		}
B
Boqun Feng 已提交
1494
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1495
	}
1496 1497

	print_cpu_stall_info_end();
1498
	for_each_possible_cpu(cpu)
1499 1500
		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
							    cpu)->cblist);
1501
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1502
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1503
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1504
	if (ndetected) {
1505
		rcu_dump_cpu_stacks(rsp);
1506 1507 1508

		/* Complain about tasks blocking the grace period. */
		rcu_print_detail_task_stall(rsp);
1509
	} else {
1510 1511
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1512 1513 1514
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1515
			gpa = READ_ONCE(rsp->gp_activity);
1516
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1517
			       rsp->name, j - gpa, j, gpa,
1518 1519
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1520 1521 1522 1523
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1524

1525 1526
	rcu_check_gp_kthread_starvation(rsp);

1527 1528
	panic_on_rcu_stall();

1529
	force_quiescent_state(rsp);  /* Kick them all. */
1530 1531 1532 1533
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1534
	int cpu;
1535 1536
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1537
	long totqlen = 0;
1538

1539 1540 1541 1542 1543
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1544 1545 1546 1547 1548
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1549
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1550 1551 1552
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1553
	for_each_possible_cpu(cpu)
1554 1555
		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
							    cpu)->cblist);
1556 1557 1558
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1559 1560 1561

	rcu_check_gp_kthread_starvation(rsp);

1562
	rcu_dump_cpu_stacks(rsp);
1563

1564
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1565 1566 1567
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1568
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1569

1570 1571
	panic_on_rcu_stall();

1572 1573 1574 1575 1576 1577 1578 1579
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1580 1581 1582 1583
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1584 1585 1586
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1587 1588
	unsigned long j;
	unsigned long js;
1589 1590
	struct rcu_node *rnp;

1591 1592
	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
	    !rcu_gp_in_progress(rsp))
1593
		return;
1594
	rcu_stall_kick_kthreads(rsp);
1595
	j = jiffies;
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1614
	gpnum = READ_ONCE(rsp->gpnum);
1615
	smp_rmb(); /* Pick up ->gpnum first... */
1616
	js = READ_ONCE(rsp->jiffies_stall);
1617
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1618
	gps = READ_ONCE(rsp->gp_start);
1619
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1620
	completed = READ_ONCE(rsp->completed);
1621 1622 1623 1624
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1625
	rnp = rdp->mynode;
1626
	if (rcu_gp_in_progress(rsp) &&
1627
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1628 1629 1630 1631

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1632 1633
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1634

1635
		/* They had a few time units to dump stack, so complain. */
1636
		print_other_cpu_stall(rsp, gpnum);
1637 1638 1639
	}
}

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1651 1652 1653
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1654
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1655 1656
}

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1686 1687 1688 1689 1690
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1691
				unsigned long c, const char *s)
1692 1693 1694 1695 1696 1697 1698 1699 1700
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1701 1702
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1703 1704 1705
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1706 1707 1708
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1709 1710
{
	unsigned long c;
1711
	bool ret = false;
1712 1713 1714 1715 1716 1717 1718
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1719
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1720
	if (rnp->need_future_gp[c & 0x1]) {
1721
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1722
		goto out;
1723 1724 1725 1726 1727 1728 1729
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1730 1731 1732 1733 1734 1735 1736
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1737 1738
	 */
	if (rnp->gpnum != rnp->completed ||
1739
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1740
		rnp->need_future_gp[c & 0x1]++;
1741
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1742
		goto out;
1743 1744 1745 1746 1747 1748 1749
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1750 1751
	if (rnp != rnp_root)
		raw_spin_lock_rcu_node(rnp_root);
1752 1753 1754 1755

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
1756
	 * earlier.  Adjust callbacks as needed.
1757 1758
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1759 1760
	if (!rcu_is_nocb_cpu(rdp->cpu))
		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1761 1762 1763 1764 1765 1766

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1767
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1768 1769 1770 1771 1772 1773 1774 1775
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1776
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1777
	} else {
1778
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1779
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1780 1781 1782
	}
unlock_out:
	if (rnp != rnp_root)
B
Boqun Feng 已提交
1783
		raw_spin_unlock_rcu_node(rnp_root);
1784 1785 1786 1787
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1788 1789 1790 1791
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
1792
 * whether any additional grace periods have been requested.
1793 1794 1795 1796 1797 1798 1799 1800 1801
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1802 1803
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1804 1805 1806
	return needmore;
}

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1817
	    !READ_ONCE(rsp->gp_flags) ||
1818 1819
	    !rsp->gp_kthread)
		return;
1820
	swake_up(&rsp->gp_wq);
1821 1822
}

1823 1824 1825 1826 1827 1828 1829
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1830 1831
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1832 1833 1834
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1835
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1836 1837
			       struct rcu_data *rdp)
{
1838
	bool ret = false;
1839

1840 1841
	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1842
		return false;
1843 1844

	/*
1845 1846 1847 1848 1849 1850 1851 1852
	 * Callbacks are often registered with incomplete grace-period
	 * information.  Something about the fact that getting exact
	 * information requires acquiring a global lock...  RCU therefore
	 * makes a conservative estimate of the grace period number at which
	 * a given callback will become ready to invoke.	The following
	 * code checks this estimate and improves it when possible, thus
	 * accelerating callback invocation to an earlier grace-period
	 * number.
1853
	 */
1854 1855
	if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
		ret = rcu_start_future_gp(rnp, rdp, NULL);
1856 1857

	/* Trace depending on how much we were able to accelerate. */
1858
	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1859
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1860
	else
1861
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1862
	return ret;
1863 1864 1865 1866 1867 1868 1869 1870
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1871
 * Returns true if the RCU grace-period kthread needs to be awakened.
1872 1873 1874
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1875
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1876 1877
			    struct rcu_data *rdp)
{
1878 1879
	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1880
		return false;
1881 1882 1883 1884 1885

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
1886
	rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1887 1888

	/* Classify any remaining callbacks. */
1889
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1890 1891
}

1892
/*
1893 1894 1895
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1896
 * Returns true if the grace-period kthread needs to be awakened.
1897
 */
1898 1899
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1900
{
1901
	bool ret;
1902
	bool need_gp;
1903

1904
	/* Handle the ends of any preceding grace periods first. */
1905
	if (rdp->completed == rnp->completed &&
1906
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1907

1908
		/* No grace period end, so just accelerate recent callbacks. */
1909
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1910

1911 1912 1913
	} else {

		/* Advance callbacks. */
1914
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1915 1916 1917

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1918
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1919
	}
1920

1921
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1922 1923 1924 1925 1926 1927
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1928
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1929 1930
		need_gp = !!(rnp->qsmask & rdp->grpmask);
		rdp->cpu_no_qs.b.norm = need_gp;
1931
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1932
		rdp->core_needs_qs = need_gp;
1933
		zero_cpu_stall_ticks(rdp);
1934
		WRITE_ONCE(rdp->gpwrap, false);
1935
	}
1936
	return ret;
1937 1938
}

1939
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1940 1941
{
	unsigned long flags;
1942
	bool needwake;
1943 1944 1945 1946
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1947 1948 1949
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1950
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1951 1952 1953
		local_irq_restore(flags);
		return;
	}
1954
	needwake = __note_gp_changes(rsp, rnp, rdp);
B
Boqun Feng 已提交
1955
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1956 1957
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1958 1959
}

1960 1961 1962 1963 1964 1965 1966
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

1967
/*
1968
 * Initialize a new grace period.  Return false if no grace period required.
1969
 */
1970
static bool rcu_gp_init(struct rcu_state *rsp)
1971
{
1972
	unsigned long oldmask;
1973
	struct rcu_data *rdp;
1974
	struct rcu_node *rnp = rcu_get_root(rsp);
1975

1976
	WRITE_ONCE(rsp->gp_activity, jiffies);
1977
	raw_spin_lock_irq_rcu_node(rnp);
1978
	if (!READ_ONCE(rsp->gp_flags)) {
1979
		/* Spurious wakeup, tell caller to go back to sleep.  */
B
Boqun Feng 已提交
1980
		raw_spin_unlock_irq_rcu_node(rnp);
1981
		return false;
1982
	}
1983
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1984

1985 1986 1987 1988 1989
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
B
Boqun Feng 已提交
1990
		raw_spin_unlock_irq_rcu_node(rnp);
1991
		return false;
1992 1993 1994
	}

	/* Advance to a new grace period and initialize state. */
1995
	record_gp_stall_check_time(rsp);
1996 1997
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1998
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
B
Boqun Feng 已提交
1999
	raw_spin_unlock_irq_rcu_node(rnp);
2000

2001 2002 2003 2004 2005 2006 2007
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
2008
		rcu_gp_slow(rsp, gp_preinit_delay);
2009
		raw_spin_lock_irq_rcu_node(rnp);
2010 2011 2012
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
B
Boqun Feng 已提交
2013
			raw_spin_unlock_irq_rcu_node(rnp);
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

B
Boqun Feng 已提交
2047
		raw_spin_unlock_irq_rcu_node(rnp);
2048
	}
2049 2050 2051 2052 2053 2054 2055 2056

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
2057
	 * leaf node has been initialized.
2058 2059 2060 2061 2062
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2063
		rcu_gp_slow(rsp, gp_init_delay);
2064
		raw_spin_lock_irq_rcu_node(rnp);
2065
		rdp = this_cpu_ptr(rsp->rda);
2066 2067
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
2068
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2069
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2070
			WRITE_ONCE(rnp->completed, rsp->completed);
2071
		if (rnp == rdp->mynode)
2072
			(void)__note_gp_changes(rsp, rnp, rdp);
2073 2074 2075 2076
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
B
Boqun Feng 已提交
2077
		raw_spin_unlock_irq_rcu_node(rnp);
2078
		cond_resched_rcu_qs();
2079
		WRITE_ONCE(rsp->gp_activity, jiffies);
2080
	}
2081

2082
	return true;
2083
}
2084

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
/*
 * Helper function for wait_event_interruptible_timeout() wakeup
 * at force-quiescent-state time.
 */
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rsp->gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

2105 2106 2107
/*
 * Do one round of quiescent-state forcing.
 */
2108
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2109
{
2110 2111
	bool isidle = false;
	unsigned long maxj;
2112 2113
	struct rcu_node *rnp = rcu_get_root(rsp);

2114
	WRITE_ONCE(rsp->gp_activity, jiffies);
2115
	rsp->n_force_qs++;
2116
	if (first_time) {
2117
		/* Collect dyntick-idle snapshots. */
2118
		if (is_sysidle_rcu_state(rsp)) {
2119
			isidle = true;
2120 2121
			maxj = jiffies - ULONG_MAX / 4;
		}
2122 2123
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
2124
		rcu_sysidle_report_gp(rsp, isidle, maxj);
2125 2126
	} else {
		/* Handle dyntick-idle and offline CPUs. */
2127
		isidle = true;
2128
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2129 2130
	}
	/* Clear flag to prevent immediate re-entry. */
2131
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2132
		raw_spin_lock_irq_rcu_node(rnp);
2133 2134
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2135
		raw_spin_unlock_irq_rcu_node(rnp);
2136 2137 2138
	}
}

2139 2140 2141
/*
 * Clean up after the old grace period.
 */
2142
static void rcu_gp_cleanup(struct rcu_state *rsp)
2143 2144
{
	unsigned long gp_duration;
2145
	bool needgp = false;
2146
	int nocb = 0;
2147 2148
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
2149
	struct swait_queue_head *sq;
2150

2151
	WRITE_ONCE(rsp->gp_activity, jiffies);
2152
	raw_spin_lock_irq_rcu_node(rnp);
2153 2154 2155
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
2156

2157 2158 2159 2160 2161 2162 2163 2164
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
B
Boqun Feng 已提交
2165
	raw_spin_unlock_irq_rcu_node(rnp);
2166

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2177
		raw_spin_lock_irq_rcu_node(rnp);
2178 2179
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
2180
		WRITE_ONCE(rnp->completed, rsp->gpnum);
2181 2182
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
2183
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2184
		/* smp_mb() provided by prior unlock-lock pair. */
2185
		nocb += rcu_future_gp_cleanup(rsp, rnp);
2186
		sq = rcu_nocb_gp_get(rnp);
B
Boqun Feng 已提交
2187
		raw_spin_unlock_irq_rcu_node(rnp);
2188
		rcu_nocb_gp_cleanup(sq);
2189
		cond_resched_rcu_qs();
2190
		WRITE_ONCE(rsp->gp_activity, jiffies);
2191
		rcu_gp_slow(rsp, gp_cleanup_delay);
2192
	}
2193
	rnp = rcu_get_root(rsp);
2194
	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2195
	rcu_nocb_gp_set(rnp, nocb);
2196

2197
	/* Declare grace period done. */
2198
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2199
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2200
	rsp->gp_state = RCU_GP_IDLE;
2201
	rdp = this_cpu_ptr(rsp->rda);
2202 2203 2204
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2205
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2206
		trace_rcu_grace_period(rsp->name,
2207
				       READ_ONCE(rsp->gpnum),
2208 2209
				       TPS("newreq"));
	}
B
Boqun Feng 已提交
2210
	raw_spin_unlock_irq_rcu_node(rnp);
2211 2212 2213 2214 2215 2216 2217
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2218
	bool first_gp_fqs;
2219
	int gf;
2220
	unsigned long j;
2221
	int ret;
2222 2223 2224
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2225
	rcu_bind_gp_kthread();
2226 2227 2228 2229
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2230
			trace_rcu_grace_period(rsp->name,
2231
					       READ_ONCE(rsp->gpnum),
2232
					       TPS("reqwait"));
2233
			rsp->gp_state = RCU_GP_WAIT_GPS;
2234
			swait_event_interruptible(rsp->gp_wq,
2235
						 READ_ONCE(rsp->gp_flags) &
2236
						 RCU_GP_FLAG_INIT);
2237
			rsp->gp_state = RCU_GP_DONE_GPS;
2238
			/* Locking provides needed memory barrier. */
2239
			if (rcu_gp_init(rsp))
2240
				break;
2241
			cond_resched_rcu_qs();
2242
			WRITE_ONCE(rsp->gp_activity, jiffies);
2243
			WARN_ON(signal_pending(current));
2244
			trace_rcu_grace_period(rsp->name,
2245
					       READ_ONCE(rsp->gpnum),
2246
					       TPS("reqwaitsig"));
2247
		}
2248

2249
		/* Handle quiescent-state forcing. */
2250
		first_gp_fqs = true;
2251 2252 2253 2254 2255
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2256
		ret = 0;
2257
		for (;;) {
2258
			if (!ret) {
2259
				rsp->jiffies_force_qs = jiffies + j;
2260 2261 2262
				WRITE_ONCE(rsp->jiffies_kick_kthreads,
					   jiffies + 3 * j);
			}
2263
			trace_rcu_grace_period(rsp->name,
2264
					       READ_ONCE(rsp->gpnum),
2265
					       TPS("fqswait"));
2266
			rsp->gp_state = RCU_GP_WAIT_FQS;
2267
			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2268
					rcu_gp_fqs_check_wake(rsp, &gf), j);
2269
			rsp->gp_state = RCU_GP_DOING_FQS;
2270
			/* Locking provides needed memory barriers. */
2271
			/* If grace period done, leave loop. */
2272
			if (!READ_ONCE(rnp->qsmask) &&
2273
			    !rcu_preempt_blocked_readers_cgp(rnp))
2274
				break;
2275
			/* If time for quiescent-state forcing, do it. */
2276 2277
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2278
				trace_rcu_grace_period(rsp->name,
2279
						       READ_ONCE(rsp->gpnum),
2280
						       TPS("fqsstart"));
2281 2282
				rcu_gp_fqs(rsp, first_gp_fqs);
				first_gp_fqs = false;
2283
				trace_rcu_grace_period(rsp->name,
2284
						       READ_ONCE(rsp->gpnum),
2285
						       TPS("fqsend"));
2286
				cond_resched_rcu_qs();
2287
				WRITE_ONCE(rsp->gp_activity, jiffies);
2288 2289 2290 2291 2292 2293 2294 2295 2296
				ret = 0; /* Force full wait till next FQS. */
				j = jiffies_till_next_fqs;
				if (j > HZ) {
					j = HZ;
					jiffies_till_next_fqs = HZ;
				} else if (j < 1) {
					j = 1;
					jiffies_till_next_fqs = 1;
				}
2297 2298
			} else {
				/* Deal with stray signal. */
2299
				cond_resched_rcu_qs();
2300
				WRITE_ONCE(rsp->gp_activity, jiffies);
2301
				WARN_ON(signal_pending(current));
2302
				trace_rcu_grace_period(rsp->name,
2303
						       READ_ONCE(rsp->gpnum),
2304
						       TPS("fqswaitsig"));
2305 2306 2307 2308 2309 2310
				ret = 1; /* Keep old FQS timing. */
				j = jiffies;
				if (time_after(jiffies, rsp->jiffies_force_qs))
					j = 1;
				else
					j = rsp->jiffies_force_qs - j;
2311
			}
2312
		}
2313 2314

		/* Handle grace-period end. */
2315
		rsp->gp_state = RCU_GP_CLEANUP;
2316
		rcu_gp_cleanup(rsp);
2317
		rsp->gp_state = RCU_GP_CLEANED;
2318 2319 2320
	}
}

2321 2322 2323
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2324
 * the root node's ->lock and hard irqs must be disabled.
2325 2326 2327 2328
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2329 2330
 *
 * Returns true if the grace-period kthread must be awakened.
2331
 */
2332
static bool
2333 2334
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2335
{
2336
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2337
		/*
2338
		 * Either we have not yet spawned the grace-period
2339 2340
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2341
		 * Either way, don't start a new grace period.
2342
		 */
2343
		return false;
2344
	}
2345 2346
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2347
			       TPS("newreq"));
2348

2349 2350
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2351
	 * could cause possible deadlocks with the rq->lock. Defer
2352
	 * the wakeup to our caller.
2353
	 */
2354
	return true;
2355 2356
}

2357 2358 2359 2360 2361 2362
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2363 2364
 *
 * Returns true if the grace-period kthread needs to be awakened.
2365
 */
2366
static bool rcu_start_gp(struct rcu_state *rsp)
2367 2368 2369
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2370
	bool ret = false;
2371 2372 2373 2374 2375 2376 2377 2378 2379

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2380 2381 2382
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2383 2384
}

2385
/*
2386 2387 2388 2389 2390 2391 2392
 * Report a full set of quiescent states to the specified rcu_state data
 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
 * kthread if another grace period is required.  Whether we wake
 * the grace-period kthread or it awakens itself for the next round
 * of quiescent-state forcing, that kthread will clean up after the
 * just-completed grace period.  Note that the caller must hold rnp->lock,
 * which is released before return.
2393
 */
P
Paul E. McKenney 已提交
2394
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2395
	__releases(rcu_get_root(rsp)->lock)
2396
{
2397
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2398
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2399
	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2400
	rcu_gp_kthread_wake(rsp);
2401 2402
}

2403
/*
P
Paul E. McKenney 已提交
2404 2405 2406
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2407 2408 2409 2410 2411
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2412 2413
 */
static void
P
Paul E. McKenney 已提交
2414
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2415
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2416 2417
	__releases(rnp->lock)
{
2418
	unsigned long oldmask = 0;
2419 2420
	struct rcu_node *rnp_c;

2421 2422
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2423
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2424

2425 2426 2427 2428
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
B
Boqun Feng 已提交
2429
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2430 2431
			return;
		}
2432
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2433
		rnp->qsmask &= ~mask;
2434 2435 2436 2437
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2438
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2439 2440

			/* Other bits still set at this level, so done. */
B
Boqun Feng 已提交
2441
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2442 2443 2444 2445 2446 2447 2448 2449 2450
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
B
Boqun Feng 已提交
2451
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2452
		rnp_c = rnp;
2453
		rnp = rnp->parent;
2454
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2455
		oldmask = rnp_c->qsmask;
2456 2457 2458 2459
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2460
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2461
	 * to clean up and start the next grace period if one is needed.
2462
	 */
P
Paul E. McKenney 已提交
2463
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2464 2465
}

2466 2467 2468 2469 2470 2471 2472
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2473
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2474 2475 2476
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2477
	unsigned long gps;
2478 2479 2480
	unsigned long mask;
	struct rcu_node *rnp_p;

2481 2482
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
B
Boqun Feng 已提交
2483
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2484 2485 2486 2487 2488 2489
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2490 2491
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2492 2493 2494 2495 2496
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2497 2498
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2499
	mask = rnp->grpmask;
B
Boqun Feng 已提交
2500
	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2501
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2502
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2503 2504
}

2505
/*
P
Paul E. McKenney 已提交
2506
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2507
 * structure.  This must be called from the specified CPU.
2508 2509
 */
static void
2510
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2511 2512 2513
{
	unsigned long flags;
	unsigned long mask;
2514
	bool needwake;
2515 2516 2517
	struct rcu_node *rnp;

	rnp = rdp->mynode;
2518
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2519 2520
	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2521 2522

		/*
2523 2524 2525 2526
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2527
		 */
2528
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2529
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
B
Boqun Feng 已提交
2530
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2531 2532 2533 2534
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
B
Boqun Feng 已提交
2535
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2536
	} else {
2537
		rdp->core_needs_qs = false;
2538 2539 2540 2541 2542

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2543
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2544

2545 2546
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2547 2548
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2561 2562
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2563 2564 2565 2566 2567

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
2568
	if (!rdp->core_needs_qs)
2569 2570 2571 2572 2573 2574
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2575
	if (rdp->cpu_no_qs.b.norm)
2576 2577
		return;

P
Paul E. McKenney 已提交
2578 2579 2580 2581
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2582
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2583 2584
}

2585
/*
2586 2587
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2588
 * ->orphan_lock.
2589
 */
2590 2591 2592
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2593
{
P
Paul E. McKenney 已提交
2594
	/* No-CBs CPUs do not have orphanable callbacks. */
2595
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2596 2597
		return;

2598 2599
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2600 2601
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2602
	 */
2603 2604
	rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
	rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
2605 2606

	/*
2607 2608 2609 2610 2611
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
2612
	 */
2613
	rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2614 2615

	/*
2616 2617 2618
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2619
	 */
2620
	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
2621

2622 2623
	/* Finally, disallow further callbacks on this CPU.  */
	rcu_segcblist_disable(&rdp->cblist);
2624 2625 2626 2627
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2628
 * orphanage.  The caller must hold the ->orphan_lock.
2629
 */
2630
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2631
{
2632
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2633

P
Paul E. McKenney 已提交
2634
	/* No-CBs CPUs are handled specially. */
2635 2636
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2637 2638
		return;

2639
	/* Do the accounting first. */
2640 2641 2642
	rdp->n_cbs_adopted += rcu_cblist_n_cbs(&rsp->orphan_done);
	if (rcu_cblist_n_lazy_cbs(&rsp->orphan_done) !=
	    rcu_cblist_n_cbs(&rsp->orphan_done))
2643
		rcu_idle_count_callbacks_posted();
2644
	rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
2645 2646 2647 2648 2649 2650 2651

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

2652 2653 2654 2655 2656 2657 2658
	/* First adopt the ready-to-invoke callbacks, then the done ones. */
	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
	WARN_ON_ONCE(!rcu_cblist_empty(&rsp->orphan_done));
	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
	WARN_ON_ONCE(!rcu_cblist_empty(&rsp->orphan_pend));
	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
		     !rcu_segcblist_n_cbs(&rdp->cblist));
2659 2660 2661 2662 2663 2664 2665
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
2666 2667 2668
	RCU_TRACE(unsigned long mask;)
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2669

2670 2671 2672
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2673
	RCU_TRACE(mask = rdp->grpmask;)
2674 2675
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2676
			       TPS("cpuofl"));
2677 2678
}

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2701 2702
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2703 2704 2705 2706 2707 2708
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
2709
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2710
		rnp->qsmaskinit &= ~mask;
2711
		rnp->qsmask &= ~mask;
2712
		if (rnp->qsmaskinit) {
B
Boqun Feng 已提交
2713 2714
			raw_spin_unlock_rcu_node(rnp);
			/* irqs remain disabled. */
2715 2716
			return;
		}
B
Boqun Feng 已提交
2717
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2718 2719 2720
	}
}

2721
/*
2722
 * The CPU has been completely removed, and some other CPU is reporting
2723 2724
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2725 2726
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2727
 */
2728
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2729
{
2730
	unsigned long flags;
2731
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2732
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2733

2734 2735 2736
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2737
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2738
	rcu_boost_kthread_setaffinity(rnp, -1);
2739

2740
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2741
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2742
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2743
	rcu_adopt_orphan_cbs(rsp, flags);
2744
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2745

2746 2747 2748 2749 2750
	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
		  !rcu_segcblist_empty(&rdp->cblist),
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
		  rcu_segcblist_first_cb(&rdp->cblist));
2751 2752 2753 2754 2755 2756
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2757
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2758 2759
{
	unsigned long flags;
2760 2761 2762
	struct rcu_head *rhp;
	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
	long bl, count;
2763

2764
	/* If no callbacks are ready, just return. */
2765 2766 2767 2768 2769 2770
	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
		trace_rcu_batch_start(rsp->name,
				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
		trace_rcu_batch_end(rsp->name, 0,
				    !rcu_segcblist_empty(&rdp->cblist),
2771 2772
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2773
		return;
2774
	}
2775 2776 2777

	/*
	 * Extract the list of ready callbacks, disabling to prevent
2778 2779
	 * races with call_rcu() from interrupt handlers.  Leave the
	 * callback counts, as rcu_barrier() needs to be conservative.
2780 2781
	 */
	local_irq_save(flags);
2782
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2783
	bl = rdp->blimit;
2784 2785 2786
	trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2787 2788 2789
	local_irq_restore(flags);

	/* Invoke callbacks. */
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
	rhp = rcu_cblist_dequeue(&rcl);
	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
		debug_rcu_head_unqueue(rhp);
		if (__rcu_reclaim(rsp->name, rhp))
			rcu_cblist_dequeued_lazy(&rcl);
		/*
		 * Stop only if limit reached and CPU has something to do.
		 * Note: The rcl structure counts down from zero.
		 */
		if (-rcu_cblist_n_cbs(&rcl) >= bl &&
2800 2801
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2802 2803 2804 2805
			break;
	}

	local_irq_save(flags);
2806 2807 2808
	count = -rcu_cblist_n_cbs(&rcl);
	trace_rcu_batch_end(rsp->name, count, !rcu_cblist_empty(&rcl),
			    need_resched(), is_idle_task(current),
2809
			    rcu_is_callbacks_kthread());
2810

2811 2812
	/* Update counts and requeue any remaining callbacks. */
	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2813 2814
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->n_cbs_invoked += count;
2815
	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2816 2817

	/* Reinstate batch limit if we have worked down the excess. */
2818 2819
	count = rcu_segcblist_n_cbs(&rdp->cblist);
	if (rdp->blimit == LONG_MAX && count <= qlowmark)
2820 2821
		rdp->blimit = blimit;

2822
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2823
	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2824 2825
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
2826 2827 2828
	} else if (count < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = count;
	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2829

2830 2831
	local_irq_restore(flags);

2832
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2833
	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2834
		invoke_rcu_core();
2835 2836 2837 2838 2839
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2840
 * Also schedule RCU core processing.
2841
 *
2842
 * This function must be called from hardirq context.  It is normally
2843
 * invoked from the scheduling-clock interrupt.
2844
 */
2845
void rcu_check_callbacks(int user)
2846
{
2847
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2848
	increment_cpu_stall_ticks();
2849
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2850 2851 2852 2853 2854

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2855
		 * a quiescent state, so note it.
2856 2857
		 *
		 * No memory barrier is required here because both
2858 2859 2860
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2861 2862
		 */

2863 2864
		rcu_sched_qs();
		rcu_bh_qs();
2865 2866 2867 2868 2869 2870 2871

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2872
		 * critical section, so note it.
2873 2874
		 */

2875
		rcu_bh_qs();
2876
	}
2877
	rcu_preempt_check_callbacks();
2878
	if (rcu_pending())
2879
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2880 2881
	if (user)
		rcu_note_voluntary_context_switch(current);
2882
	trace_rcu_utilization(TPS("End scheduler-tick"));
2883 2884 2885 2886 2887
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2888 2889
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2890
 * The caller must have suppressed start of new grace periods.
2891
 */
2892 2893 2894 2895
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2896 2897 2898 2899
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
2900
	struct rcu_node *rnp;
2901

2902
	rcu_for_each_leaf_node(rsp, rnp) {
2903
		cond_resched_rcu_qs();
2904
		mask = 0;
2905
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2906
		if (rnp->qsmask == 0) {
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2930
		}
2931 2932
		for_each_leaf_node_possible_cpu(rnp, cpu) {
			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2933 2934 2935 2936
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2937
		}
2938
		if (mask != 0) {
2939 2940
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2941 2942
		} else {
			/* Nothing to do here, so just drop the lock. */
B
Boqun Feng 已提交
2943
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2944 2945 2946 2947 2948 2949 2950 2951
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2952
static void force_quiescent_state(struct rcu_state *rsp)
2953 2954
{
	unsigned long flags;
2955 2956 2957 2958 2959
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2960
	rnp = __this_cpu_read(rsp->rda->mynode);
2961
	for (; rnp != NULL; rnp = rnp->parent) {
2962
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2963 2964 2965 2966
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2967
			rsp->n_force_qs_lh++;
2968 2969 2970 2971 2972
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2973

2974
	/* Reached the root of the rcu_node tree, acquire lock. */
2975
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2976
	raw_spin_unlock(&rnp_old->fqslock);
2977
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2978
		rsp->n_force_qs_lh++;
B
Boqun Feng 已提交
2979
		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2980
		return;  /* Someone beat us to it. */
2981
	}
2982
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2983
	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2984
	rcu_gp_kthread_wake(rsp);
2985 2986 2987
}

/*
2988 2989 2990
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2991 2992
 */
static void
2993
__rcu_process_callbacks(struct rcu_state *rsp)
2994 2995
{
	unsigned long flags;
2996
	bool needwake;
2997
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2998

N
Nicholas Mc Guire 已提交
2999
	WARN_ON_ONCE(!rdp->beenonline);
3000

3001 3002 3003 3004
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
3005
	local_irq_save(flags);
3006
	if (cpu_needs_another_gp(rsp, rdp)) {
3007
		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3008
		needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3009
		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3010 3011
		if (needwake)
			rcu_gp_kthread_wake(rsp);
3012 3013
	} else {
		local_irq_restore(flags);
3014 3015 3016
	}

	/* If there are callbacks ready, invoke them. */
3017
	if (rcu_segcblist_ready_cbs(&rdp->cblist))
3018
		invoke_rcu_callbacks(rsp, rdp);
3019 3020 3021

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
3022 3023
}

3024
/*
3025
 * Do RCU core processing for the current CPU.
3026
 */
3027
static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3028
{
3029 3030
	struct rcu_state *rsp;

3031 3032
	if (cpu_is_offline(smp_processor_id()))
		return;
3033
	trace_rcu_utilization(TPS("Start RCU core"));
3034 3035
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
3036
	trace_rcu_utilization(TPS("End RCU core"));
3037 3038
}

3039
/*
3040 3041 3042
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
3043
 * are running on the current CPU with softirqs disabled, the
3044
 * rcu_cpu_kthread_task cannot disappear out from under us.
3045
 */
3046
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3047
{
3048
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3049
		return;
3050 3051
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
3052 3053
		return;
	}
3054
	invoke_rcu_callbacks_kthread();
3055 3056
}

3057
static void invoke_rcu_core(void)
3058
{
3059 3060
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
3061 3062
}

3063 3064 3065 3066 3067
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
3068
{
3069 3070
	bool needwake;

3071 3072 3073 3074
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
3075
	if (!rcu_is_watching())
3076 3077
		invoke_rcu_core();

3078
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3079
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3080
		return;
3081

3082 3083 3084 3085 3086 3087 3088
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
3089 3090
	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
		     rdp->qlen_last_fqs_check + qhimark)) {
3091 3092

		/* Are we ignoring a completed grace period? */
3093
		note_gp_changes(rsp, rdp);
3094 3095 3096 3097 3098

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

3099
			raw_spin_lock_rcu_node(rnp_root);
3100
			needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3101
			raw_spin_unlock_rcu_node(rnp_root);
3102 3103
			if (needwake)
				rcu_gp_kthread_wake(rsp);
3104 3105 3106 3107
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3108
			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3109
				force_quiescent_state(rsp);
3110
			rdp->n_force_qs_snap = rsp->n_force_qs;
3111
			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3112
		}
3113
	}
3114 3115
}

3116 3117 3118 3119 3120 3121 3122
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3123 3124 3125 3126 3127 3128
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3129
static void
3130
__call_rcu(struct rcu_head *head, rcu_callback_t func,
P
Paul E. McKenney 已提交
3131
	   struct rcu_state *rsp, int cpu, bool lazy)
3132 3133 3134 3135
{
	unsigned long flags;
	struct rcu_data *rdp;

3136 3137 3138
	/* Misaligned rcu_head! */
	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));

3139 3140
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3141
		WRITE_ONCE(head->func, rcu_leak_callback);
3142 3143 3144
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3145 3146 3147
	head->func = func;
	head->next = NULL;
	local_irq_save(flags);
3148
	rdp = this_cpu_ptr(rsp->rda);
3149 3150

	/* Add the callback to our list. */
3151
	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
P
Paul E. McKenney 已提交
3152 3153 3154 3155
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3169
		WARN_ON_ONCE(!rcu_is_watching());
3170 3171
		if (rcu_segcblist_empty(&rdp->cblist))
			rcu_segcblist_init(&rdp->cblist);
3172
	}
3173 3174
	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
	if (!lazy)
3175
		rcu_idle_count_callbacks_posted();
3176

3177 3178
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3179 3180
					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
					 rcu_segcblist_n_cbs(&rdp->cblist));
3181
	else
3182 3183 3184
		trace_rcu_callback(rsp->name, head,
				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
				   rcu_segcblist_n_cbs(&rdp->cblist));
3185

3186 3187
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3188 3189 3190 3191
	local_irq_restore(flags);
}

/*
3192
 * Queue an RCU-sched callback for invocation after a grace period.
3193
 */
3194
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3195
{
P
Paul E. McKenney 已提交
3196
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3197
}
3198
EXPORT_SYMBOL_GPL(call_rcu_sched);
3199 3200

/*
3201
 * Queue an RCU callback for invocation after a quicker grace period.
3202
 */
3203
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3204
{
P
Paul E. McKenney 已提交
3205
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3206 3207 3208
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3209 3210 3211 3212 3213 3214 3215 3216
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
3217
		    rcu_callback_t func)
3218
{
3219
	__call_rcu(head, func, rcu_state_p, -1, 1);
3220 3221 3222
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3234 3235
	int ret;

3236
	might_sleep();  /* Check for RCU read-side critical section. */
3237 3238 3239 3240
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3241 3242
}

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3277 3278 3279 3280 3281 3282 3283 3284 3285
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3286 3287 3288 3289
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3290 3291
	if (rcu_blocking_is_gp())
		return;
3292
	if (rcu_gp_is_expedited())
3293 3294 3295
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3307 3308 3309
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3310 3311 3312
 */
void synchronize_rcu_bh(void)
{
3313 3314 3315 3316
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3317 3318
	if (rcu_blocking_is_gp())
		return;
3319
	if (rcu_gp_is_expedited())
3320 3321 3322
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3323 3324 3325
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3346
	return smp_load_acquire(&rcu_state_p->gpnum);
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3372
	newstate = smp_load_acquire(&rcu_state_p->completed);
3373 3374 3375 3376 3377
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
/**
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_sched(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_sched()
	 * and cond_synchronize_sched().
	 */
	return smp_load_acquire(&rcu_sched_state.gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);

/**
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 *
 * If a full RCU-sched grace period has elapsed since the earlier call to
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 * synchronize_sched() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_sched(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_sched_state.completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(cond_synchronize_sched);

3430 3431 3432 3433 3434 3435 3436 3437 3438
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3439 3440
	struct rcu_node *rnp = rdp->mynode;

3441 3442 3443 3444 3445
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3446 3447 3448 3449
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3450
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3451
	if (rcu_scheduler_fully_active &&
3452
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3453
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3454
		rdp->n_rp_core_needs_qs++;
3455
	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3456
		rdp->n_rp_report_qs++;
3457
		return 1;
3458
	}
3459 3460

	/* Does this CPU have callbacks ready to invoke? */
3461
	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3462
		rdp->n_rp_cb_ready++;
3463
		return 1;
3464
	}
3465 3466

	/* Has RCU gone idle with this CPU needing another grace period? */
3467 3468
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3469
		return 1;
3470
	}
3471 3472

	/* Has another RCU grace period completed?  */
3473
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3474
		rdp->n_rp_gp_completed++;
3475
		return 1;
3476
	}
3477 3478

	/* Has a new RCU grace period started? */
3479 3480
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3481
		rdp->n_rp_gp_started++;
3482
		return 1;
3483
	}
3484

3485 3486 3487 3488 3489 3490
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3491
	/* nothing to do */
3492
	rdp->n_rp_need_nothing++;
3493 3494 3495 3496 3497 3498 3499 3500
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3501
static int rcu_pending(void)
3502
{
3503 3504 3505
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3506
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3507 3508
			return 1;
	return 0;
3509 3510 3511
}

/*
3512 3513 3514
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3515
 */
3516
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3517
{
3518 3519 3520
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3521 3522
	struct rcu_state *rsp;

3523
	for_each_rcu_flavor(rsp) {
3524
		rdp = this_cpu_ptr(rsp->rda);
3525
		if (rcu_segcblist_empty(&rdp->cblist))
3526 3527
			continue;
		hc = true;
3528
		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3529
			al = false;
3530 3531
			break;
		}
3532 3533 3534 3535
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3536 3537
}

3538 3539 3540 3541
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3542
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3543 3544 3545 3546 3547 3548
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3549 3550 3551 3552
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3553
static void rcu_barrier_callback(struct rcu_head *rhp)
3554
{
3555 3556 3557
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3558
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3559
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3560
		complete(&rsp->barrier_completion);
3561
	} else {
3562
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3563
	}
3564 3565 3566 3567 3568 3569 3570
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3571
	struct rcu_state *rsp = type;
3572
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3573

3574
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3575
	atomic_inc(&rsp->barrier_cpu_count);
3576
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3577 3578 3579 3580 3581 3582
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3583
static void _rcu_barrier(struct rcu_state *rsp)
3584
{
3585 3586
	int cpu;
	struct rcu_data *rdp;
3587
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3588

3589
	_rcu_barrier_trace(rsp, "Begin", -1, s);
3590

3591
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3592
	mutex_lock(&rsp->barrier_mutex);
3593

3594 3595 3596
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3597 3598 3599 3600 3601
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

3602 3603 3604
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3605

3606
	/*
3607 3608
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3609 3610
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3611
	 */
3612
	init_completion(&rsp->barrier_completion);
3613
	atomic_set(&rsp->barrier_cpu_count, 1);
3614
	get_online_cpus();
3615 3616

	/*
3617 3618 3619
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3620
	 */
P
Paul E. McKenney 已提交
3621
	for_each_possible_cpu(cpu) {
3622
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3623
			continue;
3624
		rdp = per_cpu_ptr(rsp->rda, cpu);
3625
		if (rcu_is_nocb_cpu(cpu)) {
3626 3627
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3628
						   rsp->barrier_sequence);
3629 3630
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3631
						   rsp->barrier_sequence);
3632
				smp_mb__before_atomic();
3633 3634 3635 3636
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
3637
		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3638
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3639
					   rsp->barrier_sequence);
3640
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3641
		} else {
3642
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3643
					   rsp->barrier_sequence);
3644 3645
		}
	}
3646
	put_online_cpus();
3647 3648 3649 3650 3651

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3652
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3653
		complete(&rsp->barrier_completion);
3654 3655

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3656
	wait_for_completion(&rsp->barrier_completion);
3657

3658 3659 3660 3661
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

3662
	/* Other rcu_barrier() invocations can now safely proceed. */
3663
	mutex_unlock(&rsp->barrier_mutex);
3664 3665 3666 3667 3668 3669 3670
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3671
	_rcu_barrier(&rcu_bh_state);
3672 3673 3674 3675 3676 3677 3678 3679
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3680
	_rcu_barrier(&rcu_sched_state);
3681 3682 3683
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
3700
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3701
		rnp->qsmaskinit |= mask;
B
Boqun Feng 已提交
3702
		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3703 3704 3705
	}
}

3706
/*
3707
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3708
 */
3709 3710
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3711 3712
{
	unsigned long flags;
3713
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3714 3715 3716
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3717
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3718
	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3719
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3720
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3721
	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3722
	rdp->cpu = cpu;
3723
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3724
	rcu_boot_init_nocb_percpu_data(rdp);
B
Boqun Feng 已提交
3725
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3726 3727 3728 3729 3730 3731 3732
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3733
 */
3734
static void
3735
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3736 3737
{
	unsigned long flags;
3738
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3739 3740 3741
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3742
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3743 3744
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3745
	rdp->blimit = blimit;
3746 3747 3748
	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
	    !init_nocb_callback_list(rdp))
		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3749
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3750
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3751
	rcu_dynticks_eqs_online();
B
Boqun Feng 已提交
3752
	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3753

3754 3755 3756 3757 3758
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
3759
	rnp = rdp->mynode;
3760
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3761 3762 3763
	if (!rdp->beenonline)
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
	rdp->beenonline = true;	 /* We have now been online. */
3764 3765
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
3766
	rdp->cpu_no_qs.b.norm = true;
3767
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3768
	rdp->core_needs_qs = false;
3769
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
B
Boqun Feng 已提交
3770
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3771 3772
}

3773 3774 3775 3776
/*
 * Invoked early in the CPU-online process, when pretty much all
 * services are available.  The incoming CPU is not present.
 */
3777
int rcutree_prepare_cpu(unsigned int cpu)
3778
{
3779 3780 3781
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3782
		rcu_init_percpu_data(cpu, rsp);
3783 3784 3785 3786 3787 3788 3789

	rcu_prepare_kthreads(cpu);
	rcu_spawn_all_nocb_kthreads(cpu);

	return 0;
}

3790 3791 3792
/*
 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
 */
3793 3794 3795 3796 3797 3798 3799
static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);

	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
}

3800 3801 3802 3803
/*
 * Near the end of the CPU-online process.  Pretty much all services
 * enabled, and the CPU is now very much alive.
 */
3804 3805 3806 3807
int rcutree_online_cpu(unsigned int cpu)
{
	sync_sched_exp_online_cleanup(cpu);
	rcutree_affinity_setting(cpu, -1);
3808 3809
	if (IS_ENABLED(CONFIG_TREE_SRCU))
		srcu_online_cpu(cpu);
3810 3811 3812
	return 0;
}

3813 3814 3815 3816
/*
 * Near the beginning of the process.  The CPU is still very much alive
 * with pretty much all services enabled.
 */
3817 3818 3819
int rcutree_offline_cpu(unsigned int cpu)
{
	rcutree_affinity_setting(cpu, cpu);
3820 3821
	if (IS_ENABLED(CONFIG_TREE_SRCU))
		srcu_offline_cpu(cpu);
3822 3823 3824
	return 0;
}

3825 3826 3827
/*
 * Near the end of the offline process.  We do only tracing here.
 */
3828 3829 3830 3831 3832 3833 3834 3835 3836
int rcutree_dying_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_cpu(rsp);
	return 0;
}

3837 3838 3839
/*
 * The outgoing CPU is gone and we are running elsewhere.
 */
3840 3841 3842 3843 3844 3845 3846 3847 3848
int rcutree_dead_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		rcu_cleanup_dead_cpu(cpu, rsp);
		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
	}
	return 0;
3849 3850
}

3851 3852 3853 3854 3855 3856
/*
 * Mark the specified CPU as being online so that subsequent grace periods
 * (both expedited and normal) will wait on it.  Note that this means that
 * incoming CPUs are not allowed to use RCU read-side critical sections
 * until this function is called.  Failing to observe this restriction
 * will result in lockdep splats.
3857 3858 3859 3860
 *
 * Note that this function is special in that it is invoked directly
 * from the incoming CPU rather than from the cpuhp_step mechanism.
 * This is because this function must be invoked at a precise location.
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
 */
void rcu_cpu_starting(unsigned int cpu)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
3871
		rdp = per_cpu_ptr(rsp->rda, cpu);
3872 3873 3874 3875 3876 3877 3878 3879 3880
		rnp = rdp->mynode;
		mask = rdp->grpmask;
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
		rnp->qsmaskinitnext |= mask;
		rnp->expmaskinitnext |= mask;
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	}
}

3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
#ifdef CONFIG_HOTPLUG_CPU
/*
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
3898
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3899 3900
}

3901 3902 3903 3904 3905 3906 3907 3908
/*
 * The outgoing function has no further need of RCU, so remove it from
 * the list of CPUs that RCU must track.
 *
 * Note that this function is special in that it is invoked directly
 * from the outgoing CPU rather than from the cpuhp_step mechanism.
 * This is because this function must be invoked at a precise location.
 */
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
void rcu_report_dead(unsigned int cpu)
{
	struct rcu_state *rsp;

	/* QS for any half-done expedited RCU-sched GP. */
	preempt_disable();
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(rcu_sched_state.rda), true);
	preempt_enable();
	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_idle_cpu(cpu, rsp);
}
#endif

3923 3924 3925 3926
/*
 * On non-huge systems, use expedited RCU grace periods to make suspend
 * and hibernation run faster.
 */
3927 3928 3929 3930 3931 3932 3933
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3934
			rcu_expedite_gp();
3935 3936 3937
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
3938 3939
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
3940 3941 3942 3943 3944 3945 3946
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3947
/*
3948
 * Spawn the kthreads that handle each RCU flavor's grace periods.
3949 3950 3951 3952
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
3953
	int kthread_prio_in = kthread_prio;
3954 3955
	struct rcu_node *rnp;
	struct rcu_state *rsp;
3956
	struct sched_param sp;
3957 3958
	struct task_struct *t;

3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

3970
	rcu_scheduler_fully_active = 1;
3971
	for_each_rcu_flavor(rsp) {
3972
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3973 3974
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
3975
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3976
		rsp->gp_kthread = t;
3977 3978 3979 3980
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
B
Boqun Feng 已提交
3981
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3982
		wake_up_process(t);
3983
	}
3984
	rcu_spawn_nocb_kthreads();
3985
	rcu_spawn_boost_kthreads();
3986 3987 3988 3989
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3990
/*
3991 3992 3993 3994 3995 3996
 * This function is invoked towards the end of the scheduler's
 * initialization process.  Before this is called, the idle task might
 * contain synchronous grace-period primitives (during which time, this idle
 * task is booting the system, and such primitives are no-ops).  After this
 * function is called, any synchronous grace-period primitives are run as
 * expedited, with the requesting task driving the grace period forward.
3997
 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3998
 * runtime RCU functionality.
3999 4000 4001 4002 4003
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
4004 4005 4006
	rcu_test_sync_prims();
	rcu_scheduler_active = RCU_SCHEDULER_INIT;
	rcu_test_sync_prims();
4007 4008
}

4009 4010 4011
/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
4012
static void __init rcu_init_one(struct rcu_state *rsp)
4013
{
4014 4015
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4016 4017
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4018 4019

	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4020 4021 4022 4023 4024
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4025
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4026

4027 4028 4029
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4030

4031 4032
	/* Initialize the level-tracking arrays. */

4033
	for (i = 1; i < rcu_num_lvls; i++)
4034 4035
		rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
	rcu_init_levelspread(levelspread, num_rcu_lvl);
4036 4037 4038

	/* Initialize the elements themselves, starting from the leaves. */

4039
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4040
		cpustride *= levelspread[i];
4041
		rnp = rsp->level[i];
4042
		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
B
Boqun Feng 已提交
4043 4044
			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4045
						   &rcu_node_class[i], buf[i]);
4046 4047 4048
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4049 4050
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4051 4052 4053 4054
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4055 4056
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4057 4058 4059 4060 4061
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4062
				rnp->grpnum = j % levelspread[i - 1];
4063 4064
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4065
					      j / levelspread[i - 1];
4066 4067
			}
			rnp->level = i;
4068
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4069
			rcu_init_one_nocb(rnp);
4070 4071
			init_waitqueue_head(&rnp->exp_wq[0]);
			init_waitqueue_head(&rnp->exp_wq[1]);
4072 4073
			init_waitqueue_head(&rnp->exp_wq[2]);
			init_waitqueue_head(&rnp->exp_wq[3]);
4074
			spin_lock_init(&rnp->exp_lock);
4075 4076
		}
	}
4077

4078 4079
	init_swait_queue_head(&rsp->gp_wq);
	init_swait_queue_head(&rsp->expedited_wq);
4080
	rnp = rsp->level[rcu_num_lvls - 1];
4081
	for_each_possible_cpu(i) {
4082
		while (i > rnp->grphi)
4083
			rnp++;
4084
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4085 4086
		rcu_boot_init_percpu_data(i, rsp);
	}
4087
	list_add(&rsp->flavors, &rcu_struct_flavors);
4088 4089
}

4090 4091
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4092
 * replace the definitions in tree.h because those are needed to size
4093 4094 4095 4096
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4097
	ulong d;
4098
	int i;
4099
	int rcu_capacity[RCU_NUM_LVLS];
4100

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4114
	/* If the compile-time values are accurate, just leave. */
4115
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4116
	    nr_cpu_ids == NR_CPUS)
4117
		return;
4118 4119
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4120 4121

	/*
4122 4123 4124 4125
	 * The boot-time rcu_fanout_leaf parameter must be at least two
	 * and cannot exceed the number of bits in the rcu_node masks.
	 * Complain and fall back to the compile-time values if this
	 * limit is exceeded.
4126
	 */
4127
	if (rcu_fanout_leaf < 2 ||
4128
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4129
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4130 4131 4132 4133 4134 4135
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4136
	 * with the given number of levels.
4137
	 */
4138
	rcu_capacity[0] = rcu_fanout_leaf;
4139
	for (i = 1; i < RCU_NUM_LVLS; i++)
4140
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4141 4142

	/*
4143
	 * The tree must be able to accommodate the configured number of CPUs.
4144
	 * If this limit is exceeded, fall back to the compile-time values.
4145
	 */
4146 4147 4148 4149 4150
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}
4151

4152
	/* Calculate the number of levels in the tree. */
4153
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4154
	}
4155
	rcu_num_lvls = i + 1;
4156

4157
	/* Calculate the number of rcu_nodes at each level of the tree. */
4158
	for (i = 0; i < rcu_num_lvls; i++) {
4159
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4160 4161
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4162 4163 4164

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4165
	for (i = 0; i < rcu_num_lvls; i++)
4166 4167 4168
		rcu_num_nodes += num_rcu_lvl[i];
}

4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4191
void __init rcu_init(void)
4192
{
P
Paul E. McKenney 已提交
4193
	int cpu;
4194

4195 4196
	rcu_early_boot_tests();

4197
	rcu_bootup_announce();
4198
	rcu_init_geometry();
4199 4200
	rcu_init_one(&rcu_bh_state);
	rcu_init_one(&rcu_sched_state);
4201 4202
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4203
	__rcu_init_preempt();
J
Jiang Fang 已提交
4204
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4205 4206 4207 4208 4209 4210

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
4211
	pm_notifier(rcu_pm_notify, 0);
4212
	for_each_online_cpu(cpu) {
4213
		rcutree_prepare_cpu(cpu);
4214
		rcu_cpu_starting(cpu);
4215 4216
		if (IS_ENABLED(CONFIG_TREE_SRCU))
			srcu_online_cpu(cpu);
4217
	}
4218 4219
}

4220
#include "tree_exp.h"
4221
#include "tree_plugin.h"