fair.c 248.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched/mm.h>
24 25
#include <linux/sched/topology.h>

26
#include <linux/latencytop.h>
27
#include <linux/cpumask.h>
28
#include <linux/cpuidle.h>
29 30 31
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
32
#include <linux/mempolicy.h>
33
#include <linux/migrate.h>
34
#include <linux/task_work.h>
35 36 37 38

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
39

40
/*
41
 * Targeted preemption latency for CPU-bound tasks:
42
 *
43
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
44 45 46
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
47
 *
I
Ingo Molnar 已提交
48 49
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
50 51
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
52
 */
53 54
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
55

56 57 58 59
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
60 61 62 63 64 65
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
66
 */
67
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
68

69
/*
70
 * Minimal preemption granularity for CPU-bound tasks:
71
 *
72
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
73
 */
74 75
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
76 77

/*
78
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
79
 */
80
static unsigned int sched_nr_latency = 8;
81 82

/*
83
 * After fork, child runs first. If set to 0 (default) then
84
 * parent will (try to) run first.
85
 */
86
unsigned int sysctl_sched_child_runs_first __read_mostly;
87 88 89 90 91 92 93

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
94 95
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
96
 */
97 98
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
99

100
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
101

T
Tim Chen 已提交
102 103 104 105 106 107 108 109 110 111
#ifdef CONFIG_SMP
/*
 * For asym packing, by default the lower numbered cpu has higher priority.
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

112 113 114 115 116 117 118 119 120
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
121 122 123
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
124 125
#endif

126 127
/*
 * The margin used when comparing utilization with CPU capacity:
128
 * util * margin < capacity * 1024
129 130
 *
 * (default: ~20%)
131
 */
132
unsigned int capacity_margin				= 1280;
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

152 153 154 155 156 157 158 159 160
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
161
static unsigned int get_update_sysctl_factor(void)
162
{
163
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

199
#define WMULT_CONST	(~0U)
200 201
#define WMULT_SHIFT	32

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
218 219

/*
220 221 222 223
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
224
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225 226 227 228 229
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
230
 */
231
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232
{
233 234
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
235

236
	__update_inv_weight(lw);
237

238 239 240 241 242
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
243 244
	}

245 246
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
247

248 249 250 251
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
252

253
	return mul_u64_u32_shr(delta_exec, fact, shift);
254 255 256 257
}


const struct sched_class fair_sched_class;
258

259 260 261 262
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

263
#ifdef CONFIG_FAIR_GROUP_SCHED
264

265
/* cpu runqueue to which this cfs_rq is attached */
266 267
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
268
	return cfs_rq->rq;
269 270
}

271 272
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
273

274 275
static inline struct task_struct *task_of(struct sched_entity *se)
{
276
	SCHED_WARN_ON(!entity_is_task(se));
277 278 279
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

301 302 303
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
304 305
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
306 307 308
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
309 310 311 312 313
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
314 315
		 */
		if (cfs_rq->tg->parent &&
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
336
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357
		}
358 359 360 361 362 363 364 365 366 367 368 369 370

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
371 372 373 374 375
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
376
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
377 378 379
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
380
		return se->cfs_rq;
P
Peter Zijlstra 已提交
381

P
Peter Zijlstra 已提交
382
	return NULL;
P
Peter Zijlstra 已提交
383 384 385 386 387 388 389
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

390 391 392 393 394 395 396 397 398 399 400 401 402
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
403 404
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

422 423 424 425 426 427
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
428

429 430 431
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
432 433 434 435
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
436 437
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
438

P
Peter Zijlstra 已提交
439
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
440
{
P
Peter Zijlstra 已提交
441
	return &task_rq(p)->cfs;
442 443
}

P
Peter Zijlstra 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

458 459 460 461 462 463 464 465
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
466 467 468 469 470 471 472 473
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

474 475 476 477 478
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
479 480
#endif	/* CONFIG_FAIR_GROUP_SCHED */

481
static __always_inline
482
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
483 484 485 486 487

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

488
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
489
{
490
	s64 delta = (s64)(vruntime - max_vruntime);
491
	if (delta > 0)
492
		max_vruntime = vruntime;
493

494
	return max_vruntime;
495 496
}

497
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
498 499 500 501 502 503 504 505
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

506 507 508 509 510 511
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

512 513
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
514 515
	struct sched_entity *curr = cfs_rq->curr;

516 517
	u64 vruntime = cfs_rq->min_vruntime;

518 519 520 521 522 523
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
524 525 526 527 528 529

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

530
		if (!curr)
531 532 533 534 535
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

536
	/* ensure we never gain time by being placed backwards. */
537
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
538 539 540 541
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
542 543
}

544 545 546
/*
 * Enqueue an entity into the rb-tree:
 */
547
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
564
		if (entity_before(se, entry)) {
565 566 567 568 569 570 571 572 573 574 575
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
576
	if (leftmost)
I
Ingo Molnar 已提交
577
		cfs_rq->rb_leftmost = &se->run_node;
578 579 580 581 582

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

583
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
584
{
P
Peter Zijlstra 已提交
585 586 587 588 589 590
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
591

592 593 594
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

595
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
596
{
597 598 599 600 601 602
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
603 604
}

605 606 607 608 609 610 611 612 613 614 615
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
616
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
617
{
618
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
619

620 621
	if (!last)
		return NULL;
622 623

	return rb_entry(last, struct sched_entity, run_node);
624 625
}

626 627 628 629
/**************************************************************
 * Scheduling class statistics methods:
 */

630
int sched_proc_update_handler(struct ctl_table *table, int write,
631
		void __user *buffer, size_t *lenp,
632 633
		loff_t *ppos)
{
634
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
635
	unsigned int factor = get_update_sysctl_factor();
636 637 638 639 640 641 642

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

643 644 645 646 647 648 649
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

650 651 652
	return 0;
}
#endif
653

654
/*
655
 * delta /= w
656
 */
657
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
658
{
659
	if (unlikely(se->load.weight != NICE_0_LOAD))
660
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
661 662 663 664

	return delta;
}

665 666 667
/*
 * The idea is to set a period in which each task runs once.
 *
668
 * When there are too many tasks (sched_nr_latency) we have to stretch
669 670 671 672
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
673 674
static u64 __sched_period(unsigned long nr_running)
{
675 676 677 678
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
679 680
}

681 682 683 684
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
685
 * s = p*P[w/rw]
686
 */
P
Peter Zijlstra 已提交
687
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
688
{
M
Mike Galbraith 已提交
689
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
690

M
Mike Galbraith 已提交
691
	for_each_sched_entity(se) {
L
Lin Ming 已提交
692
		struct load_weight *load;
693
		struct load_weight lw;
L
Lin Ming 已提交
694 695 696

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
697

M
Mike Galbraith 已提交
698
		if (unlikely(!se->on_rq)) {
699
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
700 701 702 703

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
704
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
705 706
	}
	return slice;
707 708
}

709
/*
A
Andrei Epure 已提交
710
 * We calculate the vruntime slice of a to-be-inserted task.
711
 *
712
 * vs = s/w
713
 */
714
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
715
{
716
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
717 718
}

719
#ifdef CONFIG_SMP
720 721 722

#include "sched-pelt.h"

723
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
724 725
static unsigned long task_h_load(struct task_struct *p);

726 727
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
728
{
729
	struct sched_avg *sa = &se->avg;
730

731 732 733 734 735 736 737
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
738 739 740 741 742 743 744 745
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
		sa->load_avg = scale_load_down(se->load.weight);
746
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
747 748 749 750 751
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
752
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
753
}
754

755
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
756
static void attach_entity_cfs_rq(struct sched_entity *se);
757

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
787
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
788 789 790 791 792 793 794 795 796 797 798 799 800

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
801 802 803 804 805 806 807 808 809 810 811 812 813 814

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
			update_cfs_rq_load_avg(now, cfs_rq, false);
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
815
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
816 817 818 819
			return;
		}
	}

820
	attach_entity_cfs_rq(se);
821 822
}

823
#else /* !CONFIG_SMP */
824
void init_entity_runnable_average(struct sched_entity *se)
825 826
{
}
827 828 829
void post_init_entity_util_avg(struct sched_entity *se)
{
}
830 831 832
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
833
#endif /* CONFIG_SMP */
834

835
/*
836
 * Update the current task's runtime statistics.
837
 */
838
static void update_curr(struct cfs_rq *cfs_rq)
839
{
840
	struct sched_entity *curr = cfs_rq->curr;
841
	u64 now = rq_clock_task(rq_of(cfs_rq));
842
	u64 delta_exec;
843 844 845 846

	if (unlikely(!curr))
		return;

847 848
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
849
		return;
850

I
Ingo Molnar 已提交
851
	curr->exec_start = now;
852

853 854 855 856
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
857
	schedstat_add(cfs_rq->exec_clock, delta_exec);
858 859 860 861

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

862 863 864
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

865
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
866
		cpuacct_charge(curtask, delta_exec);
867
		account_group_exec_runtime(curtask, delta_exec);
868
	}
869 870

	account_cfs_rq_runtime(cfs_rq, delta_exec);
871 872
}

873 874 875 876 877
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

878
static inline void
879
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
880
{
881 882 883 884 885 886 887
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
888 889

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
890 891
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
892

893
	schedstat_set(se->statistics.wait_start, wait_start);
894 895
}

896
static inline void
897 898 899
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
900 901
	u64 delta;

902 903 904 905
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
906 907 908 909 910 911 912 913 914

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
915
			schedstat_set(se->statistics.wait_start, delta);
916 917 918 919 920
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

921 922 923 924 925
	schedstat_set(se->statistics.wait_max,
		      max(schedstat_val(se->statistics.wait_max), delta));
	schedstat_inc(se->statistics.wait_count);
	schedstat_add(se->statistics.wait_sum, delta);
	schedstat_set(se->statistics.wait_start, 0);
926 927
}

928
static inline void
929 930 931
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
932 933 934 935 936 937 938
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
939 940 941 942

	if (entity_is_task(se))
		tsk = task_of(se);

943 944
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
945 946 947 948

		if ((s64)delta < 0)
			delta = 0;

949 950
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
			schedstat_set(se->statistics.sleep_max, delta);
951

952 953
		schedstat_set(se->statistics.sleep_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
954 955 956 957 958 959

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
960 961
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
962 963 964 965

		if ((s64)delta < 0)
			delta = 0;

966 967
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
			schedstat_set(se->statistics.block_max, delta);
968

969 970
		schedstat_set(se->statistics.block_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
971 972 973

		if (tsk) {
			if (tsk->in_iowait) {
974 975
				schedstat_add(se->statistics.iowait_sum, delta);
				schedstat_inc(se->statistics.iowait_count);
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
994 995
}

996 997 998
/*
 * Task is being enqueued - update stats:
 */
999
static inline void
1000
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1001
{
1002 1003 1004
	if (!schedstat_enabled())
		return;

1005 1006 1007 1008
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
1009
	if (se != cfs_rq->curr)
1010
		update_stats_wait_start(cfs_rq, se);
1011 1012 1013

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
1014 1015 1016
}

static inline void
1017
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1018
{
1019 1020 1021 1022

	if (!schedstat_enabled())
		return;

1023 1024 1025 1026
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
1027
	if (se != cfs_rq->curr)
1028
		update_stats_wait_end(cfs_rq, se);
1029

1030 1031
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
1032

1033 1034 1035 1036 1037 1038
		if (tsk->state & TASK_INTERRUPTIBLE)
			schedstat_set(se->statistics.sleep_start,
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
			schedstat_set(se->statistics.block_start,
				      rq_clock(rq_of(cfs_rq)));
1039 1040 1041
	}
}

1042 1043 1044 1045
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1046
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1047 1048 1049 1050
{
	/*
	 * We are starting a new run period:
	 */
1051
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1052 1053 1054 1055 1056 1057
}

/**************************************************
 * Scheduling class queueing methods:
 */

1058 1059
#ifdef CONFIG_NUMA_BALANCING
/*
1060 1061 1062
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1063
 */
1064 1065
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1066 1067 1068

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1069

1070 1071 1072
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1097
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1098 1099 1100
	unsigned int scan, floor;
	unsigned int windows = 1;

1101 1102
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1131 1132 1133 1134 1135
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
1136
	pid_t gid;
1137
	int active_nodes;
1138 1139

	struct rcu_head rcu;
1140
	unsigned long total_faults;
1141
	unsigned long max_faults_cpu;
1142 1143 1144 1145 1146
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
1147
	unsigned long *faults_cpu;
1148
	unsigned long faults[0];
1149 1150
};

1151 1152 1153 1154 1155 1156 1157 1158 1159
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1160 1161 1162 1163 1164
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1165 1166 1167 1168 1169 1170 1171
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1172
{
1173
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1174 1175 1176 1177
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1178
	if (!p->numa_faults)
1179 1180
		return 0;

1181 1182
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1183 1184
}

1185 1186 1187 1188 1189
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1190 1191
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1192 1193
}

1194 1195
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1196 1197
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1198 1199
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1277 1278 1279 1280 1281 1282
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1283 1284
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1285
{
1286
	unsigned long faults, total_faults;
1287

1288
	if (!p->numa_faults)
1289 1290 1291 1292 1293 1294 1295
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1296
	faults = task_faults(p, nid);
1297 1298
	faults += score_nearby_nodes(p, nid, dist, true);

1299
	return 1000 * faults / total_faults;
1300 1301
}

1302 1303
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1304
{
1305 1306 1307 1308 1309 1310 1311 1312
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1313 1314
		return 0;

1315
	faults = group_faults(p, nid);
1316 1317
	faults += score_nearby_nodes(p, nid, dist, false);

1318
	return 1000 * faults / total_faults;
1319 1320
}

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1361 1362
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1363
	 */
1364 1365
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1366 1367 1368
		return true;

	/*
1369 1370 1371 1372 1373 1374
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1375
	 */
1376 1377
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1378 1379
}

1380
static unsigned long weighted_cpuload(const int cpu);
1381 1382
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1383
static unsigned long capacity_of(int cpu);
1384 1385
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1386
/* Cached statistics for all CPUs within a node */
1387
struct numa_stats {
1388
	unsigned long nr_running;
1389
	unsigned long load;
1390 1391

	/* Total compute capacity of CPUs on a node */
1392
	unsigned long compute_capacity;
1393 1394

	/* Approximate capacity in terms of runnable tasks on a node */
1395
	unsigned long task_capacity;
1396
	int has_free_capacity;
1397
};
1398

1399 1400 1401 1402 1403
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1404 1405
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1406 1407 1408 1409 1410 1411 1412

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1413
		ns->compute_capacity += capacity_of(cpu);
1414 1415

		cpus++;
1416 1417
	}

1418 1419 1420 1421 1422
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1423 1424
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1425 1426 1427 1428
	 */
	if (!cpus)
		return;

1429 1430 1431 1432 1433 1434
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1435
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1436 1437
}

1438 1439
struct task_numa_env {
	struct task_struct *p;
1440

1441 1442
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1443

1444
	struct numa_stats src_stats, dst_stats;
1445

1446
	int imbalance_pct;
1447
	int dist;
1448 1449 1450

	struct task_struct *best_task;
	long best_imp;
1451 1452 1453
	int best_cpu;
};

1454 1455 1456 1457 1458
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1459 1460
	if (p)
		get_task_struct(p);
1461 1462 1463 1464 1465 1466

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1467
static bool load_too_imbalanced(long src_load, long dst_load,
1468 1469
				struct task_numa_env *env)
{
1470 1471
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1483 1484

	/* We care about the slope of the imbalance, not the direction. */
1485 1486
	if (dst_load < src_load)
		swap(dst_load, src_load);
1487 1488

	/* Is the difference below the threshold? */
1489 1490
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1491 1492 1493 1494 1495
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1496
	 * Compare it with the old imbalance.
1497
	 */
1498
	orig_src_load = env->src_stats.load;
1499
	orig_dst_load = env->dst_stats.load;
1500

1501 1502
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1503

1504 1505 1506 1507 1508
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1509 1510
}

1511 1512 1513 1514 1515 1516
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1517 1518
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1519 1520 1521 1522
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1523
	long src_load, dst_load;
1524
	long load;
1525
	long imp = env->p->numa_group ? groupimp : taskimp;
1526
	long moveimp = imp;
1527
	int dist = env->dist;
1528 1529

	rcu_read_lock();
1530 1531
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1532 1533
		cur = NULL;

1534 1535 1536 1537 1538 1539 1540
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1541 1542 1543 1544 1545 1546 1547 1548 1549
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
1550
		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1551 1552
			goto unlock;

1553 1554
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1555
		 * in any group then look only at task weights.
1556
		 */
1557
		if (cur->numa_group == env->p->numa_group) {
1558 1559
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1560 1561 1562 1563 1564 1565
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1566
		} else {
1567 1568 1569 1570 1571 1572
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1573 1574
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1575
			else
1576 1577
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1578
		}
1579 1580
	}

1581
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1582 1583 1584 1585
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1586
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1587
		    !env->dst_stats.has_free_capacity)
1588 1589 1590 1591 1592 1593
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1594 1595
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1596 1597 1598 1599 1600 1601
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1602 1603 1604
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1605

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1623
	if (cur) {
1624 1625 1626
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1627 1628
	}

1629
	if (load_too_imbalanced(src_load, dst_load, env))
1630 1631
		goto unlock;

1632 1633 1634 1635
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1636 1637 1638 1639 1640 1641
	if (!cur) {
		/*
		 * select_idle_siblings() uses an per-cpu cpumask that
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1642 1643
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1644 1645
		local_irq_enable();
	}
1646

1647 1648 1649 1650 1651 1652
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1653 1654
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1655 1656 1657 1658 1659
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1660
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1661 1662 1663
			continue;

		env->dst_cpu = cpu;
1664
		task_numa_compare(env, taskimp, groupimp);
1665 1666 1667
	}
}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1685 1686 1687
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1688 1689 1690 1691 1692
		return true;

	return false;
}

1693 1694 1695 1696
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1697

1698
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1699
		.src_nid = task_node(p),
1700 1701 1702 1703 1704

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1705
		.best_cpu = -1,
1706 1707
	};
	struct sched_domain *sd;
1708
	unsigned long taskweight, groupweight;
1709
	int nid, ret, dist;
1710
	long taskimp, groupimp;
1711

1712
	/*
1713 1714 1715 1716 1717 1718
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1719 1720
	 */
	rcu_read_lock();
1721
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1722 1723
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1724 1725
	rcu_read_unlock();

1726 1727 1728 1729 1730 1731 1732
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1733
		p->numa_preferred_nid = task_node(p);
1734 1735 1736
		return -EINVAL;
	}

1737
	env.dst_nid = p->numa_preferred_nid;
1738 1739 1740 1741 1742 1743
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1744
	update_numa_stats(&env.dst_stats, env.dst_nid);
1745

1746
	/* Try to find a spot on the preferred nid. */
1747 1748
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1749

1750 1751 1752 1753 1754 1755 1756
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1757
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1758 1759 1760
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1761

1762
			dist = node_distance(env.src_nid, env.dst_nid);
1763 1764 1765 1766 1767
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1768

1769
			/* Only consider nodes where both task and groups benefit */
1770 1771
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1772
			if (taskimp < 0 && groupimp < 0)
1773 1774
				continue;

1775
			env.dist = dist;
1776 1777
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1778 1779
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1780 1781 1782
		}
	}

1783 1784 1785 1786 1787 1788 1789 1790
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1791
	if (p->numa_group) {
1792 1793
		struct numa_group *ng = p->numa_group;

1794 1795 1796 1797 1798
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1799
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1800 1801 1802 1803 1804 1805
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1806

1807 1808 1809 1810 1811 1812
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1813
	if (env.best_task == NULL) {
1814 1815 1816
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1817 1818 1819 1820
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1821 1822
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1823 1824
	put_task_struct(env.best_task);
	return ret;
1825 1826
}

1827 1828 1829
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1830 1831
	unsigned long interval = HZ;

1832
	/* This task has no NUMA fault statistics yet */
1833
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1834 1835
		return;

1836
	/* Periodically retry migrating the task to the preferred node */
1837 1838
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1839 1840

	/* Success if task is already running on preferred CPU */
1841
	if (task_node(p) == p->numa_preferred_nid)
1842 1843 1844
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1845
	task_numa_migrate(p);
1846 1847
}

1848
/*
1849
 * Find out how many nodes on the workload is actively running on. Do this by
1850 1851 1852 1853
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1854
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1855 1856
{
	unsigned long faults, max_faults = 0;
1857
	int nid, active_nodes = 0;
1858 1859 1860 1861 1862 1863 1864 1865 1866

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1867 1868
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1869
	}
1870 1871 1872

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1873 1874
}

1875 1876 1877
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1878 1879 1880
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1881 1882
 */
#define NUMA_PERIOD_SLOTS 10
1883
#define NUMA_PERIOD_THRESHOLD 7
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1904 1905 1906
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1907
	 */
1908
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1942
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1943 1944 1945 1946 1947 1948 1949 1950
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1969 1970
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1971 1972 1973 1974 1975 1976 1977 1978
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2026
		nodemask_t max_group = NODE_MASK_NONE;
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2060 2061
		if (!max_faults)
			break;
2062 2063 2064 2065 2066
		nodes = max_group;
	}
	return nid;
}

2067 2068
static void task_numa_placement(struct task_struct *p)
{
2069 2070
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2071
	unsigned long fault_types[2] = { 0, 0 };
2072 2073
	unsigned long total_faults;
	u64 runtime, period;
2074
	spinlock_t *group_lock = NULL;
2075

2076 2077 2078 2079 2080
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2081
	seq = READ_ONCE(p->mm->numa_scan_seq);
2082 2083 2084
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2085
	p->numa_scan_period_max = task_scan_max(p);
2086

2087 2088 2089 2090
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2091 2092 2093
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2094
		spin_lock_irq(group_lock);
2095 2096
	}

2097 2098
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2099 2100
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2101
		unsigned long faults = 0, group_faults = 0;
2102
		int priv;
2103

2104
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2105
			long diff, f_diff, f_weight;
2106

2107 2108 2109 2110
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2111

2112
			/* Decay existing window, copy faults since last scan */
2113 2114 2115
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2116

2117 2118 2119 2120 2121 2122 2123 2124
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2125
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2126
				   (total_faults + 1);
2127 2128
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2129

2130 2131 2132
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2133
			p->total_numa_faults += diff;
2134
			if (p->numa_group) {
2135 2136 2137 2138 2139 2140 2141 2142 2143
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2144
				p->numa_group->total_faults += diff;
2145
				group_faults += p->numa_group->faults[mem_idx];
2146
			}
2147 2148
		}

2149 2150 2151 2152
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2153 2154 2155 2156 2157 2158 2159

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2160 2161
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2162
	if (p->numa_group) {
2163
		numa_group_count_active_nodes(p->numa_group);
2164
		spin_unlock_irq(group_lock);
2165
		max_nid = preferred_group_nid(p, max_group_nid);
2166 2167
	}

2168 2169 2170 2171 2172 2173 2174
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2175
	}
2176 2177
}

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2189 2190
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2191 2192 2193 2194 2195 2196 2197 2198 2199
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2200
				    4*nr_node_ids*sizeof(unsigned long);
2201 2202 2203 2204 2205 2206

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2207 2208
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2209
		spin_lock_init(&grp->lock);
2210
		grp->gid = p->pid;
2211
		/* Second half of the array tracks nids where faults happen */
2212 2213
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2214

2215
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2216
			grp->faults[i] = p->numa_faults[i];
2217

2218
		grp->total_faults = p->total_numa_faults;
2219

2220 2221 2222 2223 2224
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2225
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2226 2227

	if (!cpupid_match_pid(tsk, cpupid))
2228
		goto no_join;
2229 2230 2231

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2232
		goto no_join;
2233 2234 2235

	my_grp = p->numa_group;
	if (grp == my_grp)
2236
		goto no_join;
2237 2238 2239 2240 2241 2242

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2243
		goto no_join;
2244 2245 2246 2247 2248

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2249
		goto no_join;
2250

2251 2252 2253 2254 2255 2256 2257
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2258

2259 2260 2261
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2262
	if (join && !get_numa_group(grp))
2263
		goto no_join;
2264 2265 2266 2267 2268 2269

	rcu_read_unlock();

	if (!join)
		return;

2270 2271
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2272

2273
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2274 2275
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2276
	}
2277 2278
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2279 2280 2281 2282 2283

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2284
	spin_unlock_irq(&grp->lock);
2285 2286 2287 2288

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2289 2290 2291 2292 2293
	return;

no_join:
	rcu_read_unlock();
	return;
2294 2295 2296 2297 2298
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2299
	void *numa_faults = p->numa_faults;
2300 2301
	unsigned long flags;
	int i;
2302 2303

	if (grp) {
2304
		spin_lock_irqsave(&grp->lock, flags);
2305
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2306
			grp->faults[i] -= p->numa_faults[i];
2307
		grp->total_faults -= p->total_numa_faults;
2308

2309
		grp->nr_tasks--;
2310
		spin_unlock_irqrestore(&grp->lock, flags);
2311
		RCU_INIT_POINTER(p->numa_group, NULL);
2312 2313 2314
		put_numa_group(grp);
	}

2315
	p->numa_faults = NULL;
2316
	kfree(numa_faults);
2317 2318
}

2319 2320 2321
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2322
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2323 2324
{
	struct task_struct *p = current;
2325
	bool migrated = flags & TNF_MIGRATED;
2326
	int cpu_node = task_node(current);
2327
	int local = !!(flags & TNF_FAULT_LOCAL);
2328
	struct numa_group *ng;
2329
	int priv;
2330

2331
	if (!static_branch_likely(&sched_numa_balancing))
2332 2333
		return;

2334 2335 2336 2337
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2338
	/* Allocate buffer to track faults on a per-node basis */
2339 2340
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2341
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2342

2343 2344
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2345
			return;
2346

2347
		p->total_numa_faults = 0;
2348
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2349
	}
2350

2351 2352 2353 2354 2355 2356 2357 2358
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2359
		if (!priv && !(flags & TNF_NO_GROUP))
2360
			task_numa_group(p, last_cpupid, flags, &priv);
2361 2362
	}

2363 2364 2365 2366 2367 2368
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2369 2370 2371 2372
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2373 2374
		local = 1;

2375
	task_numa_placement(p);
2376

2377 2378 2379 2380 2381
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2382 2383
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2384 2385
	if (migrated)
		p->numa_pages_migrated += pages;
2386 2387
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2388

2389 2390
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2391
	p->numa_faults_locality[local] += pages;
2392 2393
}

2394 2395
static void reset_ptenuma_scan(struct task_struct *p)
{
2396 2397 2398 2399 2400 2401 2402 2403
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2404
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2405 2406 2407
	p->mm->numa_scan_offset = 0;
}

2408 2409 2410 2411 2412 2413 2414 2415 2416
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2417
	u64 runtime = p->se.sum_exec_runtime;
2418
	struct vm_area_struct *vma;
2419
	unsigned long start, end;
2420
	unsigned long nr_pte_updates = 0;
2421
	long pages, virtpages;
2422

2423
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2437
	if (!mm->numa_next_scan) {
2438 2439
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2440 2441
	}

2442 2443 2444 2445 2446 2447 2448
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2449 2450 2451 2452
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2453

2454
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2455 2456 2457
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2458 2459 2460 2461 2462 2463
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2464 2465 2466
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2467
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2468 2469
	if (!pages)
		return;
2470

2471

2472
	down_read(&mm->mmap_sem);
2473
	vma = find_vma(mm, start);
2474 2475
	if (!vma) {
		reset_ptenuma_scan(p);
2476
		start = 0;
2477 2478
		vma = mm->mmap;
	}
2479
	for (; vma; vma = vma->vm_next) {
2480
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2481
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2482
			continue;
2483
		}
2484

2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2495 2496 2497 2498 2499 2500
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2501

2502 2503 2504 2505
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2506
			nr_pte_updates = change_prot_numa(vma, start, end);
2507 2508

			/*
2509 2510 2511 2512 2513 2514
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2515 2516 2517
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2518
			virtpages -= (end - start) >> PAGE_SHIFT;
2519

2520
			start = end;
2521
			if (pages <= 0 || virtpages <= 0)
2522
				goto out;
2523 2524

			cond_resched();
2525
		} while (end != vma->vm_end);
2526
	}
2527

2528
out:
2529
	/*
P
Peter Zijlstra 已提交
2530 2531 2532 2533
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2534 2535
	 */
	if (vma)
2536
		mm->numa_scan_offset = start;
2537 2538 2539
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2576
	if (now > curr->node_stamp + period) {
2577
		if (!curr->node_stamp)
2578
			curr->numa_scan_period = task_scan_min(curr);
2579
		curr->node_stamp += period;
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2591 2592 2593 2594 2595 2596 2597 2598

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2599 2600
#endif /* CONFIG_NUMA_BALANCING */

2601 2602 2603 2604
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2605
	if (!parent_entity(se))
2606
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2607
#ifdef CONFIG_SMP
2608 2609 2610 2611 2612 2613
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2614
#endif
2615 2616 2617 2618 2619 2620 2621
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2622
	if (!parent_entity(se))
2623
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2624
#ifdef CONFIG_SMP
2625 2626
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2627
		list_del_init(&se->group_node);
2628
	}
2629
#endif
2630 2631 2632
	cfs_rq->nr_running--;
}

2633 2634
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2635
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2636
{
2637
	long tg_weight, load, shares;
2638 2639

	/*
2640 2641 2642
	 * This really should be: cfs_rq->avg.load_avg, but instead we use
	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
	 * the shares for small weight interactive tasks.
2643
	 */
2644
	load = scale_load_down(cfs_rq->load.weight);
2645

2646
	tg_weight = atomic_long_read(&tg->load_avg);
2647

2648 2649 2650
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2651 2652

	shares = (tg->shares * load);
2653 2654
	if (tg_weight)
		shares /= tg_weight;
2655

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2668 2669 2670 2671 2672 2673 2674 2675
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2676
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2677 2678 2679 2680
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
2681

P
Peter Zijlstra 已提交
2682 2683 2684
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2685 2686 2687 2688
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2689
		account_entity_dequeue(cfs_rq, se);
2690
	}
P
Peter Zijlstra 已提交
2691 2692 2693 2694 2695 2696 2697

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2698 2699
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2700
static void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2701
{
2702
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
P
Peter Zijlstra 已提交
2703
	struct task_group *tg;
2704
	long shares;
P
Peter Zijlstra 已提交
2705

2706 2707 2708 2709
	if (!cfs_rq)
		return;

	if (throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2710
		return;
2711 2712 2713

	tg = cfs_rq->tg;

2714 2715 2716 2717
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2718
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2719 2720 2721

	reweight_entity(cfs_rq_of(se), se, shares);
}
2722

P
Peter Zijlstra 已提交
2723
#else /* CONFIG_FAIR_GROUP_SCHED */
2724
static inline void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2725 2726 2727 2728
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2729
#ifdef CONFIG_SMP
2730 2731 2732 2733
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
2734
static u64 decay_load(u64 val, u64 n)
2735
{
2736 2737
	unsigned int local_n;

2738
	if (unlikely(n > LOAD_AVG_PERIOD * 63))
2739 2740 2741 2742 2743 2744 2745
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2746 2747
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2748 2749 2750 2751 2752 2753
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2754 2755
	}

2756 2757
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2758 2759
}

2760
static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
2761
{
2762
	u32 c1, c2, c3 = d3; /* y^0 == 1 */
2763

2764
	/*
P
Peter Zijlstra 已提交
2765
	 * c1 = d1 y^p
2766
	 */
2767
	c1 = decay_load((u64)d1, periods);
2768 2769

	/*
P
Peter Zijlstra 已提交
2770
	 *            p-1
2771 2772
	 * c2 = 1024 \Sum y^n
	 *            n=1
2773
	 *
2774 2775
	 *              inf        inf
	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
P
Peter Zijlstra 已提交
2776
	 *              n=0        n=p
2777
	 */
2778
	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
2779 2780

	return c1 + c2 + c3;
2781 2782
}

2783
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2784

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
/*
 * Accumulate the three separate parts of the sum; d1 the remainder
 * of the last (incomplete) period, d2 the span of full periods and d3
 * the remainder of the (incomplete) current period.
 *
 *           d1          d2           d3
 *           ^           ^            ^
 *           |           |            |
 *         |<->|<----------------->|<--->|
 * ... |---x---|------| ... |------|-----x (now)
 *
P
Peter Zijlstra 已提交
2796 2797 2798
 *                           p-1
 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
 *                           n=1
2799
 *
P
Peter Zijlstra 已提交
2800
 *    = u y^p +					(Step 1)
2801
 *
P
Peter Zijlstra 已提交
2802 2803 2804
 *                     p-1
 *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
 *                     n=1
2805 2806 2807 2808 2809 2810
 */
static __always_inline u32
accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
	       unsigned long weight, int running, struct cfs_rq *cfs_rq)
{
	unsigned long scale_freq, scale_cpu;
2811
	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
	u64 periods;

	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

	delta += sa->period_contrib;
	periods = delta / 1024; /* A period is 1024us (~1ms) */

	/*
	 * Step 1: decay old *_sum if we crossed period boundaries.
	 */
	if (periods) {
		sa->load_sum = decay_load(sa->load_sum, periods);
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods);
		}
		sa->util_sum = decay_load((u64)(sa->util_sum), periods);

2831 2832 2833 2834 2835 2836 2837
		/*
		 * Step 2
		 */
		delta %= 1024;
		contrib = __accumulate_pelt_segments(periods,
				1024 - sa->period_contrib, delta);
	}
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
	sa->period_contrib = delta;

	contrib = cap_scale(contrib, scale_freq);
	if (weight) {
		sa->load_sum += weight * contrib;
		if (cfs_rq)
			cfs_rq->runnable_load_sum += weight * contrib;
	}
	if (running)
		sa->util_sum += contrib * scale_cpu;

	return periods;
}

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2880
static __always_inline int
2881
___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2882
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2883
{
2884
	u64 delta;
2885

2886
	delta = now - sa->last_update_time;
2887 2888 2889 2890 2891
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2892
		sa->last_update_time = now;
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2903 2904

	sa->last_update_time += delta << 10;
2905

2906 2907 2908 2909 2910 2911 2912 2913 2914
	/*
	 * Now we know we crossed measurement unit boundaries. The *_avg
	 * accrues by two steps:
	 *
	 * Step 1: accumulate *_sum since last_update_time. If we haven't
	 * crossed period boundaries, finish.
	 */
	if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
		return 0;
2915

2916 2917 2918
	/*
	 * Step 2: update *_avg.
	 */
2919
	sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
2920 2921
	if (cfs_rq) {
		cfs_rq->runnable_load_avg =
2922
			div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
2923
	}
2924
	sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
2925

2926
	return 1;
2927 2928
}

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
static int
__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
{
	return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
}

static int
__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return ___update_load_avg(now, cpu, &se->avg,
				  se->on_rq * scale_load_down(se->load.weight),
				  cfs_rq->curr == se, NULL);
}

static int
__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
{
	return ___update_load_avg(now, cpu, &cfs_rq->avg,
			scale_load_down(cfs_rq->load.weight),
			cfs_rq->curr != NULL, cfs_rq);
}

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

2971
#ifdef CONFIG_FAIR_GROUP_SCHED
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
 * Updating tg's load_avg is necessary before update_cfs_share() (which is
 * done) and effective_load() (which is not done because it is too costly).
2987
 */
2988
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2989
{
2990
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2991

2992 2993 2994 2995 2996 2997
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

2998 2999 3000
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3001
	}
3002
}
3003

3004 3005 3006 3007 3008 3009 3010 3011
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3012 3013 3014
	u64 p_last_update_time;
	u64 n_last_update_time;

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3025 3026
	if (!(se->avg.last_update_time && prev))
		return;
3027 3028

#ifndef CONFIG_64BIT
3029
	{
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3044
	}
3045
#else
3046 3047
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3048
#endif
3049 3050
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3051
}
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172

/* Take into account change of utilization of a child task group */
static inline void
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

/* Take into account change of load of a child task group */
static inline void
update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta, load = gcfs_rq->avg.load_avg;

	/*
	 * If the load of group cfs_rq is null, the load of the
	 * sched_entity will also be null so we can skip the formula
	 */
	if (load) {
		long tg_load;

		/* Get tg's load and ensure tg_load > 0 */
		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;

		/* Ensure tg_load >= load and updated with current load*/
		tg_load -= gcfs_rq->tg_load_avg_contrib;
		tg_load += load;

		/*
		 * We need to compute a correction term in the case that the
		 * task group is consuming more CPU than a task of equal
		 * weight. A task with a weight equals to tg->shares will have
		 * a load less or equal to scale_load_down(tg->shares).
		 * Similarly, the sched_entities that represent the task group
		 * at parent level, can't have a load higher than
		 * scale_load_down(tg->shares). And the Sum of sched_entities'
		 * load must be <= scale_load_down(tg->shares).
		 */
		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
			/* scale gcfs_rq's load into tg's shares*/
			load *= scale_load_down(gcfs_rq->tg->shares);
			load /= tg_load;
		}
	}

	delta = load - se->avg.load_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's load */
	se->avg.load_avg = load;
	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq load */
	add_positive(&cfs_rq->avg.load_avg, delta);
	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;

	/*
	 * If the sched_entity is already enqueued, we also have to update the
	 * runnable load avg.
	 */
	if (se->on_rq) {
		/* Update parent cfs_rq runnable_load_avg */
		add_positive(&cfs_rq->runnable_load_avg, delta);
		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
	}
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
{
	cfs_rq->propagate_avg = 1;
}

static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);

	if (!cfs_rq->propagate_avg)
		return 0;

	cfs_rq->propagate_avg = 0;
	return 1;
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	if (entity_is_task(se))
		return 0;

	if (!test_and_clear_tg_cfs_propagate(se))
		return 0;

	cfs_rq = cfs_rq_of(se);

	set_tg_cfs_propagate(cfs_rq);

	update_tg_cfs_util(cfs_rq, se);
	update_tg_cfs_load(cfs_rq, se);

	return 1;
}

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
	if (gcfs_rq->propagate_avg)
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3203
#else /* CONFIG_FAIR_GROUP_SCHED */
3204

3205
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3206 3207 3208 3209 3210 3211 3212 3213

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}

3214
#endif /* CONFIG_FAIR_GROUP_SCHED */
3215

3216 3217
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
3218
	if (&this_rq()->cfs == cfs_rq) {
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3235
		cpufreq_update_util(rq_of(cfs_rq), 0);
3236 3237 3238
	}
}

3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 * @update_freq: should we call cfs_rq_util_change() or will the call do so
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3268 3269 3270 3271
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3272
 */
3273 3274
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3275
{
3276
	struct sched_avg *sa = &cfs_rq->avg;
3277
	int decayed, removed_load = 0, removed_util = 0;
3278

3279
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3280
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3281 3282
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3283
		removed_load = 1;
3284
		set_tg_cfs_propagate(cfs_rq);
3285
	}
3286

3287 3288
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3289 3290
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3291
		removed_util = 1;
3292
		set_tg_cfs_propagate(cfs_rq);
3293
	}
3294

3295
	decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3296

3297 3298 3299 3300
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3301

3302 3303
	if (update_freq && (decayed || removed_util))
		cfs_rq_util_change(cfs_rq);
3304

3305
	return decayed || removed_load;
3306 3307
}

3308 3309 3310 3311 3312 3313
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2

3314
/* Update task and its cfs_rq load average */
3315
static inline void update_load_avg(struct sched_entity *se, int flags)
3316 3317 3318 3319 3320
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
3321
	int decayed;
3322 3323 3324 3325 3326

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
3327 3328
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);
3329

3330 3331 3332 3333
	decayed  = update_cfs_rq_load_avg(now, cfs_rq, true);
	decayed |= propagate_entity_load_avg(se);

	if (decayed && (flags & UPDATE_TG))
3334
		update_tg_load_avg(cfs_rq, 0);
3335 3336
}

3337 3338 3339 3340 3341 3342 3343 3344
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3345 3346 3347 3348 3349 3350 3351
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3352
	set_tg_cfs_propagate(cfs_rq);
3353 3354

	cfs_rq_util_change(cfs_rq);
3355 3356
}

3357 3358 3359 3360 3361 3362 3363 3364
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3365 3366 3367
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{

3368 3369 3370 3371
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3372
	set_tg_cfs_propagate(cfs_rq);
3373 3374

	cfs_rq_util_change(cfs_rq);
3375 3376
}

3377 3378 3379
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3380
{
3381
	struct sched_avg *sa = &se->avg;
3382

3383 3384 3385
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

3386
	if (!sa->last_update_time) {
3387
		attach_entity_load_avg(cfs_rq, se);
3388
		update_tg_load_avg(cfs_rq, 0);
3389
	}
3390 3391
}

3392 3393 3394 3395 3396 3397 3398
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
3399
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3400 3401
}

3402
#ifndef CONFIG_64BIT
3403 3404
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3405
	u64 last_update_time_copy;
3406
	u64 last_update_time;
3407

3408 3409 3410 3411 3412
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3413 3414 3415

	return last_update_time;
}
3416
#else
3417 3418 3419 3420
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3421 3422
#endif

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3433
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3434 3435
}

3436 3437 3438 3439 3440 3441 3442 3443 3444
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
3445 3446 3447 3448 3449 3450 3451
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3452 3453
	 */

3454
	sync_entity_load_avg(se);
3455 3456
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3457
}
3458

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3469
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3470

3471 3472
#else /* CONFIG_SMP */

3473 3474 3475 3476 3477 3478
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
{
	return 0;
}

3479 3480 3481 3482
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0

static inline void update_load_avg(struct sched_entity *se, int not_used1)
3483
{
3484
	cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3485 3486
}

3487 3488
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3489 3490
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3491
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3492

3493 3494 3495 3496 3497
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3498
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3499 3500 3501 3502
{
	return 0;
}

3503
#endif /* CONFIG_SMP */
3504

P
Peter Zijlstra 已提交
3505 3506 3507 3508 3509 3510 3511 3512 3513
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3514
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3515 3516 3517
#endif
}

3518 3519 3520
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3521
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3522

3523 3524 3525 3526 3527 3528
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3529
	if (initial && sched_feat(START_DEBIT))
3530
		vruntime += sched_vslice(cfs_rq, se);
3531

3532
	/* sleeps up to a single latency don't count. */
3533
	if (!initial) {
3534
		unsigned long thresh = sysctl_sched_latency;
3535

3536 3537 3538 3539 3540 3541
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3542

3543
		vruntime -= thresh;
3544 3545
	}

3546
	/* ensure we never gain time by being placed backwards. */
3547
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3548 3549
}

3550 3551
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3564
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3565 3566 3567 3568 3569 3570 3571
			     "stat_blocked and stat_runtime require the "
			     "kernel parameter schedstats=enabled or "
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3591
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3603
static void
3604
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3605
{
3606 3607 3608
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3609
	/*
3610 3611
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3612
	 */
3613
	if (renorm && curr)
3614 3615
		se->vruntime += cfs_rq->min_vruntime;

3616 3617
	update_curr(cfs_rq);

3618
	/*
3619 3620 3621 3622
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3623
	 */
3624 3625 3626
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3627 3628 3629 3630 3631 3632 3633 3634
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3635
	update_load_avg(se, UPDATE_TG);
3636
	enqueue_entity_load_avg(cfs_rq, se);
3637
	update_cfs_shares(se);
3638
	account_entity_enqueue(cfs_rq, se);
3639

3640
	if (flags & ENQUEUE_WAKEUP)
3641
		place_entity(cfs_rq, se, 0);
3642

3643
	check_schedstat_required();
3644 3645
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3646
	if (!curr)
3647
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3648
	se->on_rq = 1;
3649

3650
	if (cfs_rq->nr_running == 1) {
3651
		list_add_leaf_cfs_rq(cfs_rq);
3652 3653
		check_enqueue_throttle(cfs_rq);
	}
3654 3655
}

3656
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3657
{
3658 3659
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3660
		if (cfs_rq->last != se)
3661
			break;
3662 3663

		cfs_rq->last = NULL;
3664 3665
	}
}
P
Peter Zijlstra 已提交
3666

3667 3668 3669 3670
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3671
		if (cfs_rq->next != se)
3672
			break;
3673 3674

		cfs_rq->next = NULL;
3675
	}
P
Peter Zijlstra 已提交
3676 3677
}

3678 3679 3680 3681
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3682
		if (cfs_rq->skip != se)
3683
			break;
3684 3685

		cfs_rq->skip = NULL;
3686 3687 3688
	}
}

P
Peter Zijlstra 已提交
3689 3690
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3691 3692 3693 3694 3695
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3696 3697 3698

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3699 3700
}

3701
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3702

3703
static void
3704
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3705
{
3706 3707 3708 3709
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3710 3711 3712 3713 3714 3715 3716 3717 3718

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
3719
	update_load_avg(se, UPDATE_TG);
3720
	dequeue_entity_load_avg(cfs_rq, se);
3721

3722
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3723

P
Peter Zijlstra 已提交
3724
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3725

3726
	if (se != cfs_rq->curr)
3727
		__dequeue_entity(cfs_rq, se);
3728
	se->on_rq = 0;
3729
	account_entity_dequeue(cfs_rq, se);
3730 3731

	/*
3732 3733 3734 3735
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
3736
	 */
3737
	if (!(flags & DEQUEUE_SLEEP))
3738
		se->vruntime -= cfs_rq->min_vruntime;
3739

3740 3741 3742
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3743
	update_cfs_shares(se);
3744 3745 3746 3747 3748 3749 3750 3751 3752

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
3753 3754 3755 3756 3757
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3758
static void
I
Ingo Molnar 已提交
3759
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3760
{
3761
	unsigned long ideal_runtime, delta_exec;
3762 3763
	struct sched_entity *se;
	s64 delta;
3764

P
Peter Zijlstra 已提交
3765
	ideal_runtime = sched_slice(cfs_rq, curr);
3766
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3767
	if (delta_exec > ideal_runtime) {
3768
		resched_curr(rq_of(cfs_rq));
3769 3770 3771 3772 3773
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3785 3786
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3787

3788 3789
	if (delta < 0)
		return;
3790

3791
	if (delta > ideal_runtime)
3792
		resched_curr(rq_of(cfs_rq));
3793 3794
}

3795
static void
3796
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3797
{
3798 3799 3800 3801 3802 3803 3804
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3805
		update_stats_wait_end(cfs_rq, se);
3806
		__dequeue_entity(cfs_rq, se);
3807
		update_load_avg(se, UPDATE_TG);
3808 3809
	}

3810
	update_stats_curr_start(cfs_rq, se);
3811
	cfs_rq->curr = se;
3812

I
Ingo Molnar 已提交
3813 3814 3815 3816 3817
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3818
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3819 3820 3821
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
3822
	}
3823

3824
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3825 3826
}

3827 3828 3829
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3830 3831 3832 3833 3834 3835 3836
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3837 3838
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3839
{
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3851

3852 3853 3854 3855 3856
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3867 3868 3869
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3870

3871 3872 3873 3874 3875 3876
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3877 3878 3879 3880 3881 3882
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3883
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3884 3885

	return se;
3886 3887
}

3888
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3889

3890
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3891 3892 3893 3894 3895 3896
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3897
		update_curr(cfs_rq);
3898

3899 3900 3901
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

3902
	check_spread(cfs_rq, prev);
3903

3904
	if (prev->on_rq) {
3905
		update_stats_wait_start(cfs_rq, prev);
3906 3907
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3908
		/* in !on_rq case, update occurred at dequeue */
3909
		update_load_avg(prev, 0);
3910
	}
3911
	cfs_rq->curr = NULL;
3912 3913
}

P
Peter Zijlstra 已提交
3914 3915
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3916 3917
{
	/*
3918
	 * Update run-time statistics of the 'current'.
3919
	 */
3920
	update_curr(cfs_rq);
3921

3922 3923 3924
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3925
	update_load_avg(curr, UPDATE_TG);
3926
	update_cfs_shares(curr);
3927

P
Peter Zijlstra 已提交
3928 3929 3930 3931 3932
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3933
	if (queued) {
3934
		resched_curr(rq_of(cfs_rq));
3935 3936
		return;
	}
P
Peter Zijlstra 已提交
3937 3938 3939 3940 3941 3942 3943 3944
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3945
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3946
		check_preempt_tick(cfs_rq, curr);
3947 3948
}

3949 3950 3951 3952 3953 3954

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3955 3956

#ifdef HAVE_JUMP_LABEL
3957
static struct static_key __cfs_bandwidth_used;
3958 3959 3960

static inline bool cfs_bandwidth_used(void)
{
3961
	return static_key_false(&__cfs_bandwidth_used);
3962 3963
}

3964
void cfs_bandwidth_usage_inc(void)
3965
{
3966 3967 3968 3969 3970 3971
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3972 3973 3974 3975 3976 3977 3978
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3979 3980
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3981 3982
#endif /* HAVE_JUMP_LABEL */

3983 3984 3985 3986 3987 3988 3989 3990
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3991 3992 3993 3994 3995 3996

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3997 3998 3999 4000 4001 4002 4003
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4004
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

4016 4017 4018 4019 4020
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4021 4022 4023 4024
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4025
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4026

4027
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4028 4029
}

4030 4031
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4032 4033 4034
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4035
	u64 amount = 0, min_amount, expires;
4036 4037 4038 4039 4040 4041 4042

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4043
	else {
P
Peter Zijlstra 已提交
4044
		start_cfs_bandwidth(cfs_b);
4045 4046 4047 4048 4049 4050

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4051
	}
P
Paul Turner 已提交
4052
	expires = cfs_b->runtime_expires;
4053 4054 4055
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4056 4057 4058 4059 4060 4061 4062
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
4063 4064

	return cfs_rq->runtime_remaining > 0;
4065 4066
}

P
Paul Turner 已提交
4067 4068 4069 4070 4071
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4072
{
P
Paul Turner 已提交
4073 4074 4075
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4076
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4077 4078
		return;

P
Paul Turner 已提交
4079 4080 4081 4082 4083 4084 4085 4086 4087
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4088 4089 4090
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
4091 4092
	 */

4093
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
4094 4095 4096 4097 4098 4099 4100 4101
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4102
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4103 4104
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4105
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4106 4107 4108
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4109 4110
		return;

4111 4112 4113 4114 4115
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4116
		resched_curr(rq_of(cfs_rq));
4117 4118
}

4119
static __always_inline
4120
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4121
{
4122
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4123 4124 4125 4126 4127
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4128 4129
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4130
	return cfs_bandwidth_used() && cfs_rq->throttled;
4131 4132
}

4133 4134 4135
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4136
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4164
		/* adjust cfs_rq_clock_task() */
4165
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4166
					     cfs_rq->throttled_clock_task;
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4177 4178
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4179
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4180 4181 4182 4183 4184
	cfs_rq->throttle_count++;

	return 0;
}

4185
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4186 4187 4188 4189 4190
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4191
	bool empty;
4192 4193 4194

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4195
	/* freeze hierarchy runnable averages while throttled */
4196 4197 4198
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4216
		sub_nr_running(rq, task_delta);
4217 4218

	cfs_rq->throttled = 1;
4219
	cfs_rq->throttled_clock = rq_clock(rq);
4220
	raw_spin_lock(&cfs_b->lock);
4221
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4222

4223 4224 4225 4226 4227
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4228 4229 4230 4231 4232 4233 4234 4235

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4236 4237 4238
	raw_spin_unlock(&cfs_b->lock);
}

4239
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4240 4241 4242 4243 4244 4245 4246
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4247
	se = cfs_rq->tg->se[cpu_of(rq)];
4248 4249

	cfs_rq->throttled = 0;
4250 4251 4252

	update_rq_clock(rq);

4253
	raw_spin_lock(&cfs_b->lock);
4254
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4255 4256 4257
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4258 4259 4260
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4279
		add_nr_running(rq, task_delta);
4280 4281 4282

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4283
		resched_curr(rq);
4284 4285 4286 4287 4288 4289
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4290 4291
	u64 runtime;
	u64 starting_runtime = remaining;
4292 4293 4294 4295 4296

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4297
		struct rq_flags rf;
4298

4299
		rq_lock(rq, &rf);
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4316
		rq_unlock(rq, &rf);
4317 4318 4319 4320 4321 4322

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4323
	return starting_runtime - remaining;
4324 4325
}

4326 4327 4328 4329 4330 4331 4332 4333
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4334
	u64 runtime, runtime_expires;
4335
	int throttled;
4336 4337 4338

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4339
		goto out_deactivate;
4340

4341
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4342
	cfs_b->nr_periods += overrun;
4343

4344 4345 4346 4347 4348 4349
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4350 4351 4352

	__refill_cfs_bandwidth_runtime(cfs_b);

4353 4354 4355
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4356
		return 0;
4357 4358
	}

4359 4360 4361
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4362 4363 4364
	runtime_expires = cfs_b->runtime_expires;

	/*
4365 4366 4367 4368 4369
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4370
	 */
4371 4372
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4373 4374 4375 4376 4377 4378 4379
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4380 4381

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4382
	}
4383

4384 4385 4386 4387 4388 4389 4390
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4391

4392 4393 4394 4395
	return 0;

out_deactivate:
	return 1;
4396
}
4397

4398 4399 4400 4401 4402 4403 4404
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4405 4406 4407 4408
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4409
 * hrtimer base being cleared by hrtimer_start. In the case of
4410 4411
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4437 4438 4439
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4469 4470 4471
	if (!cfs_bandwidth_used())
		return;

4472
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4488 4489 4490
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4491
		return;
4492
	}
4493

4494
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4495
		runtime = cfs_b->runtime;
4496

4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4507
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4508 4509 4510
	raw_spin_unlock(&cfs_b->lock);
}

4511 4512 4513 4514 4515 4516 4517
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4518 4519 4520
	if (!cfs_bandwidth_used())
		return;

4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4549
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4550 4551
}

4552
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4553
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4554
{
4555
	if (!cfs_bandwidth_used())
4556
		return false;
4557

4558
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4559
		return false;
4560 4561 4562 4563 4564 4565

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4566
		return true;
4567 4568

	throttle_cfs_rq(cfs_rq);
4569
	return true;
4570
}
4571 4572 4573 4574 4575

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4576

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4589
	raw_spin_lock(&cfs_b->lock);
4590
	for (;;) {
P
Peter Zijlstra 已提交
4591
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4592 4593 4594 4595 4596
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4597 4598
	if (idle)
		cfs_b->period_active = 0;
4599
	raw_spin_unlock(&cfs_b->lock);
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4612
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4624
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4625
{
P
Peter Zijlstra 已提交
4626
	lockdep_assert_held(&cfs_b->lock);
4627

P
Peter Zijlstra 已提交
4628 4629 4630 4631 4632
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4633 4634 4635 4636
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4637 4638 4639 4640
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4641 4642 4643 4644
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4658
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4670
		cfs_rq->runtime_remaining = 1;
4671 4672 4673 4674 4675 4676
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4677 4678 4679 4680 4681 4682
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4683 4684
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4685
	return rq_clock_task(rq_of(cfs_rq));
4686 4687
}

4688
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4689
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4690
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4691
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4692
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4693 4694 4695 4696 4697

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4709 4710 4711 4712 4713

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4714 4715
#endif

4716 4717 4718 4719 4720
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4721
static inline void update_runtime_enabled(struct rq *rq) {}
4722
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4723 4724 4725

#endif /* CONFIG_CFS_BANDWIDTH */

4726 4727 4728 4729
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4730 4731 4732 4733 4734 4735
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

4736
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
4737

4738
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
4739 4740 4741 4742 4743 4744
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4745
				resched_curr(rq);
P
Peter Zijlstra 已提交
4746 4747
			return;
		}
4748
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4749 4750
	}
}
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4761
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4762 4763 4764 4765 4766
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4767
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4768 4769 4770 4771
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4772 4773 4774 4775

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4776 4777
#endif

4778 4779 4780 4781 4782
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4783
static void
4784
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4785 4786
{
	struct cfs_rq *cfs_rq;
4787
	struct sched_entity *se = &p->se;
4788

4789 4790 4791 4792 4793 4794 4795 4796
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
		cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);

4797
	for_each_sched_entity(se) {
4798
		if (se->on_rq)
4799 4800
			break;
		cfs_rq = cfs_rq_of(se);
4801
		enqueue_entity(cfs_rq, se, flags);
4802 4803 4804 4805 4806 4807

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
4808
		 */
4809 4810
		if (cfs_rq_throttled(cfs_rq))
			break;
4811
		cfs_rq->h_nr_running++;
4812

4813
		flags = ENQUEUE_WAKEUP;
4814
	}
P
Peter Zijlstra 已提交
4815

P
Peter Zijlstra 已提交
4816
	for_each_sched_entity(se) {
4817
		cfs_rq = cfs_rq_of(se);
4818
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4819

4820 4821 4822
		if (cfs_rq_throttled(cfs_rq))
			break;

4823
		update_load_avg(se, UPDATE_TG);
4824
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
4825 4826
	}

Y
Yuyang Du 已提交
4827
	if (!se)
4828
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4829

4830
	hrtick_update(rq);
4831 4832
}

4833 4834
static void set_next_buddy(struct sched_entity *se);

4835 4836 4837 4838 4839
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4840
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4841 4842
{
	struct cfs_rq *cfs_rq;
4843
	struct sched_entity *se = &p->se;
4844
	int task_sleep = flags & DEQUEUE_SLEEP;
4845 4846 4847

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4848
		dequeue_entity(cfs_rq, se, flags);
4849 4850 4851 4852 4853 4854 4855 4856 4857

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4858
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4859

4860
		/* Don't dequeue parent if it has other entities besides us */
4861
		if (cfs_rq->load.weight) {
4862 4863
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
4864 4865 4866 4867
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
4868 4869
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
4870
			break;
4871
		}
4872
		flags |= DEQUEUE_SLEEP;
4873
	}
P
Peter Zijlstra 已提交
4874

P
Peter Zijlstra 已提交
4875
	for_each_sched_entity(se) {
4876
		cfs_rq = cfs_rq_of(se);
4877
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4878

4879 4880 4881
		if (cfs_rq_throttled(cfs_rq))
			break;

4882
		update_load_avg(se, UPDATE_TG);
4883
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
4884 4885
	}

Y
Yuyang Du 已提交
4886
	if (!se)
4887
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4888

4889
	hrtick_update(rq);
4890 4891
}

4892
#ifdef CONFIG_SMP
4893 4894 4895 4896 4897

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

4898
#ifdef CONFIG_NO_HZ_COMMON
4899 4900 4901 4902 4903
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4904
 * The exact cpuload calculated at every tick would be:
4905
 *
4906 4907 4908 4909 4910 4911 4912
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4913 4914 4915
 *
 * decay_load_missed() below does efficient calculation of
 *
4916 4917 4918 4919 4920 4921
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4922
 *
4923
 * The calculation is approximated on a 128 point scale.
4924 4925
 */
#define DEGRADE_SHIFT		7
4926 4927 4928 4929 4930 4931 4932 4933 4934

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
4964
#endif /* CONFIG_NO_HZ_COMMON */
4965

4966
/**
4967
 * __cpu_load_update - update the rq->cpu_load[] statistics
4968 4969 4970 4971
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
4972
 * Update rq->cpu_load[] statistics. This function is usually called every
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4999
 * term.
5000
 */
5001 5002
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5003
{
5004
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5016
		old_load = this_rq->cpu_load[i];
5017
#ifdef CONFIG_NO_HZ_COMMON
5018
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5019 5020 5021 5022 5023 5024 5025 5026 5027
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5028
#endif
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

5044 5045 5046 5047 5048 5049
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

5050
#ifdef CONFIG_NO_HZ_COMMON
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5079
		cpu_load_update(this_rq, load, pending_updates);
5080 5081 5082
	}
}

5083 5084 5085 5086
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5087
static void cpu_load_update_idle(struct rq *this_rq)
5088 5089 5090 5091
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5092
	if (weighted_cpuload(cpu_of(this_rq)))
5093 5094
		return;

5095
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5096 5097 5098
}

/*
5099 5100 5101 5102
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5103
 */
5104
void cpu_load_update_nohz_start(void)
5105 5106
{
	struct rq *this_rq = this_rq();
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5121
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5122 5123
	struct rq *this_rq = this_rq();
	unsigned long load;
5124
	struct rq_flags rf;
5125 5126 5127 5128

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5129
	load = weighted_cpuload(cpu_of(this_rq));
5130
	rq_lock(this_rq, &rf);
5131
	update_rq_clock(this_rq);
5132
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5133
	rq_unlock(this_rq, &rf);
5134
}
5135 5136 5137 5138 5139 5140 5141 5142
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5143
#ifdef CONFIG_NO_HZ_COMMON
5144 5145
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5146
#endif
5147 5148
	cpu_load_update(this_rq, load, 1);
}
5149 5150 5151 5152

/*
 * Called from scheduler_tick()
 */
5153
void cpu_load_update_active(struct rq *this_rq)
5154
{
5155
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
5156 5157 5158 5159 5160

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5161 5162
}

5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5196
static unsigned long capacity_of(int cpu)
5197
{
5198
	return cpu_rq(cpu)->cpu_capacity;
5199 5200
}

5201 5202 5203 5204 5205
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5206 5207 5208
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5209
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5210
	unsigned long load_avg = weighted_cpuload(cpu);
5211 5212

	if (nr_running)
5213
		return load_avg / nr_running;
5214 5215 5216 5217

	return 0;
}

5218
#ifdef CONFIG_FAIR_GROUP_SCHED
5219 5220 5221 5222 5223 5224
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
5268
 */
P
Peter Zijlstra 已提交
5269
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5270
{
P
Peter Zijlstra 已提交
5271
	struct sched_entity *se = tg->se[cpu];
5272

5273
	if (!tg->parent)	/* the trivial, non-cgroup case */
5274 5275
		return wl;

P
Peter Zijlstra 已提交
5276
	for_each_sched_entity(se) {
5277 5278
		struct cfs_rq *cfs_rq = se->my_q;
		long W, w = cfs_rq_load_avg(cfs_rq);
P
Peter Zijlstra 已提交
5279

5280
		tg = cfs_rq->tg;
5281

5282 5283 5284
		/*
		 * W = @wg + \Sum rw_j
		 */
5285 5286 5287 5288 5289
		W = wg + atomic_long_read(&tg->load_avg);

		/* Ensure \Sum rw_j >= rw_i */
		W -= cfs_rq->tg_load_avg_contrib;
		W += w;
P
Peter Zijlstra 已提交
5290

5291 5292 5293
		/*
		 * w = rw_i + @wl
		 */
5294
		w += wl;
5295

5296 5297 5298 5299
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
5300
			wl = (w * (long)scale_load_down(tg->shares)) / W;
5301
		else
5302
			wl = scale_load_down(tg->shares);
5303

5304 5305 5306 5307 5308
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
5309 5310
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
5311 5312 5313 5314

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
5315
		wl -= se->avg.load_avg;
5316 5317 5318 5319 5320 5321 5322 5323

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
5324 5325
		wg = 0;
	}
5326

P
Peter Zijlstra 已提交
5327
	return wl;
5328 5329
}
#else
P
Peter Zijlstra 已提交
5330

5331
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
5332
{
5333
	return wl;
5334
}
P
Peter Zijlstra 已提交
5335

5336 5337
#endif

P
Peter Zijlstra 已提交
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5355 5356
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5357
 *
M
Mike Galbraith 已提交
5358
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5371
 */
5372 5373
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5374 5375
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5376
	int factor = this_cpu_read(sd_llc_size);
5377

M
Mike Galbraith 已提交
5378 5379 5380 5381 5382
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5383 5384
}

5385 5386
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
		       int prev_cpu, int sync)
5387
{
5388
	s64 this_load, load;
5389
	s64 this_eff_load, prev_eff_load;
5390
	int idx, this_cpu;
5391
	struct task_group *tg;
5392
	unsigned long weight;
5393
	int balanced;
5394

5395 5396 5397 5398
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
5399

5400 5401 5402 5403 5404
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
5405 5406
	if (sync) {
		tg = task_group(current);
5407
		weight = current->se.avg.load_avg;
5408

5409
		this_load += effective_load(tg, this_cpu, -weight, -weight);
5410 5411
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
5412

5413
	tg = task_group(p);
5414
	weight = p->se.avg.load_avg;
5415

5416 5417
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5418 5419 5420
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
5421 5422 5423 5424
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
5425 5426
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
5427

5428 5429
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5430

5431
	if (this_load > 0) {
5432 5433 5434 5435
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5436
	}
5437

5438
	balanced = this_eff_load <= prev_eff_load;
5439

5440
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5441

5442 5443
	if (!balanced)
		return 0;
5444

5445 5446
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5447 5448

	return 1;
5449 5450
}

5451 5452 5453 5454 5455 5456 5457 5458
static inline int task_util(struct task_struct *p);
static int cpu_util_wake(int cpu, struct task_struct *p);

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
}

5459 5460 5461 5462 5463
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5464
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5465
		  int this_cpu, int sd_flag)
5466
{
5467
	struct sched_group *idlest = NULL, *group = sd->groups;
5468
	struct sched_group *most_spare_sg = NULL;
5469 5470
	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5471
	unsigned long most_spare = 0, this_spare = 0;
5472
	int load_idx = sd->forkexec_idx;
5473 5474 5475
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5476

5477 5478 5479
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5480
	do {
5481 5482
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5483 5484
		int local_group;
		int i;
5485

5486 5487
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
5488
					&p->cpus_allowed))
5489 5490 5491 5492 5493
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

5494 5495 5496 5497
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5498
		avg_load = 0;
5499
		runnable_load = 0;
5500
		max_spare_cap = 0;
5501 5502 5503 5504 5505 5506 5507 5508

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5509 5510 5511
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5512 5513 5514 5515 5516

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5517 5518
		}

5519
		/* Adjust by relative CPU capacity of the group */
5520 5521 5522 5523
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5524 5525

		if (local_group) {
5526 5527
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5528 5529
			this_spare = max_spare_cap;
		} else {
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
				 * so we can pick this new cpu
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
				 * blocked load into account through avg_load.
				 */
				min_avg_load = avg_load;
5545 5546 5547 5548 5549 5550 5551
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5552 5553 5554
		}
	} while (group = group->next, group != sd->groups);

5555 5556 5557 5558 5559 5560
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5561 5562 5563 5564
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5565
	 */
5566 5567 5568
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5569
	if (this_spare > task_util(p) / 2 &&
5570
	    imbalance_scale*this_spare > 100*most_spare)
5571
		return NULL;
5572 5573

	if (most_spare > task_util(p) / 2)
5574 5575
		return most_spare_sg;

5576
skip_spare:
5577 5578 5579 5580
	if (!idlest)
		return NULL;

	if (min_runnable_load > (this_runnable_load + imbalance))
5581
		return NULL;
5582 5583 5584 5585 5586

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5597 5598 5599 5600
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5601 5602
	int i;

5603 5604 5605 5606
	/* Check if we have any choice: */
	if (group->group_weight == 1)
		return cpumask_first(sched_group_cpus(group));

5607
	/* Traverse only the allowed CPUs */
5608
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5631
		} else if (shallowest_idle_cpu == -1) {
5632 5633 5634 5635 5636
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5637 5638 5639
		}
	}

5640
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5641
}
5642

5643
/*
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708
 * Implement a for_each_cpu() variant that starts the scan at a given cpu
 * (@start), and wraps around.
 *
 * This is used to scan for idle CPUs; such that not all CPUs looking for an
 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
 * through the LLC domain.
 *
 * Especially tbench is found sensitive to this.
 */

static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
{
	int next;

again:
	next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);

	if (*wrapped) {
		if (next >= start)
			return nr_cpumask_bits;
	} else {
		if (next >= nr_cpumask_bits) {
			*wrapped = 1;
			n = -1;
			goto again;
		}
	}

	return next;
}

#define for_each_cpu_wrap(cpu, mask, start, wrap)				\
	for ((wrap) = 0, (cpu) = (start)-1;					\
		(cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)),	\
		(cpu) < nr_cpumask_bits; )

#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5709
void __update_idle_core(struct rq *rq)
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

		if (!idle_cpu(cpu))
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
	int core, cpu, wrap;

P
Peter Zijlstra 已提交
5741 5742 5743
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5744 5745 5746
	if (!test_idle_cores(target, false))
		return -1;

5747
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776

	for_each_cpu_wrap(core, cpus, target, wrap) {
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
			if (!idle_cpu(cpu))
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
5777 5778 5779
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5780
	for_each_cpu(cpu, cpu_smt_mask(target)) {
5781
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
			continue;
		if (idle_cpu(cpu))
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
5808
 */
5809 5810
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
5811 5812
	struct sched_domain *this_sd;
	u64 avg_cost, avg_idle = this_rq()->avg_idle;
5813 5814 5815 5816
	u64 time, cost;
	s64 delta;
	int cpu, wrap;

5817 5818 5819 5820 5821 5822
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

	avg_cost = this_sd->avg_scan_cost;

5823 5824 5825 5826
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
5827
	if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost)
5828 5829 5830 5831 5832
		return -1;

	time = local_clock();

	for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5833
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
			continue;
		if (idle_cpu(cpu))
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
5849
 */
5850
static int select_idle_sibling(struct task_struct *p, int prev, int target)
5851
{
5852
	struct sched_domain *sd;
5853
	int i;
5854

5855 5856
	if (idle_cpu(target))
		return target;
5857 5858

	/*
5859
	 * If the previous cpu is cache affine and idle, don't be stupid.
5860
	 */
5861 5862
	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
		return prev;
5863

5864
	sd = rcu_dereference(per_cpu(sd_llc, target));
5865 5866
	if (!sd)
		return target;
5867

5868 5869 5870
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5871

5872 5873 5874 5875 5876 5877 5878
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5879

5880 5881
	return target;
}
5882

5883
/*
5884
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5885
 * tasks. The unit of the return value must be the one of capacity so we can
5886 5887
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5908
 */
5909
static int cpu_util(int cpu)
5910
{
5911
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5912 5913
	unsigned long capacity = capacity_orig_of(cpu);

5914
	return (util >= capacity) ? capacity : util;
5915
}
5916

5917 5918 5919 5920 5921
static inline int task_util(struct task_struct *p)
{
	return p->se.avg.util_avg;
}

5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
/*
 * cpu_util_wake: Compute cpu utilization with any contributions from
 * the waking task p removed.
 */
static int cpu_util_wake(int cpu, struct task_struct *p)
{
	unsigned long util, capacity;

	/* Task has no contribution or is new */
	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
		return cpu_util(cpu);

	capacity = capacity_orig_of(cpu);
	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);

	return (util >= capacity) ? capacity : util;
}

5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

5958 5959 5960
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

5961 5962 5963
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

5964
/*
5965 5966 5967
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5968
 *
5969 5970
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5971
 *
5972
 * Returns the target cpu number.
5973 5974 5975
 *
 * preempt must be disabled.
 */
5976
static int
5977
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5978
{
5979
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5980
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5981
	int new_cpu = prev_cpu;
5982
	int want_affine = 0;
5983
	int sync = wake_flags & WF_SYNC;
5984

P
Peter Zijlstra 已提交
5985 5986
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
5987
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5988
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
5989
	}
5990

5991
	rcu_read_lock();
5992
	for_each_domain(cpu, tmp) {
5993
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
5994
			break;
5995

5996
		/*
5997 5998
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
5999
		 */
6000 6001 6002
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
6003
			break;
6004
		}
6005

6006
		if (tmp->flags & sd_flag)
6007
			sd = tmp;
M
Mike Galbraith 已提交
6008 6009
		else if (!want_affine)
			break;
6010 6011
	}

M
Mike Galbraith 已提交
6012 6013
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
6014
		if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
M
Mike Galbraith 已提交
6015
			new_cpu = cpu;
6016
	}
6017

M
Mike Galbraith 已提交
6018 6019
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
6020
			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
M
Mike Galbraith 已提交
6021 6022

	} else while (sd) {
6023
		struct sched_group *group;
6024
		int weight;
6025

6026
		if (!(sd->flags & sd_flag)) {
6027 6028 6029
			sd = sd->child;
			continue;
		}
6030

6031
		group = find_idlest_group(sd, p, cpu, sd_flag);
6032 6033 6034 6035
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
6036

6037
		new_cpu = find_idlest_cpu(group, p, cpu);
6038 6039 6040 6041
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
6042
		}
6043 6044 6045

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
6046
		weight = sd->span_weight;
6047 6048
		sd = NULL;
		for_each_domain(cpu, tmp) {
6049
			if (weight <= tmp->span_weight)
6050
				break;
6051
			if (tmp->flags & sd_flag)
6052 6053 6054
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
6055
	}
6056
	rcu_read_unlock();
6057

6058
	return new_cpu;
6059
}
6060 6061 6062 6063

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
6064
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6065
 */
6066
static void migrate_task_rq_fair(struct task_struct *p)
6067
{
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6094
	/*
6095 6096 6097 6098 6099
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
6100
	 */
6101 6102 6103 6104
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6105 6106

	/* We have migrated, no longer consider this task hot */
6107
	p->se.exec_start = 0;
6108
}
6109 6110 6111 6112 6113

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6114 6115
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
6116 6117
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6118 6119 6120 6121
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6122 6123
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6124 6125 6126 6127 6128 6129 6130 6131 6132
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6133
	 */
6134
	return calc_delta_fair(gran, se);
6135 6136
}

6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
6159
	gran = wakeup_gran(curr, se);
6160 6161 6162 6163 6164 6165
	if (vdiff > gran)
		return 1;

	return 0;
}

6166 6167
static void set_last_buddy(struct sched_entity *se)
{
6168 6169 6170 6171 6172
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
6173 6174 6175 6176
}

static void set_next_buddy(struct sched_entity *se)
{
6177 6178 6179 6180 6181
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
6182 6183
}

6184 6185
static void set_skip_buddy(struct sched_entity *se)
{
6186 6187
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6188 6189
}

6190 6191 6192
/*
 * Preempt the current task with a newly woken task if needed:
 */
6193
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6194 6195
{
	struct task_struct *curr = rq->curr;
6196
	struct sched_entity *se = &curr->se, *pse = &p->se;
6197
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6198
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6199
	int next_buddy_marked = 0;
6200

I
Ingo Molnar 已提交
6201 6202 6203
	if (unlikely(se == pse))
		return;

6204
	/*
6205
	 * This is possible from callers such as attach_tasks(), in which we
6206 6207 6208 6209 6210 6211 6212
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6213
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6214
		set_next_buddy(pse);
6215 6216
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6217

6218 6219 6220
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6221 6222 6223 6224 6225 6226
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6227 6228 6229 6230
	 */
	if (test_tsk_need_resched(curr))
		return;

6231 6232 6233 6234 6235
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6236
	/*
6237 6238
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6239
	 */
6240
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6241
		return;
6242

6243
	find_matching_se(&se, &pse);
6244
	update_curr(cfs_rq_of(se));
6245
	BUG_ON(!pse);
6246 6247 6248 6249 6250 6251 6252
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6253
		goto preempt;
6254
	}
6255

6256
	return;
6257

6258
preempt:
6259
	resched_curr(rq);
6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6274 6275
}

6276
static struct task_struct *
6277
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6278 6279 6280
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6281
	struct task_struct *p;
6282
	int new_tasks;
6283

6284
again:
6285 6286
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
6287
		goto idle;
6288

6289
	if (prev->sched_class != &fair_sched_class)
6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6309 6310 6311 6312 6313
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6314

6315 6316 6317 6318 6319 6320 6321 6322 6323
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
6364

6365
	if (!cfs_rq->nr_running)
6366
		goto idle;
6367

6368
	put_prev_task(rq, prev);
6369

6370
	do {
6371
		se = pick_next_entity(cfs_rq, NULL);
6372
		set_next_entity(cfs_rq, se);
6373 6374 6375
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6376
	p = task_of(se);
6377

6378 6379
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6380 6381

	return p;
6382 6383

idle:
6384 6385
	new_tasks = idle_balance(rq, rf);

6386 6387 6388 6389 6390
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6391
	if (new_tasks < 0)
6392 6393
		return RETRY_TASK;

6394
	if (new_tasks > 0)
6395 6396 6397
		goto again;

	return NULL;
6398 6399 6400 6401 6402
}

/*
 * Account for a descheduled task:
 */
6403
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6404 6405 6406 6407 6408 6409
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6410
		put_prev_entity(cfs_rq, se);
6411 6412 6413
	}
}

6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6439 6440 6441 6442 6443
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6444
		rq_clock_skip_update(rq, true);
6445 6446 6447 6448 6449
	}

	set_skip_buddy(se);
}

6450 6451 6452 6453
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6454 6455
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6456 6457 6458 6459 6460 6461 6462 6463 6464 6465
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6466
#ifdef CONFIG_SMP
6467
/**************************************************
P
Peter Zijlstra 已提交
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6484
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6485 6486 6487 6488 6489 6490
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6491
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
6492 6493 6494 6495 6496 6497
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6498
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6537
 *             log_2 n
P
Peter Zijlstra 已提交
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6583
 */
6584

6585 6586
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6587 6588
enum fbq_type { regular, remote, all };

6589
#define LBF_ALL_PINNED	0x01
6590
#define LBF_NEED_BREAK	0x02
6591 6592
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6593 6594 6595 6596 6597

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6598
	int			src_cpu;
6599 6600 6601 6602

	int			dst_cpu;
	struct rq		*dst_rq;

6603 6604
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6605
	enum cpu_idle_type	idle;
6606
	long			imbalance;
6607 6608 6609
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6610
	unsigned int		flags;
6611 6612 6613 6614

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6615 6616

	enum fbq_type		fbq_type;
6617
	struct list_head	tasks;
6618 6619
};

6620 6621 6622
/*
 * Is this task likely cache-hot:
 */
6623
static int task_hot(struct task_struct *p, struct lb_env *env)
6624 6625 6626
{
	s64 delta;

6627 6628
	lockdep_assert_held(&env->src_rq->lock);

6629 6630 6631 6632 6633 6634 6635 6636 6637
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6638
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6639 6640 6641 6642 6643 6644 6645 6646 6647
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6648
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6649 6650 6651 6652

	return delta < (s64)sysctl_sched_migration_cost;
}

6653
#ifdef CONFIG_NUMA_BALANCING
6654
/*
6655 6656 6657
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6658
 */
6659
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6660
{
6661
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6662
	unsigned long src_faults, dst_faults;
6663 6664
	int src_nid, dst_nid;

6665
	if (!static_branch_likely(&sched_numa_balancing))
6666 6667
		return -1;

6668
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6669
		return -1;
6670 6671 6672 6673

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6674
	if (src_nid == dst_nid)
6675
		return -1;
6676

6677 6678 6679 6680 6681 6682 6683
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6684

6685 6686
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6687
		return 0;
6688

6689 6690 6691 6692 6693 6694
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6695 6696
	}

6697
	return dst_faults < src_faults;
6698 6699
}

6700
#else
6701
static inline int migrate_degrades_locality(struct task_struct *p,
6702 6703
					     struct lb_env *env)
{
6704
	return -1;
6705
}
6706 6707
#endif

6708 6709 6710 6711
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6712
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6713
{
6714
	int tsk_cache_hot;
6715 6716 6717

	lockdep_assert_held(&env->src_rq->lock);

6718 6719
	/*
	 * We do not migrate tasks that are:
6720
	 * 1) throttled_lb_pair, or
6721
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6722 6723
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6724
	 */
6725 6726 6727
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6728
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6729
		int cpu;
6730

6731
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6732

6733 6734
		env->flags |= LBF_SOME_PINNED;

6735 6736 6737 6738 6739 6740 6741 6742
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
6743
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6744 6745
			return 0;

6746 6747
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6748
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6749
				env->flags |= LBF_DST_PINNED;
6750 6751 6752
				env->new_dst_cpu = cpu;
				break;
			}
6753
		}
6754

6755 6756
		return 0;
	}
6757 6758

	/* Record that we found atleast one task that could run on dst_cpu */
6759
	env->flags &= ~LBF_ALL_PINNED;
6760

6761
	if (task_running(env->src_rq, p)) {
6762
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6763 6764 6765 6766 6767
		return 0;
	}

	/*
	 * Aggressive migration if:
6768 6769 6770
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6771
	 */
6772 6773 6774
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6775

6776
	if (tsk_cache_hot <= 0 ||
6777
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6778
		if (tsk_cache_hot == 1) {
6779 6780
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
6781
		}
6782 6783 6784
		return 1;
	}

6785
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
6786
	return 0;
6787 6788
}

6789
/*
6790 6791 6792 6793 6794 6795 6796
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6797
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6798 6799 6800
	set_task_cpu(p, env->dst_cpu);
}

6801
/*
6802
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6803 6804
 * part of active balancing operations within "domain".
 *
6805
 * Returns a task if successful and NULL otherwise.
6806
 */
6807
static struct task_struct *detach_one_task(struct lb_env *env)
6808 6809 6810
{
	struct task_struct *p, *n;

6811 6812
	lockdep_assert_held(&env->src_rq->lock);

6813 6814 6815
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6816

6817
		detach_task(p, env);
6818

6819
		/*
6820
		 * Right now, this is only the second place where
6821
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6822
		 * so we can safely collect stats here rather than
6823
		 * inside detach_tasks().
6824
		 */
6825
		schedstat_inc(env->sd->lb_gained[env->idle]);
6826
		return p;
6827
	}
6828
	return NULL;
6829 6830
}

6831 6832
static const unsigned int sched_nr_migrate_break = 32;

6833
/*
6834 6835
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6836
 *
6837
 * Returns number of detached tasks if successful and 0 otherwise.
6838
 */
6839
static int detach_tasks(struct lb_env *env)
6840
{
6841 6842
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6843
	unsigned long load;
6844 6845 6846
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6847

6848
	if (env->imbalance <= 0)
6849
		return 0;
6850

6851
	while (!list_empty(tasks)) {
6852 6853 6854 6855 6856 6857 6858
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6859
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6860

6861 6862
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6863
		if (env->loop > env->loop_max)
6864
			break;
6865 6866

		/* take a breather every nr_migrate tasks */
6867
		if (env->loop > env->loop_break) {
6868
			env->loop_break += sched_nr_migrate_break;
6869
			env->flags |= LBF_NEED_BREAK;
6870
			break;
6871
		}
6872

6873
		if (!can_migrate_task(p, env))
6874 6875 6876
			goto next;

		load = task_h_load(p);
6877

6878
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6879 6880
			goto next;

6881
		if ((load / 2) > env->imbalance)
6882
			goto next;
6883

6884 6885 6886 6887
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6888
		env->imbalance -= load;
6889 6890

#ifdef CONFIG_PREEMPT
6891 6892
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6893
		 * kernels will stop after the first task is detached to minimize
6894 6895
		 * the critical section.
		 */
6896
		if (env->idle == CPU_NEWLY_IDLE)
6897
			break;
6898 6899
#endif

6900 6901 6902 6903
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6904
		if (env->imbalance <= 0)
6905
			break;
6906 6907 6908

		continue;
next:
6909
		list_move_tail(&p->se.group_node, tasks);
6910
	}
6911

6912
	/*
6913 6914 6915
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6916
	 */
6917
	schedstat_add(env->sd->lb_gained[env->idle], detached);
6918

6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
6930
	activate_task(rq, p, ENQUEUE_NOCLOCK);
6931
	p->on_rq = TASK_ON_RQ_QUEUED;
6932 6933 6934 6935 6936 6937 6938 6939 6940
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
6941 6942 6943
	struct rq_flags rf;

	rq_lock(rq, &rf);
6944
	update_rq_clock(rq);
6945
	attach_task(rq, p);
6946
	rq_unlock(rq, &rf);
6947 6948 6949 6950 6951 6952 6953 6954 6955 6956
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
6957
	struct rq_flags rf;
6958

6959
	rq_lock(env->dst_rq, &rf);
6960
	update_rq_clock(env->dst_rq);
6961 6962 6963 6964

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6965

6966 6967 6968
		attach_task(env->dst_rq, p);
	}

6969
	rq_unlock(env->dst_rq, &rf);
6970 6971
}

P
Peter Zijlstra 已提交
6972
#ifdef CONFIG_FAIR_GROUP_SCHED
6973
static void update_blocked_averages(int cpu)
6974 6975
{
	struct rq *rq = cpu_rq(cpu);
6976
	struct cfs_rq *cfs_rq;
6977
	struct rq_flags rf;
6978

6979
	rq_lock_irqsave(rq, &rf);
6980
	update_rq_clock(rq);
6981

6982 6983 6984 6985
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
6986
	for_each_leaf_cfs_rq(rq, cfs_rq) {
6987 6988
		struct sched_entity *se;

6989 6990 6991
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
6992

6993
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6994
			update_tg_load_avg(cfs_rq, 0);
6995

6996 6997 6998 6999
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
			update_load_avg(se, 0);
7000
	}
7001
	rq_unlock_irqrestore(rq, &rf);
7002 7003
}

7004
/*
7005
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7006 7007 7008
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7009
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7010
{
7011 7012
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7013
	unsigned long now = jiffies;
7014
	unsigned long load;
7015

7016
	if (cfs_rq->last_h_load_update == now)
7017 7018
		return;

7019 7020 7021 7022 7023 7024 7025
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7026

7027
	if (!se) {
7028
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7029 7030 7031 7032 7033
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
7034 7035
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7036 7037 7038 7039
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7040 7041
}

7042
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7043
{
7044
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7045

7046
	update_cfs_rq_h_load(cfs_rq);
7047
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7048
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7049 7050
}
#else
7051
static inline void update_blocked_averages(int cpu)
7052
{
7053 7054
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7055
	struct rq_flags rf;
7056

7057
	rq_lock_irqsave(rq, &rf);
7058
	update_rq_clock(rq);
7059
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
7060
	rq_unlock_irqrestore(rq, &rf);
7061 7062
}

7063
static unsigned long task_h_load(struct task_struct *p)
7064
{
7065
	return p->se.avg.load_avg;
7066
}
P
Peter Zijlstra 已提交
7067
#endif
7068 7069

/********** Helpers for find_busiest_group ************************/
7070 7071 7072 7073 7074 7075 7076

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7077 7078 7079 7080 7081 7082 7083
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7084
	unsigned long load_per_task;
7085
	unsigned long group_capacity;
7086
	unsigned long group_util; /* Total utilization of the group */
7087 7088 7089
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7090
	enum group_type group_type;
7091
	int group_no_capacity;
7092 7093 7094 7095
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7096 7097
};

J
Joonsoo Kim 已提交
7098 7099 7100 7101 7102 7103 7104 7105
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
7106
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7107 7108 7109
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7110
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7111 7112
};

7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
7125
		.total_capacity = 0UL,
7126 7127
		.busiest_stat = {
			.avg_load = 0UL,
7128 7129
			.sum_nr_running = 0,
			.group_type = group_other,
7130 7131 7132 7133
		},
	};
}

7134 7135 7136
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7137
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7138 7139
 *
 * Return: The load index.
7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7162
static unsigned long scale_rt_capacity(int cpu)
7163 7164
{
	struct rq *rq = cpu_rq(cpu);
7165
	u64 total, used, age_stamp, avg;
7166
	s64 delta;
7167

7168 7169 7170 7171
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
7172 7173
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
7174
	delta = __rq_clock_broken(rq) - age_stamp;
7175

7176 7177 7178 7179
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
7180

7181
	used = div_u64(avg, total);
7182

7183 7184
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
7185

7186
	return 1;
7187 7188
}

7189
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7190
{
7191
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7192 7193
	struct sched_group *sdg = sd->groups;

7194
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7195

7196
	capacity *= scale_rt_capacity(cpu);
7197
	capacity >>= SCHED_CAPACITY_SHIFT;
7198

7199 7200
	if (!capacity)
		capacity = 1;
7201

7202 7203
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7204
	sdg->sgc->min_capacity = capacity;
7205 7206
}

7207
void update_group_capacity(struct sched_domain *sd, int cpu)
7208 7209 7210
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7211
	unsigned long capacity, min_capacity;
7212 7213 7214 7215
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7216
	sdg->sgc->next_update = jiffies + interval;
7217 7218

	if (!child) {
7219
		update_cpu_capacity(sd, cpu);
7220 7221 7222
		return;
	}

7223
	capacity = 0;
7224
	min_capacity = ULONG_MAX;
7225

P
Peter Zijlstra 已提交
7226 7227 7228 7229 7230 7231
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7232
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
7233
			struct sched_group_capacity *sgc;
7234
			struct rq *rq = cpu_rq(cpu);
7235

7236
			/*
7237
			 * build_sched_domains() -> init_sched_groups_capacity()
7238 7239 7240
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7241 7242
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7243
			 *
7244
			 * This avoids capacity from being 0 and
7245 7246 7247
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7248
				capacity += capacity_of(cpu);
7249 7250 7251
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7252
			}
7253

7254
			min_capacity = min(capacity, min_capacity);
7255
		}
P
Peter Zijlstra 已提交
7256 7257 7258 7259
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7260
		 */
P
Peter Zijlstra 已提交
7261 7262 7263

		group = child->groups;
		do {
7264 7265 7266 7267
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7268 7269 7270
			group = group->next;
		} while (group != child->groups);
	}
7271

7272
	sdg->sgc->capacity = capacity;
7273
	sdg->sgc->min_capacity = min_capacity;
7274 7275
}

7276
/*
7277 7278 7279
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7280 7281
 */
static inline int
7282
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7283
{
7284 7285
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7286 7287
}

7288 7289
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7290
 * groups is inadequate due to ->cpus_allowed constraints.
7291 7292 7293 7294 7295
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
7296 7297
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7298 7299 7300 7301 7302 7303
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
7304 7305
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7306 7307
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7308
 * update_sd_pick_busiest(). And calculate_imbalance() and
7309
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7310 7311 7312 7313 7314 7315 7316
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7317
static inline int sg_imbalanced(struct sched_group *group)
7318
{
7319
	return group->sgc->imbalance;
7320 7321
}

7322
/*
7323 7324 7325
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7326 7327
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7328 7329 7330 7331 7332
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7333
 */
7334 7335
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7336
{
7337 7338
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7339

7340
	if ((sgs->group_capacity * 100) >
7341
			(sgs->group_util * env->sd->imbalance_pct))
7342
		return true;
7343

7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7360

7361
	if ((sgs->group_capacity * 100) <
7362
			(sgs->group_util * env->sd->imbalance_pct))
7363
		return true;
7364

7365
	return false;
7366 7367
}

7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7379 7380 7381
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7382
{
7383
	if (sgs->group_no_capacity)
7384 7385 7386 7387 7388 7389 7390 7391
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7392 7393
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7394
 * @env: The load balancing environment.
7395 7396 7397 7398
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7399
 * @overload: Indicate more than one runnable task for any CPU.
7400
 */
7401 7402
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7403 7404
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7405
{
7406
	unsigned long load;
7407
	int i, nr_running;
7408

7409 7410
	memset(sgs, 0, sizeof(*sgs));

7411
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7412 7413 7414
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
7415
		if (local_group)
7416
			load = target_load(i, load_idx);
7417
		else
7418 7419 7420
			load = source_load(i, load_idx);

		sgs->group_load += load;
7421
		sgs->group_util += cpu_util(i);
7422
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7423

7424 7425
		nr_running = rq->nr_running;
		if (nr_running > 1)
7426 7427
			*overload = true;

7428 7429 7430 7431
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7432
		sgs->sum_weighted_load += weighted_cpuload(i);
7433 7434 7435 7436
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7437
			sgs->idle_cpus++;
7438 7439
	}

7440 7441
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7442
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7443

7444
	if (sgs->sum_nr_running)
7445
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7446

7447
	sgs->group_weight = group->group_weight;
7448

7449
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7450
	sgs->group_type = group_classify(group, sgs);
7451 7452
}

7453 7454
/**
 * update_sd_pick_busiest - return 1 on busiest group
7455
 * @env: The load balancing environment.
7456 7457
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7458
 * @sgs: sched_group statistics
7459 7460 7461
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7462 7463 7464
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7465
 */
7466
static bool update_sd_pick_busiest(struct lb_env *env,
7467 7468
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7469
				   struct sg_lb_stats *sgs)
7470
{
7471
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7472

7473
	if (sgs->group_type > busiest->group_type)
7474 7475
		return true;

7476 7477 7478 7479 7480 7481
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7496 7497
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7498 7499
		return true;

7500 7501 7502
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
7503
	/*
T
Tim Chen 已提交
7504 7505 7506
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7507
	 */
T
Tim Chen 已提交
7508 7509
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7510 7511 7512
		if (!sds->busiest)
			return true;

T
Tim Chen 已提交
7513 7514 7515
		/* Prefer to move from lowest priority cpu's work */
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7516 7517 7518 7519 7520 7521
			return true;
	}

	return false;
}

7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7552
/**
7553
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7554
 * @env: The load balancing environment.
7555 7556
 * @sds: variable to hold the statistics for this sched_domain.
 */
7557
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7558
{
7559 7560
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
7561
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
7562
	struct sg_lb_stats tmp_sgs;
7563
	int load_idx, prefer_sibling = 0;
7564
	bool overload = false;
7565 7566 7567 7568

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7569
	load_idx = get_sd_load_idx(env->sd, env->idle);
7570 7571

	do {
J
Joonsoo Kim 已提交
7572
		struct sg_lb_stats *sgs = &tmp_sgs;
7573 7574
		int local_group;

7575
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
7576 7577
		if (local_group) {
			sds->local = sg;
7578
			sgs = local;
7579 7580

			if (env->idle != CPU_NEWLY_IDLE ||
7581 7582
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7583
		}
7584

7585 7586
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7587

7588 7589 7590
		if (local_group)
			goto next_group;

7591 7592
		/*
		 * In case the child domain prefers tasks go to siblings
7593
		 * first, lower the sg capacity so that we'll try
7594 7595
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7596 7597 7598 7599
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7600
		 */
7601
		if (prefer_sibling && sds->local &&
7602 7603
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7604
			sgs->group_no_capacity = 1;
7605
			sgs->group_type = group_classify(sg, sgs);
7606
		}
7607

7608
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7609
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7610
			sds->busiest_stat = *sgs;
7611 7612
		}

7613 7614 7615
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
7616
		sds->total_capacity += sgs->group_capacity;
7617

7618
		sg = sg->next;
7619
	} while (sg != env->sd->groups);
7620 7621 7622

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7623 7624 7625 7626 7627 7628 7629

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

7630 7631 7632 7633
}

/**
 * check_asym_packing - Check to see if the group is packed into the
7634
 *			sched domain.
7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
7649
 * Return: 1 when packing is required and a task should be moved to
7650 7651
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
7652
 * @env: The load balancing environment.
7653 7654
 * @sds: Statistics of the sched_domain which is to be packed
 */
7655
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7656 7657 7658
{
	int busiest_cpu;

7659
	if (!(env->sd->flags & SD_ASYM_PACKING))
7660 7661
		return 0;

7662 7663 7664
	if (env->idle == CPU_NOT_IDLE)
		return 0;

7665 7666 7667
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
7668 7669
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7670 7671
		return 0;

7672
	env->imbalance = DIV_ROUND_CLOSEST(
7673
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7674
		SCHED_CAPACITY_SCALE);
7675

7676
	return 1;
7677 7678 7679 7680 7681 7682
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
7683
 * @env: The load balancing environment.
7684 7685
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
7686 7687
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7688
{
7689
	unsigned long tmp, capa_now = 0, capa_move = 0;
7690
	unsigned int imbn = 2;
7691
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
7692
	struct sg_lb_stats *local, *busiest;
7693

J
Joonsoo Kim 已提交
7694 7695
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7696

J
Joonsoo Kim 已提交
7697 7698 7699 7700
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
7701

J
Joonsoo Kim 已提交
7702
	scaled_busy_load_per_task =
7703
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7704
		busiest->group_capacity;
J
Joonsoo Kim 已提交
7705

7706 7707
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
7708
		env->imbalance = busiest->load_per_task;
7709 7710 7711 7712 7713
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7714
	 * however we may be able to increase total CPU capacity used by
7715 7716 7717
	 * moving them.
	 */

7718
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7719
			min(busiest->load_per_task, busiest->avg_load);
7720
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7721
			min(local->load_per_task, local->avg_load);
7722
	capa_now /= SCHED_CAPACITY_SCALE;
7723 7724

	/* Amount of load we'd subtract */
7725
	if (busiest->avg_load > scaled_busy_load_per_task) {
7726
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7727
			    min(busiest->load_per_task,
7728
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7729
	}
7730 7731

	/* Amount of load we'd add */
7732
	if (busiest->avg_load * busiest->group_capacity <
7733
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7734 7735
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7736
	} else {
7737
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7738
		      local->group_capacity;
J
Joonsoo Kim 已提交
7739
	}
7740
	capa_move += local->group_capacity *
7741
		    min(local->load_per_task, local->avg_load + tmp);
7742
	capa_move /= SCHED_CAPACITY_SCALE;
7743 7744

	/* Move if we gain throughput */
7745
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7746
		env->imbalance = busiest->load_per_task;
7747 7748 7749 7750 7751
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7752
 * @env: load balance environment
7753 7754
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7755
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7756
{
7757
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7758 7759 7760 7761
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7762

7763
	if (busiest->group_type == group_imbalanced) {
7764 7765 7766 7767
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7768 7769
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7770 7771
	}

7772
	/*
7773 7774 7775 7776
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7777
	 */
7778 7779
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7780 7781
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7782 7783
	}

7784 7785 7786 7787 7788
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7789
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7790
		if (load_above_capacity > busiest->group_capacity) {
7791
			load_above_capacity -= busiest->group_capacity;
7792
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7793 7794
			load_above_capacity /= busiest->group_capacity;
		} else
7795
			load_above_capacity = ~0UL;
7796 7797 7798 7799 7800 7801
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
7802 7803
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
7804
	 */
7805
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7806 7807

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
7808
	env->imbalance = min(
7809 7810
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
7811
	) / SCHED_CAPACITY_SCALE;
7812 7813 7814

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
7815
	 * there is no guarantee that any tasks will be moved so we'll have
7816 7817 7818
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
7819
	if (env->imbalance < busiest->load_per_task)
7820
		return fix_small_imbalance(env, sds);
7821
}
7822

7823 7824 7825 7826
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
7827
 * if there is an imbalance.
7828 7829 7830 7831
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
7832
 * @env: The load balancing environment.
7833
 *
7834
 * Return:	- The busiest group if imbalance exists.
7835
 */
J
Joonsoo Kim 已提交
7836
static struct sched_group *find_busiest_group(struct lb_env *env)
7837
{
J
Joonsoo Kim 已提交
7838
	struct sg_lb_stats *local, *busiest;
7839 7840
	struct sd_lb_stats sds;

7841
	init_sd_lb_stats(&sds);
7842 7843 7844 7845 7846

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
7847
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
7848 7849
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
7850

7851
	/* ASYM feature bypasses nice load balance check */
7852
	if (check_asym_packing(env, &sds))
7853 7854
		return sds.busiest;

7855
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
7856
	if (!sds.busiest || busiest->sum_nr_running == 0)
7857 7858
		goto out_balanced;

7859 7860
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
7861

P
Peter Zijlstra 已提交
7862 7863
	/*
	 * If the busiest group is imbalanced the below checks don't
7864
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
7865 7866
	 * isn't true due to cpus_allowed constraints and the like.
	 */
7867
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
7868 7869
		goto force_balance;

7870
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7871 7872
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
7873 7874
		goto force_balance;

7875
	/*
7876
	 * If the local group is busier than the selected busiest group
7877 7878
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7879
	if (local->avg_load >= busiest->avg_load)
7880 7881
		goto out_balanced;

7882 7883 7884 7885
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7886
	if (local->avg_load >= sds.avg_load)
7887 7888
		goto out_balanced;

7889
	if (env->idle == CPU_IDLE) {
7890
		/*
7891 7892 7893 7894 7895
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7896
		 */
7897 7898
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7899
			goto out_balanced;
7900 7901 7902 7903 7904
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7905 7906
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7907
			goto out_balanced;
7908
	}
7909

7910
force_balance:
7911
	/* Looks like there is an imbalance. Compute it */
7912
	calculate_imbalance(env, &sds);
7913 7914 7915
	return sds.busiest;

out_balanced:
7916
	env->imbalance = 0;
7917 7918 7919 7920 7921 7922
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7923
static struct rq *find_busiest_queue(struct lb_env *env,
7924
				     struct sched_group *group)
7925 7926
{
	struct rq *busiest = NULL, *rq;
7927
	unsigned long busiest_load = 0, busiest_capacity = 1;
7928 7929
	int i;

7930
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7931
		unsigned long capacity, wl;
7932 7933 7934 7935
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
7936

7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

7959
		capacity = capacity_of(i);
7960

7961
		wl = weighted_cpuload(i);
7962

7963 7964
		/*
		 * When comparing with imbalance, use weighted_cpuload()
7965
		 * which is not scaled with the cpu capacity.
7966
		 */
7967 7968 7969

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
7970 7971
			continue;

7972 7973
		/*
		 * For the load comparisons with the other cpu's, consider
7974 7975 7976
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
7977
		 *
7978
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7979
		 * multiplication to rid ourselves of the division works out
7980 7981
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
7982
		 */
7983
		if (wl * busiest_capacity > busiest_load * capacity) {
7984
			busiest_load = wl;
7985
			busiest_capacity = capacity;
7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

7999
static int need_active_balance(struct lb_env *env)
8000
{
8001 8002 8003
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8004 8005 8006

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8007 8008
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8009
		 */
T
Tim Chen 已提交
8010 8011
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8012
			return 1;
8013 8014
	}

8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8028 8029 8030
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8031 8032
static int active_load_balance_cpu_stop(void *data);

8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
8064
	return balance_cpu == env->dst_cpu;
8065 8066
}

8067 8068 8069 8070 8071 8072
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8073
			int *continue_balancing)
8074
{
8075
	int ld_moved, cur_ld_moved, active_balance = 0;
8076
	struct sched_domain *sd_parent = sd->parent;
8077 8078
	struct sched_group *group;
	struct rq *busiest;
8079
	struct rq_flags rf;
8080
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8081

8082 8083
	struct lb_env env = {
		.sd		= sd,
8084 8085
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8086
		.dst_grpmask    = sched_group_cpus(sd->groups),
8087
		.idle		= idle,
8088
		.loop_break	= sched_nr_migrate_break,
8089
		.cpus		= cpus,
8090
		.fbq_type	= all,
8091
		.tasks		= LIST_HEAD_INIT(env.tasks),
8092 8093
	};

8094 8095 8096 8097
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
8098
	if (idle == CPU_NEWLY_IDLE)
8099 8100
		env.dst_grpmask = NULL;

8101 8102
	cpumask_copy(cpus, cpu_active_mask);

8103
	schedstat_inc(sd->lb_count[idle]);
8104 8105

redo:
8106 8107
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8108
		goto out_balanced;
8109
	}
8110

8111
	group = find_busiest_group(&env);
8112
	if (!group) {
8113
		schedstat_inc(sd->lb_nobusyg[idle]);
8114 8115 8116
		goto out_balanced;
	}

8117
	busiest = find_busiest_queue(&env, group);
8118
	if (!busiest) {
8119
		schedstat_inc(sd->lb_nobusyq[idle]);
8120 8121 8122
		goto out_balanced;
	}

8123
	BUG_ON(busiest == env.dst_rq);
8124

8125
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8126

8127 8128 8129
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8130 8131 8132 8133 8134 8135 8136 8137
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8138
		env.flags |= LBF_ALL_PINNED;
8139
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8140

8141
more_balance:
8142
		rq_lock_irqsave(busiest, &rf);
8143
		update_rq_clock(busiest);
8144 8145 8146 8147 8148

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8149
		cur_ld_moved = detach_tasks(&env);
8150 8151

		/*
8152 8153 8154 8155 8156
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8157
		 */
8158

8159
		rq_unlock(busiest, &rf);
8160 8161 8162 8163 8164 8165

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8166
		local_irq_restore(rf.flags);
8167

8168 8169 8170 8171 8172
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8192
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8193

8194 8195 8196
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8197
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8198
			env.dst_cpu	 = env.new_dst_cpu;
8199
			env.flags	&= ~LBF_DST_PINNED;
8200 8201
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8202

8203 8204 8205 8206 8207 8208
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8209

8210 8211 8212 8213
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8214
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8215

8216
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8217 8218 8219
				*group_imbalance = 1;
		}

8220
		/* All tasks on this runqueue were pinned by CPU affinity */
8221
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8222
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8223 8224 8225
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8226
				goto redo;
8227
			}
8228
			goto out_all_pinned;
8229 8230 8231 8232
		}
	}

	if (!ld_moved) {
8233
		schedstat_inc(sd->lb_failed[idle]);
8234 8235 8236 8237 8238 8239 8240 8241
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8242

8243
		if (need_active_balance(&env)) {
8244 8245
			unsigned long flags;

8246 8247
			raw_spin_lock_irqsave(&busiest->lock, flags);

8248 8249 8250
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
8251
			 */
8252
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8253 8254
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8255
				env.flags |= LBF_ALL_PINNED;
8256 8257 8258
				goto out_one_pinned;
			}

8259 8260 8261 8262 8263
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8264 8265 8266 8267 8268 8269
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8270

8271
			if (active_balance) {
8272 8273 8274
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8275
			}
8276

8277
			/* We've kicked active balancing, force task migration. */
8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8291
		 * detach_tasks).
8292 8293 8294 8295 8296 8297 8298 8299
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8317
	schedstat_inc(sd->lb_balanced[idle]);
8318 8319 8320 8321 8322

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8323
	if (((env.flags & LBF_ALL_PINNED) &&
8324
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8325 8326 8327
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8328
	ld_moved = 0;
8329 8330 8331 8332
out:
	return ld_moved;
}

8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8349
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8350 8351 8352
{
	unsigned long interval, next;

8353 8354
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8355 8356 8357 8358 8359 8360
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8361 8362 8363 8364
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
8365
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8366
{
8367 8368
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
8369 8370
	struct sched_domain *sd;
	int pulled_task = 0;
8371
	u64 curr_cost = 0;
8372

8373 8374 8375 8376 8377 8378
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

8379 8380 8381 8382 8383 8384 8385 8386
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

8387 8388
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
8389 8390 8391
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
8392
			update_next_balance(sd, &next_balance);
8393 8394
		rcu_read_unlock();

8395
		goto out;
8396
	}
8397

8398 8399
	raw_spin_unlock(&this_rq->lock);

8400
	update_blocked_averages(this_cpu);
8401
	rcu_read_lock();
8402
	for_each_domain(this_cpu, sd) {
8403
		int continue_balancing = 1;
8404
		u64 t0, domain_cost;
8405 8406 8407 8408

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8409
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8410
			update_next_balance(sd, &next_balance);
8411
			break;
8412
		}
8413

8414
		if (sd->flags & SD_BALANCE_NEWIDLE) {
8415 8416
			t0 = sched_clock_cpu(this_cpu);

8417
			pulled_task = load_balance(this_cpu, this_rq,
8418 8419
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
8420 8421 8422 8423 8424 8425

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
8426
		}
8427

8428
		update_next_balance(sd, &next_balance);
8429 8430 8431 8432 8433 8434

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
8435 8436
			break;
	}
8437
	rcu_read_unlock();
8438 8439 8440

	raw_spin_lock(&this_rq->lock);

8441 8442 8443
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

8444
	/*
8445 8446 8447
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
8448
	 */
8449
	if (this_rq->cfs.h_nr_running && !pulled_task)
8450
		pulled_task = 1;
8451

8452 8453 8454
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
8455
		this_rq->next_balance = next_balance;
8456

8457
	/* Is there a task of a high priority class? */
8458
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8459 8460
		pulled_task = -1;

8461
	if (pulled_task)
8462 8463
		this_rq->idle_stamp = 0;

8464 8465
	rq_repin_lock(this_rq, rf);

8466
	return pulled_task;
8467 8468 8469
}

/*
8470 8471 8472 8473
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8474
 */
8475
static int active_load_balance_cpu_stop(void *data)
8476
{
8477 8478
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8479
	int target_cpu = busiest_rq->push_cpu;
8480
	struct rq *target_rq = cpu_rq(target_cpu);
8481
	struct sched_domain *sd;
8482
	struct task_struct *p = NULL;
8483
	struct rq_flags rf;
8484

8485
	rq_lock_irq(busiest_rq, &rf);
8486 8487 8488 8489 8490

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8491 8492 8493

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8494
		goto out_unlock;
8495 8496 8497 8498 8499 8500 8501 8502 8503

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8504
	rcu_read_lock();
8505 8506 8507 8508 8509 8510 8511
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8512 8513
		struct lb_env env = {
			.sd		= sd,
8514 8515 8516 8517
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8518 8519 8520
			.idle		= CPU_IDLE,
		};

8521
		schedstat_inc(sd->alb_count);
8522
		update_rq_clock(busiest_rq);
8523

8524
		p = detach_one_task(&env);
8525
		if (p) {
8526
			schedstat_inc(sd->alb_pushed);
8527 8528 8529
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8530
			schedstat_inc(sd->alb_failed);
8531
		}
8532
	}
8533
	rcu_read_unlock();
8534 8535
out_unlock:
	busiest_rq->active_balance = 0;
8536
	rq_unlock(busiest_rq, &rf);
8537 8538 8539 8540 8541 8542

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8543
	return 0;
8544 8545
}

8546 8547 8548 8549 8550
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8551
#ifdef CONFIG_NO_HZ_COMMON
8552 8553 8554 8555 8556 8557
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
8558
static struct {
8559
	cpumask_var_t idle_cpus_mask;
8560
	atomic_t nr_cpus;
8561 8562
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
8563

8564
static inline int find_new_ilb(void)
8565
{
8566
	int ilb = cpumask_first(nohz.idle_cpus_mask);
8567

8568 8569 8570 8571
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
8572 8573
}

8574 8575 8576 8577 8578
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
8579
static void nohz_balancer_kick(void)
8580 8581 8582 8583 8584
{
	int ilb_cpu;

	nohz.next_balance++;

8585
	ilb_cpu = find_new_ilb();
8586

8587 8588
	if (ilb_cpu >= nr_cpu_ids)
		return;
8589

8590
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8591 8592 8593 8594 8595 8596 8597 8598
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
8599 8600 8601
	return;
}

8602
void nohz_balance_exit_idle(unsigned int cpu)
8603 8604
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8605 8606 8607 8608 8609 8610 8611
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
8612 8613 8614 8615
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

8616 8617 8618
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
8619
	int cpu = smp_processor_id();
8620 8621

	rcu_read_lock();
8622
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8623 8624 8625 8626 8627

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

8628
	atomic_inc(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8629
unlock:
8630 8631 8632 8633 8634 8635
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
8636
	int cpu = smp_processor_id();
8637 8638

	rcu_read_lock();
8639
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8640 8641 8642 8643 8644

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

8645
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8646
unlock:
8647 8648 8649
	rcu_read_unlock();
}

8650
/*
8651
 * This routine will record that the cpu is going idle with tick stopped.
8652
 * This info will be used in performing idle load balancing in the future.
8653
 */
8654
void nohz_balance_enter_idle(int cpu)
8655
{
8656 8657 8658 8659 8660 8661
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

8662 8663
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
8664

8665 8666 8667 8668 8669 8670
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

8671 8672 8673
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8674 8675 8676 8677 8678
}
#endif

static DEFINE_SPINLOCK(balancing);

8679 8680 8681 8682
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
8683
void update_max_interval(void)
8684 8685 8686 8687
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

8688 8689 8690 8691
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
8692
 * Balancing parameters are set up in init_sched_domains.
8693
 */
8694
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8695
{
8696
	int continue_balancing = 1;
8697
	int cpu = rq->cpu;
8698
	unsigned long interval;
8699
	struct sched_domain *sd;
8700 8701 8702
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8703 8704
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
8705

8706
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
8707

8708
	rcu_read_lock();
8709
	for_each_domain(cpu, sd) {
8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

8722 8723 8724
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8736
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8737 8738 8739 8740 8741 8742 8743 8744

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8745
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8746
				/*
8747
				 * The LBF_DST_PINNED logic could have changed
8748 8749
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8750
				 */
8751
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8752 8753
			}
			sd->last_balance = jiffies;
8754
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8755 8756 8757 8758 8759 8760 8761 8762
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8763 8764
	}
	if (need_decay) {
8765
		/*
8766 8767
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
8768
		 */
8769 8770
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
8771
	}
8772
	rcu_read_unlock();
8773 8774 8775 8776 8777 8778

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
8779
	if (likely(update_next_balance)) {
8780
		rq->next_balance = next_balance;
8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
8795 8796
}

8797
#ifdef CONFIG_NO_HZ_COMMON
8798
/*
8799
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8800 8801
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
8802
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8803
{
8804
	int this_cpu = this_rq->cpu;
8805 8806
	struct rq *rq;
	int balance_cpu;
8807 8808 8809
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8810

8811 8812 8813
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
8814 8815

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8816
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8817 8818 8819 8820 8821 8822 8823
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
8824
		if (need_resched())
8825 8826
			break;

V
Vincent Guittot 已提交
8827 8828
		rq = cpu_rq(balance_cpu);

8829 8830 8831 8832 8833
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
8834 8835 8836
			struct rq_flags rf;

			rq_lock_irq(rq, &rf);
8837
			update_rq_clock(rq);
8838
			cpu_load_update_idle(rq);
8839 8840
			rq_unlock_irq(rq, &rf);

8841 8842
			rebalance_domains(rq, CPU_IDLE);
		}
8843

8844 8845 8846 8847
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
8848
	}
8849 8850 8851 8852 8853 8854 8855 8856

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
8857 8858
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8859 8860 8861
}

/*
8862
 * Current heuristic for kicking the idle load balancer in the presence
8863
 * of an idle cpu in the system.
8864
 *   - This rq has more than one task.
8865 8866 8867 8868
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
8869 8870
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
8871
 */
8872
static inline bool nohz_kick_needed(struct rq *rq)
8873 8874
{
	unsigned long now = jiffies;
8875
	struct sched_domain_shared *sds;
8876
	struct sched_domain *sd;
T
Tim Chen 已提交
8877
	int nr_busy, i, cpu = rq->cpu;
8878
	bool kick = false;
8879

8880
	if (unlikely(rq->idle_balance))
8881
		return false;
8882

8883 8884 8885 8886
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8887
	set_cpu_sd_state_busy();
8888
	nohz_balance_exit_idle(cpu);
8889 8890 8891 8892 8893 8894

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8895
		return false;
8896 8897

	if (time_before(now, nohz.next_balance))
8898
		return false;
8899

8900
	if (rq->nr_running >= 2)
8901
		return true;
8902

8903
	rcu_read_lock();
8904 8905 8906 8907 8908 8909 8910
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
8911 8912 8913 8914 8915
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8916
	}
8917

8918 8919 8920 8921 8922 8923 8924 8925
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
8926

8927
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
T
Tim Chen 已提交
8928 8929 8930 8931 8932
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;
8933

T
Tim Chen 已提交
8934 8935 8936 8937 8938 8939
			if (sched_asym_prefer(i, cpu)) {
				kick = true;
				goto unlock;
			}
		}
	}
8940
unlock:
8941
	rcu_read_unlock();
8942
	return kick;
8943 8944
}
#else
8945
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8946 8947 8948 8949 8950 8951
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
8952
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8953
{
8954
	struct rq *this_rq = this_rq();
8955
	enum cpu_idle_type idle = this_rq->idle_balance ?
8956 8957 8958
						CPU_IDLE : CPU_NOT_IDLE;

	/*
8959
	 * If this cpu has a pending nohz_balance_kick, then do the
8960
	 * balancing on behalf of the other idle cpus whose ticks are
8961 8962 8963 8964
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
8965
	 */
8966
	nohz_idle_balance(this_rq, idle);
8967
	rebalance_domains(this_rq, idle);
8968 8969 8970 8971 8972
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
8973
void trigger_load_balance(struct rq *rq)
8974 8975
{
	/* Don't need to rebalance while attached to NULL domain */
8976 8977 8978 8979
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
8980
		raise_softirq(SCHED_SOFTIRQ);
8981
#ifdef CONFIG_NO_HZ_COMMON
8982
	if (nohz_kick_needed(rq))
8983
		nohz_balancer_kick();
8984
#endif
8985 8986
}

8987 8988 8989
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
8990 8991

	update_runtime_enabled(rq);
8992 8993 8994 8995 8996
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
8997 8998 8999

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9000 9001
}

9002
#endif /* CONFIG_SMP */
9003

9004 9005 9006
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
9007
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9008 9009 9010 9011 9012 9013
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9014
		entity_tick(cfs_rq, se, queued);
9015
	}
9016

9017
	if (static_branch_unlikely(&sched_numa_balancing))
9018
		task_tick_numa(rq, curr);
9019 9020 9021
}

/*
P
Peter Zijlstra 已提交
9022 9023 9024
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9025
 */
P
Peter Zijlstra 已提交
9026
static void task_fork_fair(struct task_struct *p)
9027
{
9028 9029
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9030
	struct rq *rq = this_rq();
9031
	struct rq_flags rf;
9032

9033
	rq_lock(rq, &rf);
9034 9035
	update_rq_clock(rq);

9036 9037
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9038 9039
	if (curr) {
		update_curr(cfs_rq);
9040
		se->vruntime = curr->vruntime;
9041
	}
9042
	place_entity(cfs_rq, se, 1);
9043

P
Peter Zijlstra 已提交
9044
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9045
		/*
9046 9047 9048
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9049
		swap(curr->vruntime, se->vruntime);
9050
		resched_curr(rq);
9051
	}
9052

9053
	se->vruntime -= cfs_rq->min_vruntime;
9054
	rq_unlock(rq, &rf);
9055 9056
}

9057 9058 9059 9060
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9061 9062
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9063
{
9064
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9065 9066
		return;

9067 9068 9069 9070 9071
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9072
	if (rq->curr == p) {
9073
		if (p->prio > oldprio)
9074
			resched_curr(rq);
9075
	} else
9076
		check_preempt_curr(rq, p, 0);
9077 9078
}

9079
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9080 9081 9082 9083
{
	struct sched_entity *se = &p->se;

	/*
9084 9085 9086 9087 9088 9089 9090 9091 9092 9093
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9094
	 *
9095 9096 9097 9098
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9099
	 */
9100 9101 9102 9103 9104 9105
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

		update_load_avg(se, UPDATE_TG);
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9131
static void detach_entity_cfs_rq(struct sched_entity *se)
9132 9133 9134
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9135
	/* Catch up with the cfs_rq and remove our load when we leave */
9136
	update_load_avg(se, 0);
9137
	detach_entity_load_avg(cfs_rq, se);
9138
	update_tg_load_avg(cfs_rq, false);
9139
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9140 9141
}

9142
static void attach_entity_cfs_rq(struct sched_entity *se)
9143
{
9144
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9145 9146

#ifdef CONFIG_FAIR_GROUP_SCHED
9147 9148 9149 9150 9151 9152
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9153

9154
	/* Synchronize entity with its cfs_rq */
9155
	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9156
	attach_entity_load_avg(cfs_rq, se);
9157
	update_tg_load_avg(cfs_rq, false);
9158
	propagate_entity_cfs_rq(se);
9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9184 9185 9186 9187

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9188

9189 9190 9191 9192 9193 9194 9195 9196
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9197

9198
	if (task_on_rq_queued(p)) {
9199
		/*
9200 9201 9202
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9203
		 */
9204 9205 9206 9207
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9208
	}
9209 9210
}

9211 9212 9213 9214 9215 9216 9217 9218 9219
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9220 9221 9222 9223 9224 9225 9226
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9227 9228
}

9229 9230 9231 9232 9233 9234 9235
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9236
#ifdef CONFIG_SMP
9237 9238 9239
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->propagate_avg = 0;
#endif
9240 9241
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9242
#endif
9243 9244
}

P
Peter Zijlstra 已提交
9245
#ifdef CONFIG_FAIR_GROUP_SCHED
9246 9247 9248 9249 9250 9251 9252 9253
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9254
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9255
{
9256
	detach_task_cfs_rq(p);
9257
	set_task_rq(p, task_cpu(p));
9258 9259 9260 9261 9262

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9263
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9264
}
9265

9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9279 9280 9281 9282 9283 9284 9285 9286 9287
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9288
		if (tg->se)
9289 9290 9291 9292 9293 9294 9295 9296 9297 9298
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9299
	struct cfs_rq *cfs_rq;
9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9326
		init_entity_runnable_average(se);
9327 9328 9329 9330 9331 9332 9333 9334 9335 9336
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9348
		update_rq_clock(rq);
9349
		attach_entity_cfs_rq(se);
9350
		sync_throttle(tg, i);
9351 9352 9353 9354
		raw_spin_unlock_irq(&rq->lock);
	}
}

9355
void unregister_fair_sched_group(struct task_group *tg)
9356 9357
{
	unsigned long flags;
9358 9359
	struct rq *rq;
	int cpu;
9360

9361 9362 9363
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9364

9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9397
	if (!parent) {
9398
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9399 9400
		se->depth = 0;
	} else {
9401
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9402 9403
		se->depth = parent->depth + 1;
	}
9404 9405

	se->my_q = cfs_rq;
9406 9407
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
9432 9433
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
9434 9435

		/* Propagate contribution to hierarchy */
9436
		rq_lock_irqsave(rq, &rf);
9437
		update_rq_clock(rq);
9438 9439 9440 9441
		for_each_sched_entity(se) {
			update_load_avg(se, UPDATE_TG);
			update_cfs_shares(se);
		}
9442
		rq_unlock_irqrestore(rq, &rf);
9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

9458 9459
void online_fair_sched_group(struct task_group *tg) { }

9460
void unregister_fair_sched_group(struct task_group *tg) { }
9461 9462 9463

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
9464

9465
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9466 9467 9468 9469 9470 9471 9472 9473 9474
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
9475
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9476 9477 9478 9479

	return rr_interval;
}

9480 9481 9482
/*
 * All the scheduling class methods:
 */
9483
const struct sched_class fair_sched_class = {
9484
	.next			= &idle_sched_class,
9485 9486 9487
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
9488
	.yield_to_task		= yield_to_task_fair,
9489

I
Ingo Molnar 已提交
9490
	.check_preempt_curr	= check_preempt_wakeup,
9491 9492 9493 9494

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

9495
#ifdef CONFIG_SMP
L
Li Zefan 已提交
9496
	.select_task_rq		= select_task_rq_fair,
9497
	.migrate_task_rq	= migrate_task_rq_fair,
9498

9499 9500
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
9501

9502
	.task_dead		= task_dead_fair,
9503
	.set_cpus_allowed	= set_cpus_allowed_common,
9504
#endif
9505

9506
	.set_curr_task          = set_curr_task_fair,
9507
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
9508
	.task_fork		= task_fork_fair,
9509 9510

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
9511
	.switched_from		= switched_from_fair,
9512
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
9513

9514 9515
	.get_rr_interval	= get_rr_interval_fair,

9516 9517
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
9518
#ifdef CONFIG_FAIR_GROUP_SCHED
9519
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
9520
#endif
9521 9522 9523
};

#ifdef CONFIG_SCHED_DEBUG
9524
void print_cfs_stats(struct seq_file *m, int cpu)
9525 9526 9527
{
	struct cfs_rq *cfs_rq;

9528
	rcu_read_lock();
9529
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9530
		print_cfs_rq(m, cpu, cfs_rq);
9531
	rcu_read_unlock();
9532
}
9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
9554 9555 9556 9557 9558 9559

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

9560
#ifdef CONFIG_NO_HZ_COMMON
9561
	nohz.next_balance = jiffies;
9562 9563 9564 9565 9566
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}