tree.c 130.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53 54
#include <linux/delay.h>
#include <linux/stop_machine.h>
55
#include <linux/random.h>
56
#include <linux/trace_events.h>
57
#include <linux/suspend.h>
58

59
#include "tree.h"
60
#include "rcu.h"
61

62 63 64 65 66
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

67 68
/* Data structures. */

69 70 71 72 73 74 75 76
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
77 78
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
79
static char sname##_varname[] = #sname; \
80 81 82 83 84 85 86 87 88
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
89
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
90
struct rcu_state sname##_state = { \
91
	.level = { &sname##_state.node[0] }, \
92
	.rda = &sname##_data, \
93
	.call = cr, \
94
	.gp_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
95 96
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
97
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
98 99
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
100
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101
	.name = RCU_STATE_NAME(sname), \
102
	.abbr = sabbr, \
103
	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104
	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
105
}
106

107 108
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109

110
static struct rcu_state *const rcu_state_p;
111
LIST_HEAD(rcu_struct_flavors);
112

113 114 115
/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
116 117 118
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
119 120
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121
module_param(rcu_fanout_leaf, int, 0444);
122
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 124
/* Number of rcu_nodes at specified level. */
static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126 127
/* panic() on RCU Stall sysctl. */
int sysctl_panic_on_rcu_stall __read_mostly;
128

129
/*
130 131 132 133
 * The rcu_scheduler_active variable is initialized to the value
 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 * RCU can assume that there is but one task, allowing RCU to (for example)
134
 * optimize synchronize_rcu() to a simple barrier().  When this variable
135 136 137 138 139
 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 * to detect real grace periods.  This variable is also used to suppress
 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 * is fully initialized, including all of its kthreads having been spawned.
140
 */
141 142 143
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

144 145 146 147 148 149 150 151 152 153 154 155 156 157
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

158 159
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
T
Thomas Gleixner 已提交
160
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 162
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163 164
static void rcu_report_exp_rdp(struct rcu_state *rsp,
			       struct rcu_data *rdp, bool wake);
165
static void sync_sched_exp_online_cleanup(int cpu);
166

167
/* rcuc/rcub kthread realtime priority */
168
#ifdef CONFIG_RCU_KTHREAD_PRIO
169
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
170 171 172
#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
173 174
module_param(kthread_prio, int, 0644);

175
/* Delay in jiffies for grace-period initialization delays, debug only. */
176 177 178 179 180 181 182 183

#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
module_param(gp_preinit_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
static const int gp_preinit_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */

184 185
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
186
module_param(gp_init_delay, int, 0644);
187 188 189
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
static const int gp_init_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
190

191 192 193 194 195 196 197
#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
module_param(gp_cleanup_delay, int, 0644);
#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
static const int gp_cleanup_delay;
#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */

198 199 200 201 202 203 204 205 206 207
/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
208

209 210 211 212 213 214 215 216 217 218 219 220
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

221 222 223 224 225 226 227 228
/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{
229
	return READ_ONCE(rnp->qsmaskinitnext);
230 231
}

232
/*
233
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
234 235 236 237 238
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
239
	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
240 241
}

242
/*
243
 * Note a quiescent state.  Because we do not need to know
244
 * how many quiescent states passed, just if there was at least
245
 * one since the start of the grace period, this just sets a flag.
246
 * The caller must have disabled preemption.
247
 */
248
void rcu_sched_qs(void)
249
{
250 251 252 253 254 255 256 257
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
		return;
	trace_rcu_grace_period(TPS("rcu_sched"),
			       __this_cpu_read(rcu_sched_data.gpnum),
			       TPS("cpuqs"));
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
		return;
258 259 260
	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(&rcu_sched_data), true);
261 262
}

263
void rcu_bh_qs(void)
264
{
265
	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
266 267 268
		trace_rcu_grace_period(TPS("rcu_bh"),
				       __this_cpu_read(rcu_bh_data.gpnum),
				       TPS("cpuqs"));
269
		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
270
	}
271
}
272

273 274 275 276 277 278 279 280 281 282 283
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

284 285 286
DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);

287 288 289 290 291 292 293 294 295 296
/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
297 298
 *
 * The caller must have disabled interrupts.
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
 */
static void rcu_momentary_dyntick_idle(void)
{
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
320 321
		if (READ_ONCE(rdp->mynode->completed) !=
		    READ_ONCE(rdp->cond_resched_completed))
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
}

338 339 340
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
341
 * The caller must have disabled interrupts.
342
 */
343
void rcu_note_context_switch(void)
344
{
345
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
346
	trace_rcu_utilization(TPS("Start context switch"));
347
	rcu_sched_qs();
348
	rcu_preempt_note_context_switch();
349 350
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
351
	trace_rcu_utilization(TPS("End context switch"));
352
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
353
}
354
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
355

356
/*
357
 * Register a quiescent state for all RCU flavors.  If there is an
358 359
 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 * dyntick-idle quiescent state visible to other CPUs (but only for those
360
 * RCU flavors in desperate need of a quiescent state, which will normally
361 362
 * be none of them).  Either way, do a lightweight quiescent state for
 * all RCU flavors.
363 364 365 366 367
 *
 * The barrier() calls are redundant in the common case when this is
 * called externally, but just in case this is called from within this
 * file.
 *
368 369 370
 */
void rcu_all_qs(void)
{
371 372
	unsigned long flags;

373
	barrier(); /* Avoid RCU read-side critical sections leaking down. */
374 375
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
		local_irq_save(flags);
376
		rcu_momentary_dyntick_idle();
377 378
		local_irq_restore(flags);
	}
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
		/*
		 * Yes, we just checked a per-CPU variable with preemption
		 * enabled, so we might be migrated to some other CPU at
		 * this point.  That is OK because in that case, the
		 * migration will supply the needed quiescent state.
		 * We might end up needlessly disabling preemption and
		 * invoking rcu_sched_qs() on the destination CPU, but
		 * the probability and cost are both quite low, so this
		 * should not be a problem in practice.
		 */
		preempt_disable();
		rcu_sched_qs();
		preempt_enable();
	}
394
	this_cpu_inc(rcu_qs_ctr);
395
	barrier(); /* Avoid RCU read-side critical sections leaking up. */
396 397 398
}
EXPORT_SYMBOL_GPL(rcu_all_qs);

E
Eric Dumazet 已提交
399 400 401
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
402

E
Eric Dumazet 已提交
403 404 405
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
406

407 408
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
409
static bool rcu_kick_kthreads;
410 411 412

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);
413
module_param(rcu_kick_kthreads, bool, 0644);
414

415 416 417 418 419 420 421
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

422
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
423
				  struct rcu_data *rdp);
424 425 426 427
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
428
static void force_quiescent_state(struct rcu_state *rsp);
429
static int rcu_pending(void);
430 431

/*
432
 * Return the number of RCU batches started thus far for debug & stats.
433
 */
434 435 436 437 438 439 440 441
unsigned long rcu_batches_started(void)
{
	return rcu_state_p->gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started);

/*
 * Return the number of RCU-sched batches started thus far for debug & stats.
442
 */
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
unsigned long rcu_batches_started_sched(void)
{
	return rcu_sched_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_sched);

/*
 * Return the number of RCU BH batches started thus far for debug & stats.
 */
unsigned long rcu_batches_started_bh(void)
{
	return rcu_bh_state.gpnum;
}
EXPORT_SYMBOL_GPL(rcu_batches_started_bh);

/*
 * Return the number of RCU batches completed thus far for debug & stats.
 */
unsigned long rcu_batches_completed(void)
{
	return rcu_state_p->completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Return the number of RCU-sched batches completed thus far for debug & stats.
469
 */
470
unsigned long rcu_batches_completed_sched(void)
471
{
472
	return rcu_sched_state.completed;
473
}
474
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
475 476

/*
477
 * Return the number of RCU BH batches completed thus far for debug & stats.
478
 */
479
unsigned long rcu_batches_completed_bh(void)
480 481 482 483 484
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
/*
 * Return the number of RCU expedited batches completed thus far for
 * debug & stats.  Odd numbers mean that a batch is in progress, even
 * numbers mean idle.  The value returned will thus be roughly double
 * the cumulative batches since boot.
 */
unsigned long rcu_exp_batches_completed(void)
{
	return rcu_state_p->expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);

/*
 * Return the number of RCU-sched expedited batches completed thus far
 * for debug & stats.  Similar to rcu_exp_batches_completed().
 */
unsigned long rcu_exp_batches_completed_sched(void)
{
	return rcu_sched_state.expedited_sequence;
}
EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);

507 508 509 510 511
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
512
	force_quiescent_state(rcu_state_p);
513 514 515
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

516 517 518 519 520
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
521
	force_quiescent_state(&rcu_bh_state);
522 523 524
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

525 526 527 528 529 530 531 532 533
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

549 550 551 552 553 554 555 556 557 558 559 560 561 562
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

563 564 565 566 567 568 569 570 571 572
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
573
		rsp = rcu_state_p;
574 575 576 577 578 579 580 581 582 583 584
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
585 586 587
		*flags = READ_ONCE(rsp->gp_flags);
		*gpnum = READ_ONCE(rsp->gpnum);
		*completed = READ_ONCE(rsp->completed);
588 589 590 591 592 593 594 595
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

596 597 598 599 600 601 602 603 604 605 606
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

607 608 609 610 611 612
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
613 614
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
615 616
}

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
633
	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
634 635
	int *fp = &rnp->need_future_gp[idx];

636
	return READ_ONCE(*fp);
637 638
}

639
/*
640 641 642
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
643
 */
644
static bool
645 646
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
647
	int i;
P
Paul E. McKenney 已提交
648

649
	if (rcu_gp_in_progress(rsp))
650
		return false;  /* No, a grace period is already in progress. */
651
	if (rcu_future_needs_gp(rsp))
652
		return true;  /* Yes, a no-CBs CPU needs one. */
653
	if (!rdp->nxttail[RCU_NEXT_TAIL])
654
		return false;  /* No, this is a no-CBs (or offline) CPU. */
655
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
656
		return true;  /* Yes, CPU has newly registered callbacks. */
657 658
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
659
		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
660
				 rdp->nxtcompleted[i]))
661 662
			return true;  /* Yes, CBs for future grace period. */
	return false; /* No grace period needed. */
663 664
}

665
/*
666
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
667 668 669 670 671
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
672
static void rcu_eqs_enter_common(long long oldval, bool user)
673
{
674 675
	struct rcu_state *rsp;
	struct rcu_data *rdp;
676
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
677

678
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
679 680
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
681 682
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
683

684
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
685
		rcu_ftrace_dump(DUMP_ORIG);
686 687 688
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
689
	}
690 691 692 693
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
694
	rcu_prepare_for_idle();
695
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
696
	smp_mb__before_atomic();  /* See above. */
697
	atomic_inc(&rdtp->dynticks);
698
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
699 700
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     atomic_read(&rdtp->dynticks) & 0x1);
701
	rcu_dynticks_task_enter();
702 703

	/*
704
	 * It is illegal to enter an extended quiescent state while
705 706
	 * in an RCU read-side critical section.
	 */
707 708 709 710 711 712
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
			 "Illegal idle entry in RCU read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
			 "Illegal idle entry in RCU-bh read-side critical section.");
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
			 "Illegal idle entry in RCU-sched read-side critical section.");
713
}
714

715 716 717
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
718
 */
719
static void rcu_eqs_enter(bool user)
720
{
721
	long long oldval;
722 723
	struct rcu_dynticks *rdtp;

724
	rdtp = this_cpu_ptr(&rcu_dynticks);
725
	oldval = rdtp->dynticks_nesting;
726 727
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
728
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
729
		rdtp->dynticks_nesting = 0;
730
		rcu_eqs_enter_common(oldval, user);
731
	} else {
732
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
733
	}
734
}
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
750 751 752
	unsigned long flags;

	local_irq_save(flags);
753
	rcu_eqs_enter(false);
754
	rcu_sysidle_enter(0);
755
	local_irq_restore(flags);
756
}
757
EXPORT_SYMBOL_GPL(rcu_idle_enter);
758

759
#ifdef CONFIG_NO_HZ_FULL
760 761 762 763 764 765 766 767 768 769
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
770
	rcu_eqs_enter(1);
771
}
772
#endif /* CONFIG_NO_HZ_FULL */
773

774 775 776 777 778
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
779
 * sections can occur.  The caller must have disabled interrupts.
780
 *
781 782 783 784 785 786 787 788
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
789
 */
790
void rcu_irq_exit(void)
791
{
792
	long long oldval;
793 794
	struct rcu_dynticks *rdtp;

795
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
796
	rdtp = this_cpu_ptr(&rcu_dynticks);
797
	oldval = rdtp->dynticks_nesting;
798
	rdtp->dynticks_nesting--;
799 800
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting < 0);
801
	if (rdtp->dynticks_nesting)
802
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
803
	else
804 805
		rcu_eqs_enter_common(oldval, true);
	rcu_sysidle_enter(1);
806 807 808 809 810 811 812 813 814 815 816
}

/*
 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 */
void rcu_irq_exit_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_exit();
817 818 819 820
	local_irq_restore(flags);
}

/*
821
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
822 823 824 825 826
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
827
static void rcu_eqs_exit_common(long long oldval, int user)
828
{
829 830
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

831
	rcu_dynticks_task_exit();
832
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
833 834
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
835
	smp_mb__after_atomic();  /* See above. */
836 837
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     !(atomic_read(&rdtp->dynticks) & 0x1));
838
	rcu_cleanup_after_idle();
839
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
840 841
	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
	    !user && !is_idle_task(current)) {
842 843
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
844

845
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
846
				  oldval, rdtp->dynticks_nesting);
847
		rcu_ftrace_dump(DUMP_ORIG);
848 849 850
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
851 852 853
	}
}

854 855 856
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
857
 */
858
static void rcu_eqs_exit(bool user)
859 860 861 862
{
	struct rcu_dynticks *rdtp;
	long long oldval;

863
	rdtp = this_cpu_ptr(&rcu_dynticks);
864
	oldval = rdtp->dynticks_nesting;
865
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
866
	if (oldval & DYNTICK_TASK_NEST_MASK) {
867
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
868
	} else {
869
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
870
		rcu_eqs_exit_common(oldval, user);
871
	}
872
}
873 874 875 876 877 878 879 880 881 882 883 884 885 886

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
887 888 889
	unsigned long flags;

	local_irq_save(flags);
890
	rcu_eqs_exit(false);
891
	rcu_sysidle_exit(0);
892
	local_irq_restore(flags);
893
}
894
EXPORT_SYMBOL_GPL(rcu_idle_exit);
895

896
#ifdef CONFIG_NO_HZ_FULL
897 898 899 900 901 902 903 904
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
905
	rcu_eqs_exit(1);
906
}
907
#endif /* CONFIG_NO_HZ_FULL */
908

909 910 911 912 913
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
914
 * sections can occur.  The caller must have disabled interrupts.
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	struct rcu_dynticks *rdtp;
	long long oldval;

933
	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
934
	rdtp = this_cpu_ptr(&rcu_dynticks);
935 936
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
937 938
	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
		     rdtp->dynticks_nesting == 0);
939
	if (oldval)
940
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
941
	else
942 943
		rcu_eqs_exit_common(oldval, true);
	rcu_sysidle_exit(1);
944 945 946 947 948 949 950 951 952 953 954
}

/*
 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 */
void rcu_irq_enter_irqson(void)
{
	unsigned long flags;

	local_irq_save(flags);
	rcu_irq_enter();
955 956 957 958 959 960
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
961 962 963 964 965
 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 * that the CPU is active.  This implementation permits nested NMIs, as
 * long as the nesting level does not overflow an int.  (You will probably
 * run out of stack space first.)
966 967 968
 */
void rcu_nmi_enter(void)
{
969
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
970
	int incby = 2;
971

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	/* Complain about underflow. */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);

	/*
	 * If idle from RCU viewpoint, atomically increment ->dynticks
	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
	 * to be in the outermost NMI handler that interrupted an RCU-idle
	 * period (observation due to Andy Lutomirski).
	 */
	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
		smp_mb__before_atomic();  /* Force delay from prior write. */
		atomic_inc(&rdtp->dynticks);
		/* atomic_inc() before later RCU read-side crit sects */
		smp_mb__after_atomic();  /* See above. */
		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
		incby = 1;
	}
	rdtp->dynticks_nmi_nesting += incby;
	barrier();
993 994 995 996 997
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
998 999 1000 1001
 * If we are returning from the outermost NMI handler that interrupted an
 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 * to let the RCU grace-period handling know that the CPU is back to
 * being RCU-idle.
1002 1003 1004
 */
void rcu_nmi_exit(void)
{
1005
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1006

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	/*
	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
	 * (We are exiting an NMI handler, so RCU better be paying attention
	 * to us!)
	 */
	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));

	/*
	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
	 * leave it in non-RCU-idle state.
	 */
	if (rdtp->dynticks_nmi_nesting != 1) {
		rdtp->dynticks_nmi_nesting -= 2;
1021
		return;
1022 1023 1024 1025
	}

	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
	rdtp->dynticks_nmi_nesting = 0;
1026
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1027
	smp_mb__before_atomic();  /* See above. */
1028
	atomic_inc(&rdtp->dynticks);
1029
	smp_mb__after_atomic();  /* Force delay to next write. */
1030
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
1031 1032 1033
}

/**
1034 1035 1036 1037 1038 1039 1040
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
1041
bool notrace __rcu_is_watching(void)
1042 1043 1044 1045 1046 1047
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1048
 *
1049
 * If the current CPU is in its idle loop and is neither in an interrupt
1050
 * or NMI handler, return true.
1051
 */
1052
bool notrace rcu_is_watching(void)
1053
{
1054
	bool ret;
1055

1056
	preempt_disable_notrace();
1057
	ret = __rcu_is_watching();
1058
	preempt_enable_notrace();
1059
	return ret;
1060
}
1061
EXPORT_SYMBOL_GPL(rcu_is_watching);
1062

1063
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1064 1065 1066 1067 1068 1069 1070

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
1071 1072 1073 1074 1075 1076
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
1077 1078
 * the fact that a CPU enters the scheduler after completing the teardown
 * of the CPU.
1079
 *
1080 1081
 * This is also why RCU internally marks CPUs online during in the
 * preparation phase and offline after the CPU has been taken down.
1082 1083 1084 1085 1086 1087
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
1088 1089
	struct rcu_data *rdp;
	struct rcu_node *rnp;
1090 1091 1092
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
1093
		return true;
1094
	preempt_disable();
1095
	rdp = this_cpu_ptr(&rcu_sched_data);
1096
	rnp = rdp->mynode;
1097
	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1098 1099 1100 1101 1102 1103
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

1104
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1105

1106
/**
1107
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1108
 *
1109 1110 1111
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
1112
 */
1113
static int rcu_is_cpu_rrupt_from_idle(void)
1114
{
1115
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1116 1117 1118 1119 1120
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
1121
 * is in dynticks idle mode, which is an extended quiescent state.
1122
 */
1123 1124
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
1125
{
1126
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1127
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1128 1129
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1130
		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1131
				 rdp->mynode->gpnum))
1132
			WRITE_ONCE(rdp->gpwrap, true);
1133
		return 1;
1134
	}
1135
	return 0;
1136 1137 1138 1139 1140 1141
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
1142
 * for this same CPU, or by virtue of having been offline.
1143
 */
1144 1145
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
1146
{
1147
	unsigned int curr;
1148
	int *rcrmp;
1149
	unsigned int snap;
1150

1151 1152
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
1153 1154 1155 1156 1157 1158 1159 1160 1161

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
1162
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1163
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1164 1165 1166 1167
		rdp->dynticks_fqs++;
		return 1;
	}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
1183
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1184 1185 1186
		rdp->offline_fqs++;
		return 1;
	}
1187 1188

	/*
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
1208
	 */
1209 1210 1211
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1212
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1213 1214 1215
		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			WRITE_ONCE(rdp->cond_resched_completed,
				   READ_ONCE(rdp->mynode->completed));
1216
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1217 1218
			WRITE_ONCE(*rcrmp,
				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1219
		}
1220
		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1221 1222
	}

1223 1224 1225 1226 1227 1228
	/* And if it has been a really long time, kick the CPU as well. */
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
	    ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
		resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */

1229
	return 0;
1230 1231 1232 1233
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1234
	unsigned long j = jiffies;
1235
	unsigned long j1;
1236 1237 1238

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1239
	j1 = rcu_jiffies_till_stall_check();
1240
	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1241
	rsp->jiffies_resched = j + j1 / 2;
1242
	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1243 1244
}

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
/*
 * Convert a ->gp_state value to a character string.
 */
static const char *gp_state_getname(short gs)
{
	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
		return "???";
	return gp_state_names[gs];
}

1255 1256 1257 1258 1259 1260 1261 1262 1263
/*
 * Complain about starvation of grace-period kthread.
 */
static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
{
	unsigned long gpa;
	unsigned long j;

	j = jiffies;
1264
	gpa = READ_ONCE(rsp->gp_activity);
1265
	if (j - gpa > 2 * HZ) {
1266
		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1267
		       rsp->name, j - gpa,
1268
		       rsp->gpnum, rsp->completed,
1269 1270
		       rsp->gp_flags,
		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1271
		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1272
		if (rsp->gp_kthread) {
1273
			sched_show_task(rsp->gp_kthread);
1274 1275
			wake_up_process(rsp->gp_kthread);
		}
1276
	}
1277 1278
}

1279
/*
1280
 * Dump stacks of all tasks running on stalled CPUs.
1281 1282 1283 1284 1285 1286 1287 1288
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
1289
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1290
		if (rnp->qsmask != 0) {
1291 1292 1293
			for_each_leaf_node_possible_cpu(rnp, cpu)
				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
					dump_cpu_task(cpu);
1294
		}
B
Boqun Feng 已提交
1295
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1296 1297 1298
	}
}

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
/*
 * If too much time has passed in the current grace period, and if
 * so configured, go kick the relevant kthreads.
 */
static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
{
	unsigned long j;

	if (!rcu_kick_kthreads)
		return;
	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1310 1311
	if (time_after(jiffies, j) && rsp->gp_kthread &&
	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1312
		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1313
		rcu_ftrace_dump(DUMP_ALL);
1314 1315 1316 1317 1318
		wake_up_process(rsp->gp_kthread);
		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
	}
}

1319 1320 1321 1322 1323 1324
static inline void panic_on_rcu_stall(void)
{
	if (sysctl_panic_on_rcu_stall)
		panic("RCU Stall\n");
}

1325
static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1326 1327 1328 1329
{
	int cpu;
	long delta;
	unsigned long flags;
1330 1331
	unsigned long gpa;
	unsigned long j;
1332
	int ndetected = 0;
1333
	struct rcu_node *rnp = rcu_get_root(rsp);
1334
	long totqlen = 0;
1335

1336 1337 1338 1339 1340
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1341 1342
	/* Only let one CPU complain about others per time interval. */

1343
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1344
	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1345
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
B
Boqun Feng 已提交
1346
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1347 1348
		return;
	}
1349 1350
	WRITE_ONCE(rsp->jiffies_stall,
		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1351
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1352

1353 1354 1355 1356 1357
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1358
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1359
	       rsp->name);
1360
	print_cpu_stall_info_begin();
1361
	rcu_for_each_leaf_node(rsp, rnp) {
1362
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1363
		ndetected += rcu_print_task_stall(rnp);
1364
		if (rnp->qsmask != 0) {
1365 1366 1367
			for_each_leaf_node_possible_cpu(rnp, cpu)
				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
					print_cpu_stall_info(rsp, cpu);
1368 1369 1370
					ndetected++;
				}
		}
B
Boqun Feng 已提交
1371
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1372
	}
1373 1374

	print_cpu_stall_info_end();
1375 1376
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1377
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1378
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1379
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1380
	if (ndetected) {
1381
		rcu_dump_cpu_stacks(rsp);
1382
	} else {
1383 1384
		if (READ_ONCE(rsp->gpnum) != gpnum ||
		    READ_ONCE(rsp->completed) == gpnum) {
1385 1386 1387
			pr_err("INFO: Stall ended before state dump start\n");
		} else {
			j = jiffies;
1388
			gpa = READ_ONCE(rsp->gp_activity);
1389
			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1390
			       rsp->name, j - gpa, j, gpa,
1391 1392
			       jiffies_till_next_fqs,
			       rcu_get_root(rsp)->qsmask);
1393 1394 1395 1396
			/* In this case, the current CPU might be at fault. */
			sched_show_task(current);
		}
	}
1397

1398
	/* Complain about tasks blocking the grace period. */
1399 1400
	rcu_print_detail_task_stall(rsp);

1401 1402
	rcu_check_gp_kthread_starvation(rsp);

1403 1404
	panic_on_rcu_stall();

1405
	force_quiescent_state(rsp);  /* Kick them all. */
1406 1407 1408 1409
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1410
	int cpu;
1411 1412
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1413
	long totqlen = 0;
1414

1415 1416 1417 1418 1419
	/* Kick and suppress, if so configured. */
	rcu_stall_kick_kthreads(rsp);
	if (rcu_cpu_stall_suppress)
		return;

1420 1421 1422 1423 1424
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1425
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1426 1427 1428
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1429 1430
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1431 1432 1433
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1434 1435 1436

	rcu_check_gp_kthread_starvation(rsp);

1437
	rcu_dump_cpu_stacks(rsp);
1438

1439
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1440 1441 1442
	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
		WRITE_ONCE(rsp->jiffies_stall,
			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
B
Boqun Feng 已提交
1443
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1444

1445 1446
	panic_on_rcu_stall();

1447 1448 1449 1450 1451 1452 1453 1454
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1455 1456 1457 1458
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1459 1460 1461
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1462 1463
	unsigned long j;
	unsigned long js;
1464 1465
	struct rcu_node *rnp;

1466 1467
	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
	    !rcu_gp_in_progress(rsp))
1468
		return;
1469
	rcu_stall_kick_kthreads(rsp);
1470
	j = jiffies;
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
1489
	gpnum = READ_ONCE(rsp->gpnum);
1490
	smp_rmb(); /* Pick up ->gpnum first... */
1491
	js = READ_ONCE(rsp->jiffies_stall);
1492
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1493
	gps = READ_ONCE(rsp->gp_start);
1494
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1495
	completed = READ_ONCE(rsp->completed);
1496 1497 1498 1499
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1500
	rnp = rdp->mynode;
1501
	if (rcu_gp_in_progress(rsp) &&
1502
	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1503 1504 1505 1506

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1507 1508
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1509

1510
		/* They had a few time units to dump stack, so complain. */
1511
		print_other_cpu_stall(rsp, gpnum);
1512 1513 1514
	}
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1526 1527 1528
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1529
		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1530 1531
}

1532
/*
1533 1534 1535
 * Initialize the specified rcu_data structure's default callback list
 * to empty.  The default callback list is the one that is not used by
 * no-callbacks CPUs.
1536
 */
1537
static void init_default_callback_list(struct rcu_data *rdp)
1538 1539 1540 1541 1542 1543 1544 1545
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	if (init_nocb_callback_list(rdp))
		return;
	init_default_callback_list(rdp);
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1585 1586 1587 1588 1589
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1590
				unsigned long c, const char *s)
1591 1592 1593 1594 1595 1596 1597 1598 1599
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1600 1601
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1602 1603 1604
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1605 1606 1607
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1608 1609 1610
{
	unsigned long c;
	int i;
1611
	bool ret = false;
1612 1613 1614 1615 1616 1617 1618
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1619
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1620
	if (rnp->need_future_gp[c & 0x1]) {
1621
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1622
		goto out;
1623 1624 1625 1626 1627 1628 1629
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1630 1631 1632 1633 1634 1635 1636
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1637 1638
	 */
	if (rnp->gpnum != rnp->completed ||
1639
	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1640
		rnp->need_future_gp[c & 0x1]++;
1641
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1642
		goto out;
1643 1644 1645 1646 1647 1648 1649
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1650 1651
	if (rnp != rnp_root)
		raw_spin_lock_rcu_node(rnp_root);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1669
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1670 1671 1672 1673 1674 1675 1676 1677
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1678
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1679
	} else {
1680
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1681
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1682 1683 1684
	}
unlock_out:
	if (rnp != rnp_root)
B
Boqun Feng 已提交
1685
		raw_spin_unlock_rcu_node(rnp_root);
1686 1687 1688 1689
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1706 1707
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1708 1709 1710
	return needmore;
}

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
1721
	    !READ_ONCE(rsp->gp_flags) ||
1722 1723
	    !rsp->gp_kthread)
		return;
1724
	swake_up(&rsp->gp_wq);
1725 1726
}

1727 1728 1729 1730 1731 1732 1733
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1734 1735
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1736 1737 1738
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1739
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1740 1741 1742 1743
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1744
	bool ret;
1745 1746 1747

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1748
		return false;
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1777
		return false;
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1788
	/* Record any needed additional grace periods. */
1789
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1790 1791 1792

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1793
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1794
	else
1795
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1796
	return ret;
1797 1798 1799 1800 1801 1802 1803 1804
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1805
 * Returns true if the RCU grace-period kthread needs to be awakened.
1806 1807 1808
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1809
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1810 1811 1812 1813 1814 1815
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1816
		return false;
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1840
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1841 1842
}

1843
/*
1844 1845 1846
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1847
 * Returns true if the grace-period kthread needs to be awakened.
1848
 */
1849 1850
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1851
{
1852
	bool ret;
1853
	bool need_gp;
1854

1855
	/* Handle the ends of any preceding grace periods first. */
1856
	if (rdp->completed == rnp->completed &&
1857
	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1858

1859
		/* No grace period end, so just accelerate recent callbacks. */
1860
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1861

1862 1863 1864
	} else {

		/* Advance callbacks. */
1865
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1866 1867 1868

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1869
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1870
	}
1871

1872
	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1873 1874 1875 1876 1877 1878
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1879
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1880 1881
		need_gp = !!(rnp->qsmask & rdp->grpmask);
		rdp->cpu_no_qs.b.norm = need_gp;
1882
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1883
		rdp->core_needs_qs = need_gp;
1884
		zero_cpu_stall_ticks(rdp);
1885
		WRITE_ONCE(rdp->gpwrap, false);
1886
	}
1887
	return ret;
1888 1889
}

1890
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1891 1892
{
	unsigned long flags;
1893
	bool needwake;
1894 1895 1896 1897
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1898 1899 1900
	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
	     rdp->completed == READ_ONCE(rnp->completed) &&
	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1901
	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1902 1903 1904
		local_irq_restore(flags);
		return;
	}
1905
	needwake = __note_gp_changes(rsp, rnp, rdp);
B
Boqun Feng 已提交
1906
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1907 1908
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1909 1910
}

1911 1912 1913 1914 1915 1916 1917
static void rcu_gp_slow(struct rcu_state *rsp, int delay)
{
	if (delay > 0 &&
	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
		schedule_timeout_uninterruptible(delay);
}

1918
/*
1919
 * Initialize a new grace period.  Return false if no grace period required.
1920
 */
1921
static bool rcu_gp_init(struct rcu_state *rsp)
1922
{
1923
	unsigned long oldmask;
1924
	struct rcu_data *rdp;
1925
	struct rcu_node *rnp = rcu_get_root(rsp);
1926

1927
	WRITE_ONCE(rsp->gp_activity, jiffies);
1928
	raw_spin_lock_irq_rcu_node(rnp);
1929
	if (!READ_ONCE(rsp->gp_flags)) {
1930
		/* Spurious wakeup, tell caller to go back to sleep.  */
B
Boqun Feng 已提交
1931
		raw_spin_unlock_irq_rcu_node(rnp);
1932
		return false;
1933
	}
1934
	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1935

1936 1937 1938 1939 1940
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
B
Boqun Feng 已提交
1941
		raw_spin_unlock_irq_rcu_node(rnp);
1942
		return false;
1943 1944 1945
	}

	/* Advance to a new grace period and initialize state. */
1946
	record_gp_stall_check_time(rsp);
1947 1948
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1949
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
B
Boqun Feng 已提交
1950
	raw_spin_unlock_irq_rcu_node(rnp);
1951

1952 1953 1954 1955 1956 1957 1958
	/*
	 * Apply per-leaf buffered online and offline operations to the
	 * rcu_node tree.  Note that this new grace period need not wait
	 * for subsequent online CPUs, and that quiescent-state forcing
	 * will handle subsequent offline CPUs.
	 */
	rcu_for_each_leaf_node(rsp, rnp) {
1959
		rcu_gp_slow(rsp, gp_preinit_delay);
1960
		raw_spin_lock_irq_rcu_node(rnp);
1961 1962 1963
		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
		    !rnp->wait_blkd_tasks) {
			/* Nothing to do on this leaf rcu_node structure. */
B
Boqun Feng 已提交
1964
			raw_spin_unlock_irq_rcu_node(rnp);
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
			continue;
		}

		/* Record old state, apply changes to ->qsmaskinit field. */
		oldmask = rnp->qsmaskinit;
		rnp->qsmaskinit = rnp->qsmaskinitnext;

		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
		if (!oldmask != !rnp->qsmaskinit) {
			if (!oldmask) /* First online CPU for this rcu_node. */
				rcu_init_new_rnp(rnp);
			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
				rnp->wait_blkd_tasks = true;
			else /* Last offline CPU and can propagate. */
				rcu_cleanup_dead_rnp(rnp);
		}

		/*
		 * If all waited-on tasks from prior grace period are
		 * done, and if all this rcu_node structure's CPUs are
		 * still offline, propagate up the rcu_node tree and
		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
		 * rcu_node structure's CPUs has since come back online,
		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
		 * checks for this, so just call it unconditionally).
		 */
		if (rnp->wait_blkd_tasks &&
		    (!rcu_preempt_has_tasks(rnp) ||
		     rnp->qsmaskinit)) {
			rnp->wait_blkd_tasks = false;
			rcu_cleanup_dead_rnp(rnp);
		}

B
Boqun Feng 已提交
1998
		raw_spin_unlock_irq_rcu_node(rnp);
1999
	}
2000 2001 2002 2003 2004 2005 2006 2007

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
2008
	 * leaf node has been initialized.
2009 2010 2011 2012 2013
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2014
		rcu_gp_slow(rsp, gp_init_delay);
2015
		raw_spin_lock_irq_rcu_node(rnp);
2016
		rdp = this_cpu_ptr(rsp->rda);
2017 2018
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
2019
		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2020
		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2021
			WRITE_ONCE(rnp->completed, rsp->completed);
2022
		if (rnp == rdp->mynode)
2023
			(void)__note_gp_changes(rsp, rnp, rdp);
2024 2025 2026 2027
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
B
Boqun Feng 已提交
2028
		raw_spin_unlock_irq_rcu_node(rnp);
2029
		cond_resched_rcu_qs();
2030
		WRITE_ONCE(rsp->gp_activity, jiffies);
2031
	}
2032

2033
	return true;
2034
}
2035

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
/*
 * Helper function for wait_event_interruptible_timeout() wakeup
 * at force-quiescent-state time.
 */
static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Someone like call_rcu() requested a force-quiescent-state scan. */
	*gfp = READ_ONCE(rsp->gp_flags);
	if (*gfp & RCU_GP_FLAG_FQS)
		return true;

	/* The current grace period has completed. */
	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
		return true;

	return false;
}

2056 2057 2058
/*
 * Do one round of quiescent-state forcing.
 */
2059
static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2060
{
2061 2062
	bool isidle = false;
	unsigned long maxj;
2063 2064
	struct rcu_node *rnp = rcu_get_root(rsp);

2065
	WRITE_ONCE(rsp->gp_activity, jiffies);
2066
	rsp->n_force_qs++;
2067
	if (first_time) {
2068
		/* Collect dyntick-idle snapshots. */
2069
		if (is_sysidle_rcu_state(rsp)) {
2070
			isidle = true;
2071 2072
			maxj = jiffies - ULONG_MAX / 4;
		}
2073 2074
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
2075
		rcu_sysidle_report_gp(rsp, isidle, maxj);
2076 2077
	} else {
		/* Handle dyntick-idle and offline CPUs. */
2078
		isidle = true;
2079
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2080 2081
	}
	/* Clear flag to prevent immediate re-entry. */
2082
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2083
		raw_spin_lock_irq_rcu_node(rnp);
2084 2085
		WRITE_ONCE(rsp->gp_flags,
			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2086
		raw_spin_unlock_irq_rcu_node(rnp);
2087 2088 2089
	}
}

2090 2091 2092
/*
 * Clean up after the old grace period.
 */
2093
static void rcu_gp_cleanup(struct rcu_state *rsp)
2094 2095
{
	unsigned long gp_duration;
2096
	bool needgp = false;
2097
	int nocb = 0;
2098 2099
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
2100
	struct swait_queue_head *sq;
2101

2102
	WRITE_ONCE(rsp->gp_activity, jiffies);
2103
	raw_spin_lock_irq_rcu_node(rnp);
2104 2105 2106
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
2107

2108 2109 2110 2111 2112 2113 2114 2115
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
B
Boqun Feng 已提交
2116
	raw_spin_unlock_irq_rcu_node(rnp);
2117

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
2128
		raw_spin_lock_irq_rcu_node(rnp);
2129 2130
		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
		WARN_ON_ONCE(rnp->qsmask);
2131
		WRITE_ONCE(rnp->completed, rsp->gpnum);
2132 2133
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
2134
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2135
		/* smp_mb() provided by prior unlock-lock pair. */
2136
		nocb += rcu_future_gp_cleanup(rsp, rnp);
2137
		sq = rcu_nocb_gp_get(rnp);
B
Boqun Feng 已提交
2138
		raw_spin_unlock_irq_rcu_node(rnp);
2139
		rcu_nocb_gp_cleanup(sq);
2140
		cond_resched_rcu_qs();
2141
		WRITE_ONCE(rsp->gp_activity, jiffies);
2142
		rcu_gp_slow(rsp, gp_cleanup_delay);
2143
	}
2144
	rnp = rcu_get_root(rsp);
2145
	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2146
	rcu_nocb_gp_set(rnp, nocb);
2147

2148
	/* Declare grace period done. */
2149
	WRITE_ONCE(rsp->completed, rsp->gpnum);
2150
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2151
	rsp->gp_state = RCU_GP_IDLE;
2152
	rdp = this_cpu_ptr(rsp->rda);
2153 2154 2155
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2156
		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2157
		trace_rcu_grace_period(rsp->name,
2158
				       READ_ONCE(rsp->gpnum),
2159 2160
				       TPS("newreq"));
	}
B
Boqun Feng 已提交
2161
	raw_spin_unlock_irq_rcu_node(rnp);
2162 2163 2164 2165 2166 2167 2168
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
2169
	bool first_gp_fqs;
2170
	int gf;
2171
	unsigned long j;
2172
	int ret;
2173 2174 2175
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

2176
	rcu_bind_gp_kthread();
2177 2178 2179 2180
	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
2181
			trace_rcu_grace_period(rsp->name,
2182
					       READ_ONCE(rsp->gpnum),
2183
					       TPS("reqwait"));
2184
			rsp->gp_state = RCU_GP_WAIT_GPS;
2185
			swait_event_interruptible(rsp->gp_wq,
2186
						 READ_ONCE(rsp->gp_flags) &
2187
						 RCU_GP_FLAG_INIT);
2188
			rsp->gp_state = RCU_GP_DONE_GPS;
2189
			/* Locking provides needed memory barrier. */
2190
			if (rcu_gp_init(rsp))
2191
				break;
2192
			cond_resched_rcu_qs();
2193
			WRITE_ONCE(rsp->gp_activity, jiffies);
2194
			WARN_ON(signal_pending(current));
2195
			trace_rcu_grace_period(rsp->name,
2196
					       READ_ONCE(rsp->gpnum),
2197
					       TPS("reqwaitsig"));
2198
		}
2199

2200
		/* Handle quiescent-state forcing. */
2201
		first_gp_fqs = true;
2202 2203 2204 2205 2206
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
2207
		ret = 0;
2208
		for (;;) {
2209
			if (!ret) {
2210
				rsp->jiffies_force_qs = jiffies + j;
2211 2212 2213
				WRITE_ONCE(rsp->jiffies_kick_kthreads,
					   jiffies + 3 * j);
			}
2214
			trace_rcu_grace_period(rsp->name,
2215
					       READ_ONCE(rsp->gpnum),
2216
					       TPS("fqswait"));
2217
			rsp->gp_state = RCU_GP_WAIT_FQS;
2218
			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2219
					rcu_gp_fqs_check_wake(rsp, &gf), j);
2220
			rsp->gp_state = RCU_GP_DOING_FQS;
2221
			/* Locking provides needed memory barriers. */
2222
			/* If grace period done, leave loop. */
2223
			if (!READ_ONCE(rnp->qsmask) &&
2224
			    !rcu_preempt_blocked_readers_cgp(rnp))
2225
				break;
2226
			/* If time for quiescent-state forcing, do it. */
2227 2228
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
2229
				trace_rcu_grace_period(rsp->name,
2230
						       READ_ONCE(rsp->gpnum),
2231
						       TPS("fqsstart"));
2232 2233
				rcu_gp_fqs(rsp, first_gp_fqs);
				first_gp_fqs = false;
2234
				trace_rcu_grace_period(rsp->name,
2235
						       READ_ONCE(rsp->gpnum),
2236
						       TPS("fqsend"));
2237
				cond_resched_rcu_qs();
2238
				WRITE_ONCE(rsp->gp_activity, jiffies);
2239 2240 2241 2242 2243 2244 2245 2246 2247
				ret = 0; /* Force full wait till next FQS. */
				j = jiffies_till_next_fqs;
				if (j > HZ) {
					j = HZ;
					jiffies_till_next_fqs = HZ;
				} else if (j < 1) {
					j = 1;
					jiffies_till_next_fqs = 1;
				}
2248 2249
			} else {
				/* Deal with stray signal. */
2250
				cond_resched_rcu_qs();
2251
				WRITE_ONCE(rsp->gp_activity, jiffies);
2252
				WARN_ON(signal_pending(current));
2253
				trace_rcu_grace_period(rsp->name,
2254
						       READ_ONCE(rsp->gpnum),
2255
						       TPS("fqswaitsig"));
2256 2257 2258 2259 2260 2261
				ret = 1; /* Keep old FQS timing. */
				j = jiffies;
				if (time_after(jiffies, rsp->jiffies_force_qs))
					j = 1;
				else
					j = rsp->jiffies_force_qs - j;
2262
			}
2263
		}
2264 2265

		/* Handle grace-period end. */
2266
		rsp->gp_state = RCU_GP_CLEANUP;
2267
		rcu_gp_cleanup(rsp);
2268
		rsp->gp_state = RCU_GP_CLEANED;
2269 2270 2271
	}
}

2272 2273 2274
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
2275
 * the root node's ->lock and hard irqs must be disabled.
2276 2277 2278 2279
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
2280 2281
 *
 * Returns true if the grace-period kthread must be awakened.
2282
 */
2283
static bool
2284 2285
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
2286
{
2287
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2288
		/*
2289
		 * Either we have not yet spawned the grace-period
2290 2291
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
2292
		 * Either way, don't start a new grace period.
2293
		 */
2294
		return false;
2295
	}
2296 2297
	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2298
			       TPS("newreq"));
2299

2300 2301
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
2302
	 * could cause possible deadlocks with the rq->lock. Defer
2303
	 * the wakeup to our caller.
2304
	 */
2305
	return true;
2306 2307
}

2308 2309 2310 2311 2312 2313
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
2314 2315
 *
 * Returns true if the grace-period kthread needs to be awakened.
2316
 */
2317
static bool rcu_start_gp(struct rcu_state *rsp)
2318 2319 2320
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
2321
	bool ret = false;
2322 2323 2324 2325 2326 2327 2328 2329 2330

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
2331 2332 2333
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
2334 2335
}

2336
/*
2337 2338 2339 2340 2341 2342 2343
 * Report a full set of quiescent states to the specified rcu_state data
 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
 * kthread if another grace period is required.  Whether we wake
 * the grace-period kthread or it awakens itself for the next round
 * of quiescent-state forcing, that kthread will clean up after the
 * just-completed grace period.  Note that the caller must hold rnp->lock,
 * which is released before return.
2344
 */
P
Paul E. McKenney 已提交
2345
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2346
	__releases(rcu_get_root(rsp)->lock)
2347
{
2348
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2349
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2350
	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2351
	rcu_gp_kthread_wake(rsp);
2352 2353
}

2354
/*
P
Paul E. McKenney 已提交
2355 2356 2357
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
2358 2359 2360 2361 2362
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
2363 2364
 */
static void
P
Paul E. McKenney 已提交
2365
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2366
		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2367 2368
	__releases(rnp->lock)
{
2369
	unsigned long oldmask = 0;
2370 2371
	struct rcu_node *rnp_c;

2372 2373
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
2374
		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2375

2376 2377 2378 2379
			/*
			 * Our bit has already been cleared, or the
			 * relevant grace period is already over, so done.
			 */
B
Boqun Feng 已提交
2380
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2381 2382
			return;
		}
2383
		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2384
		rnp->qsmask &= ~mask;
2385 2386 2387 2388
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
2389
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2390 2391

			/* Other bits still set at this level, so done. */
B
Boqun Feng 已提交
2392
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2393 2394 2395 2396 2397 2398 2399 2400 2401
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
B
Boqun Feng 已提交
2402
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2403
		rnp_c = rnp;
2404
		rnp = rnp->parent;
2405
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2406
		oldmask = rnp_c->qsmask;
2407 2408 2409 2410
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
2411
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2412
	 * to clean up and start the next grace period if one is needed.
2413
	 */
P
Paul E. McKenney 已提交
2414
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2415 2416
}

2417 2418 2419 2420 2421 2422 2423
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
2424
static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2425 2426 2427
				      struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
2428
	unsigned long gps;
2429 2430 2431
	unsigned long mask;
	struct rcu_node *rnp_p;

2432 2433
	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
B
Boqun Feng 已提交
2434
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2435 2436 2437 2438 2439 2440
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
2441 2442
		 * Only one rcu_node structure in the tree, so don't
		 * try to report up to its nonexistent parent!
2443 2444 2445 2446 2447
		 */
		rcu_report_qs_rsp(rsp, flags);
		return;
	}

2448 2449
	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
	gps = rnp->gpnum;
2450
	mask = rnp->grpmask;
B
Boqun Feng 已提交
2451
	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2452
	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2453
	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2454 2455
}

2456
/*
P
Paul E. McKenney 已提交
2457
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2458
 * structure.  This must be called from the specified CPU.
2459 2460
 */
static void
2461
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2462 2463 2464
{
	unsigned long flags;
	unsigned long mask;
2465
	bool needwake;
2466 2467 2468
	struct rcu_node *rnp;

	rnp = rdp->mynode;
2469
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2470
	if ((rdp->cpu_no_qs.b.norm &&
2471 2472 2473
	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
	    rdp->gpwrap) {
2474 2475

		/*
2476 2477 2478 2479
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2480
		 */
2481
		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2482
		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
B
Boqun Feng 已提交
2483
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2484 2485 2486 2487
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
B
Boqun Feng 已提交
2488
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2489
	} else {
2490
		rdp->core_needs_qs = false;
2491 2492 2493 2494 2495

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2496
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2497

2498 2499
		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
		/* ^^^ Released rnp->lock */
2500 2501
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2514 2515
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2516 2517 2518 2519 2520

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
2521
	if (!rdp->core_needs_qs)
2522 2523 2524 2525 2526 2527
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2528
	if (rdp->cpu_no_qs.b.norm &&
2529
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2530 2531
		return;

P
Paul E. McKenney 已提交
2532 2533 2534 2535
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2536
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2537 2538
}

2539
/*
2540 2541
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2542
 * ->orphan_lock.
2543
 */
2544 2545 2546
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2547
{
P
Paul E. McKenney 已提交
2548
	/* No-CBs CPUs do not have orphanable callbacks. */
2549
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2550 2551
		return;

2552 2553
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2554 2555
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2556
	 */
2557
	if (rdp->nxtlist != NULL) {
2558 2559 2560
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2561
		rdp->qlen_lazy = 0;
2562
		WRITE_ONCE(rdp->qlen, 0);
2563 2564 2565
	}

	/*
2566 2567 2568 2569 2570 2571 2572
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2573
	 */
2574 2575 2576 2577
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2578 2579 2580
	}

	/*
2581 2582 2583
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2584
	 */
2585
	if (rdp->nxtlist != NULL) {
2586 2587
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2588
	}
2589

2590 2591 2592 2593
	/*
	 * Finally, initialize the rcu_data structure's list to empty and
	 * disallow further callbacks on this CPU.
	 */
2594
	init_callback_list(rdp);
2595
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2596 2597 2598 2599
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2600
 * orphanage.  The caller must hold the ->orphan_lock.
2601
 */
2602
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2603 2604
{
	int i;
2605
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2606

P
Paul E. McKenney 已提交
2607
	/* No-CBs CPUs are handled specially. */
2608 2609
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2610 2611
		return;

2612 2613 2614 2615
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2616 2617
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

2656 2657 2658
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2659
	RCU_TRACE(mask = rdp->grpmask);
2660 2661
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2662
			       TPS("cpuofl"));
2663 2664
}

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

2687 2688
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2689 2690 2691 2692 2693 2694
		return;
	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (!rnp)
			break;
2695
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2696
		rnp->qsmaskinit &= ~mask;
2697
		rnp->qsmask &= ~mask;
2698
		if (rnp->qsmaskinit) {
B
Boqun Feng 已提交
2699 2700
			raw_spin_unlock_rcu_node(rnp);
			/* irqs remain disabled. */
2701 2702
			return;
		}
B
Boqun Feng 已提交
2703
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2704 2705 2706
	}
}

2707
/*
2708
 * The CPU has been completely removed, and some other CPU is reporting
2709 2710
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2711 2712
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2713
 */
2714
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2715
{
2716
	unsigned long flags;
2717
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2718
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2719

2720 2721 2722
	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
		return;

2723
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2724
	rcu_boost_kthread_setaffinity(rnp, -1);
2725

2726
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2727
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2728
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2729
	rcu_adopt_orphan_cbs(rsp, flags);
2730
	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2731

2732 2733 2734
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2735 2736 2737 2738 2739 2740
}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2741
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2742 2743 2744
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2745 2746
	long bl, count, count_lazy;
	int i;
2747

2748
	/* If no callbacks are ready, just return. */
2749
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2750
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2751
		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2752 2753
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2754
		return;
2755
	}
2756 2757 2758 2759 2760 2761

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2762
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2763
	bl = rdp->blimit;
2764
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2765 2766 2767 2768
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2769 2770 2771
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2772 2773 2774
	local_irq_restore(flags);

	/* Invoke callbacks. */
2775
	count = count_lazy = 0;
2776 2777 2778
	while (list) {
		next = list->next;
		prefetch(next);
2779
		debug_rcu_head_unqueue(list);
2780 2781
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2782
		list = next;
2783 2784 2785 2786
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2787 2788 2789 2790
			break;
	}

	local_irq_save(flags);
2791 2792 2793
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2794 2795 2796 2797 2798

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2799 2800 2801
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2802 2803 2804
			else
				break;
	}
2805 2806
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2807
	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2808
	rdp->n_cbs_invoked += count;
2809 2810 2811 2812 2813

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2814 2815 2816 2817 2818 2819
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2820
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2821

2822 2823
	local_irq_restore(flags);

2824
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2825
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2826
		invoke_rcu_core();
2827 2828 2829 2830 2831
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2832
 * Also schedule RCU core processing.
2833
 *
2834
 * This function must be called from hardirq context.  It is normally
2835
 * invoked from the scheduling-clock interrupt.
2836
 */
2837
void rcu_check_callbacks(int user)
2838
{
2839
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2840
	increment_cpu_stall_ticks();
2841
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2842 2843 2844 2845 2846

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2847
		 * a quiescent state, so note it.
2848 2849
		 *
		 * No memory barrier is required here because both
2850 2851 2852
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2853 2854
		 */

2855 2856
		rcu_sched_qs();
		rcu_bh_qs();
2857 2858 2859 2860 2861 2862 2863

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2864
		 * critical section, so note it.
2865 2866
		 */

2867
		rcu_bh_qs();
2868
	}
2869
	rcu_preempt_check_callbacks();
2870
	if (rcu_pending())
2871
		invoke_rcu_core();
P
Paul E. McKenney 已提交
2872 2873
	if (user)
		rcu_note_voluntary_context_switch(current);
2874
	trace_rcu_utilization(TPS("End scheduler-tick"));
2875 2876 2877 2878 2879
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2880 2881
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2882
 * The caller must have suppressed start of new grace periods.
2883
 */
2884 2885 2886 2887
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2888 2889 2890 2891
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
2892
	struct rcu_node *rnp;
2893

2894
	rcu_for_each_leaf_node(rsp, rnp) {
2895
		cond_resched_rcu_qs();
2896
		mask = 0;
2897
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2898
		if (rnp->qsmask == 0) {
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
			if (rcu_state_p == &rcu_sched_state ||
			    rsp != rcu_state_p ||
			    rcu_preempt_blocked_readers_cgp(rnp)) {
				/*
				 * No point in scanning bits because they
				 * are all zero.  But we might need to
				 * priority-boost blocked readers.
				 */
				rcu_initiate_boost(rnp, flags);
				/* rcu_initiate_boost() releases rnp->lock */
				continue;
			}
			if (rnp->parent &&
			    (rnp->parent->qsmask & rnp->grpmask)) {
				/*
				 * Race between grace-period
				 * initialization and task exiting RCU
				 * read-side critical section: Report.
				 */
				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
				/* rcu_report_unblock_qs_rnp() rlses ->lock */
				continue;
			}
2922
		}
2923 2924
		for_each_leaf_node_possible_cpu(rnp, cpu) {
			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2925 2926 2927 2928
			if ((rnp->qsmask & bit) != 0) {
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2929
		}
2930
		if (mask != 0) {
2931 2932
			/* Idle/offline CPUs, report (releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2933 2934
		} else {
			/* Nothing to do here, so just drop the lock. */
B
Boqun Feng 已提交
2935
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2936 2937 2938 2939 2940 2941 2942 2943
		}
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2944
static void force_quiescent_state(struct rcu_state *rsp)
2945 2946
{
	unsigned long flags;
2947 2948 2949 2950 2951
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2952
	rnp = __this_cpu_read(rsp->rda->mynode);
2953
	for (; rnp != NULL; rnp = rnp->parent) {
2954
		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2955 2956 2957 2958
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2959
			rsp->n_force_qs_lh++;
2960 2961 2962 2963 2964
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2965

2966
	/* Reached the root of the rcu_node tree, acquire lock. */
2967
	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2968
	raw_spin_unlock(&rnp_old->fqslock);
2969
	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2970
		rsp->n_force_qs_lh++;
B
Boqun Feng 已提交
2971
		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2972
		return;  /* Someone beat us to it. */
2973
	}
2974
	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
B
Boqun Feng 已提交
2975
	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2976
	rcu_gp_kthread_wake(rsp);
2977 2978 2979
}

/*
2980 2981 2982
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2983 2984
 */
static void
2985
__rcu_process_callbacks(struct rcu_state *rsp)
2986 2987
{
	unsigned long flags;
2988
	bool needwake;
2989
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2990

2991 2992
	WARN_ON_ONCE(rdp->beenonline == 0);

2993 2994 2995 2996
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2997
	local_irq_save(flags);
2998
	if (cpu_needs_another_gp(rsp, rdp)) {
2999
		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3000
		needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3001
		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3002 3003
		if (needwake)
			rcu_gp_kthread_wake(rsp);
3004 3005
	} else {
		local_irq_restore(flags);
3006 3007 3008
	}

	/* If there are callbacks ready, invoke them. */
3009
	if (cpu_has_callbacks_ready_to_invoke(rdp))
3010
		invoke_rcu_callbacks(rsp, rdp);
3011 3012 3013

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
3014 3015
}

3016
/*
3017
 * Do RCU core processing for the current CPU.
3018
 */
3019
static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3020
{
3021 3022
	struct rcu_state *rsp;

3023 3024
	if (cpu_is_offline(smp_processor_id()))
		return;
3025
	trace_rcu_utilization(TPS("Start RCU core"));
3026 3027
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
3028
	trace_rcu_utilization(TPS("End RCU core"));
3029 3030
}

3031
/*
3032 3033 3034
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
3035
 * are running on the current CPU with softirqs disabled, the
3036
 * rcu_cpu_kthread_task cannot disappear out from under us.
3037
 */
3038
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3039
{
3040
	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3041
		return;
3042 3043
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
3044 3045
		return;
	}
3046
	invoke_rcu_callbacks_kthread();
3047 3048
}

3049
static void invoke_rcu_core(void)
3050
{
3051 3052
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
3053 3054
}

3055 3056 3057 3058 3059
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
3060
{
3061 3062
	bool needwake;

3063 3064 3065 3066
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
3067
	if (!rcu_is_watching())
3068 3069
		invoke_rcu_core();

3070
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3071
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3072
		return;
3073

3074 3075 3076 3077 3078 3079 3080
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
3081
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3082 3083

		/* Are we ignoring a completed grace period? */
3084
		note_gp_changes(rsp, rdp);
3085 3086 3087 3088 3089

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

3090
			raw_spin_lock_rcu_node(rnp_root);
3091
			needwake = rcu_start_gp(rsp);
B
Boqun Feng 已提交
3092
			raw_spin_unlock_rcu_node(rnp_root);
3093 3094
			if (needwake)
				rcu_gp_kthread_wake(rsp);
3095 3096 3097 3098 3099
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3100
				force_quiescent_state(rsp);
3101 3102 3103
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
3104
	}
3105 3106
}

3107 3108 3109 3110 3111 3112 3113
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
3114 3115 3116 3117 3118 3119
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
3120
static void
3121
__call_rcu(struct rcu_head *head, rcu_callback_t func,
P
Paul E. McKenney 已提交
3122
	   struct rcu_state *rsp, int cpu, bool lazy)
3123 3124 3125 3126
{
	unsigned long flags;
	struct rcu_data *rdp;

3127 3128 3129
	/* Misaligned rcu_head! */
	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));

3130 3131
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
3132
		WRITE_ONCE(head->func, rcu_leak_callback);
3133 3134 3135
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
3136 3137 3138
	head->func = func;
	head->next = NULL;
	local_irq_save(flags);
3139
	rdp = this_cpu_ptr(rsp->rda);
3140 3141

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
3142 3143 3144 3145 3146
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
		if (likely(rdp->mynode)) {
			/* Post-boot, so this should be for a no-CBs CPU. */
			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
			WARN_ON_ONCE(offline);
			/* Offline CPU, _call_rcu() illegal, leak callback.  */
			local_irq_restore(flags);
			return;
		}
		/*
		 * Very early boot, before rcu_init().  Initialize if needed
		 * and then drop through to queue the callback.
		 */
		BUG_ON(cpu != -1);
3160
		WARN_ON_ONCE(!rcu_is_watching());
3161 3162
		if (!likely(rdp->nxtlist))
			init_default_callback_list(rdp);
3163
	}
3164
	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3165 3166
	if (lazy)
		rdp->qlen_lazy++;
3167 3168
	else
		rcu_idle_count_callbacks_posted();
3169 3170 3171
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3172

3173 3174
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3175
					 rdp->qlen_lazy, rdp->qlen);
3176
	else
3177
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3178

3179 3180
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
3181 3182 3183 3184
	local_irq_restore(flags);
}

/*
3185
 * Queue an RCU-sched callback for invocation after a grace period.
3186
 */
3187
void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3188
{
P
Paul E. McKenney 已提交
3189
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3190
}
3191
EXPORT_SYMBOL_GPL(call_rcu_sched);
3192 3193

/*
3194
 * Queue an RCU callback for invocation after a quicker grace period.
3195
 */
3196
void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3197
{
P
Paul E. McKenney 已提交
3198
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3199 3200 3201
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

3202 3203 3204 3205 3206 3207 3208 3209
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
3210
		    rcu_callback_t func)
3211
{
3212
	__call_rcu(head, func, rcu_state_p, -1, 1);
3213 3214 3215
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
3227 3228
	int ret;

3229
	might_sleep();  /* Check for RCU read-side critical section. */
3230 3231 3232 3233
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
3234 3235
}

3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
3270 3271 3272 3273 3274 3275 3276 3277 3278
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
3279 3280 3281 3282
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3283 3284
	if (rcu_blocking_is_gp())
		return;
3285
	if (rcu_gp_is_expedited())
3286 3287 3288
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
3300 3301 3302
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
3303 3304 3305
 */
void synchronize_rcu_bh(void)
{
3306 3307 3308 3309
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3310 3311
	if (rcu_blocking_is_gp())
		return;
3312
	if (rcu_gp_is_expedited())
3313 3314 3315
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
3316 3317 3318
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
3339
	return smp_load_acquire(&rcu_state_p->gpnum);
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
3365
	newstate = smp_load_acquire(&rcu_state_p->completed);
3366 3367 3368 3369 3370
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
/**
 * get_state_synchronize_sched - Snapshot current RCU-sched state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_sched()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_sched(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_sched()
	 * and cond_synchronize_sched().
	 */
	return smp_load_acquire(&rcu_sched_state.gpnum);
}
EXPORT_SYMBOL_GPL(get_state_synchronize_sched);

/**
 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 *
 * If a full RCU-sched grace period has elapsed since the earlier call to
 * get_state_synchronize_sched(), just return.  Otherwise, invoke
 * synchronize_sched() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_sched(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
	newstate = smp_load_acquire(&rcu_sched_state.completed);
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(cond_synchronize_sched);

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
/* Adjust sequence number for start of update-side operation. */
static void rcu_seq_start(unsigned long *sp)
{
	WRITE_ONCE(*sp, *sp + 1);
	smp_mb(); /* Ensure update-side operation after counter increment. */
	WARN_ON_ONCE(!(*sp & 0x1));
}

/* Adjust sequence number for end of update-side operation. */
static void rcu_seq_end(unsigned long *sp)
{
	smp_mb(); /* Ensure update-side operation before counter increment. */
	WRITE_ONCE(*sp, *sp + 1);
	WARN_ON_ONCE(*sp & 0x1);
}

/* Take a snapshot of the update side's sequence number. */
static unsigned long rcu_seq_snap(unsigned long *sp)
{
	unsigned long s;

	s = (READ_ONCE(*sp) + 3) & ~0x1;
	smp_mb(); /* Above access must not bleed into critical section. */
	return s;
}

/*
 * Given a snapshot from rcu_seq_snap(), determine whether or not a
 * full update-side operation has occurred.
 */
static bool rcu_seq_done(unsigned long *sp, unsigned long s)
{
	return ULONG_CMP_GE(READ_ONCE(*sp), s);
}

3458 3459 3460 3461 3462 3463 3464 3465 3466
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3467 3468
	struct rcu_node *rnp = rdp->mynode;

3469 3470 3471 3472 3473
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3474 3475 3476 3477
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3478
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3479
	if (rcu_scheduler_fully_active &&
3480
	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3481
	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3482 3483
		rdp->n_rp_core_needs_qs++;
	} else if (rdp->core_needs_qs &&
3484
		   (!rdp->cpu_no_qs.b.norm ||
3485
		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3486
		rdp->n_rp_report_qs++;
3487
		return 1;
3488
	}
3489 3490

	/* Does this CPU have callbacks ready to invoke? */
3491 3492
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3493
		return 1;
3494
	}
3495 3496

	/* Has RCU gone idle with this CPU needing another grace period? */
3497 3498
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3499
		return 1;
3500
	}
3501 3502

	/* Has another RCU grace period completed?  */
3503
	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3504
		rdp->n_rp_gp_completed++;
3505
		return 1;
3506
	}
3507 3508

	/* Has a new RCU grace period started? */
3509 3510
	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3511
		rdp->n_rp_gp_started++;
3512
		return 1;
3513
	}
3514

3515 3516 3517 3518 3519 3520
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3521
	/* nothing to do */
3522
	rdp->n_rp_need_nothing++;
3523 3524 3525 3526 3527 3528 3529 3530
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3531
static int rcu_pending(void)
3532
{
3533 3534 3535
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3536
		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3537 3538
			return 1;
	return 0;
3539 3540 3541
}

/*
3542 3543 3544
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3545
 */
3546
static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3547
{
3548 3549 3550
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3551 3552
	struct rcu_state *rsp;

3553
	for_each_rcu_flavor(rsp) {
3554
		rdp = this_cpu_ptr(rsp->rda);
3555 3556 3557 3558
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3559
			al = false;
3560 3561
			break;
		}
3562 3563 3564 3565
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3566 3567
}

3568 3569 3570 3571
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3572
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3573 3574 3575 3576 3577 3578
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3579 3580 3581 3582
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3583
static void rcu_barrier_callback(struct rcu_head *rhp)
3584
{
3585 3586 3587
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3588
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3589
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3590
		complete(&rsp->barrier_completion);
3591
	} else {
3592
		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3593
	}
3594 3595 3596 3597 3598 3599 3600
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3601
	struct rcu_state *rsp = type;
3602
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3603

3604
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3605
	atomic_inc(&rsp->barrier_cpu_count);
3606
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3607 3608 3609 3610 3611 3612
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3613
static void _rcu_barrier(struct rcu_state *rsp)
3614
{
3615 3616
	int cpu;
	struct rcu_data *rdp;
3617
	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3618

3619
	_rcu_barrier_trace(rsp, "Begin", -1, s);
3620

3621
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3622
	mutex_lock(&rsp->barrier_mutex);
3623

3624 3625 3626
	/* Did someone else do our work for us? */
	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3627 3628 3629 3630 3631
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

3632 3633 3634
	/* Mark the start of the barrier operation. */
	rcu_seq_start(&rsp->barrier_sequence);
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3635

3636
	/*
3637 3638
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3639 3640
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3641
	 */
3642
	init_completion(&rsp->barrier_completion);
3643
	atomic_set(&rsp->barrier_cpu_count, 1);
3644
	get_online_cpus();
3645 3646

	/*
3647 3648 3649
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3650
	 */
P
Paul E. McKenney 已提交
3651
	for_each_possible_cpu(cpu) {
3652
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3653
			continue;
3654
		rdp = per_cpu_ptr(rsp->rda, cpu);
3655
		if (rcu_is_nocb_cpu(cpu)) {
3656 3657
			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3658
						   rsp->barrier_sequence);
3659 3660
			} else {
				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3661
						   rsp->barrier_sequence);
3662
				smp_mb__before_atomic();
3663 3664 3665 3666
				atomic_inc(&rsp->barrier_cpu_count);
				__call_rcu(&rdp->barrier_head,
					   rcu_barrier_callback, rsp, cpu, 0);
			}
3667
		} else if (READ_ONCE(rdp->qlen)) {
3668
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3669
					   rsp->barrier_sequence);
3670
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3671
		} else {
3672
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3673
					   rsp->barrier_sequence);
3674 3675
		}
	}
3676
	put_online_cpus();
3677 3678 3679 3680 3681

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3682
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3683
		complete(&rsp->barrier_completion);
3684 3685

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3686
	wait_for_completion(&rsp->barrier_completion);
3687

3688 3689 3690 3691
	/* Mark the end of the barrier operation. */
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
	rcu_seq_end(&rsp->barrier_sequence);

3692
	/* Other rcu_barrier() invocations can now safely proceed. */
3693
	mutex_unlock(&rsp->barrier_mutex);
3694 3695 3696 3697 3698 3699 3700
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3701
	_rcu_barrier(&rcu_bh_state);
3702 3703 3704 3705 3706 3707 3708 3709
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3710
	_rcu_barrier(&rcu_sched_state);
3711 3712 3713
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{
	long mask;
	struct rcu_node *rnp = rnp_leaf;

	for (;;) {
		mask = rnp->grpmask;
		rnp = rnp->parent;
		if (rnp == NULL)
			return;
3730
		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3731
		rnp->qsmaskinit |= mask;
B
Boqun Feng 已提交
3732
		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3733 3734 3735
	}
}

3736
/*
3737
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3738
 */
3739 3740
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3741 3742
{
	unsigned long flags;
3743
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3744 3745 3746
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3747
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3748
	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3749
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3750
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3751
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3752
	rdp->cpu = cpu;
3753
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3754
	rcu_boot_init_nocb_percpu_data(rdp);
B
Boqun Feng 已提交
3755
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3756 3757 3758 3759 3760 3761 3762
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3763
 */
3764
static void
3765
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3766 3767 3768
{
	unsigned long flags;
	unsigned long mask;
3769
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3770 3771 3772
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
3773
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3774 3775
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3776
	rdp->blimit = blimit;
3777 3778
	if (!rdp->nxtlist)
		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3779
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3780
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3781 3782
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
B
Boqun Feng 已提交
3783
	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3784

3785 3786 3787 3788 3789
	/*
	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
	 * propagation up the rcu_node tree will happen at the beginning
	 * of the next grace period.
	 */
3790 3791
	rnp = rdp->mynode;
	mask = rdp->grpmask;
3792
	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3793 3794 3795
	if (!rdp->beenonline)
		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
	rdp->beenonline = true;	 /* We have now been online. */
3796 3797
	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
	rdp->completed = rnp->completed;
3798
	rdp->cpu_no_qs.b.norm = true;
3799
	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3800
	rdp->core_needs_qs = false;
3801
	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
B
Boqun Feng 已提交
3802
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3803 3804
}

3805
int rcutree_prepare_cpu(unsigned int cpu)
3806
{
3807 3808 3809
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3810
		rcu_init_percpu_data(cpu, rsp);
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856

	rcu_prepare_kthreads(cpu);
	rcu_spawn_all_nocb_kthreads(cpu);

	return 0;
}

static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);

	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
}

int rcutree_online_cpu(unsigned int cpu)
{
	sync_sched_exp_online_cleanup(cpu);
	rcutree_affinity_setting(cpu, -1);
	return 0;
}

int rcutree_offline_cpu(unsigned int cpu)
{
	rcutree_affinity_setting(cpu, cpu);
	return 0;
}


int rcutree_dying_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_cpu(rsp);
	return 0;
}

int rcutree_dead_cpu(unsigned int cpu)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		rcu_cleanup_dead_cpu(cpu, rsp);
		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
	}
	return 0;
3857 3858
}

3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
/*
 * Mark the specified CPU as being online so that subsequent grace periods
 * (both expedited and normal) will wait on it.  Note that this means that
 * incoming CPUs are not allowed to use RCU read-side critical sections
 * until this function is called.  Failing to observe this restriction
 * will result in lockdep splats.
 */
void rcu_cpu_starting(unsigned int cpu)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		rnp = rdp->mynode;
		mask = rdp->grpmask;
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
		rnp->qsmaskinitnext |= mask;
		rnp->expmaskinitnext |= mask;
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
	}
}

3885 3886
#ifdef CONFIG_HOTPLUG_CPU
/*
3887 3888 3889
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
 * bit masks.
 */
static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */

	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
	mask = rdp->grpmask;
	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
	rnp->qsmaskinitnext &= ~mask;
3905
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
}

void rcu_report_dead(unsigned int cpu)
{
	struct rcu_state *rsp;

	/* QS for any half-done expedited RCU-sched GP. */
	preempt_disable();
	rcu_report_exp_rdp(&rcu_sched_state,
			   this_cpu_ptr(rcu_sched_state.rda), true);
	preempt_enable();
	for_each_rcu_flavor(rsp)
		rcu_cleanup_dying_idle_cpu(cpu, rsp);
}
#endif

3922 3923 3924 3925 3926 3927 3928
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3929
			rcu_expedite_gp();
3930 3931 3932
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
3933 3934
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_unexpedite_gp();
3935 3936 3937 3938 3939 3940 3941
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3942
/*
3943
 * Spawn the kthreads that handle each RCU flavor's grace periods.
3944 3945 3946 3947
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
3948
	int kthread_prio_in = kthread_prio;
3949 3950
	struct rcu_node *rnp;
	struct rcu_state *rsp;
3951
	struct sched_param sp;
3952 3953
	struct task_struct *t;

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
	/* Force priority into range. */
	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
		kthread_prio = 1;
	else if (kthread_prio < 0)
		kthread_prio = 0;
	else if (kthread_prio > 99)
		kthread_prio = 99;
	if (kthread_prio != kthread_prio_in)
		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
			 kthread_prio, kthread_prio_in);

3965
	rcu_scheduler_fully_active = 1;
3966
	for_each_rcu_flavor(rsp) {
3967
		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3968 3969
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
3970
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3971
		rsp->gp_kthread = t;
3972 3973 3974 3975
		if (kthread_prio) {
			sp.sched_priority = kthread_prio;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		}
B
Boqun Feng 已提交
3976
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3977
		wake_up_process(t);
3978
	}
3979
	rcu_spawn_nocb_kthreads();
3980
	rcu_spawn_boost_kthreads();
3981 3982 3983 3984
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3985
/*
3986 3987 3988 3989 3990 3991 3992 3993
 * This function is invoked towards the end of the scheduler's
 * initialization process.  Before this is called, the idle task might
 * contain synchronous grace-period primitives (during which time, this idle
 * task is booting the system, and such primitives are no-ops).  After this
 * function is called, any synchronous grace-period primitives are run as
 * expedited, with the requesting task driving the grace period forward.
 * A later core_initcall() rcu_exp_runtime_mode() will switch to full
 * runtime RCU functionality.
3994 3995 3996 3997 3998
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
3999 4000 4001
	rcu_test_sync_prims();
	rcu_scheduler_active = RCU_SCHEDULER_INIT;
	rcu_test_sync_prims();
4002 4003
}

4004 4005
/*
 * Compute the per-level fanout, either using the exact fanout specified
4006
 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4007
 */
4008
static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4009 4010 4011
{
	int i;

4012
	if (rcu_fanout_exact) {
4013
		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4014
		for (i = rcu_num_lvls - 2; i >= 0; i--)
4015
			levelspread[i] = RCU_FANOUT;
4016 4017 4018 4019 4020 4021
	} else {
		int ccur;
		int cprv;

		cprv = nr_cpu_ids;
		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4022 4023
			ccur = levelcnt[i];
			levelspread[i] = (cprv + ccur - 1) / ccur;
4024 4025
			cprv = ccur;
		}
4026 4027 4028 4029 4030 4031
	}
}

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
4032
static void __init rcu_init_one(struct rcu_state *rsp)
4033
{
4034 4035
	static const char * const buf[] = RCU_NODE_NAME_INIT;
	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4036 4037
	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4038
	static u8 fl_mask = 0x1;
4039 4040 4041

	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4042 4043 4044 4045 4046
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

4047
	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4048

4049 4050 4051
	/* Silence gcc 4.8 false positive about array index out of range. */
	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls out of range");
4052

4053 4054
	/* Initialize the level-tracking arrays. */

4055
	for (i = 0; i < rcu_num_lvls; i++)
4056
		levelcnt[i] = num_rcu_lvl[i];
4057
	for (i = 1; i < rcu_num_lvls; i++)
4058 4059
		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
	rcu_init_levelspread(levelspread, levelcnt);
4060 4061
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
4062 4063 4064

	/* Initialize the elements themselves, starting from the leaves. */

4065
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4066
		cpustride *= levelspread[i];
4067
		rnp = rsp->level[i];
4068
		for (j = 0; j < levelcnt[i]; j++, rnp++) {
B
Boqun Feng 已提交
4069 4070
			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4071
						   &rcu_node_class[i], buf[i]);
4072 4073 4074
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
4075 4076
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
4077 4078 4079 4080
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
4081 4082
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
4083 4084 4085 4086 4087
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
4088
				rnp->grpnum = j % levelspread[i - 1];
4089 4090
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
4091
					      j / levelspread[i - 1];
4092 4093
			}
			rnp->level = i;
4094
			INIT_LIST_HEAD(&rnp->blkd_tasks);
4095
			rcu_init_one_nocb(rnp);
4096 4097
			init_waitqueue_head(&rnp->exp_wq[0]);
			init_waitqueue_head(&rnp->exp_wq[1]);
4098 4099
			init_waitqueue_head(&rnp->exp_wq[2]);
			init_waitqueue_head(&rnp->exp_wq[3]);
4100
			spin_lock_init(&rnp->exp_lock);
4101 4102
		}
	}
4103

4104 4105
	init_swait_queue_head(&rsp->gp_wq);
	init_swait_queue_head(&rsp->expedited_wq);
4106
	rnp = rsp->level[rcu_num_lvls - 1];
4107
	for_each_possible_cpu(i) {
4108
		while (i > rnp->grphi)
4109
			rnp++;
4110
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4111 4112
		rcu_boot_init_percpu_data(i, rsp);
	}
4113
	list_add(&rsp->flavors, &rcu_struct_flavors);
4114 4115
}

4116 4117
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4118
 * replace the definitions in tree.h because those are needed to size
4119 4120 4121 4122
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
4123
	ulong d;
4124
	int i;
4125
	int rcu_capacity[RCU_NUM_LVLS];
4126

4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

4140
	/* If the compile-time values are accurate, just leave. */
4141
	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4142
	    nr_cpu_ids == NR_CPUS)
4143
		return;
4144 4145
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
4146 4147

	/*
4148 4149 4150 4151
	 * The boot-time rcu_fanout_leaf parameter must be at least two
	 * and cannot exceed the number of bits in the rcu_node masks.
	 * Complain and fall back to the compile-time values if this
	 * limit is exceeded.
4152
	 */
4153
	if (rcu_fanout_leaf < 2 ||
4154
	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4155
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4156 4157 4158 4159 4160 4161
		WARN_ON(1);
		return;
	}

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
4162
	 * with the given number of levels.
4163
	 */
4164
	rcu_capacity[0] = rcu_fanout_leaf;
4165
	for (i = 1; i < RCU_NUM_LVLS; i++)
4166
		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4167 4168

	/*
4169
	 * The tree must be able to accommodate the configured number of CPUs.
4170
	 * If this limit is exceeded, fall back to the compile-time values.
4171
	 */
4172 4173 4174 4175 4176
	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
		rcu_fanout_leaf = RCU_FANOUT_LEAF;
		WARN_ON(1);
		return;
	}
4177

4178
	/* Calculate the number of levels in the tree. */
4179
	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4180
	}
4181
	rcu_num_lvls = i + 1;
4182

4183
	/* Calculate the number of rcu_nodes at each level of the tree. */
4184
	for (i = 0; i < rcu_num_lvls; i++) {
4185
		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4186 4187
		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
	}
4188 4189 4190

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
4191
	for (i = 0; i < rcu_num_lvls; i++)
4192 4193 4194
		rcu_num_nodes += num_rcu_lvl[i];
}

4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure referenced by rsp.
 */
static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
{
	int level = 0;
	struct rcu_node *rnp;

	pr_info("rcu_node tree layout dump\n");
	pr_info(" ");
	rcu_for_each_node_breadth_first(rsp, rnp) {
		if (rnp->level != level) {
			pr_cont("\n");
			pr_info(" ");
			level = rnp->level;
		}
		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
	}
	pr_cont("\n");
}

4217
void __init rcu_init(void)
4218
{
P
Paul E. McKenney 已提交
4219
	int cpu;
4220

4221 4222
	rcu_early_boot_tests();

4223
	rcu_bootup_announce();
4224
	rcu_init_geometry();
4225 4226
	rcu_init_one(&rcu_bh_state);
	rcu_init_one(&rcu_sched_state);
4227 4228
	if (dump_tree)
		rcu_dump_rcu_node_tree(&rcu_sched_state);
4229
	__rcu_init_preempt();
J
Jiang Fang 已提交
4230
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4231 4232 4233 4234 4235 4236

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
4237
	pm_notifier(rcu_pm_notify, 0);
4238
	for_each_online_cpu(cpu) {
4239
		rcutree_prepare_cpu(cpu);
4240 4241
		rcu_cpu_starting(cpu);
	}
4242 4243
}

4244
#include "tree_exp.h"
4245
#include "tree_plugin.h"