i915_gem.c 122.2 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_mocs.h"
37
#include <linux/reservation.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
J
Jesse Barnes 已提交
41
#include <linux/pci.h>
42
#include <linux/dma-buf.h>
43

44
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
45
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
46

47 48 49 50 51 52
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

53 54
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
55 56 57
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

58 59 60 61 62 63
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

82 83 84 85
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
86
	spin_lock(&dev_priv->mm.object_stat_lock);
87 88
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
89
	spin_unlock(&dev_priv->mm.object_stat_lock);
90 91 92 93 94
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
95
	spin_lock(&dev_priv->mm.object_stat_lock);
96 97
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
98
	spin_unlock(&dev_priv->mm.object_stat_lock);
99 100
}

101
static int
102
i915_gem_wait_for_error(struct i915_gpu_error *error)
103 104 105
{
	int ret;

106
	if (!i915_reset_in_progress(error))
107 108
		return 0;

109 110 111 112 113
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
114
	ret = wait_event_interruptible_timeout(error->reset_queue,
115
					       !i915_reset_in_progress(error),
116
					       10*HZ);
117 118 119 120
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
121
		return ret;
122 123
	} else {
		return 0;
124
	}
125 126
}

127
int i915_mutex_lock_interruptible(struct drm_device *dev)
128
{
129
	struct drm_i915_private *dev_priv = to_i915(dev);
130 131
	int ret;

132
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
133 134 135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
142

143 144
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
145
			    struct drm_file *file)
146
{
147
	struct drm_i915_private *dev_priv = to_i915(dev);
148
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
149
	struct drm_i915_gem_get_aperture *args = data;
150
	struct i915_vma *vma;
151
	size_t pinned;
152

153
	pinned = 0;
154
	mutex_lock(&dev->struct_mutex);
155
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
156 157
		if (vma->pin_count)
			pinned += vma->node.size;
158
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
159 160
		if (vma->pin_count)
			pinned += vma->node.size;
161
	mutex_unlock(&dev->struct_mutex);
162

163
	args->aper_size = ggtt->base.total;
164
	args->aper_available_size = args->aper_size - pinned;
165

166 167 168
	return 0;
}

169 170
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
171
{
172 173 174 175 176
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
177

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

194
		put_page(page);
195 196 197
		vaddr += PAGE_SIZE;
	}

198
	i915_gem_chipset_flush(to_i915(obj->base.dev));
199 200 201 202 203 204 205 206 207 208 209 210 211

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
212

213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
228
	if (WARN_ON(ret)) {
229 230 231 232 233 234 235 236 237 238
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
239
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
240
		char *vaddr = obj->phys_handle->vaddr;
241 242 243
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
244 245 246 247 248 249 250 251 252 253 254 255 256 257
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
258
				mark_page_accessed(page);
259
			put_page(page);
260 261
			vaddr += PAGE_SIZE;
		}
262
		obj->dirty = 0;
263 264
	}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
int
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
	int ret;

	/* The vma will only be freed if it is marked as closed, and if we wait
	 * upon rendering to the vma, we may unbind anything in the list.
	 */
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

304 305 306 307 308
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
309
	int ret;
310 311 312 313 314 315 316 317 318 319 320 321 322 323

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
324 325 326 327 328
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
329 330 331
	if (ret)
		return ret;

332 333 334 335 336 337
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
338 339 340
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
341 342 343 344 345 346 347 348 349
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
350
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
351
	int ret = 0;
352 353 354 355 356 357 358

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
359

360
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
361 362 363 364 365 366 367 368 369 370
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
371 372 373 374
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
375 376
	}

377
	drm_clflush_virt_range(vaddr, args->size);
378
	i915_gem_chipset_flush(to_i915(dev));
379 380

out:
381
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
382
	return ret;
383 384
}

385 386
void *i915_gem_object_alloc(struct drm_device *dev)
{
387
	struct drm_i915_private *dev_priv = to_i915(dev);
388
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
389 390 391 392
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
393
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
394
	kmem_cache_free(dev_priv->objects, obj);
395 396
}

397 398 399 400 401
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
402
{
403
	struct drm_i915_gem_object *obj;
404 405
	int ret;
	u32 handle;
406

407
	size = roundup(size, PAGE_SIZE);
408 409
	if (size == 0)
		return -EINVAL;
410 411

	/* Allocate the new object */
412
	obj = i915_gem_object_create(dev, size);
413 414
	if (IS_ERR(obj))
		return PTR_ERR(obj);
415

416
	ret = drm_gem_handle_create(file, &obj->base, &handle);
417
	/* drop reference from allocate - handle holds it now */
418
	i915_gem_object_put_unlocked(obj);
419 420
	if (ret)
		return ret;
421

422
	*handle_p = handle;
423 424 425
	return 0;
}

426 427 428 429 430 431
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
432
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
433 434
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
435
			       args->size, &args->handle);
436 437 438 439
}

/**
 * Creates a new mm object and returns a handle to it.
440 441 442
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
443 444 445 446 447 448
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
449

450
	return i915_gem_create(file, dev,
451
			       args->size, &args->handle);
452 453
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

480
static inline int
481 482
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

506 507 508 509 510 511 512 513 514 515 516 517
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

518
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
519 520
		return -EINVAL;

521 522 523 524
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

543 544 545
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
546
static int
547 548 549 550 551 552 553
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

554
	if (unlikely(page_do_bit17_swizzling))
555 556 557 558 559 560 561 562 563 564 565
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

566
	return ret ? -EFAULT : 0;
567 568
}

569 570 571 572
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
573
	if (unlikely(swizzled)) {
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

591 592 593 594 595 596 597 598 599 600 601 602
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
603 604 605
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
606 607 608 609 610 611 612 613 614 615 616

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

617
	return ret ? - EFAULT : 0;
618 619
}

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
647
	struct drm_i915_private *dev_priv = to_i915(dev);
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

756
static int
757 758 759 760
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
761
{
762
	char __user *user_data;
763
	ssize_t remain;
764
	loff_t offset;
765
	int shmem_page_offset, page_length, ret = 0;
766
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
767
	int prefaulted = 0;
768
	int needs_clflush = 0;
769
	struct sg_page_iter sg_iter;
770

771
	if (!i915_gem_object_has_struct_page(obj))
772 773
		return -ENODEV;

774
	user_data = u64_to_user_ptr(args->data_ptr);
775 776
	remain = args->size;

777
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
778

779
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
780 781 782
	if (ret)
		return ret;

783
	offset = args->offset;
784

785 786
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
787
		struct page *page = sg_page_iter_page(&sg_iter);
788 789 790 791

		if (remain <= 0)
			break;

792 793 794 795 796
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
797
		shmem_page_offset = offset_in_page(offset);
798 799 800 801
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

802 803 804
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

805 806 807 808 809
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
810 811 812

		mutex_unlock(&dev->struct_mutex);

813
		if (likely(!i915.prefault_disable) && !prefaulted) {
814
			ret = fault_in_multipages_writeable(user_data, remain);
815 816 817 818 819 820 821
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
822

823 824 825
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
826

827
		mutex_lock(&dev->struct_mutex);
828 829

		if (ret)
830 831
			goto out;

832
next_page:
833
		remain -= page_length;
834
		user_data += page_length;
835 836 837
		offset += page_length;
	}

838
out:
839 840
	i915_gem_object_unpin_pages(obj);

841 842 843
	return ret;
}

844 845
/**
 * Reads data from the object referenced by handle.
846 847 848
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
849 850 851 852 853
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
854
		     struct drm_file *file)
855 856
{
	struct drm_i915_gem_pread *args = data;
857
	struct drm_i915_gem_object *obj;
858
	int ret = 0;
859

860 861 862 863
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
864
		       u64_to_user_ptr(args->data_ptr),
865 866 867
		       args->size))
		return -EFAULT;

868
	ret = i915_mutex_lock_interruptible(dev);
869
	if (ret)
870
		return ret;
871

872 873
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
874 875
		ret = -ENOENT;
		goto unlock;
876
	}
877

878
	/* Bounds check source.  */
879 880
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
881
		ret = -EINVAL;
882
		goto out;
C
Chris Wilson 已提交
883 884
	}

C
Chris Wilson 已提交
885 886
	trace_i915_gem_object_pread(obj, args->offset, args->size);

887
	ret = i915_gem_shmem_pread(dev, obj, args, file);
888

889
	/* pread for non shmem backed objects */
890 891
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
892 893
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
894 895
		intel_runtime_pm_put(to_i915(dev));
	}
896

897
out:
898
	i915_gem_object_put(obj);
899
unlock:
900
	mutex_unlock(&dev->struct_mutex);
901
	return ret;
902 903
}

904 905
/* This is the fast write path which cannot handle
 * page faults in the source data
906
 */
907 908 909 910 911 912

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
913
{
914 915
	void __iomem *vaddr_atomic;
	void *vaddr;
916
	unsigned long unwritten;
917

P
Peter Zijlstra 已提交
918
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
919 920 921
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
922
						      user_data, length);
P
Peter Zijlstra 已提交
923
	io_mapping_unmap_atomic(vaddr_atomic);
924
	return unwritten;
925 926
}

927 928 929
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
930
 * @i915: i915 device private data
931 932 933
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
934
 */
935
static int
936
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
937
			 struct drm_i915_gem_object *obj,
938
			 struct drm_i915_gem_pwrite *args,
939
			 struct drm_file *file)
940
{
941
	struct i915_ggtt *ggtt = &i915->ggtt;
942
	struct drm_device *dev = obj->base.dev;
943 944
	struct drm_mm_node node;
	uint64_t remain, offset;
945
	char __user *user_data;
946
	int ret;
947 948 949 950
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
951

952
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
968 969 970
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
971
	}
D
Daniel Vetter 已提交
972 973 974 975 976

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

977
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
978
	obj->dirty = true;
979

980 981 982 983
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
984 985
		/* Operation in this page
		 *
986 987 988
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
989
		 */
990 991 992 993 994 995 996 997 998 999 1000 1001 1002
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1003
		/* If we get a fault while copying data, then (presumably) our
1004 1005
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1006 1007
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1008
		 */
1009
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1010
				    page_offset, user_data, page_length)) {
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1023
		}
1024

1025 1026 1027
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1028 1029
	}

1030
out_flush:
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1044
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1045
out_unpin:
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1056
out:
1057
	return ret;
1058 1059
}

1060 1061 1062 1063
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1064
static int
1065 1066 1067 1068 1069
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1070
{
1071
	char *vaddr;
1072
	int ret;
1073

1074
	if (unlikely(page_do_bit17_swizzling))
1075
		return -EINVAL;
1076

1077 1078 1079 1080
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1081 1082
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1083 1084 1085 1086
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1087

1088
	return ret ? -EFAULT : 0;
1089 1090
}

1091 1092
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1093
static int
1094 1095 1096 1097 1098
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1099
{
1100 1101
	char *vaddr;
	int ret;
1102

1103
	vaddr = kmap(page);
1104
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1105 1106 1107
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1108 1109
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1110 1111
						user_data,
						page_length);
1112 1113 1114 1115 1116
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1117 1118 1119
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1120
	kunmap(page);
1121

1122
	return ret ? -EFAULT : 0;
1123 1124 1125
}

static int
1126 1127 1128 1129
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1130 1131
{
	ssize_t remain;
1132 1133
	loff_t offset;
	char __user *user_data;
1134
	int shmem_page_offset, page_length, ret = 0;
1135
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1136
	int hit_slowpath = 0;
1137 1138
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1139
	struct sg_page_iter sg_iter;
1140

1141
	user_data = u64_to_user_ptr(args->data_ptr);
1142 1143
	remain = args->size;

1144
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1145

1146 1147 1148 1149
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

1150 1151 1152 1153 1154
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1155
		needs_clflush_after = cpu_write_needs_clflush(obj);
1156
	}
1157 1158 1159 1160 1161
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1162

1163 1164 1165 1166
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1167
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1168

1169 1170
	i915_gem_object_pin_pages(obj);

1171
	offset = args->offset;
1172
	obj->dirty = 1;
1173

1174 1175
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1176
		struct page *page = sg_page_iter_page(&sg_iter);
1177
		int partial_cacheline_write;
1178

1179 1180 1181
		if (remain <= 0)
			break;

1182 1183 1184 1185 1186
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1187
		shmem_page_offset = offset_in_page(offset);
1188 1189 1190 1191 1192

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1193 1194 1195 1196 1197 1198 1199
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1200 1201 1202
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1203 1204 1205 1206 1207 1208
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1209 1210 1211

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1212 1213 1214 1215
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1216

1217
		mutex_lock(&dev->struct_mutex);
1218 1219

		if (ret)
1220 1221
			goto out;

1222
next_page:
1223
		remain -= page_length;
1224
		user_data += page_length;
1225
		offset += page_length;
1226 1227
	}

1228
out:
1229 1230
	i915_gem_object_unpin_pages(obj);

1231
	if (hit_slowpath) {
1232 1233 1234 1235 1236 1237 1238
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1239
			if (i915_gem_clflush_object(obj, obj->pin_display))
1240
				needs_clflush_after = true;
1241
		}
1242
	}
1243

1244
	if (needs_clflush_after)
1245
		i915_gem_chipset_flush(to_i915(dev));
1246 1247
	else
		obj->cache_dirty = true;
1248

1249
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1250
	return ret;
1251 1252 1253 1254
}

/**
 * Writes data to the object referenced by handle.
1255 1256 1257
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1258 1259 1260 1261 1262
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1263
		      struct drm_file *file)
1264
{
1265
	struct drm_i915_private *dev_priv = to_i915(dev);
1266
	struct drm_i915_gem_pwrite *args = data;
1267
	struct drm_i915_gem_object *obj;
1268 1269 1270 1271 1272 1273
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1274
		       u64_to_user_ptr(args->data_ptr),
1275 1276 1277
		       args->size))
		return -EFAULT;

1278
	if (likely(!i915.prefault_disable)) {
1279
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1280 1281 1282 1283
						   args->size);
		if (ret)
			return -EFAULT;
	}
1284

1285 1286
	intel_runtime_pm_get(dev_priv);

1287
	ret = i915_mutex_lock_interruptible(dev);
1288
	if (ret)
1289
		goto put_rpm;
1290

1291 1292
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1293 1294
		ret = -ENOENT;
		goto unlock;
1295
	}
1296

1297
	/* Bounds check destination. */
1298 1299
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1300
		ret = -EINVAL;
1301
		goto out;
C
Chris Wilson 已提交
1302 1303
	}

C
Chris Wilson 已提交
1304 1305
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1306
	ret = -EFAULT;
1307 1308 1309 1310 1311 1312
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1313 1314
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1315
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1316 1317 1318
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1319
	}
1320

1321
	if (ret == -EFAULT || ret == -ENOSPC) {
1322 1323
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1324
		else if (i915_gem_object_has_struct_page(obj))
1325
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1326 1327
		else
			ret = -ENODEV;
1328
	}
1329

1330
out:
1331
	i915_gem_object_put(obj);
1332
unlock:
1333
	mutex_unlock(&dev->struct_mutex);
1334 1335 1336
put_rpm:
	intel_runtime_pm_put(dev_priv);

1337 1338 1339
	return ret;
}

1340 1341 1342
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1343 1344
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1345
 */
1346
int
1347 1348 1349
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1350
	struct reservation_object *resv;
C
Chris Wilson 已提交
1351 1352 1353
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx, ret;
1354

C
Chris Wilson 已提交
1355 1356 1357 1358 1359
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = obj->active;
1360
	} else {
C
Chris Wilson 已提交
1361 1362 1363
		active_mask = 1;
		active = &obj->last_write;
	}
1364

C
Chris Wilson 已提交
1365
	for_each_active(active_mask, idx) {
1366 1367
		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
C
Chris Wilson 已提交
1368 1369
		if (ret)
			return ret;
1370 1371
	}

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

1382 1383 1384
	return 0;
}

1385 1386 1387 1388 1389
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1390
					    struct intel_rps_client *rps,
1391 1392 1393
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
1394
	struct drm_i915_private *dev_priv = to_i915(dev);
1395
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
C
Chris Wilson 已提交
1396 1397
	struct i915_gem_active *active;
	unsigned long active_mask;
1398
	int ret, i, n = 0;
1399 1400 1401 1402

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

C
Chris Wilson 已提交
1403 1404
	active_mask = obj->active;
	if (!active_mask)
1405 1406
		return 0;

C
Chris Wilson 已提交
1407 1408
	if (!readonly) {
		active = obj->last_read;
1409
	} else {
C
Chris Wilson 已提交
1410 1411 1412
		active_mask = 1;
		active = &obj->last_write;
	}
1413

C
Chris Wilson 已提交
1414 1415
	for_each_active(active_mask, i) {
		struct drm_i915_gem_request *req;
1416

C
Chris Wilson 已提交
1417 1418 1419
		req = i915_gem_active_get(&active[i],
					  &obj->base.dev->struct_mutex);
		if (req)
1420
			requests[n++] = req;
1421 1422
	}

1423
	mutex_unlock(&dev->struct_mutex);
1424
	ret = 0;
1425
	for (i = 0; ret == 0 && i < n; i++)
1426
		ret = i915_wait_request(requests[i], true, NULL, rps);
1427 1428
	mutex_lock(&dev->struct_mutex);

1429
	for (i = 0; i < n; i++)
1430
		i915_gem_request_put(requests[i]);
1431 1432

	return ret;
1433 1434
}

1435 1436 1437 1438 1439 1440
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1441 1442 1443 1444 1445 1446 1447
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1448
/**
1449 1450
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1451 1452 1453
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1454 1455 1456
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1457
			  struct drm_file *file)
1458 1459
{
	struct drm_i915_gem_set_domain *args = data;
1460
	struct drm_i915_gem_object *obj;
1461 1462
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1463 1464
	int ret;

1465
	/* Only handle setting domains to types used by the CPU. */
1466
	if (write_domain & I915_GEM_GPU_DOMAINS)
1467 1468
		return -EINVAL;

1469
	if (read_domains & I915_GEM_GPU_DOMAINS)
1470 1471 1472 1473 1474 1475 1476 1477
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1478
	ret = i915_mutex_lock_interruptible(dev);
1479
	if (ret)
1480
		return ret;
1481

1482 1483
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1484 1485
		ret = -ENOENT;
		goto unlock;
1486
	}
1487

1488 1489 1490 1491
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1492
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1493
							  to_rps_client(file),
1494
							  !write_domain);
1495 1496 1497
	if (ret)
		goto unref;

1498
	if (read_domains & I915_GEM_DOMAIN_GTT)
1499
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1500
	else
1501
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1502

1503
	if (write_domain != 0)
1504
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1505

1506
unref:
1507
	i915_gem_object_put(obj);
1508
unlock:
1509 1510 1511 1512 1513 1514
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1515 1516 1517
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1518 1519 1520
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1521
			 struct drm_file *file)
1522 1523
{
	struct drm_i915_gem_sw_finish *args = data;
1524
	struct drm_i915_gem_object *obj;
1525 1526
	int ret = 0;

1527
	ret = i915_mutex_lock_interruptible(dev);
1528
	if (ret)
1529
		return ret;
1530

1531 1532
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
1533 1534
		ret = -ENOENT;
		goto unlock;
1535 1536 1537
	}

	/* Pinned buffers may be scanout, so flush the cache */
1538
	if (obj->pin_display)
1539
		i915_gem_object_flush_cpu_write_domain(obj);
1540

1541
	i915_gem_object_put(obj);
1542
unlock:
1543 1544 1545 1546 1547
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1548 1549 1550 1551 1552
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1553 1554 1555
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1566 1567 1568
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1569
		    struct drm_file *file)
1570 1571
{
	struct drm_i915_gem_mmap *args = data;
1572
	struct drm_i915_gem_object *obj;
1573 1574
	unsigned long addr;

1575 1576 1577
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1578
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1579 1580
		return -ENODEV;

1581 1582
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1583
		return -ENOENT;
1584

1585 1586 1587
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1588
	if (!obj->base.filp) {
1589
		i915_gem_object_put_unlocked(obj);
1590 1591 1592
		return -EINVAL;
	}

1593
	addr = vm_mmap(obj->base.filp, 0, args->size,
1594 1595
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1596 1597 1598 1599
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1600
		if (down_write_killable(&mm->mmap_sem)) {
1601
			i915_gem_object_put_unlocked(obj);
1602 1603
			return -EINTR;
		}
1604 1605 1606 1607 1608 1609 1610
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1611 1612

		/* This may race, but that's ok, it only gets set */
1613
		WRITE_ONCE(obj->has_wc_mmap, true);
1614
	}
1615
	i915_gem_object_put_unlocked(obj);
1616 1617 1618 1619 1620 1621 1622 1623
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1624 1625
/**
 * i915_gem_fault - fault a page into the GTT
1626 1627
 * @vma: VMA in question
 * @vmf: fault info
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1642 1643
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1644 1645
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1646
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1647 1648 1649
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1650
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1651

1652 1653
	intel_runtime_pm_get(dev_priv);

1654 1655 1656 1657
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1658 1659 1660
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1661

C
Chris Wilson 已提交
1662 1663
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1664 1665 1666 1667 1668 1669 1670 1671 1672
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1673 1674
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1675
		ret = -EFAULT;
1676 1677 1678
		goto unlock;
	}

1679
	/* Use a partial view if the object is bigger than the aperture. */
1680
	if (obj->base.size >= ggtt->mappable_end &&
1681
	    obj->tiling_mode == I915_TILING_NONE) {
1682
		static const unsigned int chunk_size = 256; // 1 MiB
1683

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1696 1697
	if (ret)
		goto unlock;
1698

1699 1700 1701
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1702

1703
	ret = i915_gem_object_get_fence(obj);
1704
	if (ret)
1705
		goto unpin;
1706

1707
	/* Finally, remap it using the new GTT offset */
1708
	pfn = ggtt->mappable_base +
1709
		i915_gem_obj_ggtt_offset_view(obj, &view);
1710
	pfn >>= PAGE_SHIFT;
1711

1712 1713 1714 1715 1716 1717 1718 1719 1720
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1721

1722 1723
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1724 1725 1726 1727 1728
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1750
unpin:
1751
	i915_gem_object_ggtt_unpin_view(obj, &view);
1752
unlock:
1753
	mutex_unlock(&dev->struct_mutex);
1754
out:
1755
	switch (ret) {
1756
	case -EIO:
1757 1758 1759 1760 1761 1762 1763
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1764 1765 1766
			ret = VM_FAULT_SIGBUS;
			break;
		}
1767
	case -EAGAIN:
D
Daniel Vetter 已提交
1768 1769 1770 1771
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1772
		 */
1773 1774
	case 0:
	case -ERESTARTSYS:
1775
	case -EINTR:
1776 1777 1778 1779 1780
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1781 1782
		ret = VM_FAULT_NOPAGE;
		break;
1783
	case -ENOMEM:
1784 1785
		ret = VM_FAULT_OOM;
		break;
1786
	case -ENOSPC:
1787
	case -EFAULT:
1788 1789
		ret = VM_FAULT_SIGBUS;
		break;
1790
	default:
1791
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1792 1793
		ret = VM_FAULT_SIGBUS;
		break;
1794
	}
1795 1796 1797

	intel_runtime_pm_put(dev_priv);
	return ret;
1798 1799
}

1800 1801 1802 1803
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1804
 * Preserve the reservation of the mmapping with the DRM core code, but
1805 1806 1807 1808 1809 1810 1811 1812 1813
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1814
void
1815
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1816
{
1817 1818 1819 1820 1821 1822
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1823 1824
	if (!obj->fault_mappable)
		return;
1825

1826 1827
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1838
	obj->fault_mappable = false;
1839 1840
}

1841 1842 1843 1844 1845 1846 1847 1848 1849
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1850
uint32_t
1851
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1852
{
1853
	uint32_t gtt_size;
1854 1855

	if (INTEL_INFO(dev)->gen >= 4 ||
1856 1857
	    tiling_mode == I915_TILING_NONE)
		return size;
1858 1859

	/* Previous chips need a power-of-two fence region when tiling */
1860
	if (IS_GEN3(dev))
1861
		gtt_size = 1024*1024;
1862
	else
1863
		gtt_size = 512*1024;
1864

1865 1866
	while (gtt_size < size)
		gtt_size <<= 1;
1867

1868
	return gtt_size;
1869 1870
}

1871 1872
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1873 1874 1875 1876
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
1877 1878
 *
 * Return the required GTT alignment for an object, taking into account
1879
 * potential fence register mapping.
1880
 */
1881 1882 1883
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1884 1885 1886 1887 1888
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1889
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1890
	    tiling_mode == I915_TILING_NONE)
1891 1892
		return 4096;

1893 1894 1895 1896
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1897
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1898 1899
}

1900 1901
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1902
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1903 1904
	int ret;

1905 1906
	dev_priv->mm.shrinker_no_lock_stealing = true;

1907 1908
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1909
		goto out;
1910 1911 1912 1913 1914 1915 1916 1917

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1918 1919 1920 1921 1922
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1923 1924
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1925
		goto out;
1926 1927

	i915_gem_shrink_all(dev_priv);
1928 1929 1930 1931 1932
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1933 1934 1935 1936 1937 1938 1939
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1940
int
1941 1942
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1943
		  uint32_t handle,
1944
		  uint64_t *offset)
1945
{
1946
	struct drm_i915_gem_object *obj;
1947 1948
	int ret;

1949
	ret = i915_mutex_lock_interruptible(dev);
1950
	if (ret)
1951
		return ret;
1952

1953 1954
	obj = i915_gem_object_lookup(file, handle);
	if (!obj) {
1955 1956 1957
		ret = -ENOENT;
		goto unlock;
	}
1958

1959
	if (obj->madv != I915_MADV_WILLNEED) {
1960
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1961
		ret = -EFAULT;
1962
		goto out;
1963 1964
	}

1965 1966 1967
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1968

1969
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1970

1971
out:
1972
	i915_gem_object_put(obj);
1973
unlock:
1974
	mutex_unlock(&dev->struct_mutex);
1975
	return ret;
1976 1977
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1999
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2000 2001
}

D
Daniel Vetter 已提交
2002 2003 2004
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2005
{
2006
	i915_gem_object_free_mmap_offset(obj);
2007

2008 2009
	if (obj->base.filp == NULL)
		return;
2010

D
Daniel Vetter 已提交
2011 2012 2013 2014 2015
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2016
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2017 2018
	obj->madv = __I915_MADV_PURGED;
}
2019

2020 2021 2022
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2023
{
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2038 2039
}

2040
static void
2041
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2042
{
2043 2044
	struct sgt_iter sgt_iter;
	struct page *page;
2045
	int ret;
2046

2047
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2048

C
Chris Wilson 已提交
2049
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2050
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2051 2052 2053
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2054
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2055 2056 2057
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2058 2059
	i915_gem_gtt_finish_object(obj);

2060
	if (i915_gem_object_needs_bit17_swizzle(obj))
2061 2062
		i915_gem_object_save_bit_17_swizzle(obj);

2063 2064
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2065

2066
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2067
		if (obj->dirty)
2068
			set_page_dirty(page);
2069

2070
		if (obj->madv == I915_MADV_WILLNEED)
2071
			mark_page_accessed(page);
2072

2073
		put_page(page);
2074
	}
2075
	obj->dirty = 0;
2076

2077 2078
	sg_free_table(obj->pages);
	kfree(obj->pages);
2079
}
C
Chris Wilson 已提交
2080

2081
int
2082 2083 2084 2085
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2086
	if (obj->pages == NULL)
2087 2088
		return 0;

2089 2090 2091
	if (obj->pages_pin_count)
		return -EBUSY;

2092
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2093

2094 2095 2096
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2097
	list_del(&obj->global_list);
2098

2099
	if (obj->mapping) {
2100 2101 2102 2103
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2104 2105 2106
		obj->mapping = NULL;
	}

2107
	ops->put_pages(obj);
2108
	obj->pages = NULL;
2109

2110
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2111 2112 2113 2114

	return 0;
}

2115
static int
C
Chris Wilson 已提交
2116
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2117
{
2118
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2119 2120
	int page_count, i;
	struct address_space *mapping;
2121 2122
	struct sg_table *st;
	struct scatterlist *sg;
2123
	struct sgt_iter sgt_iter;
2124
	struct page *page;
2125
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2126
	int ret;
C
Chris Wilson 已提交
2127
	gfp_t gfp;
2128

C
Chris Wilson 已提交
2129 2130 2131 2132 2133 2134 2135
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2136 2137 2138 2139
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2140
	page_count = obj->base.size / PAGE_SIZE;
2141 2142
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2143
		return -ENOMEM;
2144
	}
2145

2146 2147 2148 2149 2150
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2151
	mapping = file_inode(obj->base.filp)->i_mapping;
2152
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2153
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2154 2155 2156
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2157 2158
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2159 2160 2161 2162 2163
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2164 2165 2166 2167 2168 2169 2170 2171
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2172
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2173 2174
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2175
				goto err_pages;
I
Imre Deak 已提交
2176
			}
C
Chris Wilson 已提交
2177
		}
2178 2179 2180 2181 2182 2183 2184 2185
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2186 2187 2188 2189 2190 2191 2192 2193 2194
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2195 2196 2197

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2198
	}
2199 2200 2201 2202
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2203 2204
	obj->pages = st;

I
Imre Deak 已提交
2205 2206 2207 2208
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2209
	if (i915_gem_object_needs_bit17_swizzle(obj))
2210 2211
		i915_gem_object_do_bit_17_swizzle(obj);

2212 2213 2214 2215
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2216 2217 2218
	return 0;

err_pages:
2219
	sg_mark_end(sg);
2220 2221
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2222 2223
	sg_free_table(st);
	kfree(st);
2224 2225 2226 2227 2228 2229 2230 2231 2232

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2233 2234 2235 2236
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2237 2238
}

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2249
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2250 2251 2252
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2253
	if (obj->pages)
2254 2255
		return 0;

2256
	if (obj->madv != I915_MADV_WILLNEED) {
2257
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2258
		return -EFAULT;
2259 2260
	}

2261 2262
	BUG_ON(obj->pages_pin_count);

2263 2264 2265 2266
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2267
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2268 2269 2270 2271

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2272
	return 0;
2273 2274
}

2275 2276 2277 2278 2279
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2280 2281
	struct sgt_iter sgt_iter;
	struct page *page;
2282 2283
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2284 2285 2286 2287 2288 2289 2290
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2291 2292 2293 2294 2295 2296
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2297

2298 2299
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2300 2301 2302 2303 2304 2305

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2306 2307
	if (pages != stack_pages)
		drm_free_large(pages);
2308 2309 2310 2311 2312

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2325 2326 2327
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2328 2329 2330 2331 2332 2333 2334 2335
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2336
static void
2337 2338
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2339
{
2340 2341
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2342

2343
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2344 2345
}

2346
static void
2347 2348
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2349
{
2350 2351 2352
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2353

2354
	GEM_BUG_ON((obj->active & (1 << idx)) == 0);
2355

2356
	obj->active &= ~(1 << idx);
2357 2358
	if (obj->active)
		return;
2359

2360 2361 2362 2363
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2364 2365 2366
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2367

2368
	i915_gem_object_put(obj);
2369 2370
}

2371
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2372
{
2373
	unsigned long elapsed;
2374

2375
	if (ctx->hang_stats.banned)
2376 2377
		return true;

2378
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2379 2380
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2381 2382
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2383 2384 2385 2386 2387
	}

	return false;
}

2388
static void i915_set_reset_status(struct i915_gem_context *ctx,
2389
				  const bool guilty)
2390
{
2391
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2392 2393

	if (guilty) {
2394
		hs->banned = i915_context_is_banned(ctx);
2395 2396 2397 2398
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2399 2400 2401
	}
}

2402
struct drm_i915_gem_request *
2403
i915_gem_find_active_request(struct intel_engine_cs *engine)
2404
{
2405 2406
	struct drm_i915_gem_request *request;

2407 2408 2409 2410 2411 2412 2413 2414
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2415
	list_for_each_entry(request, &engine->request_list, link) {
2416
		if (i915_gem_request_completed(request))
2417
			continue;
2418

2419
		return request;
2420
	}
2421 2422 2423 2424

	return NULL;
}

2425
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2426 2427 2428 2429
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2430
	request = i915_gem_find_active_request(engine);
2431 2432 2433
	if (request == NULL)
		return;

2434
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2435

2436
	i915_set_reset_status(request->ctx, ring_hung);
2437
	list_for_each_entry_continue(request, &engine->request_list, link)
2438
		i915_set_reset_status(request->ctx, false);
2439
}
2440

2441
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2442
{
2443
	struct intel_ring *ring;
2444

2445 2446 2447 2448
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2449
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2450

2451 2452 2453 2454 2455 2456
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2457
	if (i915.enable_execlists) {
2458 2459
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2460

2461
		intel_execlists_cancel_requests(engine);
2462 2463
	}

2464 2465 2466 2467 2468 2469 2470
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2471
	if (!list_empty(&engine->request_list)) {
2472 2473
		struct drm_i915_gem_request *request;

2474 2475
		request = list_last_entry(&engine->request_list,
					  struct drm_i915_gem_request,
2476
					  link);
2477

2478
		i915_gem_request_retire_upto(request);
2479
	}
2480 2481 2482 2483 2484 2485 2486 2487

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2488 2489 2490
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2491
	}
2492

2493
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2494 2495
}

2496
void i915_gem_reset(struct drm_device *dev)
2497
{
2498
	struct drm_i915_private *dev_priv = to_i915(dev);
2499
	struct intel_engine_cs *engine;
2500

2501 2502 2503 2504 2505
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2506
	for_each_engine(engine, dev_priv)
2507
		i915_gem_reset_engine_status(engine);
2508

2509
	for_each_engine(engine, dev_priv)
2510
		i915_gem_reset_engine_cleanup(engine);
2511
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2512

2513 2514
	i915_gem_context_reset(dev);

2515
	i915_gem_restore_fences(dev);
2516 2517
}

2518
static void
2519 2520
i915_gem_retire_work_handler(struct work_struct *work)
{
2521
	struct drm_i915_private *dev_priv =
2522
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2523
	struct drm_device *dev = &dev_priv->drm;
2524

2525
	/* Come back later if the device is busy... */
2526
	if (mutex_trylock(&dev->struct_mutex)) {
2527
		i915_gem_retire_requests(dev_priv);
2528
		mutex_unlock(&dev->struct_mutex);
2529
	}
2530 2531 2532 2533 2534

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2535 2536
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2537 2538
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2539
				   round_jiffies_up_relative(HZ));
2540
	}
2541
}
2542

2543 2544 2545 2546
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2547
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2548
	struct drm_device *dev = &dev_priv->drm;
2549
	struct intel_engine_cs *engine;
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2572

2573
	for_each_engine(engine, dev_priv)
2574
		i915_gem_batch_pool_fini(&engine->batch_pool);
2575

2576 2577 2578
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2579

2580 2581 2582 2583
	/* As we have disabled hangcheck, we need to unstick any waiters still
	 * hanging around. However, as we may be racing against the interrupt
	 * handler or the waiters themselves, we skip enabling the fake-irq.
	 */
2584
	stuck_engines = intel_kick_waiters(dev_priv);
2585 2586 2587
	if (unlikely(stuck_engines))
		DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
				 stuck_engines);
2588

2589 2590 2591 2592 2593
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2594

2595 2596 2597 2598
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2599
	}
2600 2601
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2615 2616
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2617 2618 2619
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2644
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
2645 2646
	int i, n = 0;
	int ret;
2647

2648 2649 2650
	if (args->flags != 0)
		return -EINVAL;

2651 2652 2653 2654
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

2655 2656
	obj = i915_gem_object_lookup(file, args->bo_handle);
	if (!obj) {
2657 2658 2659 2660
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2661
	if (!obj->active)
2662
		goto out;
2663

2664
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2665
		struct drm_i915_gem_request *req;
2666

2667 2668
		req = i915_gem_active_get(&obj->last_read[i],
					  &obj->base.dev->struct_mutex);
2669 2670
		if (req)
			requests[n++] = req;
2671 2672
	}

2673 2674
out:
	i915_gem_object_put(obj);
2675 2676
	mutex_unlock(&dev->struct_mutex);

2677 2678
	for (i = 0; i < n; i++) {
		if (ret == 0)
2679 2680 2681
			ret = i915_wait_request(requests[i], true,
						args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						to_rps_client(file));
2682
		i915_gem_request_put(requests[i]);
2683
	}
2684
	return ret;
2685 2686
}

2687
static int
2688
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2689
		       struct drm_i915_gem_request *from)
2690 2691 2692
{
	int ret;

2693
	if (to->engine == from->engine)
2694 2695
		return 0;

2696
	if (!i915.semaphores) {
2697 2698 2699 2700
		ret = i915_wait_request(from,
					from->i915->mm.interruptible,
					NULL,
					NO_WAITBOOST);
2701 2702 2703
		if (ret)
			return ret;
	} else {
2704
		int idx = intel_engine_sync_index(from->engine, to->engine);
2705
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2706 2707
			return 0;

2708
		trace_i915_gem_ring_sync_to(to, from);
2709
		ret = to->engine->semaphore.sync_to(to, from);
2710 2711 2712
		if (ret)
			return ret;

2713
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2714 2715 2716 2717 2718
	}

	return 0;
}

2719 2720 2721 2722
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2723
 * @to: request we are wishing to use
2724 2725
 *
 * This code is meant to abstract object synchronization with the GPU.
2726 2727 2728
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2729 2730 2731 2732 2733 2734 2735
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2736 2737 2738
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2739 2740
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2741
		     struct drm_i915_gem_request *to)
2742
{
C
Chris Wilson 已提交
2743 2744 2745
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2746

C
Chris Wilson 已提交
2747
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2748

C
Chris Wilson 已提交
2749 2750 2751
	active_mask = obj->active;
	if (!active_mask)
		return 0;
2752

C
Chris Wilson 已提交
2753 2754
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2755
	} else {
C
Chris Wilson 已提交
2756 2757
		active_mask = 1;
		active = &obj->last_write;
2758
	}
C
Chris Wilson 已提交
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2769
		ret = __i915_gem_object_sync(to, request);
2770 2771 2772
		if (ret)
			return ret;
	}
2773

2774
	return 0;
2775 2776
}

2777 2778 2779 2780 2781 2782 2783
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2784 2785 2786
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2809
int i915_vma_unbind(struct i915_vma *vma)
2810
{
2811
	struct drm_i915_gem_object *obj = vma->obj;
2812
	unsigned long active;
2813
	int ret;
2814

2815 2816 2817 2818
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2819
	if (active) {
2820 2821
		int idx;

2822 2823 2824 2825 2826 2827 2828
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
		vma->pin_count++;

2829 2830 2831 2832
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2833
				break;
2834 2835
		}

2836 2837 2838 2839
		vma->pin_count--;
		if (ret)
			return ret;

2840 2841 2842 2843 2844 2845
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

	if (vma->pin_count)
		return -EBUSY;

2846 2847
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2848

2849 2850
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2851

2852
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2853
		i915_gem_object_finish_gtt(obj);
2854

2855 2856 2857 2858
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
2859 2860

		__i915_vma_iounmap(vma);
2861
	}
2862

2863 2864 2865 2866
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2867
	vma->bound = 0;
2868

2869 2870 2871
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2872
	if (vma->is_ggtt) {
2873 2874 2875 2876 2877 2878
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
2879
		vma->ggtt_view.pages = NULL;
2880
	}
2881

B
Ben Widawsky 已提交
2882
	/* Since the unbound list is global, only move to that list if
2883
	 * no more VMAs exist. */
2884 2885 2886
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2887

2888 2889 2890 2891 2892 2893
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2894 2895 2896 2897
destroy:
	if (unlikely(vma->closed))
		i915_vma_destroy(vma);

2898
	return 0;
2899 2900
}

2901
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
2902
{
2903
	struct intel_engine_cs *engine;
2904
	int ret;
2905

2906
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2907

2908
	for_each_engine(engine, dev_priv) {
2909 2910 2911
		if (engine->last_context == NULL)
			continue;

2912
		ret = intel_engine_idle(engine);
2913 2914 2915
		if (ret)
			return ret;
	}
2916

2917
	return 0;
2918 2919
}

2920
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2921 2922
				     unsigned long cache_level)
{
2923
	struct drm_mm_node *gtt_space = &vma->node;
2924 2925
	struct drm_mm_node *other;

2926 2927 2928 2929 2930 2931
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2932
	 */
2933
	if (vma->vm->mm.color_adjust == NULL)
2934 2935
		return true;

2936
	if (!drm_mm_node_allocated(gtt_space))
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

2953
/**
2954 2955
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
2956 2957 2958 2959 2960
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
2961
 */
2962
static struct i915_vma *
2963 2964
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
2965
			   const struct i915_ggtt_view *ggtt_view,
2966
			   unsigned alignment,
2967
			   uint64_t flags)
2968
{
2969
	struct drm_device *dev = obj->base.dev;
2970 2971
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2972
	u32 fence_alignment, unfenced_alignment;
2973 2974
	u32 search_flag, alloc_flag;
	u64 start, end;
2975
	u64 size, fence_size;
B
Ben Widawsky 已提交
2976
	struct i915_vma *vma;
2977
	int ret;
2978

2979 2980 2981 2982 2983
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
2984

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3014

3015 3016 3017
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3018
		end = min_t(u64, end, ggtt->mappable_end);
3019
	if (flags & PIN_ZONE_4G)
3020
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3021

3022
	if (alignment == 0)
3023
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3024
						unfenced_alignment;
3025
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3026 3027 3028
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3029
		return ERR_PTR(-EINVAL);
3030 3031
	}

3032 3033 3034
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3035
	 */
3036
	if (size > end) {
3037
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3038 3039
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3040
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3041
			  end);
3042
		return ERR_PTR(-E2BIG);
3043 3044
	}

3045
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3046
	if (ret)
3047
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3048

3049 3050
	i915_gem_object_pin_pages(obj);

3051 3052 3053
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3054
	if (IS_ERR(vma))
3055
		goto err_unpin;
B
Ben Widawsky 已提交
3056

3057 3058 3059 3060 3061
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
3062
			goto err_vma;
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
3074
			goto err_vma;
3075
	} else {
3076 3077 3078 3079 3080 3081 3082
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3083

3084
search_free:
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3098

3099
			goto err_vma;
3100
		}
3101
	}
3102
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3103
		ret = -EINVAL;
3104
		goto err_remove_node;
3105 3106
	}

3107
	trace_i915_vma_bind(vma, flags);
3108
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3109
	if (ret)
I
Imre Deak 已提交
3110
		goto err_remove_node;
3111

3112
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3113
	list_move_tail(&vma->vm_link, &vm->inactive_list);
3114
	obj->bind_count++;
3115

3116
	return vma;
B
Ben Widawsky 已提交
3117

3118
err_remove_node:
3119
	drm_mm_remove_node(&vma->node);
3120
err_vma:
3121
	vma = ERR_PTR(ret);
3122
err_unpin:
B
Ben Widawsky 已提交
3123
	i915_gem_object_unpin_pages(obj);
3124
	return vma;
3125 3126
}

3127
bool
3128 3129
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3130 3131 3132 3133 3134
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3135
	if (obj->pages == NULL)
3136
		return false;
3137

3138 3139 3140 3141
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3142
	if (obj->stolen || obj->phys_handle)
3143
		return false;
3144

3145 3146 3147 3148 3149 3150 3151 3152
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3153 3154
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3155
		return false;
3156
	}
3157

C
Chris Wilson 已提交
3158
	trace_i915_gem_object_clflush(obj);
3159
	drm_clflush_sg(obj->pages);
3160
	obj->cache_dirty = false;
3161 3162

	return true;
3163 3164 3165 3166
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3167
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3168
{
C
Chris Wilson 已提交
3169 3170
	uint32_t old_write_domain;

3171
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3172 3173
		return;

3174
	/* No actual flushing is required for the GTT write domain.  Writes
3175 3176
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3177 3178 3179 3180
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3181
	 */
3182 3183
	wmb();

3184 3185
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3186

3187
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3188

C
Chris Wilson 已提交
3189
	trace_i915_gem_object_change_domain(obj,
3190
					    obj->base.read_domains,
C
Chris Wilson 已提交
3191
					    old_write_domain);
3192 3193 3194 3195
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3196
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3197
{
C
Chris Wilson 已提交
3198
	uint32_t old_write_domain;
3199

3200
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3201 3202
		return;

3203
	if (i915_gem_clflush_object(obj, obj->pin_display))
3204
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3205

3206 3207
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3208

3209
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3210

C
Chris Wilson 已提交
3211
	trace_i915_gem_object_change_domain(obj,
3212
					    obj->base.read_domains,
C
Chris Wilson 已提交
3213
					    old_write_domain);
3214 3215
}

3216 3217
/**
 * Moves a single object to the GTT read, and possibly write domain.
3218 3219
 * @obj: object to act on
 * @write: ask for write access or read only
3220 3221 3222 3223
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3224
int
3225
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3226
{
C
Chris Wilson 已提交
3227
	uint32_t old_write_domain, old_read_domains;
3228
	struct i915_vma *vma;
3229
	int ret;
3230

3231
	ret = i915_gem_object_wait_rendering(obj, !write);
3232 3233 3234
	if (ret)
		return ret;

3235 3236 3237
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3250
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3251

3252 3253 3254 3255 3256 3257 3258
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3259 3260
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3261

3262 3263 3264
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3265 3266
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3267
	if (write) {
3268 3269 3270
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3271 3272
	}

C
Chris Wilson 已提交
3273 3274 3275 3276
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3277
	/* And bump the LRU for this access */
3278
	vma = i915_gem_obj_to_ggtt(obj);
3279 3280 3281 3282
	if (vma &&
	    drm_mm_node_allocated(&vma->node) &&
	    !i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3283

3284 3285 3286
	return 0;
}

3287 3288
/**
 * Changes the cache-level of an object across all VMA.
3289 3290
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3302 3303 3304
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3305
	struct i915_vma *vma;
3306
	int ret = 0;
3307 3308

	if (obj->cache_level == cache_level)
3309
		goto out;
3310

3311 3312 3313 3314 3315
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3316 3317
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3318 3319 3320 3321 3322 3323 3324 3325
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3338 3339
	}

3340 3341 3342 3343 3344 3345 3346
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3347
	if (obj->bind_count) {
3348 3349 3350 3351
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3352
		ret = i915_gem_object_wait_rendering(obj, false);
3353 3354 3355
		if (ret)
			return ret;

3356
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3373 3374 3375
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3376 3377 3378 3379 3380 3381 3382 3383
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3384 3385
		}

3386
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3387 3388 3389 3390 3391 3392 3393
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3394 3395
	}

3396
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3397 3398 3399
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3400
out:
3401 3402 3403 3404
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3405
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3406
		if (i915_gem_clflush_object(obj, true))
3407
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3408 3409 3410 3411 3412
	}

	return 0;
}

B
Ben Widawsky 已提交
3413 3414
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3415
{
B
Ben Widawsky 已提交
3416
	struct drm_i915_gem_caching *args = data;
3417 3418
	struct drm_i915_gem_object *obj;

3419 3420
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3421
		return -ENOENT;
3422

3423 3424 3425 3426 3427 3428
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3429 3430 3431 3432
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3433 3434 3435 3436
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3437

3438
	i915_gem_object_put_unlocked(obj);
3439
	return 0;
3440 3441
}

B
Ben Widawsky 已提交
3442 3443
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3444
{
3445
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3446
	struct drm_i915_gem_caching *args = data;
3447 3448 3449 3450
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3451 3452
	switch (args->caching) {
	case I915_CACHING_NONE:
3453 3454
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3455
	case I915_CACHING_CACHED:
3456 3457 3458 3459 3460 3461
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3462
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3463 3464
			return -ENODEV;

3465 3466
		level = I915_CACHE_LLC;
		break;
3467 3468 3469
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3470 3471 3472 3473
	default:
		return -EINVAL;
	}

3474 3475
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3476 3477
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3478
		goto rpm_put;
B
Ben Widawsky 已提交
3479

3480 3481
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3482 3483 3484 3485 3486 3487
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3488
	i915_gem_object_put(obj);
3489 3490
unlock:
	mutex_unlock(&dev->struct_mutex);
3491 3492 3493
rpm_put:
	intel_runtime_pm_put(dev_priv);

3494 3495 3496
	return ret;
}

3497
/*
3498 3499 3500
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3501 3502
 */
int
3503 3504
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3505
				     const struct i915_ggtt_view *view)
3506
{
3507
	u32 old_read_domains, old_write_domain;
3508 3509
	int ret;

3510 3511 3512
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3513
	obj->pin_display++;
3514

3515 3516 3517 3518 3519 3520 3521 3522 3523
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3524 3525
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3526
	if (ret)
3527
		goto err_unpin_display;
3528

3529 3530 3531 3532
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3533 3534 3535
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3536
	if (ret)
3537
		goto err_unpin_display;
3538

3539
	i915_gem_object_flush_cpu_write_domain(obj);
3540

3541
	old_write_domain = obj->base.write_domain;
3542
	old_read_domains = obj->base.read_domains;
3543 3544 3545 3546

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3547
	obj->base.write_domain = 0;
3548
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3549 3550 3551

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3552
					    old_write_domain);
3553 3554

	return 0;
3555 3556

err_unpin_display:
3557
	obj->pin_display--;
3558 3559 3560 3561
	return ret;
}

void
3562 3563
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3564
{
3565 3566 3567
	if (WARN_ON(obj->pin_display == 0))
		return;

3568 3569
	i915_gem_object_ggtt_unpin_view(obj, view);

3570
	obj->pin_display--;
3571 3572
}

3573 3574
/**
 * Moves a single object to the CPU read, and possibly write domain.
3575 3576
 * @obj: object to act on
 * @write: requesting write or read-only access
3577 3578 3579 3580
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3581
int
3582
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3583
{
C
Chris Wilson 已提交
3584
	uint32_t old_write_domain, old_read_domains;
3585 3586
	int ret;

3587
	ret = i915_gem_object_wait_rendering(obj, !write);
3588 3589 3590
	if (ret)
		return ret;

3591 3592 3593
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3594
	i915_gem_object_flush_gtt_write_domain(obj);
3595

3596 3597
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3598

3599
	/* Flush the CPU cache if it's still invalid. */
3600
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3601
		i915_gem_clflush_object(obj, false);
3602

3603
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3604 3605 3606 3607 3608
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3609
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3610 3611 3612 3613 3614

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3615 3616
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3617
	}
3618

C
Chris Wilson 已提交
3619 3620 3621 3622
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3623 3624 3625
	return 0;
}

3626 3627 3628
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3629 3630 3631 3632
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3633 3634 3635
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3636
static int
3637
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3638
{
3639
	struct drm_i915_private *dev_priv = to_i915(dev);
3640
	struct drm_i915_file_private *file_priv = file->driver_priv;
3641
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3642
	struct drm_i915_gem_request *request, *target = NULL;
3643
	int ret;
3644

3645 3646 3647 3648
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3649 3650 3651
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3652

3653
	spin_lock(&file_priv->mm.lock);
3654
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3655 3656
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3657

3658 3659 3660 3661 3662 3663 3664
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3665
		target = request;
3666
	}
3667
	if (target)
3668
		i915_gem_request_get(target);
3669
	spin_unlock(&file_priv->mm.lock);
3670

3671
	if (target == NULL)
3672
		return 0;
3673

3674
	ret = i915_wait_request(target, true, NULL, NULL);
3675
	i915_gem_request_put(target);
3676

3677 3678 3679
	return ret;
}

3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3696 3697 3698 3699
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3700 3701 3702
	return false;
}

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3721
		    to_i915(obj->base.dev)->ggtt.mappable_end);
3722 3723 3724 3725

	obj->map_and_fenceable = mappable && fenceable;
}

3726 3727 3728 3729 3730 3731
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
3732
{
3733
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3734
	struct i915_vma *vma;
3735
	unsigned bound;
3736 3737
	int ret;

3738 3739 3740
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

3741
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3742
		return -EINVAL;
3743

3744 3745 3746
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

3747 3748 3749 3750 3751 3752
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

3753
	if (vma) {
B
Ben Widawsky 已提交
3754 3755 3756
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

3757
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
3758
			WARN(vma->pin_count,
3759
			     "bo is already pinned in %s with incorrect alignment:"
3760
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
3761
			     " obj->map_and_fenceable=%d\n",
3762
			     ggtt_view ? "ggtt" : "ppgtt",
3763 3764
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
3765
			     alignment,
3766
			     !!(flags & PIN_MAPPABLE),
3767
			     obj->map_and_fenceable);
3768
			ret = i915_vma_unbind(vma);
3769 3770
			if (ret)
				return ret;
3771 3772

			vma = NULL;
3773 3774 3775
		}
	}

3776
	bound = vma ? vma->bound : 0;
3777
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3778 3779
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
3780 3781
		if (IS_ERR(vma))
			return PTR_ERR(vma);
3782 3783
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
3784 3785 3786
		if (ret)
			return ret;
	}
3787

3788 3789
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
3790
		__i915_vma_set_map_and_fenceable(vma);
3791 3792
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
3793

3794
	vma->pin_count++;
3795 3796 3797
	return 0;
}

3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
3815 3816 3817 3818
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

3819
	BUG_ON(!view);
3820

3821
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
3822
				      alignment, flags | PIN_GLOBAL);
3823 3824
}

3825
void
3826 3827
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
3828
{
3829
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3830

3831
	WARN_ON(vma->pin_count == 0);
3832
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
3833

3834
	--vma->pin_count;
3835 3836 3837 3838
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3839
		    struct drm_file *file)
3840 3841
{
	struct drm_i915_gem_busy *args = data;
3842
	struct drm_i915_gem_object *obj;
3843 3844
	int ret;

3845
	ret = i915_mutex_lock_interruptible(dev);
3846
	if (ret)
3847
		return ret;
3848

3849 3850
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3851 3852
		ret = -ENOENT;
		goto unlock;
3853
	}
3854

3855 3856
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
3857
	 * become non-busy without any further actions.
3858
	 */
3859 3860
	args->busy = 0;
	if (obj->active) {
3861
		struct drm_i915_gem_request *req;
3862 3863
		int i;

3864
		for (i = 0; i < I915_NUM_ENGINES; i++) {
3865 3866
			req = i915_gem_active_peek(&obj->last_read[i],
						   &obj->base.dev->struct_mutex);
3867
			if (req)
3868
				args->busy |= 1 << (16 + req->engine->exec_id);
3869
		}
3870 3871
		req = i915_gem_active_peek(&obj->last_write,
					   &obj->base.dev->struct_mutex);
3872 3873
		if (req)
			args->busy |= req->engine->exec_id;
3874
	}
3875

3876
	i915_gem_object_put(obj);
3877
unlock:
3878
	mutex_unlock(&dev->struct_mutex);
3879
	return ret;
3880 3881 3882 3883 3884 3885
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3886
	return i915_gem_ring_throttle(dev, file_priv);
3887 3888
}

3889 3890 3891 3892
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3893
	struct drm_i915_private *dev_priv = to_i915(dev);
3894
	struct drm_i915_gem_madvise *args = data;
3895
	struct drm_i915_gem_object *obj;
3896
	int ret;
3897 3898 3899 3900 3901 3902 3903 3904 3905

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3906 3907 3908 3909
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3910 3911
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
3912 3913
		ret = -ENOENT;
		goto unlock;
3914 3915
	}

B
Ben Widawsky 已提交
3916
	if (i915_gem_obj_is_pinned(obj)) {
3917 3918
		ret = -EINVAL;
		goto out;
3919 3920
	}

3921 3922 3923 3924 3925 3926 3927 3928 3929
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

3930 3931
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3932

C
Chris Wilson 已提交
3933
	/* if the object is no longer attached, discard its backing storage */
3934
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
3935 3936
		i915_gem_object_truncate(obj);

3937
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3938

3939
out:
3940
	i915_gem_object_put(obj);
3941
unlock:
3942
	mutex_unlock(&dev->struct_mutex);
3943
	return ret;
3944 3945
}

3946 3947
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3948
{
3949 3950
	int i;

3951
	INIT_LIST_HEAD(&obj->global_list);
3952
	for (i = 0; i < I915_NUM_ENGINES; i++)
3953 3954 3955 3956 3957
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
	init_request_active(&obj->last_fence, NULL);
3958
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3959
	INIT_LIST_HEAD(&obj->vma_list);
3960
	INIT_LIST_HEAD(&obj->batch_pool_link);
3961

3962 3963
	obj->ops = ops;

3964 3965 3966
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

3967
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3968 3969
}

3970
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3971
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
3972 3973 3974 3975
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3976
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3977
						  size_t size)
3978
{
3979
	struct drm_i915_gem_object *obj;
3980
	struct address_space *mapping;
D
Daniel Vetter 已提交
3981
	gfp_t mask;
3982
	int ret;
3983

3984
	obj = i915_gem_object_alloc(dev);
3985
	if (obj == NULL)
3986
		return ERR_PTR(-ENOMEM);
3987

3988 3989 3990
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
3991

3992 3993 3994 3995 3996 3997 3998
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
3999
	mapping = file_inode(obj->base.filp)->i_mapping;
4000
	mapping_set_gfp_mask(mapping, mask);
4001

4002
	i915_gem_object_init(obj, &i915_gem_object_ops);
4003

4004 4005
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4006

4007 4008
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4024 4025
	trace_i915_gem_object_create(obj);

4026
	return obj;
4027 4028 4029 4030 4031

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4032 4033
}

4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4058
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4059
{
4060
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4061
	struct drm_device *dev = obj->base.dev;
4062
	struct drm_i915_private *dev_priv = to_i915(dev);
4063
	struct i915_vma *vma, *next;
4064

4065 4066
	intel_runtime_pm_get(dev_priv);

4067 4068
	trace_i915_gem_object_destroy(obj);

4069 4070 4071 4072 4073 4074 4075
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4076
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4077 4078
		GEM_BUG_ON(!vma->is_ggtt);
		GEM_BUG_ON(i915_vma_is_active(vma));
B
Ben Widawsky 已提交
4079
		vma->pin_count = 0;
4080
		i915_vma_close(vma);
4081
	}
4082
	GEM_BUG_ON(obj->bind_count);
4083

B
Ben Widawsky 已提交
4084 4085 4086 4087 4088
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4089 4090
	WARN_ON(obj->frontbuffer_bits);

4091 4092 4093 4094 4095
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4096 4097
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4098
	if (discard_backing_storage(obj))
4099
		obj->madv = I915_MADV_DONTNEED;
4100
	i915_gem_object_put_pages(obj);
4101

4102 4103
	BUG_ON(obj->pages);

4104 4105
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4106

4107 4108 4109
	if (obj->ops->release)
		obj->ops->release(obj);

4110 4111
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4112

4113
	kfree(obj->bit_17);
4114
	i915_gem_object_free(obj);
4115 4116

	intel_runtime_pm_put(dev_priv);
4117 4118
}

4119 4120
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4121 4122
{
	struct i915_vma *vma;
4123
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4124 4125
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4126
			return vma;
4127 4128 4129 4130 4131 4132 4133 4134
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4135

4136
	GEM_BUG_ON(!view);
4137

4138
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4139
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4140
			return vma;
4141 4142 4143
	return NULL;
}

4144
static void
4145
i915_gem_stop_engines(struct drm_device *dev)
4146
{
4147
	struct drm_i915_private *dev_priv = to_i915(dev);
4148
	struct intel_engine_cs *engine;
4149

4150
	for_each_engine(engine, dev_priv)
4151
		dev_priv->gt.stop_engine(engine);
4152 4153
}

4154
int
4155
i915_gem_suspend(struct drm_device *dev)
4156
{
4157
	struct drm_i915_private *dev_priv = to_i915(dev);
4158
	int ret = 0;
4159

4160 4161
	intel_suspend_gt_powersave(dev_priv);

4162
	mutex_lock(&dev->struct_mutex);
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4176
	ret = i915_gem_wait_for_idle(dev_priv);
4177
	if (ret)
4178
		goto err;
4179

4180
	i915_gem_retire_requests(dev_priv);
4181

4182 4183 4184 4185 4186
	/* Note that rather than stopping the engines, all we have to do
	 * is assert that every RING_HEAD == RING_TAIL (all execution complete)
	 * and similar for all logical context images (to ensure they are
	 * all ready for hibernation).
	 */
4187
	i915_gem_stop_engines(dev);
4188
	i915_gem_context_lost(dev_priv);
4189 4190
	mutex_unlock(&dev->struct_mutex);

4191
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4192 4193
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4194

4195 4196 4197
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4198
	WARN_ON(dev_priv->gt.awake);
4199

4200
	return 0;
4201 4202 4203 4204

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4205 4206
}

4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4224 4225
void i915_gem_init_swizzling(struct drm_device *dev)
{
4226
	struct drm_i915_private *dev_priv = to_i915(dev);
4227

4228
	if (INTEL_INFO(dev)->gen < 5 ||
4229 4230 4231 4232 4233 4234
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4235 4236 4237
	if (IS_GEN5(dev))
		return;

4238 4239
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4240
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4241
	else if (IS_GEN7(dev))
4242
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4243 4244
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4245 4246
	else
		BUG();
4247
}
D
Daniel Vetter 已提交
4248

4249 4250
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4251
	struct drm_i915_private *dev_priv = to_i915(dev);
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4276 4277 4278
int
i915_gem_init_hw(struct drm_device *dev)
{
4279
	struct drm_i915_private *dev_priv = to_i915(dev);
4280
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4281
	int ret;
4282

4283 4284 4285
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4286
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4287
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4288

4289 4290 4291
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4292

4293
	if (HAS_PCH_NOP(dev)) {
4294 4295 4296 4297 4298 4299 4300 4301 4302
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4303 4304
	}

4305 4306
	i915_gem_init_swizzling(dev);

4307 4308 4309 4310 4311 4312 4313 4314
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4315
	BUG_ON(!dev_priv->kernel_context);
4316

4317 4318 4319 4320 4321 4322 4323
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4324
	for_each_engine(engine, dev_priv) {
4325
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4326
		if (ret)
4327
			goto out;
D
Daniel Vetter 已提交
4328
	}
4329

4330 4331
	intel_mocs_init_l3cc_table(dev);

4332
	/* We can't enable contexts until all firmware is loaded */
4333 4334 4335
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4336

4337 4338
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4339
	return ret;
4340 4341
}

4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4363 4364
int i915_gem_init(struct drm_device *dev)
{
4365
	struct drm_i915_private *dev_priv = to_i915(dev);
4366 4367 4368
	int ret;

	mutex_lock(&dev->struct_mutex);
4369

4370
	if (!i915.enable_execlists) {
4371 4372
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
		dev_priv->gt.stop_engine = intel_engine_stop;
4373
	} else {
4374 4375
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4376 4377
	}

4378 4379 4380 4381 4382 4383 4384 4385
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4386
	i915_gem_init_userptr(dev_priv);
4387 4388 4389 4390

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4391

4392
	ret = i915_gem_context_init(dev);
4393 4394
	if (ret)
		goto out_unlock;
4395

4396
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4397
	if (ret)
4398
		goto out_unlock;
4399

4400
	ret = i915_gem_init_hw(dev);
4401
	if (ret == -EIO) {
4402
		/* Allow engine initialisation to fail by marking the GPU as
4403 4404 4405 4406
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4407
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4408
		ret = 0;
4409
	}
4410 4411

out_unlock:
4412
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4413
	mutex_unlock(&dev->struct_mutex);
4414

4415
	return ret;
4416 4417
}

4418
void
4419
i915_gem_cleanup_engines(struct drm_device *dev)
4420
{
4421
	struct drm_i915_private *dev_priv = to_i915(dev);
4422
	struct intel_engine_cs *engine;
4423

4424
	for_each_engine(engine, dev_priv)
4425
		dev_priv->gt.cleanup_engine(engine);
4426 4427
}

4428
static void
4429
init_engine_lists(struct intel_engine_cs *engine)
4430
{
4431
	INIT_LIST_HEAD(&engine->request_list);
4432 4433
}

4434 4435 4436
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4437
	struct drm_device *dev = &dev_priv->drm;
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4448
	if (intel_vgpu_active(dev_priv))
4449 4450 4451 4452 4453 4454 4455 4456 4457
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4458
void
4459
i915_gem_load_init(struct drm_device *dev)
4460
{
4461
	struct drm_i915_private *dev_priv = to_i915(dev);
4462 4463
	int i;

4464
	dev_priv->objects =
4465 4466 4467 4468
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4469 4470 4471 4472 4473
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4474 4475 4476 4477 4478
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4479

4480
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4481 4482
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4483
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4484 4485
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4486
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4487
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4488
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4489
			  i915_gem_retire_work_handler);
4490
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4491
			  i915_gem_idle_work_handler);
4492
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4493
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4494

4495 4496
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4497
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4498

4499
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4500

4501 4502
	dev_priv->mm.interruptible = true;

4503
	mutex_init(&dev_priv->fb_tracking.lock);
4504
}
4505

4506 4507 4508 4509 4510 4511 4512 4513 4514
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4543
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4544
{
4545
	struct drm_i915_file_private *file_priv = file->driver_priv;
4546
	struct drm_i915_gem_request *request;
4547 4548 4549 4550 4551

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4552
	spin_lock(&file_priv->mm.lock);
4553
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4554
		request->file_priv = NULL;
4555
	spin_unlock(&file_priv->mm.lock);
4556

4557
	if (!list_empty(&file_priv->rps.link)) {
4558
		spin_lock(&to_i915(dev)->rps.client_lock);
4559
		list_del(&file_priv->rps.link);
4560
		spin_unlock(&to_i915(dev)->rps.client_lock);
4561
	}
4562 4563 4564 4565 4566
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4567
	int ret;
4568 4569 4570 4571 4572 4573 4574 4575

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4576
	file_priv->dev_priv = to_i915(dev);
4577
	file_priv->file = file;
4578
	INIT_LIST_HEAD(&file_priv->rps.link);
4579 4580 4581 4582

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4583
	file_priv->bsd_engine = -1;
4584

4585 4586 4587
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4588

4589
	return ret;
4590 4591
}

4592 4593
/**
 * i915_gem_track_fb - update frontbuffer tracking
4594 4595 4596
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4597 4598 4599 4600
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

4618
/* All the new VM stuff */
4619 4620
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
4621
{
4622
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4623 4624
	struct i915_vma *vma;

4625
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4626

4627
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4628
		if (vma->is_ggtt &&
4629 4630 4631
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4632 4633
			return vma->node.start;
	}
4634

4635 4636
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4637 4638 4639
	return -1;
}

4640 4641
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
4642 4643 4644
{
	struct i915_vma *vma;

4645
	list_for_each_entry(vma, &o->vma_list, obj_link)
4646
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4647 4648
			return vma->node.start;

4649
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4650 4651 4652 4653 4654 4655 4656 4657
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

4658
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4659
		if (vma->is_ggtt &&
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4670
				  const struct i915_ggtt_view *view)
4671 4672 4673
{
	struct i915_vma *vma;

4674
	list_for_each_entry(vma, &o->vma_list, obj_link)
4675
		if (vma->is_ggtt &&
4676
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4677
		    drm_mm_node_allocated(&vma->node))
4678 4679 4680 4681 4682
			return true;

	return false;
}

4683
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4684 4685 4686
{
	struct i915_vma *vma;

4687
	GEM_BUG_ON(list_empty(&o->vma_list));
4688

4689
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4690
		if (vma->is_ggtt &&
4691
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4692
			return vma->node.size;
4693
	}
4694

4695 4696 4697
	return 0;
}

4698
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4699 4700
{
	struct i915_vma *vma;
4701
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4702 4703
		if (vma->pin_count > 0)
			return true;
4704

4705
	return false;
4706
}
4707

4708 4709 4710 4711 4712 4713 4714
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4715
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4716 4717 4718 4719 4720 4721 4722
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4733
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4734
	if (IS_ERR(obj))
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4748
	obj->dirty = 1;		/* Backing store is now out of date */
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4760
	i915_gem_object_put(obj);
4761 4762
	return ERR_PTR(ret);
}