workqueue.c 156.0 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23
 *
24
 * Please read Documentation/core-api/workqueue.rst for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67
	 * Note that DISASSOCIATED should be flipped only while holding
68
	 * attach_mutex to avoid changing binding state while
69
	 * worker_attach_to_pool() is in progress.
70
	 */
71
	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
72
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73

T
Tejun Heo 已提交
74 75 76
	/* worker flags */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
77
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
78
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
79
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
80
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
81

82 83
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
84

85
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
86

87
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
88
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
89

90 91 92
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

93 94 95
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
96 97 98 99 100
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
101
	 * all cpus.  Give MIN_NICE.
102
	 */
103 104
	RESCUER_NICE_LEVEL	= MIN_NICE,
	HIGHPRI_NICE_LEVEL	= MIN_NICE,
105 106

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
107
};
L
Linus Torvalds 已提交
108 109

/*
T
Tejun Heo 已提交
110 111
 * Structure fields follow one of the following exclusion rules.
 *
112 113
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
114
 *
115 116 117
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
118
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
119
 *
120 121 122 123
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
124
 *
125
 * A: pool->attach_mutex protected.
126
 *
127
 * PL: wq_pool_mutex protected.
128
 *
129
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
130
 *
131 132 133 134 135
 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 *
 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 *      sched-RCU for reads.
 *
136 137
 * WQ: wq->mutex protected.
 *
138
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
139 140
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
141 142
 */

143
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
144

145
struct worker_pool {
146
	spinlock_t		lock;		/* the pool lock */
147
	int			cpu;		/* I: the associated cpu */
148
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
149
	int			id;		/* I: pool ID */
150
	unsigned int		flags;		/* X: flags */
151

T
Tejun Heo 已提交
152 153
	unsigned long		watchdog_ts;	/* L: watchdog timestamp */

154 155
	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
156 157

	/* nr_idle includes the ones off idle_list for rebinding */
158 159 160 161 162 163
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

164
	/* a workers is either on busy_hash or idle_list, or the manager */
165 166 167
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

168
	/* see manage_workers() for details on the two manager mutexes */
169
	struct worker		*manager;	/* L: purely informational */
170 171
	struct mutex		attach_mutex;	/* attach/detach exclusion */
	struct list_head	workers;	/* A: attached workers */
172
	struct completion	*detach_completion; /* all workers detached */
173

174
	struct ida		worker_ida;	/* worker IDs for task name */
175

T
Tejun Heo 已提交
176
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 178
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
179

180 181 182 183 184 185
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 187 188 189 190 191

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
192 193
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
194
/*
195 196 197 198
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
199
 */
200
struct pool_workqueue {
201
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
202
	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 204
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
205
	int			refcnt;		/* L: reference count */
206 207
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
208
	int			nr_active;	/* L: nr of active works */
209
	int			max_active;	/* L: max active works */
210
	struct list_head	delayed_works;	/* L: delayed works */
211
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
213 214 215 216 217

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
218
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
219 220 221
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
222
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
223

224 225 226 227
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
228 229
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
230 231 232
	struct completion	done;		/* flush completion */
};

233 234
struct wq_device;

L
Linus Torvalds 已提交
235
/*
236 237
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
238 239
 */
struct workqueue_struct {
240
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241
	struct list_head	list;		/* PR: list of all workqueues */
242

243 244 245
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
246
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 248 249
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250

251
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 253
	struct worker		*rescuer;	/* I: rescue worker */

254
	int			nr_drainers;	/* WQ: drain in progress */
255
	int			saved_max_active; /* WQ: saved pwq max_active */
256

257 258
	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259

260 261 262
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
263
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
264
	struct lockdep_map	lockdep_map;
265
#endif
266
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267

268 269 270 271 272 273 274
	/*
	 * Destruction of workqueue_struct is sched-RCU protected to allow
	 * walking the workqueues list without grabbing wq_pool_mutex.
	 * This is used to dump all workqueues from sysrq.
	 */
	struct rcu_head		rcu;

275 276 277
	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
279 280
};

281 282
static struct kmem_cache *pwq_cache;

283 284 285
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

286 287 288
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

289
/* see the comment above the definition of WQ_POWER_EFFICIENT */
290
static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 292
module_param_named(power_efficient, wq_power_efficient, bool, 0444);

T
Tejun Heo 已提交
293
static bool wq_online;			/* can kworkers be created yet? */
294

295 296
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

297 298 299
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

300
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
301
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
302
static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
303

304
static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
305
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
306

307 308 309 310 311
/* PL: allowable cpus for unbound wqs and work items */
static cpumask_var_t wq_unbound_cpumask;

/* CPU where unbound work was last round robin scheduled from this CPU */
static DEFINE_PER_CPU(int, wq_rr_cpu_last);
312

313 314 315 316 317 318 319 320 321 322 323 324
/*
 * Local execution of unbound work items is no longer guaranteed.  The
 * following always forces round-robin CPU selection on unbound work items
 * to uncover usages which depend on it.
 */
#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
static bool wq_debug_force_rr_cpu = true;
#else
static bool wq_debug_force_rr_cpu = false;
#endif
module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);

325
/* the per-cpu worker pools */
326
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
327

328
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
329

330
/* PL: hash of all unbound pools keyed by pool->attrs */
331 332
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

333
/* I: attributes used when instantiating standard unbound pools on demand */
334 335
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

336 337 338
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];

339
struct workqueue_struct *system_wq __read_mostly;
340
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
341
struct workqueue_struct *system_highpri_wq __read_mostly;
342
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
343
struct workqueue_struct *system_long_wq __read_mostly;
344
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
345
struct workqueue_struct *system_unbound_wq __read_mostly;
346
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
347
struct workqueue_struct *system_freezable_wq __read_mostly;
348
EXPORT_SYMBOL_GPL(system_freezable_wq);
349 350 351 352
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
353

354
static int worker_thread(void *__worker);
355
static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
356

357 358 359
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

360
#define assert_rcu_or_pool_mutex()					\
361 362 363
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU or wq_pool_mutex should be held")
364

365
#define assert_rcu_or_wq_mutex(wq)					\
366 367 368
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex),			\
			 "sched RCU or wq->mutex should be held")
369

370
#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
371 372 373 374
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
			 !lockdep_is_held(&wq->mutex) &&		\
			 !lockdep_is_held(&wq_pool_mutex),		\
			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
375

376 377 378
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
379
	     (pool)++)
380

T
Tejun Heo 已提交
381 382 383
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
384
 * @pi: integer used for iteration
385
 *
386 387 388
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
389 390 391
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
392
 */
393 394
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
395
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
396
		else
T
Tejun Heo 已提交
397

398 399 400 401 402
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @pool: worker_pool to iterate workers of
 *
403
 * This must be called with @pool->attach_mutex.
404 405 406 407
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
408 409
#define for_each_pool_worker(worker, pool)				\
	list_for_each_entry((worker), &(pool)->workers, node)		\
410
		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
411 412
		else

413 414 415 416
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
417
 *
418
 * This must be called either with wq->mutex held or sched RCU read locked.
419 420
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
421 422 423
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
424 425
 */
#define for_each_pwq(pwq, wq)						\
426
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
427
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
428
		else
429

430 431 432 433
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

434 435 436 437 438
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

439 440 441 442 443 444 445
static bool work_is_static_object(void *addr)
{
	struct work_struct *work = addr;

	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
}

446 447 448 449
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
450
static bool work_fixup_init(void *addr, enum debug_obj_state state)
451 452 453 454 455 456 457
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
458
		return true;
459
	default:
460
		return false;
461 462 463 464 465 466 467
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
468
static bool work_fixup_free(void *addr, enum debug_obj_state state)
469 470 471 472 473 474 475
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
476
		return true;
477
	default:
478
		return false;
479 480 481 482 483
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
484
	.debug_hint	= work_debug_hint,
485
	.is_static_object = work_is_static_object,
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	.fixup_init	= work_fixup_init,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

515 516 517 518 519 520 521
void destroy_delayed_work_on_stack(struct delayed_work *work)
{
	destroy_timer_on_stack(&work->timer);
	debug_object_free(&work->work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);

522 523 524 525 526
#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

527 528 529 530 531 532 533
/**
 * worker_pool_assign_id - allocate ID and assing it to @pool
 * @pool: the pool pointer of interest
 *
 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 * successfully, -errno on failure.
 */
T
Tejun Heo 已提交
534 535 536 537
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

538
	lockdep_assert_held(&wq_pool_mutex);
539

540 541
	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
			GFP_KERNEL);
542
	if (ret >= 0) {
T
Tejun Heo 已提交
543
		pool->id = ret;
544 545
		return 0;
	}
546
	return ret;
547 548
}

549 550 551 552 553
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
554 555
 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 * read locked.
556 557
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
558 559
 *
 * Return: The unbound pool_workqueue for @node.
560 561 562 563
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
564
	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
565 566 567 568 569 570 571 572 573 574

	/*
	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
	 * delayed item is pending.  The plan is to keep CPU -> NODE
	 * mapping valid and stable across CPU on/offlines.  Once that
	 * happens, this workaround can be removed.
	 */
	if (unlikely(node == NUMA_NO_NODE))
		return wq->dfl_pwq;

575 576 577
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
593

594
/*
595 596
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
597
 * is cleared and the high bits contain OFFQ flags and pool ID.
598
 *
599 600
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
601 602
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
603
 *
604
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
605
 * corresponding to a work.  Pool is available once the work has been
606
 * queued anywhere after initialization until it is sync canceled.  pwq is
607
 * available only while the work item is queued.
608
 *
609 610 611 612
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
613
 */
614 615
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
616
{
617
	WARN_ON_ONCE(!work_pending(work));
618 619
	atomic_long_set(&work->data, data | flags | work_static(work));
}
620

621
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
622 623
			 unsigned long extra_flags)
{
624 625
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
626 627
}

628 629 630 631 632 633 634
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

635 636
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
637
{
638 639 640 641 642 643 644
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
645
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	/*
	 * The following mb guarantees that previous clear of a PENDING bit
	 * will not be reordered with any speculative LOADS or STORES from
	 * work->current_func, which is executed afterwards.  This possible
	 * reordering can lead to a missed execution on attempt to qeueue
	 * the same @work.  E.g. consider this case:
	 *
	 *   CPU#0                         CPU#1
	 *   ----------------------------  --------------------------------
	 *
	 * 1  STORE event_indicated
	 * 2  queue_work_on() {
	 * 3    test_and_set_bit(PENDING)
	 * 4 }                             set_..._and_clear_pending() {
	 * 5                                 set_work_data() # clear bit
	 * 6                                 smp_mb()
	 * 7                               work->current_func() {
	 * 8				      LOAD event_indicated
	 *				   }
	 *
	 * Without an explicit full barrier speculative LOAD on line 8 can
	 * be executed before CPU#0 does STORE on line 1.  If that happens,
	 * CPU#0 observes the PENDING bit is still set and new execution of
	 * a @work is not queued in a hope, that CPU#1 will eventually
	 * finish the queued @work.  Meanwhile CPU#1 does not see
	 * event_indicated is set, because speculative LOAD was executed
	 * before actual STORE.
	 */
	smp_mb();
675
}
676

677
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
678
{
679 680
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
681 682
}

683
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
684
{
685
	unsigned long data = atomic_long_read(&work->data);
686

687
	if (data & WORK_STRUCT_PWQ)
688 689 690
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
691 692
}

693 694 695 696
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
697 698 699
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
700 701 702 703 704
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
705 706
 *
 * Return: The worker_pool @work was last associated with.  %NULL if none.
707 708
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
709
{
710
	unsigned long data = atomic_long_read(&work->data);
711
	int pool_id;
712

713
	assert_rcu_or_pool_mutex();
714

715 716
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
717
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
718

719 720
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
721 722
		return NULL;

723
	return idr_find(&worker_pool_idr, pool_id);
724 725 726 727 728 729
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
730
 * Return: The worker_pool ID @work was last associated with.
731 732 733 734
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
735 736
	unsigned long data = atomic_long_read(&work->data);

737 738
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
739
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
740

741
	return data >> WORK_OFFQ_POOL_SHIFT;
742 743
}

744 745
static void mark_work_canceling(struct work_struct *work)
{
746
	unsigned long pool_id = get_work_pool_id(work);
747

748 749
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
750 751 752 753 754 755
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

756
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
757 758
}

759
/*
760 761
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
762
 * they're being called with pool->lock held.
763 764
 */

765
static bool __need_more_worker(struct worker_pool *pool)
766
{
767
	return !atomic_read(&pool->nr_running);
768 769
}

770
/*
771 772
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
773 774
 *
 * Note that, because unbound workers never contribute to nr_running, this
775
 * function will always return %true for unbound pools as long as the
776
 * worklist isn't empty.
777
 */
778
static bool need_more_worker(struct worker_pool *pool)
779
{
780
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
781
}
782

783
/* Can I start working?  Called from busy but !running workers. */
784
static bool may_start_working(struct worker_pool *pool)
785
{
786
	return pool->nr_idle;
787 788 789
}

/* Do I need to keep working?  Called from currently running workers. */
790
static bool keep_working(struct worker_pool *pool)
791
{
792 793
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
794 795 796
}

/* Do we need a new worker?  Called from manager. */
797
static bool need_to_create_worker(struct worker_pool *pool)
798
{
799
	return need_more_worker(pool) && !may_start_working(pool);
800
}
801

802
/* Do we have too many workers and should some go away? */
803
static bool too_many_workers(struct worker_pool *pool)
804
{
805
	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
806 807
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
808 809

	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
810 811
}

812
/*
813 814 815
 * Wake up functions.
 */

816 817
/* Return the first idle worker.  Safe with preemption disabled */
static struct worker *first_idle_worker(struct worker_pool *pool)
818
{
819
	if (unlikely(list_empty(&pool->idle_list)))
820 821
		return NULL;

822
	return list_first_entry(&pool->idle_list, struct worker, entry);
823 824 825 826
}

/**
 * wake_up_worker - wake up an idle worker
827
 * @pool: worker pool to wake worker from
828
 *
829
 * Wake up the first idle worker of @pool.
830 831
 *
 * CONTEXT:
832
 * spin_lock_irq(pool->lock).
833
 */
834
static void wake_up_worker(struct worker_pool *pool)
835
{
836
	struct worker *worker = first_idle_worker(pool);
837 838 839 840 841

	if (likely(worker))
		wake_up_process(worker->task);
}

842
/**
843 844 845 846 847 848 849 850 851 852
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
853
void wq_worker_waking_up(struct task_struct *task, int cpu)
854 855 856
{
	struct worker *worker = kthread_data(task);

857
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
858
		WARN_ON_ONCE(worker->pool->cpu != cpu);
859
		atomic_inc(&worker->pool->nr_running);
860
	}
861 862 863 864 865 866 867 868 869 870 871 872 873
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
874
 * Return:
875 876
 * Worker task on @cpu to wake up, %NULL if none.
 */
877
struct task_struct *wq_worker_sleeping(struct task_struct *task)
878 879
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
880
	struct worker_pool *pool;
881

882 883 884 885 886
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
887
	if (worker->flags & WORKER_NOT_RUNNING)
888 889
		return NULL;

890 891
	pool = worker->pool;

892
	/* this can only happen on the local cpu */
893
	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
894
		return NULL;
895 896 897 898 899 900

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
901 902 903
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
904
	 * manipulating idle_list, so dereferencing idle_list without pool
905
	 * lock is safe.
906
	 */
907 908
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
909
		to_wakeup = first_idle_worker(pool);
910 911 912 913 914
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
915
 * @worker: self
916 917
 * @flags: flags to set
 *
918
 * Set @flags in @worker->flags and adjust nr_running accordingly.
919
 *
920
 * CONTEXT:
921
 * spin_lock_irq(pool->lock)
922
 */
923
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
924
{
925
	struct worker_pool *pool = worker->pool;
926

927 928
	WARN_ON_ONCE(worker->task != current);

929
	/* If transitioning into NOT_RUNNING, adjust nr_running. */
930 931
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
932
		atomic_dec(&pool->nr_running);
933 934
	}

935 936 937 938
	worker->flags |= flags;
}

/**
939
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
940
 * @worker: self
941 942
 * @flags: flags to clear
 *
943
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
944
 *
945
 * CONTEXT:
946
 * spin_lock_irq(pool->lock)
947 948 949
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
950
	struct worker_pool *pool = worker->pool;
951 952
	unsigned int oflags = worker->flags;

953 954
	WARN_ON_ONCE(worker->task != current);

955
	worker->flags &= ~flags;
956

957 958 959 960 961
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
962 963
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
964
			atomic_inc(&pool->nr_running);
965 966
}

967 968
/**
 * find_worker_executing_work - find worker which is executing a work
969
 * @pool: pool of interest
970 971
 * @work: work to find worker for
 *
972 973
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
974 975 976 977 978 979 980 981 982 983 984 985
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
986 987 988 989 990 991
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
992 993
 *
 * CONTEXT:
994
 * spin_lock_irq(pool->lock).
995
 *
996 997
 * Return:
 * Pointer to worker which is executing @work if found, %NULL
998
 * otherwise.
999
 */
1000
static struct worker *find_worker_executing_work(struct worker_pool *pool,
1001
						 struct work_struct *work)
1002
{
1003 1004
	struct worker *worker;

1005
	hash_for_each_possible(pool->busy_hash, worker, hentry,
1006 1007 1008
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
1009 1010 1011
			return worker;

	return NULL;
1012 1013
}

1014 1015 1016 1017
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
1018
 * @nextp: out parameter for nested worklist walking
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1029
 * spin_lock_irq(pool->lock).
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1113
static void pwq_activate_delayed_work(struct work_struct *work)
1114
{
1115
	struct pool_workqueue *pwq = get_work_pwq(work);
1116 1117

	trace_workqueue_activate_work(work);
T
Tejun Heo 已提交
1118 1119
	if (list_empty(&pwq->pool->worklist))
		pwq->pool->watchdog_ts = jiffies;
1120
	move_linked_works(work, &pwq->pool->worklist, NULL);
1121
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1122
	pwq->nr_active++;
1123 1124
}

1125
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1126
{
1127
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1128 1129
						    struct work_struct, entry);

1130
	pwq_activate_delayed_work(work);
1131 1132
}

1133
/**
1134 1135
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1136 1137 1138
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1139
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1140 1141
 *
 * CONTEXT:
1142
 * spin_lock_irq(pool->lock).
1143
 */
1144
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1145
{
T
Tejun Heo 已提交
1146
	/* uncolored work items don't participate in flushing or nr_active */
1147
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1148
		goto out_put;
1149

1150
	pwq->nr_in_flight[color]--;
1151

1152 1153
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1154
		/* one down, submit a delayed one */
1155 1156
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1157 1158 1159
	}

	/* is flush in progress and are we at the flushing tip? */
1160
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1161
		goto out_put;
1162 1163

	/* are there still in-flight works? */
1164
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1165
		goto out_put;
1166

1167 1168
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1169 1170

	/*
1171
	 * If this was the last pwq, wake up the first flusher.  It
1172 1173
	 * will handle the rest.
	 */
1174 1175
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1176 1177
out_put:
	put_pwq(pwq);
1178 1179
}

1180
/**
1181
 * try_to_grab_pending - steal work item from worklist and disable irq
1182 1183
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1184
 * @flags: place to store irq state
1185 1186
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
1187
 * stable state - idle, on timer or on worklist.
1188
 *
1189
 * Return:
1190 1191 1192
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1193 1194
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1195
 *
1196
 * Note:
1197
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1198 1199 1200
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1201 1202 1203 1204
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1205
 * This function is safe to call from any context including IRQ handler.
1206
 */
1207 1208
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1209
{
1210
	struct worker_pool *pool;
1211
	struct pool_workqueue *pwq;
1212

1213 1214
	local_irq_save(*flags);

1215 1216 1217 1218
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1219 1220 1221 1222 1223
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1224 1225 1226 1227 1228
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1229 1230 1231 1232 1233 1234 1235
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1236 1237
	pool = get_work_pool(work);
	if (!pool)
1238
		goto fail;
1239

1240
	spin_lock(&pool->lock);
1241
	/*
1242 1243 1244 1245 1246
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1247 1248
	 * item is currently queued on that pool.
	 */
1249 1250
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1251 1252 1253 1254 1255
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1256
		 * on the delayed_list, will confuse pwq->nr_active
1257 1258 1259 1260
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1261
			pwq_activate_delayed_work(work);
1262 1263

		list_del_init(&work->entry);
1264
		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1265

1266
		/* work->data points to pwq iff queued, point to pool */
1267 1268 1269 1270
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1271
	}
1272
	spin_unlock(&pool->lock);
1273 1274 1275 1276 1277
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1278
	return -EAGAIN;
1279 1280
}

T
Tejun Heo 已提交
1281
/**
1282
 * insert_work - insert a work into a pool
1283
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1284 1285 1286 1287
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1288
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1289
 * work_struct flags.
T
Tejun Heo 已提交
1290 1291
 *
 * CONTEXT:
1292
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1293
 */
1294 1295
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1296
{
1297
	struct worker_pool *pool = pwq->pool;
1298

T
Tejun Heo 已提交
1299
	/* we own @work, set data and link */
1300
	set_work_pwq(work, pwq, extra_flags);
1301
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1302
	get_pwq(pwq);
1303 1304

	/*
1305 1306 1307
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1308 1309 1310
	 */
	smp_mb();

1311 1312
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1313 1314
}

1315 1316
/*
 * Test whether @work is being queued from another work executing on the
1317
 * same workqueue.
1318 1319 1320
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1321 1322 1323 1324 1325 1326 1327
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1328
	return worker && worker->current_pwq->wq == wq;
1329 1330
}

1331 1332 1333 1334 1335 1336 1337
/*
 * When queueing an unbound work item to a wq, prefer local CPU if allowed
 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
 * avoid perturbing sensitive tasks.
 */
static int wq_select_unbound_cpu(int cpu)
{
1338
	static bool printed_dbg_warning;
1339 1340
	int new_cpu;

1341 1342 1343 1344 1345 1346 1347 1348
	if (likely(!wq_debug_force_rr_cpu)) {
		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
			return cpu;
	} else if (!printed_dbg_warning) {
		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
		printed_dbg_warning = true;
	}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	if (cpumask_empty(wq_unbound_cpumask))
		return cpu;

	new_cpu = __this_cpu_read(wq_rr_cpu_last);
	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
	if (unlikely(new_cpu >= nr_cpu_ids)) {
		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
		if (unlikely(new_cpu >= nr_cpu_ids))
			return cpu;
	}
	__this_cpu_write(wq_rr_cpu_last, new_cpu);

	return new_cpu;
}

1364
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1365 1366
			 struct work_struct *work)
{
1367
	struct pool_workqueue *pwq;
1368
	struct worker_pool *last_pool;
1369
	struct list_head *worklist;
1370
	unsigned int work_flags;
1371
	unsigned int req_cpu = cpu;
1372 1373 1374 1375 1376 1377 1378

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
1379
	lockdep_assert_irqs_disabled();
L
Linus Torvalds 已提交
1380

1381
	debug_work_activate(work);
1382

1383
	/* if draining, only works from the same workqueue are allowed */
1384
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1385
	    WARN_ON_ONCE(!is_chained_work(wq)))
1386
		return;
1387
retry:
1388
	if (req_cpu == WORK_CPU_UNBOUND)
1389
		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1390

1391
	/* pwq which will be used unless @work is executing elsewhere */
1392
	if (!(wq->flags & WQ_UNBOUND))
1393
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1394 1395
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1396

1397 1398 1399 1400 1401 1402 1403 1404
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1405

1406
		spin_lock(&last_pool->lock);
1407

1408
		worker = find_worker_executing_work(last_pool, work);
1409

1410 1411
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1412
		} else {
1413 1414
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1415
			spin_lock(&pwq->pool->lock);
1416
		}
1417
	} else {
1418
		spin_lock(&pwq->pool->lock);
1419 1420
	}

1421 1422 1423 1424
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1425 1426
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1440 1441
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1442

1443
	if (WARN_ON(!list_empty(&work->entry))) {
1444
		spin_unlock(&pwq->pool->lock);
1445 1446
		return;
	}
1447

1448 1449
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1450

1451
	if (likely(pwq->nr_active < pwq->max_active)) {
1452
		trace_workqueue_activate_work(work);
1453 1454
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
T
Tejun Heo 已提交
1455 1456
		if (list_empty(worklist))
			pwq->pool->watchdog_ts = jiffies;
1457 1458
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1459
		worklist = &pwq->delayed_works;
1460
	}
1461

1462
	insert_work(pwq, work, worklist, work_flags);
1463

1464
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1465 1466
}

1467
/**
1468 1469
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1470 1471 1472
 * @wq: workqueue to use
 * @work: work to queue
 *
1473 1474
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
1475 1476
 *
 * Return: %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1477
 */
1478 1479
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1480
{
1481
	bool ret = false;
1482
	unsigned long flags;
1483

1484
	local_irq_save(flags);
1485

1486
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1487
		__queue_work(cpu, wq, work);
1488
		ret = true;
1489
	}
1490

1491
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1492 1493
	return ret;
}
1494
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1495

1496
void delayed_work_timer_fn(struct timer_list *t)
L
Linus Torvalds 已提交
1497
{
1498
	struct delayed_work *dwork = from_timer(dwork, t, timer);
L
Linus Torvalds 已提交
1499

1500
	/* should have been called from irqsafe timer with irq already off */
1501
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1502
}
1503
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1504

1505 1506
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1507
{
1508 1509 1510
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

1511
	WARN_ON_ONCE(!wq);
1512
	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1513 1514
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1527
	dwork->wq = wq;
1528
	dwork->cpu = cpu;
1529 1530
	timer->expires = jiffies + delay;

1531 1532 1533 1534
	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1535 1536
}

1537 1538 1539 1540
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1541
 * @dwork: work to queue
1542 1543
 * @delay: number of jiffies to wait before queueing
 *
1544
 * Return: %false if @work was already on a queue, %true otherwise.  If
1545 1546
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1547
 */
1548 1549
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1550
{
1551
	struct work_struct *work = &dwork->work;
1552
	bool ret = false;
1553
	unsigned long flags;
1554

1555 1556
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1557

1558
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1559
		__queue_delayed_work(cpu, wq, dwork, delay);
1560
		ret = true;
1561
	}
1562

1563
	local_irq_restore(flags);
1564 1565
	return ret;
}
1566
EXPORT_SYMBOL(queue_delayed_work_on);
1567

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
1580
 * Return: %false if @dwork was idle and queued, %true if @dwork was
1581 1582
 * pending and its timer was modified.
 *
1583
 * This function is safe to call from any context including IRQ handler.
1584 1585 1586 1587 1588 1589 1590
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1591

1592 1593 1594
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1595

1596 1597 1598
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1599
	}
1600 1601

	/* -ENOENT from try_to_grab_pending() becomes %true */
1602 1603
	return ret;
}
1604 1605
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1606 1607 1608 1609 1610 1611 1612 1613
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1614
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1615 1616
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1617
{
1618
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1619

1620 1621 1622 1623
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1624

1625
	/* can't use worker_set_flags(), also called from create_worker() */
1626
	worker->flags |= WORKER_IDLE;
1627
	pool->nr_idle++;
1628
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1629 1630

	/* idle_list is LIFO */
1631
	list_add(&worker->entry, &pool->idle_list);
1632

1633 1634
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1635

1636
	/*
1637
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1638
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1639 1640
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1641
	 */
1642
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1643
		     pool->nr_workers == pool->nr_idle &&
1644
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1654
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1655 1656 1657
 */
static void worker_leave_idle(struct worker *worker)
{
1658
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1659

1660 1661
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1662
	worker_clr_flags(worker, WORKER_IDLE);
1663
	pool->nr_idle--;
T
Tejun Heo 已提交
1664 1665 1666
	list_del_init(&worker->entry);
}

1667
static struct worker *alloc_worker(int node)
T
Tejun Heo 已提交
1668 1669 1670
{
	struct worker *worker;

1671
	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
T
Tejun Heo 已提交
1672 1673
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1674
		INIT_LIST_HEAD(&worker->scheduled);
1675
		INIT_LIST_HEAD(&worker->node);
1676 1677
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1678
	}
T
Tejun Heo 已提交
1679 1680 1681
	return worker;
}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
/**
 * worker_attach_to_pool() - attach a worker to a pool
 * @worker: worker to be attached
 * @pool: the target pool
 *
 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
 * cpu-binding of @worker are kept coordinated with the pool across
 * cpu-[un]hotplugs.
 */
static void worker_attach_to_pool(struct worker *worker,
				   struct worker_pool *pool)
{
	mutex_lock(&pool->attach_mutex);

	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);

	/*
	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
	 * stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
		worker->flags |= WORKER_UNBOUND;

	list_add_tail(&worker->node, &pool->workers);

	mutex_unlock(&pool->attach_mutex);
}

1715 1716 1717 1718 1719
/**
 * worker_detach_from_pool() - detach a worker from its pool
 * @worker: worker which is attached to its pool
 * @pool: the pool @worker is attached to
 *
1720 1721 1722
 * Undo the attaching which had been done in worker_attach_to_pool().  The
 * caller worker shouldn't access to the pool after detached except it has
 * other reference to the pool.
1723 1724 1725 1726 1727 1728
 */
static void worker_detach_from_pool(struct worker *worker,
				    struct worker_pool *pool)
{
	struct completion *detach_completion = NULL;

1729
	mutex_lock(&pool->attach_mutex);
1730 1731
	list_del(&worker->node);
	if (list_empty(&pool->workers))
1732
		detach_completion = pool->detach_completion;
1733
	mutex_unlock(&pool->attach_mutex);
1734

1735 1736 1737
	/* clear leftover flags without pool->lock after it is detached */
	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);

1738 1739 1740 1741
	if (detach_completion)
		complete(detach_completion);
}

T
Tejun Heo 已提交
1742 1743
/**
 * create_worker - create a new workqueue worker
1744
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1745
 *
1746
 * Create and start a new worker which is attached to @pool.
T
Tejun Heo 已提交
1747 1748 1749 1750
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
1751
 * Return:
T
Tejun Heo 已提交
1752 1753
 * Pointer to the newly created worker.
 */
1754
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1755 1756
{
	struct worker *worker = NULL;
1757
	int id = -1;
1758
	char id_buf[16];
T
Tejun Heo 已提交
1759

1760 1761
	/* ID is needed to determine kthread name */
	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1762 1763
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1764

1765
	worker = alloc_worker(pool->node);
T
Tejun Heo 已提交
1766 1767 1768
	if (!worker)
		goto fail;

1769
	worker->pool = pool;
T
Tejun Heo 已提交
1770 1771
	worker->id = id;

1772
	if (pool->cpu >= 0)
1773 1774
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1775
	else
1776 1777
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1778
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1779
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1780 1781 1782
	if (IS_ERR(worker->task))
		goto fail;

1783
	set_user_nice(worker->task, pool->attrs->nice);
1784
	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1785

1786
	/* successful, attach the worker to the pool */
1787
	worker_attach_to_pool(worker, pool);
1788

1789 1790 1791 1792 1793 1794 1795
	/* start the newly created worker */
	spin_lock_irq(&pool->lock);
	worker->pool->nr_workers++;
	worker_enter_idle(worker);
	wake_up_process(worker->task);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1796
	return worker;
1797

T
Tejun Heo 已提交
1798
fail:
1799
	if (id >= 0)
1800
		ida_simple_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1801 1802 1803 1804 1805 1806 1807 1808
	kfree(worker);
	return NULL;
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1809 1810
 * Destroy @worker and adjust @pool stats accordingly.  The worker should
 * be idle.
T
Tejun Heo 已提交
1811 1812
 *
 * CONTEXT:
1813
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1814 1815 1816
 */
static void destroy_worker(struct worker *worker)
{
1817
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1818

1819 1820
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1821
	/* sanity check frenzy */
1822
	if (WARN_ON(worker->current_work) ||
1823 1824
	    WARN_ON(!list_empty(&worker->scheduled)) ||
	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1825
		return;
T
Tejun Heo 已提交
1826

1827 1828
	pool->nr_workers--;
	pool->nr_idle--;
1829

T
Tejun Heo 已提交
1830
	list_del_init(&worker->entry);
1831
	worker->flags |= WORKER_DIE;
1832
	wake_up_process(worker->task);
T
Tejun Heo 已提交
1833 1834
}

1835
static void idle_worker_timeout(struct timer_list *t)
1836
{
1837
	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1838

1839
	spin_lock_irq(&pool->lock);
1840

1841
	while (too_many_workers(pool)) {
1842 1843 1844 1845
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1846
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1847 1848
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

1849
		if (time_before(jiffies, expires)) {
1850
			mod_timer(&pool->idle_timer, expires);
1851
			break;
1852
		}
1853 1854

		destroy_worker(worker);
1855 1856
	}

1857
	spin_unlock_irq(&pool->lock);
1858
}
1859

1860
static void send_mayday(struct work_struct *work)
1861
{
1862 1863
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1864

1865
	lockdep_assert_held(&wq_mayday_lock);
1866

1867
	if (!wq->rescuer)
1868
		return;
1869 1870

	/* mayday mayday mayday */
1871
	if (list_empty(&pwq->mayday_node)) {
1872 1873 1874 1875 1876 1877
		/*
		 * If @pwq is for an unbound wq, its base ref may be put at
		 * any time due to an attribute change.  Pin @pwq until the
		 * rescuer is done with it.
		 */
		get_pwq(pwq);
1878
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1879
		wake_up_process(wq->rescuer->task);
1880
	}
1881 1882
}

1883
static void pool_mayday_timeout(struct timer_list *t)
1884
{
1885
	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
1886 1887
	struct work_struct *work;

1888 1889
	spin_lock_irq(&pool->lock);
	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1890

1891
	if (need_to_create_worker(pool)) {
1892 1893 1894 1895 1896 1897
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1898
		list_for_each_entry(work, &pool->worklist, entry)
1899
			send_mayday(work);
L
Linus Torvalds 已提交
1900
	}
1901

1902 1903
	spin_unlock(&wq_mayday_lock);
	spin_unlock_irq(&pool->lock);
1904

1905
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1906 1907
}

1908 1909
/**
 * maybe_create_worker - create a new worker if necessary
1910
 * @pool: pool to create a new worker for
1911
 *
1912
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1913 1914
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1915
 * sent to all rescuers with works scheduled on @pool to resolve
1916 1917
 * possible allocation deadlock.
 *
1918 1919
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1920 1921
 *
 * LOCKING:
1922
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1923 1924 1925
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 */
1926
static void maybe_create_worker(struct worker_pool *pool)
1927 1928
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1929
{
1930
restart:
1931
	spin_unlock_irq(&pool->lock);
1932

1933
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1934
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1935 1936

	while (true) {
1937
		if (create_worker(pool) || !need_to_create_worker(pool))
1938
			break;
L
Linus Torvalds 已提交
1939

1940
		schedule_timeout_interruptible(CREATE_COOLDOWN);
1941

1942
		if (!need_to_create_worker(pool))
1943 1944 1945
			break;
	}

1946
	del_timer_sync(&pool->mayday_timer);
1947
	spin_lock_irq(&pool->lock);
1948 1949 1950 1951 1952
	/*
	 * This is necessary even after a new worker was just successfully
	 * created as @pool->lock was dropped and the new worker might have
	 * already become busy.
	 */
1953
	if (need_to_create_worker(pool))
1954 1955 1956
		goto restart;
}

1957
/**
1958 1959
 * manage_workers - manage worker pool
 * @worker: self
1960
 *
1961
 * Assume the manager role and manage the worker pool @worker belongs
1962
 * to.  At any given time, there can be only zero or one manager per
1963
 * pool.  The exclusion is handled automatically by this function.
1964 1965 1966 1967
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1968 1969
 *
 * CONTEXT:
1970
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1971 1972
 * multiple times.  Does GFP_KERNEL allocations.
 *
1973
 * Return:
1974 1975 1976 1977
 * %false if the pool doesn't need management and the caller can safely
 * start processing works, %true if management function was performed and
 * the conditions that the caller verified before calling the function may
 * no longer be true.
1978
 */
1979
static bool manage_workers(struct worker *worker)
1980
{
1981
	struct worker_pool *pool = worker->pool;
1982

1983
	if (pool->flags & POOL_MANAGER_ACTIVE)
1984
		return false;
1985 1986

	pool->flags |= POOL_MANAGER_ACTIVE;
1987
	pool->manager = worker;
1988

1989
	maybe_create_worker(pool);
1990

1991
	pool->manager = NULL;
1992 1993
	pool->flags &= ~POOL_MANAGER_ACTIVE;
	wake_up(&wq_manager_wait);
1994
	return true;
1995 1996
}

1997 1998
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
1999
 * @worker: self
2000 2001 2002 2003 2004 2005 2006 2007 2008
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2009
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2010
 */
T
Tejun Heo 已提交
2011
static void process_one_work(struct worker *worker, struct work_struct *work)
2012 2013
__releases(&pool->lock)
__acquires(&pool->lock)
2014
{
2015
	struct pool_workqueue *pwq = get_work_pwq(work);
2016
	struct worker_pool *pool = worker->pool;
2017
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2018
	int work_color;
2019
	struct worker *collision;
2020 2021 2022 2023 2024 2025 2026 2027
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2028 2029 2030
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2031
#endif
2032
	/* ensure we're on the correct CPU */
2033
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2034
		     raw_smp_processor_id() != pool->cpu);
2035

2036 2037 2038 2039 2040 2041
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2042
	collision = find_worker_executing_work(pool, work);
2043 2044 2045 2046 2047
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2048
	/* claim and dequeue */
2049
	debug_work_deactivate(work);
2050
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2051
	worker->current_work = work;
2052
	worker->current_func = work->func;
2053
	worker->current_pwq = pwq;
2054
	work_color = get_work_color(work);
2055

2056 2057
	list_del_init(&work->entry);

2058
	/*
2059 2060 2061 2062
	 * CPU intensive works don't participate in concurrency management.
	 * They're the scheduler's responsibility.  This takes @worker out
	 * of concurrency management and the next code block will chain
	 * execution of the pending work items.
2063 2064
	 */
	if (unlikely(cpu_intensive))
2065
		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2066

2067
	/*
2068 2069 2070 2071
	 * Wake up another worker if necessary.  The condition is always
	 * false for normal per-cpu workers since nr_running would always
	 * be >= 1 at this point.  This is used to chain execution of the
	 * pending work items for WORKER_NOT_RUNNING workers such as the
2072
	 * UNBOUND and CPU_INTENSIVE ones.
2073
	 */
2074
	if (need_more_worker(pool))
2075
		wake_up_worker(pool);
2076

2077
	/*
2078
	 * Record the last pool and clear PENDING which should be the last
2079
	 * update to @work.  Also, do this inside @pool->lock so that
2080 2081
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2082
	 */
2083
	set_work_pool_and_clear_pending(work, pool->id);
2084

2085
	spin_unlock_irq(&pool->lock);
2086

2087
	lock_map_acquire(&pwq->wq->lockdep_map);
2088
	lock_map_acquire(&lockdep_map);
2089
	/*
2090 2091
	 * Strictly speaking we should mark the invariant state without holding
	 * any locks, that is, before these two lock_map_acquire()'s.
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
	 *
	 * However, that would result in:
	 *
	 *   A(W1)
	 *   WFC(C)
	 *		A(W1)
	 *		C(C)
	 *
	 * Which would create W1->C->W1 dependencies, even though there is no
	 * actual deadlock possible. There are two solutions, using a
	 * read-recursive acquire on the work(queue) 'locks', but this will then
2103
	 * hit the lockdep limitation on recursive locks, or simply discard
2104 2105 2106 2107 2108 2109
	 * these locks.
	 *
	 * AFAICT there is no possible deadlock scenario between the
	 * flush_work() and complete() primitives (except for single-threaded
	 * workqueues), so hiding them isn't a problem.
	 */
2110
	lockdep_invariant_state(true);
2111
	trace_workqueue_execute_start(work);
2112
	worker->current_func(work);
2113 2114 2115 2116 2117
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2118
	lock_map_release(&lockdep_map);
2119
	lock_map_release(&pwq->wq->lockdep_map);
2120 2121

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2122 2123
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2124 2125
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2126 2127 2128 2129
		debug_show_held_locks(current);
		dump_stack();
	}

2130 2131 2132 2133 2134
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
2135 2136
	 * stop_machine. At the same time, report a quiescent RCU state so
	 * the same condition doesn't freeze RCU.
2137
	 */
2138
	cond_resched_rcu_qs();
2139

2140
	spin_lock_irq(&pool->lock);
2141

2142 2143 2144 2145
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2146
	/* we're done with it, release */
2147
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2148
	worker->current_work = NULL;
2149
	worker->current_func = NULL;
2150
	worker->current_pwq = NULL;
2151
	worker->desc_valid = false;
2152
	pwq_dec_nr_in_flight(pwq, work_color);
2153 2154
}

2155 2156 2157 2158 2159 2160 2161 2162 2163
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2164
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2165 2166 2167
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2168
{
2169 2170
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2171
						struct work_struct, entry);
T
Tejun Heo 已提交
2172
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2173 2174 2175
	}
}

T
Tejun Heo 已提交
2176 2177
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2178
 * @__worker: self
T
Tejun Heo 已提交
2179
 *
2180 2181 2182 2183 2184
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
2185 2186
 *
 * Return: 0
T
Tejun Heo 已提交
2187
 */
T
Tejun Heo 已提交
2188
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2189
{
T
Tejun Heo 已提交
2190
	struct worker *worker = __worker;
2191
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2192

2193 2194
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2195
woke_up:
2196
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2197

2198 2199
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2200
		spin_unlock_irq(&pool->lock);
2201 2202
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
2203 2204

		set_task_comm(worker->task, "kworker/dying");
2205
		ida_simple_remove(&pool->worker_ida, worker->id);
2206 2207
		worker_detach_from_pool(worker, pool);
		kfree(worker);
2208
		return 0;
T
Tejun Heo 已提交
2209
	}
2210

T
Tejun Heo 已提交
2211
	worker_leave_idle(worker);
2212
recheck:
2213
	/* no more worker necessary? */
2214
	if (!need_more_worker(pool))
2215 2216 2217
		goto sleep;

	/* do we need to manage? */
2218
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2219 2220
		goto recheck;

T
Tejun Heo 已提交
2221 2222 2223 2224 2225
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2226
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2227

2228
	/*
2229 2230 2231 2232 2233
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2234
	 */
2235
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2236 2237

	do {
T
Tejun Heo 已提交
2238
		struct work_struct *work =
2239
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2240 2241
					 struct work_struct, entry);

T
Tejun Heo 已提交
2242 2243
		pool->watchdog_ts = jiffies;

T
Tejun Heo 已提交
2244 2245 2246 2247
		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2248
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2249 2250 2251
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2252
		}
2253
	} while (keep_working(pool));
2254

2255
	worker_set_flags(worker, WORKER_PREP);
2256
sleep:
T
Tejun Heo 已提交
2257
	/*
2258 2259 2260 2261 2262
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2263 2264
	 */
	worker_enter_idle(worker);
P
Peter Zijlstra 已提交
2265
	__set_current_state(TASK_IDLE);
2266
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2267 2268
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2269 2270
}

2271 2272
/**
 * rescuer_thread - the rescuer thread function
2273
 * @__rescuer: self
2274 2275
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2276
 * workqueue which has WQ_MEM_RECLAIM set.
2277
 *
2278
 * Regular work processing on a pool may block trying to create a new
2279 2280 2281 2282 2283
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2284 2285
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2286 2287 2288
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
2289 2290
 *
 * Return: 0
2291
 */
2292
static int rescuer_thread(void *__rescuer)
2293
{
2294 2295
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2296
	struct list_head *scheduled = &rescuer->scheduled;
2297
	bool should_stop;
2298 2299

	set_user_nice(current, RESCUER_NICE_LEVEL);
2300 2301 2302 2303 2304 2305

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2306
repeat:
P
Peter Zijlstra 已提交
2307
	set_current_state(TASK_IDLE);
2308

2309 2310 2311 2312 2313 2314 2315 2316 2317
	/*
	 * By the time the rescuer is requested to stop, the workqueue
	 * shouldn't have any work pending, but @wq->maydays may still have
	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
	 * all the work items before the rescuer got to them.  Go through
	 * @wq->maydays processing before acting on should_stop so that the
	 * list is always empty on exit.
	 */
	should_stop = kthread_should_stop();
2318

2319
	/* see whether any pwq is asking for help */
2320
	spin_lock_irq(&wq_mayday_lock);
2321 2322 2323 2324

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2325
		struct worker_pool *pool = pwq->pool;
2326
		struct work_struct *work, *n;
T
Tejun Heo 已提交
2327
		bool first = true;
2328 2329

		__set_current_state(TASK_RUNNING);
2330 2331
		list_del_init(&pwq->mayday_node);

2332
		spin_unlock_irq(&wq_mayday_lock);
2333

2334 2335 2336
		worker_attach_to_pool(rescuer, pool);

		spin_lock_irq(&pool->lock);
2337
		rescuer->pool = pool;
2338 2339 2340 2341 2342

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2343
		WARN_ON_ONCE(!list_empty(scheduled));
T
Tejun Heo 已提交
2344 2345 2346 2347
		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
			if (get_work_pwq(work) == pwq) {
				if (first)
					pool->watchdog_ts = jiffies;
2348
				move_linked_works(work, scheduled, &n);
T
Tejun Heo 已提交
2349 2350 2351
			}
			first = false;
		}
2352

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
		if (!list_empty(scheduled)) {
			process_scheduled_works(rescuer);

			/*
			 * The above execution of rescued work items could
			 * have created more to rescue through
			 * pwq_activate_first_delayed() or chained
			 * queueing.  Let's put @pwq back on mayday list so
			 * that such back-to-back work items, which may be
			 * being used to relieve memory pressure, don't
			 * incur MAYDAY_INTERVAL delay inbetween.
			 */
			if (need_to_create_worker(pool)) {
				spin_lock(&wq_mayday_lock);
				get_pwq(pwq);
				list_move_tail(&pwq->mayday_node, &wq->maydays);
				spin_unlock(&wq_mayday_lock);
			}
		}
2372

2373 2374
		/*
		 * Put the reference grabbed by send_mayday().  @pool won't
2375
		 * go away while we're still attached to it.
2376 2377 2378
		 */
		put_pwq(pwq);

2379
		/*
2380
		 * Leave this pool.  If need_more_worker() is %true, notify a
2381 2382 2383
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2384
		if (need_more_worker(pool))
2385
			wake_up_worker(pool);
2386

2387
		rescuer->pool = NULL;
2388 2389 2390 2391 2392
		spin_unlock_irq(&pool->lock);

		worker_detach_from_pool(rescuer, pool);

		spin_lock_irq(&wq_mayday_lock);
2393 2394
	}

2395
	spin_unlock_irq(&wq_mayday_lock);
2396

2397 2398 2399 2400 2401 2402
	if (should_stop) {
		__set_current_state(TASK_RUNNING);
		rescuer->task->flags &= ~PF_WQ_WORKER;
		return 0;
	}

2403 2404
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2405 2406
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2407 2408
}

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
/**
 * check_flush_dependency - check for flush dependency sanity
 * @target_wq: workqueue being flushed
 * @target_work: work item being flushed (NULL for workqueue flushes)
 *
 * %current is trying to flush the whole @target_wq or @target_work on it.
 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
 * reclaiming memory or running on a workqueue which doesn't have
 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
 * a deadlock.
 */
static void check_flush_dependency(struct workqueue_struct *target_wq,
				   struct work_struct *target_work)
{
	work_func_t target_func = target_work ? target_work->func : NULL;
	struct worker *worker;

	if (target_wq->flags & WQ_MEM_RECLAIM)
		return;

	worker = current_wq_worker();

	WARN_ONCE(current->flags & PF_MEMALLOC,
		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
		  current->pid, current->comm, target_wq->name, target_func);
2434 2435
	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2436 2437 2438 2439 2440
		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
		  worker->current_pwq->wq->name, worker->current_func,
		  target_wq->name, target_func);
}

O
Oleg Nesterov 已提交
2441 2442 2443
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
2444
	struct task_struct	*task;	/* purely informational */
O
Oleg Nesterov 已提交
2445 2446 2447 2448 2449 2450 2451 2452
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2453 2454
/**
 * insert_wq_barrier - insert a barrier work
2455
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2456
 * @barr: wq_barrier to insert
2457 2458
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2459
 *
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2472
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2473 2474
 *
 * CONTEXT:
2475
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2476
 */
2477
static void insert_wq_barrier(struct pool_workqueue *pwq,
2478 2479
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2480
{
2481 2482 2483
	struct list_head *head;
	unsigned int linked = 0;

2484
	/*
2485
	 * debugobject calls are safe here even with pool->lock locked
2486 2487 2488 2489
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2490
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2491
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2492

2493 2494
	init_completion_map(&barr->done, &target->lockdep_map);

2495
	barr->task = current;
2496

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2512
	debug_work_activate(&barr->work);
2513
	insert_work(pwq, &barr->work, head,
2514
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2515 2516
}

2517
/**
2518
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2519 2520 2521 2522
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2523
 * Prepare pwqs for workqueue flushing.
2524
 *
2525 2526 2527 2528 2529
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2530 2531 2532 2533 2534 2535 2536
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2537
 * If @work_color is non-negative, all pwqs should have the same
2538 2539 2540 2541
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2542
 * mutex_lock(wq->mutex).
2543
 *
2544
 * Return:
2545 2546 2547
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2548
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2549
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2550
{
2551
	bool wait = false;
2552
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2553

2554
	if (flush_color >= 0) {
2555
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2556
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2557
	}
2558

2559
	for_each_pwq(pwq, wq) {
2560
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2561

2562
		spin_lock_irq(&pool->lock);
2563

2564
		if (flush_color >= 0) {
2565
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2566

2567 2568 2569
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2570 2571 2572
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2573

2574
		if (work_color >= 0) {
2575
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2576
			pwq->work_color = work_color;
2577
		}
L
Linus Torvalds 已提交
2578

2579
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2580
	}
2581

2582
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2583
		complete(&wq->first_flusher->done);
2584

2585
	return wait;
L
Linus Torvalds 已提交
2586 2587
}

2588
/**
L
Linus Torvalds 已提交
2589
 * flush_workqueue - ensure that any scheduled work has run to completion.
2590
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2591
 *
2592 2593
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2594
 */
2595
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2596
{
2597 2598 2599
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
2600
		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2601 2602
	};
	int next_color;
L
Linus Torvalds 已提交
2603

2604 2605 2606
	if (WARN_ON(!wq_online))
		return;

2607
	mutex_lock(&wq->mutex);
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2620
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2621 2622 2623 2624 2625
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2626
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2627 2628 2629

			wq->first_flusher = &this_flusher;

2630
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2631 2632 2633 2634 2635 2636 2637 2638
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2639
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2640
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2641
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2652 2653
	check_flush_dependency(wq, NULL);

2654
	mutex_unlock(&wq->mutex);
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2667
	mutex_lock(&wq->mutex);
2668

2669 2670 2671 2672
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2673 2674
	wq->first_flusher = NULL;

2675 2676
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2689 2690
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2710
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2711 2712 2713
		}

		if (list_empty(&wq->flusher_queue)) {
2714
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2715 2716 2717 2718 2719
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2720
		 * the new first flusher and arm pwqs.
2721
		 */
2722 2723
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2724 2725 2726 2727

		list_del_init(&next->list);
		wq->first_flusher = next;

2728
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2739
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2740
}
2741
EXPORT_SYMBOL(flush_workqueue);
L
Linus Torvalds 已提交
2742

2743 2744 2745 2746 2747 2748 2749
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
C
Chen Hanxiao 已提交
2750
 * repeatedly until it becomes empty.  The number of flushing is determined
2751 2752 2753 2754 2755 2756
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2757
	struct pool_workqueue *pwq;
2758 2759 2760 2761

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2762
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2763
	 */
2764
	mutex_lock(&wq->mutex);
2765
	if (!wq->nr_drainers++)
2766
		wq->flags |= __WQ_DRAINING;
2767
	mutex_unlock(&wq->mutex);
2768 2769 2770
reflush:
	flush_workqueue(wq);

2771
	mutex_lock(&wq->mutex);
2772

2773
	for_each_pwq(pwq, wq) {
2774
		bool drained;
2775

2776
		spin_lock_irq(&pwq->pool->lock);
2777
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2778
		spin_unlock_irq(&pwq->pool->lock);
2779 2780

		if (drained)
2781 2782 2783 2784
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2785
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2786
				wq->name, flush_cnt);
2787

2788
		mutex_unlock(&wq->mutex);
2789 2790 2791 2792
		goto reflush;
	}

	if (!--wq->nr_drainers)
2793
		wq->flags &= ~__WQ_DRAINING;
2794
	mutex_unlock(&wq->mutex);
2795 2796 2797
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2798
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2799
{
2800
	struct worker *worker = NULL;
2801
	struct worker_pool *pool;
2802
	struct pool_workqueue *pwq;
2803 2804

	might_sleep();
2805 2806

	local_irq_disable();
2807
	pool = get_work_pool(work);
2808 2809
	if (!pool) {
		local_irq_enable();
2810
		return false;
2811
	}
2812

2813
	spin_lock(&pool->lock);
2814
	/* see the comment in try_to_grab_pending() with the same code */
2815 2816 2817
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2818
			goto already_gone;
2819
	} else {
2820
		worker = find_worker_executing_work(pool, work);
2821
		if (!worker)
T
Tejun Heo 已提交
2822
			goto already_gone;
2823
		pwq = worker->current_pwq;
2824
	}
2825

2826 2827
	check_flush_dependency(pwq->wq, work);

2828
	insert_wq_barrier(pwq, barr, work, worker);
2829
	spin_unlock_irq(&pool->lock);
2830

2831
	/*
2832 2833 2834 2835 2836 2837 2838
	 * Force a lock recursion deadlock when using flush_work() inside a
	 * single-threaded or rescuer equipped workqueue.
	 *
	 * For single threaded workqueues the deadlock happens when the work
	 * is after the work issuing the flush_work(). For rescuer equipped
	 * workqueues the deadlock happens when the rescuer stalls, blocking
	 * forward progress.
2839
	 */
2840
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
2841
		lock_map_acquire(&pwq->wq->lockdep_map);
2842 2843
		lock_map_release(&pwq->wq->lockdep_map);
	}
2844

2845
	return true;
T
Tejun Heo 已提交
2846
already_gone:
2847
	spin_unlock_irq(&pool->lock);
2848
	return false;
2849
}
2850 2851 2852 2853 2854

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2855 2856
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2857
 *
2858
 * Return:
2859 2860 2861 2862 2863
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2864 2865
	struct wq_barrier barr;

2866 2867 2868
	if (WARN_ON(!wq_online))
		return false;

2869 2870 2871 2872 2873 2874 2875
	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
2876
}
2877
EXPORT_SYMBOL_GPL(flush_work);
2878

2879
struct cwt_wait {
2880
	wait_queue_entry_t		wait;
2881 2882 2883
	struct work_struct	*work;
};

2884
static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2885 2886 2887 2888 2889 2890 2891 2892
{
	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);

	if (cwait->work != key)
		return 0;
	return autoremove_wake_function(wait, mode, sync, key);
}

2893
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2894
{
2895
	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2896
	unsigned long flags;
2897 2898 2899
	int ret;

	do {
2900 2901
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
		 * If someone else is already canceling, wait for it to
		 * finish.  flush_work() doesn't work for PREEMPT_NONE
		 * because we may get scheduled between @work's completion
		 * and the other canceling task resuming and clearing
		 * CANCELING - flush_work() will return false immediately
		 * as @work is no longer busy, try_to_grab_pending() will
		 * return -ENOENT as @work is still being canceled and the
		 * other canceling task won't be able to clear CANCELING as
		 * we're hogging the CPU.
		 *
		 * Let's wait for completion using a waitqueue.  As this
		 * may lead to the thundering herd problem, use a custom
		 * wake function which matches @work along with exclusive
		 * wait and wakeup.
2916
		 */
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
		if (unlikely(ret == -ENOENT)) {
			struct cwt_wait cwait;

			init_wait(&cwait.wait);
			cwait.wait.func = cwt_wakefn;
			cwait.work = work;

			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
						  TASK_UNINTERRUPTIBLE);
			if (work_is_canceling(work))
				schedule();
			finish_wait(&cancel_waitq, &cwait.wait);
		}
2930 2931
	} while (unlikely(ret < 0));

2932 2933 2934 2935
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2936 2937 2938 2939 2940 2941 2942
	/*
	 * This allows canceling during early boot.  We know that @work
	 * isn't executing.
	 */
	if (wq_online)
		flush_work(work);

2943
	clear_work_data(work);
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953

	/*
	 * Paired with prepare_to_wait() above so that either
	 * waitqueue_active() is visible here or !work_is_canceling() is
	 * visible there.
	 */
	smp_mb();
	if (waitqueue_active(&cancel_waitq))
		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);

2954 2955 2956
	return ret;
}

2957
/**
2958 2959
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2960
 *
2961 2962 2963 2964
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2965
 *
2966 2967
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2968
 *
2969
 * The caller must ensure that the workqueue on which @work was last
2970
 * queued can't be destroyed before this function returns.
2971
 *
2972
 * Return:
2973
 * %true if @work was pending, %false otherwise.
2974
 */
2975
bool cancel_work_sync(struct work_struct *work)
2976
{
2977
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2978
}
2979
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2980

2981
/**
2982 2983
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2984
 *
2985 2986 2987
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2988
 *
2989
 * Return:
2990 2991
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2992
 */
2993 2994
bool flush_delayed_work(struct delayed_work *dwork)
{
2995
	local_irq_disable();
2996
	if (del_timer_sync(&dwork->timer))
2997
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2998
	local_irq_enable();
2999 3000 3001 3002
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

J
Jens Axboe 已提交
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
static bool __cancel_work(struct work_struct *work, bool is_dwork)
{
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(work, is_dwork, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
	local_irq_restore(flags);
	return ret;
}

/*
 * See cancel_delayed_work()
 */
bool cancel_work(struct work_struct *work)
{
	return __cancel_work(work, false);
}

3028
/**
3029 3030
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
3031
 *
3032 3033 3034 3035 3036 3037 3038 3039 3040
 * Kill off a pending delayed_work.
 *
 * Return: %true if @dwork was pending and canceled; %false if it wasn't
 * pending.
 *
 * Note:
 * The work callback function may still be running on return, unless
 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
 * use cancel_delayed_work_sync() to wait on it.
3041
 *
3042
 * This function is safe to call from any context including IRQ handler.
3043
 */
3044
bool cancel_delayed_work(struct delayed_work *dwork)
3045
{
J
Jens Axboe 已提交
3046
	return __cancel_work(&dwork->work, true);
3047
}
3048
EXPORT_SYMBOL(cancel_delayed_work);
3049

3050 3051 3052 3053 3054 3055
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
3056
 * Return:
3057 3058 3059
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3060
{
3061
	return __cancel_work_timer(&dwork->work, true);
3062
}
3063
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3064

3065
/**
3066
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3067 3068
 * @func: the function to call
 *
3069 3070
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3071
 * schedule_on_each_cpu() is very slow.
3072
 *
3073
 * Return:
3074
 * 0 on success, -errno on failure.
3075
 */
3076
int schedule_on_each_cpu(work_func_t func)
3077 3078
{
	int cpu;
3079
	struct work_struct __percpu *works;
3080

3081 3082
	works = alloc_percpu(struct work_struct);
	if (!works)
3083
		return -ENOMEM;
3084

3085 3086
	get_online_cpus();

3087
	for_each_online_cpu(cpu) {
3088 3089 3090
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3091
		schedule_work_on(cpu, work);
3092
	}
3093 3094 3095 3096

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3097
	put_online_cpus();
3098
	free_percpu(works);
3099 3100 3101
	return 0;
}

3102 3103 3104 3105 3106 3107 3108 3109 3110
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
3111
 * Return:	0 - function was executed
3112 3113
 *		1 - function was scheduled for execution
 */
3114
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3115 3116
{
	if (!in_interrupt()) {
3117
		fn(&ew->work);
3118 3119 3120
		return 0;
	}

3121
	INIT_WORK(&ew->work, fn);
3122 3123 3124 3125 3126 3127
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3128 3129 3130
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
3131
 *
3132
 * Undo alloc_workqueue_attrs().
3133
 */
3134
void free_workqueue_attrs(struct workqueue_attrs *attrs)
3135
{
3136 3137 3138 3139
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
3140 3141
}

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.
 *
 * Return: The allocated new workqueue_attr on success. %NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3152
{
3153
	struct workqueue_attrs *attrs;
3154

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_copy(attrs->cpumask, cpu_possible_mask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
3166 3167
}

3168 3169
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
3170
{
3171 3172 3173 3174 3175 3176 3177 3178
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3179 3180
}

3181 3182
/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3183
{
3184
	u32 hash = 0;
3185

3186 3187 3188 3189
	hash = jhash_1word(attrs->nice, hash);
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
	return hash;
3190 3191
}

3192 3193 3194
/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
3195
{
3196 3197 3198 3199 3200
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
3201 3202
}

3203 3204 3205 3206
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
3207
 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3208 3209 3210 3211 3212 3213
 *
 * Return: 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
 */
static int init_worker_pool(struct worker_pool *pool)
3214
{
3215 3216 3217 3218 3219
	spin_lock_init(&pool->lock);
	pool->id = -1;
	pool->cpu = -1;
	pool->node = NUMA_NO_NODE;
	pool->flags |= POOL_DISASSOCIATED;
T
Tejun Heo 已提交
3220
	pool->watchdog_ts = jiffies;
3221 3222 3223
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);
3224

3225
	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3226

3227
	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3228

3229 3230
	mutex_init(&pool->attach_mutex);
	INIT_LIST_HEAD(&pool->workers);
3231

3232 3233 3234
	ida_init(&pool->worker_ida);
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;
3235

3236 3237 3238 3239 3240
	/* shouldn't fail above this point */
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3241 3242
}

3243
static void rcu_free_wq(struct rcu_head *rcu)
3244
{
3245 3246
	struct workqueue_struct *wq =
		container_of(rcu, struct workqueue_struct, rcu);
3247

3248 3249
	if (!(wq->flags & WQ_UNBOUND))
		free_percpu(wq->cpu_pwqs);
3250
	else
3251
		free_workqueue_attrs(wq->unbound_attrs);
3252

3253 3254
	kfree(wq->rescuer);
	kfree(wq);
3255 3256
}

3257
static void rcu_free_pool(struct rcu_head *rcu)
3258
{
3259
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3260

3261 3262 3263
	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
3264 3265
}

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
 *
 * Should be called with wq_pool_mutex held.
 */
static void put_unbound_pool(struct worker_pool *pool)
3278
{
3279 3280
	DECLARE_COMPLETION_ONSTACK(detach_completion);
	struct worker *worker;
3281

3282
	lockdep_assert_held(&wq_pool_mutex);
3283

3284 3285
	if (--pool->refcnt)
		return;
3286

3287 3288 3289 3290
	/* sanity checks */
	if (WARN_ON(!(pool->cpu < 0)) ||
	    WARN_ON(!list_empty(&pool->worklist)))
		return;
3291

3292 3293 3294 3295
	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);
3296

3297
	/*
3298 3299 3300
	 * Become the manager and destroy all workers.  This prevents
	 * @pool's workers from blocking on attach_mutex.  We're the last
	 * manager and @pool gets freed with the flag set.
3301 3302
	 */
	spin_lock_irq(&pool->lock);
3303 3304 3305 3306
	wait_event_lock_irq(wq_manager_wait,
			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
	pool->flags |= POOL_MANAGER_ACTIVE;

3307 3308 3309 3310
	while ((worker = first_idle_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);
	spin_unlock_irq(&pool->lock);
3311

3312 3313 3314 3315
	mutex_lock(&pool->attach_mutex);
	if (!list_empty(&pool->workers))
		pool->detach_completion = &detach_completion;
	mutex_unlock(&pool->attach_mutex);
3316

3317 3318
	if (pool->detach_completion)
		wait_for_completion(pool->detach_completion);
3319

3320 3321 3322
	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);
3323

3324 3325
	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
3326 3327 3328
}

/**
3329 3330
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
3331
 *
3332 3333 3334 3335
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.
3336
 *
3337
 * Should be called with wq_pool_mutex held.
3338
 *
3339 3340
 * Return: On success, a worker_pool with the same attributes as @attrs.
 * On failure, %NULL.
3341
 */
3342
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3343
{
3344 3345 3346
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
	int node;
3347
	int target_node = NUMA_NO_NODE;
3348

3349
	lockdep_assert_held(&wq_pool_mutex);
3350

3351 3352 3353 3354 3355 3356 3357
	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			return pool;
		}
	}
3358

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				target_node = node;
				break;
			}
		}
	}

3370
	/* nope, create a new one */
3371
	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3372 3373 3374 3375 3376
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
	copy_workqueue_attrs(pool->attrs, attrs);
3377
	pool->node = target_node;
3378 3379

	/*
3380 3381
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
3382
	 */
3383
	pool->attrs->no_numa = false;
3384

3385 3386
	if (worker_pool_assign_id(pool) < 0)
		goto fail;
3387

3388
	/* create and start the initial worker */
3389
	if (wq_online && !create_worker(pool))
3390
		goto fail;
3391

3392 3393
	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3394

3395 3396 3397 3398 3399
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
3400 3401
}

3402
static void rcu_free_pwq(struct rcu_head *rcu)
T
Tejun Heo 已提交
3403
{
3404 3405
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
T
Tejun Heo 已提交
3406 3407
}

3408 3409 3410
/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
T
Tejun Heo 已提交
3411
 */
3412
static void pwq_unbound_release_workfn(struct work_struct *work)
T
Tejun Heo 已提交
3413
{
3414 3415 3416 3417 3418
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
	bool is_last;
T
Tejun Heo 已提交
3419

3420 3421
	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;
T
Tejun Heo 已提交
3422

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
	mutex_lock(&wq->mutex);
	list_del_rcu(&pwq->pwqs_node);
	is_last = list_empty(&wq->pwqs);
	mutex_unlock(&wq->mutex);

	mutex_lock(&wq_pool_mutex);
	put_unbound_pool(pool);
	mutex_unlock(&wq_pool_mutex);

	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
T
Tejun Heo 已提交
3433

3434
	/*
3435 3436
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Schedule RCU free.
3437
	 */
3438 3439
	if (is_last)
		call_rcu_sched(&wq->rcu, rcu_free_wq);
3440 3441
}

T
Tejun Heo 已提交
3442
/**
3443 3444
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
 * @pwq: target pool_workqueue
3445
 *
3446 3447 3448
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
T
Tejun Heo 已提交
3449
 */
3450
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3451
{
3452 3453
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;
3454
	unsigned long flags;
3455

3456 3457
	/* for @wq->saved_max_active */
	lockdep_assert_held(&wq->mutex);
3458

3459 3460 3461
	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;
T
Tejun Heo 已提交
3462

3463 3464
	/* this function can be called during early boot w/ irq disabled */
	spin_lock_irqsave(&pwq->pool->lock, flags);
3465

3466 3467 3468 3469 3470 3471 3472
	/*
	 * During [un]freezing, the caller is responsible for ensuring that
	 * this function is called at least once after @workqueue_freezing
	 * is updated and visible.
	 */
	if (!freezable || !workqueue_freezing) {
		pwq->max_active = wq->saved_max_active;
3473

3474 3475 3476
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3477

3478 3479 3480 3481 3482 3483 3484 3485
		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
	} else {
		pwq->max_active = 0;
	}
3486

3487
	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3488 3489
}

3490 3491 3492
/* initialize newly alloced @pwq which is associated with @wq and @pool */
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3493
{
3494
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3495

3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
	memset(pwq, 0, sizeof(*pwq));

	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
	pwq->refcnt = 1;
	INIT_LIST_HEAD(&pwq->delayed_works);
	INIT_LIST_HEAD(&pwq->pwqs_node);
	INIT_LIST_HEAD(&pwq->mayday_node);
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3506 3507
}

3508 3509
/* sync @pwq with the current state of its associated wq and link it */
static void link_pwq(struct pool_workqueue *pwq)
3510
{
3511
	struct workqueue_struct *wq = pwq->wq;
3512

3513
	lockdep_assert_held(&wq->mutex);
3514

3515 3516
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
3517 3518
		return;

3519 3520
	/* set the matching work_color */
	pwq->work_color = wq->work_color;
3521

3522 3523
	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);
3524

3525 3526 3527
	/* link in @pwq */
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
}
3528

3529 3530 3531 3532 3533 3534
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;
3535

3536
	lockdep_assert_held(&wq_pool_mutex);
3537

3538 3539 3540
	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;
3541

3542 3543 3544 3545 3546
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
	}
3547

3548 3549 3550
	init_pwq(pwq, wq, pool);
	return pwq;
}
3551 3552

/**
3553
 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3554
 * @attrs: the wq_attrs of the default pwq of the target workqueue
3555 3556 3557
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
3558
 *
3559 3560 3561
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
 * calculation.  The result is stored in @cpumask.
3562
 *
3563 3564 3565 3566
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
3567
 *
3568 3569 3570 3571 3572
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
 *
 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
3573
 */
3574 3575
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
3576
{
3577 3578
	if (!wq_numa_enabled || attrs->no_numa)
		goto use_dfl;
3579

3580 3581 3582 3583
	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);
3584

3585 3586
	if (cpumask_empty(cpumask))
		goto use_dfl;
3587 3588 3589

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3590 3591 3592 3593 3594 3595 3596

	if (cpumask_empty(cpumask)) {
		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
				"possible intersect\n");
		return false;
	}

3597 3598 3599 3600 3601 3602 3603
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3604 3605 3606 3607 3608 3609 3610
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

3611
	lockdep_assert_held(&wq_pool_mutex);
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3622 3623 3624 3625
/* context to store the prepared attrs & pwqs before applying */
struct apply_wqattrs_ctx {
	struct workqueue_struct	*wq;		/* target workqueue */
	struct workqueue_attrs	*attrs;		/* attrs to apply */
3626
	struct list_head	list;		/* queued for batching commit */
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
	struct pool_workqueue	*dfl_pwq;
	struct pool_workqueue	*pwq_tbl[];
};

/* free the resources after success or abort */
static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
{
	if (ctx) {
		int node;

		for_each_node(node)
			put_pwq_unlocked(ctx->pwq_tbl[node]);
		put_pwq_unlocked(ctx->dfl_pwq);

		free_workqueue_attrs(ctx->attrs);

		kfree(ctx);
	}
}

/* allocate the attrs and pwqs for later installation */
static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct *wq,
		      const struct workqueue_attrs *attrs)
3651
{
3652
	struct apply_wqattrs_ctx *ctx;
3653
	struct workqueue_attrs *new_attrs, *tmp_attrs;
3654
	int node;
3655

3656
	lockdep_assert_held(&wq_pool_mutex);
3657

3658 3659
	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
		      GFP_KERNEL);
3660

3661
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3662
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3663 3664
	if (!ctx || !new_attrs || !tmp_attrs)
		goto out_free;
3665

3666 3667 3668 3669 3670
	/*
	 * Calculate the attrs of the default pwq.
	 * If the user configured cpumask doesn't overlap with the
	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
	 */
3671
	copy_workqueue_attrs(new_attrs, attrs);
3672
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3673 3674
	if (unlikely(cpumask_empty(new_attrs->cpumask)))
		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3675

3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
3688 3689 3690
	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!ctx->dfl_pwq)
		goto out_free;
3691 3692

	for_each_node(node) {
3693
		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3694 3695 3696
			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!ctx->pwq_tbl[node])
				goto out_free;
3697
		} else {
3698 3699
			ctx->dfl_pwq->refcnt++;
			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3700 3701 3702
		}
	}

3703 3704 3705
	/* save the user configured attrs and sanitize it. */
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3706
	ctx->attrs = new_attrs;
3707

3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
	ctx->wq = wq;
	free_workqueue_attrs(tmp_attrs);
	return ctx;

out_free:
	free_workqueue_attrs(tmp_attrs);
	free_workqueue_attrs(new_attrs);
	apply_wqattrs_cleanup(ctx);
	return NULL;
}

/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
{
	int node;
3723

3724
	/* all pwqs have been created successfully, let's install'em */
3725
	mutex_lock(&ctx->wq->mutex);
3726

3727
	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3728 3729

	/* save the previous pwq and install the new one */
3730
	for_each_node(node)
3731 3732
		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
							  ctx->pwq_tbl[node]);
3733 3734

	/* @dfl_pwq might not have been used, ensure it's linked */
3735 3736
	link_pwq(ctx->dfl_pwq);
	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3737

3738 3739
	mutex_unlock(&ctx->wq->mutex);
}
3740

3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
static void apply_wqattrs_lock(void)
{
	/* CPUs should stay stable across pwq creations and installations */
	get_online_cpus();
	mutex_lock(&wq_pool_mutex);
}

static void apply_wqattrs_unlock(void)
{
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
}

static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
3756 3757
{
	struct apply_wqattrs_ctx *ctx;
3758

3759 3760 3761
	/* only unbound workqueues can change attributes */
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;
3762

3763
	/* creating multiple pwqs breaks ordering guarantee */
3764 3765 3766 3767 3768 3769
	if (!list_empty(&wq->pwqs)) {
		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
			return -EINVAL;

		wq->flags &= ~__WQ_ORDERED;
	}
3770 3771

	ctx = apply_wqattrs_prepare(wq, attrs);
3772 3773
	if (!ctx)
		return -ENOMEM;
3774 3775

	/* the ctx has been prepared successfully, let's commit it */
3776
	apply_wqattrs_commit(ctx);
3777 3778
	apply_wqattrs_cleanup(ctx);

3779
	return 0;
3780 3781
}

3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
 *
 * Performs GFP_KERNEL allocations.
 *
 * Return: 0 on success and -errno on failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
	int ret;

	apply_wqattrs_lock();
	ret = apply_workqueue_attrs_locked(wq, attrs);
	apply_wqattrs_unlock();

	return ret;
}

3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

3843 3844
	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
	    wq->unbound_attrs->no_numa)
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
3860 3861 3862
	 * different from the default pwq's, we need to compare it to @pwq's
	 * and create a new one if they don't match.  If the target cpumask
	 * equals the default pwq's, the default pwq should be used.
3863
	 */
3864
	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3865
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3866
			return;
3867
	} else {
3868
		goto use_dfl_pwq;
3869 3870 3871 3872 3873
	}

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
3874 3875
		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			wq->name);
3876
		goto use_dfl_pwq;
3877 3878
	}

3879
	/* Install the new pwq. */
3880 3881 3882 3883 3884
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
3885
	mutex_lock(&wq->mutex);
3886 3887 3888 3889 3890 3891 3892 3893 3894
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

3895
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3896
{
3897
	bool highpri = wq->flags & WQ_HIGHPRI;
3898
	int cpu, ret;
3899 3900

	if (!(wq->flags & WQ_UNBOUND)) {
3901 3902
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3903 3904 3905
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3906 3907
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3908
			struct worker_pool *cpu_pools =
3909
				per_cpu(cpu_worker_pools, cpu);
3910

3911 3912 3913
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
3914
			link_pwq(pwq);
3915
			mutex_unlock(&wq->mutex);
3916
		}
3917
		return 0;
3918 3919 3920 3921 3922 3923 3924
	} else if (wq->flags & __WQ_ORDERED) {
		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
		/* there should only be single pwq for ordering guarantee */
		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
		     "ordering guarantee broken for workqueue %s\n", wq->name);
		return ret;
3925
	} else {
3926
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3927
	}
T
Tejun Heo 已提交
3928 3929
}

3930 3931
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3932
{
3933 3934 3935
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3936 3937
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3938

3939
	return clamp_val(max_active, 1, lim);
3940 3941
}

3942
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3943 3944 3945
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3946
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3947
{
3948
	size_t tbl_size = 0;
3949
	va_list args;
L
Linus Torvalds 已提交
3950
	struct workqueue_struct *wq;
3951
	struct pool_workqueue *pwq;
3952

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
	/*
	 * Unbound && max_active == 1 used to imply ordered, which is no
	 * longer the case on NUMA machines due to per-node pools.  While
	 * alloc_ordered_workqueue() is the right way to create an ordered
	 * workqueue, keep the previous behavior to avoid subtle breakages
	 * on NUMA.
	 */
	if ((flags & WQ_UNBOUND) && max_active == 1)
		flags |= __WQ_ORDERED;

3963 3964 3965 3966
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

3967
	/* allocate wq and format name */
3968
	if (flags & WQ_UNBOUND)
3969
		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3970 3971

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3972
	if (!wq)
3973
		return NULL;
3974

3975 3976 3977 3978 3979 3980
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

3981 3982
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3983
	va_end(args);
L
Linus Torvalds 已提交
3984

3985
	max_active = max_active ?: WQ_DFL_ACTIVE;
3986
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3987

3988
	/* init wq */
3989
	wq->flags = flags;
3990
	wq->saved_max_active = max_active;
3991
	mutex_init(&wq->mutex);
3992
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3993
	INIT_LIST_HEAD(&wq->pwqs);
3994 3995
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3996
	INIT_LIST_HEAD(&wq->maydays);
3997

3998
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3999
	INIT_LIST_HEAD(&wq->list);
4000

4001
	if (alloc_and_link_pwqs(wq) < 0)
4002
		goto err_free_wq;
T
Tejun Heo 已提交
4003

4004 4005 4006 4007 4008
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4009 4010
		struct worker *rescuer;

4011
		rescuer = alloc_worker(NUMA_NO_NODE);
4012
		if (!rescuer)
4013
			goto err_destroy;
4014

4015 4016
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4017
					       wq->name);
4018 4019 4020 4021
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4022

4023
		wq->rescuer = rescuer;
4024
		kthread_bind_mask(rescuer->task, cpu_possible_mask);
4025
		wake_up_process(rescuer->task);
4026 4027
	}

4028 4029 4030
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4031
	/*
4032 4033 4034
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4035
	 */
4036
	mutex_lock(&wq_pool_mutex);
4037

4038
	mutex_lock(&wq->mutex);
4039 4040
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4041
	mutex_unlock(&wq->mutex);
4042

4043
	list_add_tail_rcu(&wq->list, &workqueues);
4044

4045
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4046

4047
	return wq;
4048 4049

err_free_wq:
4050
	free_workqueue_attrs(wq->unbound_attrs);
4051 4052 4053 4054
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4055
	return NULL;
4056
}
4057
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4058

4059 4060 4061 4062 4063 4064 4065 4066
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4067
	struct pool_workqueue *pwq;
4068
	int node;
4069

4070 4071
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4072

4073
	/* sanity checks */
4074
	mutex_lock(&wq->mutex);
4075
	for_each_pwq(pwq, wq) {
4076 4077
		int i;

4078 4079
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4080
				mutex_unlock(&wq->mutex);
4081
				show_workqueue_state();
4082
				return;
4083 4084 4085
			}
		}

4086
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4087
		    WARN_ON(pwq->nr_active) ||
4088
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4089
			mutex_unlock(&wq->mutex);
4090
			show_workqueue_state();
4091
			return;
4092
		}
4093
	}
4094
	mutex_unlock(&wq->mutex);
4095

4096 4097 4098 4099
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4100
	mutex_lock(&wq_pool_mutex);
4101
	list_del_rcu(&wq->list);
4102
	mutex_unlock(&wq_pool_mutex);
4103

4104 4105
	workqueue_sysfs_unregister(wq);

4106
	if (wq->rescuer)
4107 4108
		kthread_stop(wq->rescuer->task);

T
Tejun Heo 已提交
4109 4110 4111
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
4112
		 * schedule RCU free.
T
Tejun Heo 已提交
4113
		 */
4114
		call_rcu_sched(&wq->rcu, rcu_free_wq);
T
Tejun Heo 已提交
4115 4116 4117
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4118 4119
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4120
		 */
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4133
		put_pwq_unlocked(pwq);
4134
	}
4135 4136 4137
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4150
	struct pool_workqueue *pwq;
4151

4152
	/* disallow meddling with max_active for ordered workqueues */
4153
	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4154 4155
		return;

4156
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4157

4158
	mutex_lock(&wq->mutex);
4159

4160
	wq->flags &= ~__WQ_ORDERED;
4161 4162
	wq->saved_max_active = max_active;

4163 4164
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4165

4166
	mutex_unlock(&wq->mutex);
4167
}
4168
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4169

4170 4171 4172 4173 4174
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
4175 4176
 *
 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4177 4178 4179 4180 4181
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4182
	return worker && worker->rescue_wq;
4183 4184
}

4185
/**
4186 4187 4188
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4189
 *
4190 4191 4192
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4193
 *
4194 4195 4196 4197 4198 4199
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4200
 * Return:
4201
 * %true if congested, %false otherwise.
4202
 */
4203
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4204
{
4205
	struct pool_workqueue *pwq;
4206 4207
	bool ret;

4208
	rcu_read_lock_sched();
4209

4210 4211 4212
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4213 4214 4215
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4216
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4217

4218
	ret = !list_empty(&pwq->delayed_works);
4219
	rcu_read_unlock_sched();
4220 4221

	return ret;
L
Linus Torvalds 已提交
4222
}
4223
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4224

4225 4226 4227 4228 4229 4230 4231 4232
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
4233
 * Return:
4234 4235 4236
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4237
{
4238
	struct worker_pool *pool;
4239 4240
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4241

4242 4243
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4244

4245 4246
	local_irq_save(flags);
	pool = get_work_pool(work);
4247
	if (pool) {
4248
		spin_lock(&pool->lock);
4249 4250
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4251
		spin_unlock(&pool->lock);
4252
	}
4253
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4254

4255
	return ret;
L
Linus Torvalds 已提交
4256
}
4257
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4258

4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
4312
	worker = kthread_probe_data(task);
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
static void pr_cont_pool_info(struct worker_pool *pool)
{
	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
	if (pool->node != NUMA_NO_NODE)
		pr_cont(" node=%d", pool->node);
	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
}

static void pr_cont_work(bool comma, struct work_struct *work)
{
	if (work->func == wq_barrier_func) {
		struct wq_barrier *barr;

		barr = container_of(work, struct wq_barrier, work);

		pr_cont("%s BAR(%d)", comma ? "," : "",
			task_pid_nr(barr->task));
	} else {
		pr_cont("%s %pf", comma ? "," : "", work->func);
	}
}

static void show_pwq(struct pool_workqueue *pwq)
{
	struct worker_pool *pool = pwq->pool;
	struct work_struct *work;
	struct worker *worker;
	bool has_in_flight = false, has_pending = false;
	int bkt;

	pr_info("  pwq %d:", pool->id);
	pr_cont_pool_info(pool);

	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");

	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
		if (worker->current_pwq == pwq) {
			has_in_flight = true;
			break;
		}
	}
	if (has_in_flight) {
		bool comma = false;

		pr_info("    in-flight:");
		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
			if (worker->current_pwq != pwq)
				continue;

			pr_cont("%s %d%s:%pf", comma ? "," : "",
				task_pid_nr(worker->task),
				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
				worker->current_func);
			list_for_each_entry(work, &worker->scheduled, entry)
				pr_cont_work(false, work);
			comma = true;
		}
		pr_cont("\n");
	}

	list_for_each_entry(work, &pool->worklist, entry) {
		if (get_work_pwq(work) == pwq) {
			has_pending = true;
			break;
		}
	}
	if (has_pending) {
		bool comma = false;

		pr_info("    pending:");
		list_for_each_entry(work, &pool->worklist, entry) {
			if (get_work_pwq(work) != pwq)
				continue;

			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}

	if (!list_empty(&pwq->delayed_works)) {
		bool comma = false;

		pr_info("    delayed:");
		list_for_each_entry(work, &pwq->delayed_works, entry) {
			pr_cont_work(comma, work);
			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
		}
		pr_cont("\n");
	}
}

/**
 * show_workqueue_state - dump workqueue state
 *
4432 4433
 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
 * all busy workqueues and pools.
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
 */
void show_workqueue_state(void)
{
	struct workqueue_struct *wq;
	struct worker_pool *pool;
	unsigned long flags;
	int pi;

	rcu_read_lock_sched();

	pr_info("Showing busy workqueues and worker pools:\n");

	list_for_each_entry_rcu(wq, &workqueues, list) {
		struct pool_workqueue *pwq;
		bool idle = true;

		for_each_pwq(pwq, wq) {
			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
				idle = false;
				break;
			}
		}
		if (idle)
			continue;

		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);

		for_each_pwq(pwq, wq) {
			spin_lock_irqsave(&pwq->pool->lock, flags);
			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
				show_pwq(pwq);
			spin_unlock_irqrestore(&pwq->pool->lock, flags);
		}
	}

	for_each_pool(pool, pi) {
		struct worker *worker;
		bool first = true;

		spin_lock_irqsave(&pool->lock, flags);
		if (pool->nr_workers == pool->nr_idle)
			goto next_pool;

		pr_info("pool %d:", pool->id);
		pr_cont_pool_info(pool);
T
Tejun Heo 已提交
4479 4480 4481
		pr_cont(" hung=%us workers=%d",
			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
			pool->nr_workers);
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
		if (pool->manager)
			pr_cont(" manager: %d",
				task_pid_nr(pool->manager->task));
		list_for_each_entry(worker, &pool->idle_list, entry) {
			pr_cont(" %s%d", first ? "idle: " : "",
				task_pid_nr(worker->task));
			first = false;
		}
		pr_cont("\n");
	next_pool:
		spin_unlock_irqrestore(&pool->lock, flags);
	}

	rcu_read_unlock_sched();
}

4498 4499 4500
/*
 * CPU hotplug.
 *
4501
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4502
 * are a lot of assumptions on strong associations among work, pwq and
4503
 * pool which make migrating pending and scheduled works very
4504
 * difficult to implement without impacting hot paths.  Secondly,
4505
 * worker pools serve mix of short, long and very long running works making
4506 4507
 * blocked draining impractical.
 *
4508
 * This is solved by allowing the pools to be disassociated from the CPU
4509 4510
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4511
 */
L
Linus Torvalds 已提交
4512

4513
static void wq_unbind_fn(struct work_struct *work)
4514
{
4515
	int cpu = smp_processor_id();
4516
	struct worker_pool *pool;
4517
	struct worker *worker;
4518

4519
	for_each_cpu_worker_pool(pool, cpu) {
4520
		mutex_lock(&pool->attach_mutex);
4521
		spin_lock_irq(&pool->lock);
4522

4523
		/*
4524
		 * We've blocked all attach/detach operations. Make all workers
4525 4526 4527 4528 4529
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4530
		for_each_pool_worker(worker, pool)
4531
			worker->flags |= WORKER_UNBOUND;
4532

4533
		pool->flags |= POOL_DISASSOCIATED;
4534

4535
		spin_unlock_irq(&pool->lock);
4536
		mutex_unlock(&pool->attach_mutex);
4537

4538 4539 4540 4541 4542 4543 4544
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4545

4546 4547 4548 4549 4550 4551 4552 4553
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4554
		atomic_set(&pool->nr_running, 0);
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4565 4566
}

T
Tejun Heo 已提交
4567 4568 4569 4570
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4571
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4572 4573 4574
 */
static void rebind_workers(struct worker_pool *pool)
{
4575
	struct worker *worker;
T
Tejun Heo 已提交
4576

4577
	lockdep_assert_held(&pool->attach_mutex);
T
Tejun Heo 已提交
4578

4579 4580 4581
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
4582
	 * wake-ups for concurrency management happen, restore CPU affinity
4583 4584 4585
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
4586
	for_each_pool_worker(worker, pool)
4587 4588
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4589

4590
	spin_lock_irq(&pool->lock);
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601

	/*
	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
	 * being reworked and this can go away in time.
	 */
	if (!(pool->flags & POOL_DISASSOCIATED)) {
		spin_unlock_irq(&pool->lock);
		return;
	}

4602
	pool->flags &= ~POOL_DISASSOCIATED;
T
Tejun Heo 已提交
4603

4604
	for_each_pool_worker(worker, pool) {
4605
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4606 4607

		/*
4608 4609 4610 4611 4612 4613
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4614
		 */
4615 4616
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4617

4618 4619 4620 4621 4622 4623 4624 4625 4626
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
4627
		 * WRITE_ONCE() is necessary because @worker->flags may be
4628 4629 4630 4631 4632 4633 4634 4635
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
4636
		WRITE_ONCE(worker->flags, worker_flags);
T
Tejun Heo 已提交
4637
	}
4638 4639

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4640 4641
}

4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;

4657
	lockdep_assert_held(&pool->attach_mutex);
4658 4659 4660 4661 4662 4663 4664 4665

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4666
	for_each_pool_worker(worker, pool)
4667
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4668 4669
}

4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
int workqueue_prepare_cpu(unsigned int cpu)
{
	struct worker_pool *pool;

	for_each_cpu_worker_pool(pool, cpu) {
		if (pool->nr_workers)
			continue;
		if (!create_worker(pool))
			return -ENOMEM;
	}
	return 0;
}

int workqueue_online_cpu(unsigned int cpu)
4684
{
4685
	struct worker_pool *pool;
4686
	struct workqueue_struct *wq;
4687
	int pi;
4688

4689
	mutex_lock(&wq_pool_mutex);
4690

4691 4692
	for_each_pool(pool, pi) {
		mutex_lock(&pool->attach_mutex);
4693

4694 4695 4696 4697
		if (pool->cpu == cpu)
			rebind_workers(pool);
		else if (pool->cpu < 0)
			restore_unbound_workers_cpumask(pool, cpu);
4698

4699 4700
		mutex_unlock(&pool->attach_mutex);
	}
4701

4702 4703 4704
	/* update NUMA affinity of unbound workqueues */
	list_for_each_entry(wq, &workqueues, list)
		wq_update_unbound_numa(wq, cpu, true);
4705

4706 4707
	mutex_unlock(&wq_pool_mutex);
	return 0;
4708 4709
}

4710
int workqueue_offline_cpu(unsigned int cpu)
4711 4712 4713 4714
{
	struct work_struct unbind_work;
	struct workqueue_struct *wq;

4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
	/* unbinding per-cpu workers should happen on the local CPU */
	INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
	queue_work_on(cpu, system_highpri_wq, &unbind_work);

	/* update NUMA affinity of unbound workqueues */
	mutex_lock(&wq_pool_mutex);
	list_for_each_entry(wq, &workqueues, list)
		wq_update_unbound_numa(wq, cpu, false);
	mutex_unlock(&wq_pool_mutex);

	/* wait for per-cpu unbinding to finish */
	flush_work(&unbind_work);
	destroy_work_on_stack(&unbind_work);
	return 0;
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
}

#ifdef CONFIG_SMP

struct work_for_cpu {
	struct work_struct work;
	long (*fn)(void *);
	void *arg;
	long ret;
};

static void work_for_cpu_fn(struct work_struct *work)
{
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

	wfc->ret = wfc->fn(wfc->arg);
}

/**
4748
 * work_on_cpu - run a function in thread context on a particular cpu
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
 * It is up to the caller to ensure that the cpu doesn't go offline.
 * The caller must not hold any locks which would prevent @fn from completing.
 *
 * Return: The value @fn returns.
 */
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
{
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };

	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
	destroy_work_on_stack(&wfc.work);
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791

/**
 * work_on_cpu_safe - run a function in thread context on a particular cpu
 * @cpu: the cpu to run on
 * @fn:  the function to run
 * @arg: the function argument
 *
 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
 * any locks which would prevent @fn from completing.
 *
 * Return: The value @fn returns.
 */
long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
{
	long ret = -ENODEV;

	get_online_cpus();
	if (cpu_online(cpu))
		ret = work_on_cpu(cpu, fn, arg);
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
#endif /* CONFIG_SMP */

#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their delayed_works list instead of
 * pool->worklist.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void freeze_workqueues_begin(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(workqueue_freezing);
	workqueue_freezing = true;

	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

	mutex_unlock(&wq_pool_mutex);
}

/**
 * freeze_workqueues_busy - are freezable workqueues still busy?
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex.
 *
 * Return:
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	WARN_ON_ONCE(!workqueue_freezing);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		rcu_read_lock_sched();
		for_each_pwq(pwq, wq) {
			WARN_ON_ONCE(pwq->nr_active < 0);
			if (pwq->nr_active) {
				busy = true;
				rcu_read_unlock_sched();
				goto out_unlock;
			}
		}
		rcu_read_unlock_sched();
	}
out_unlock:
	mutex_unlock(&wq_pool_mutex);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
 * frozen works are transferred to their respective pool worklists.
 *
 * CONTEXT:
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
 */
void thaw_workqueues(void)
{
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;

	mutex_lock(&wq_pool_mutex);

	if (!workqueue_freezing)
		goto out_unlock;

	workqueue_freezing = false;

	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		mutex_lock(&wq->mutex);
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
		mutex_unlock(&wq->mutex);
	}

out_unlock:
	mutex_unlock(&wq_pool_mutex);
}
#endif /* CONFIG_FREEZER */

4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
static int workqueue_apply_unbound_cpumask(void)
{
	LIST_HEAD(ctxs);
	int ret = 0;
	struct workqueue_struct *wq;
	struct apply_wqattrs_ctx *ctx, *n;

	lockdep_assert_held(&wq_pool_mutex);

	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_UNBOUND))
			continue;
		/* creating multiple pwqs breaks ordering guarantee */
		if (wq->flags & __WQ_ORDERED)
			continue;

		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
		if (!ctx) {
			ret = -ENOMEM;
			break;
		}

		list_add_tail(&ctx->list, &ctxs);
	}

	list_for_each_entry_safe(ctx, n, &ctxs, list) {
		if (!ret)
			apply_wqattrs_commit(ctx);
		apply_wqattrs_cleanup(ctx);
	}

	return ret;
}

/**
 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
 *  @cpumask: the cpumask to set
 *
 *  The low-level workqueues cpumask is a global cpumask that limits
 *  the affinity of all unbound workqueues.  This function check the @cpumask
 *  and apply it to all unbound workqueues and updates all pwqs of them.
 *
 *  Retun:	0	- Success
 *  		-EINVAL	- Invalid @cpumask
 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
 */
int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
{
	int ret = -EINVAL;
	cpumask_var_t saved_cpumask;

	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
		return -ENOMEM;

	cpumask_and(cpumask, cpumask, cpu_possible_mask);
	if (!cpumask_empty(cpumask)) {
4962
		apply_wqattrs_lock();
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974

		/* save the old wq_unbound_cpumask. */
		cpumask_copy(saved_cpumask, wq_unbound_cpumask);

		/* update wq_unbound_cpumask at first and apply it to wqs. */
		cpumask_copy(wq_unbound_cpumask, cpumask);
		ret = workqueue_apply_unbound_cpumask();

		/* restore the wq_unbound_cpumask when failed. */
		if (ret < 0)
			cpumask_copy(wq_unbound_cpumask, saved_cpumask);

4975
		apply_wqattrs_unlock();
4976 4977 4978 4979 4980 4981
	}

	free_cpumask_var(saved_cpumask);
	return ret;
}

4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
4993
 *  pool_ids	RO int	: the associated pool IDs for each node
4994 4995
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4996
 *  numa	RW bool	: whether enable NUMA affinity
4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}
static DEVICE_ATTR_RO(per_cpu);

static ssize_t max_active_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t max_active_store(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}
static DEVICE_ATTR_RW(max_active);

static struct attribute *wq_sysfs_attrs[] = {
	&dev_attr_per_cpu.attr,
	&dev_attr_max_active.attr,
	NULL,
};
ATTRIBUTE_GROUPS(wq_sysfs);

static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	const char *delim = "";
	int node, written = 0;

	rcu_read_lock_sched();
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

5087 5088
	lockdep_assert_held(&wq_pool_mutex);

5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5102 5103 5104
	int ret = -ENOMEM;

	apply_wqattrs_lock();
5105 5106 5107

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5108
		goto out_unlock;
5109 5110 5111

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5112
		ret = apply_workqueue_attrs_locked(wq, attrs);
5113 5114 5115
	else
		ret = -EINVAL;

5116 5117
out_unlock:
	apply_wqattrs_unlock();
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq->unbound_attrs->cpumask));
	mutex_unlock(&wq->mutex);
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5141 5142 5143
	int ret = -ENOMEM;

	apply_wqattrs_lock();
5144 5145 5146

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5147
		goto out_unlock;
5148 5149 5150

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
5151
		ret = apply_workqueue_attrs_locked(wq, attrs);
5152

5153 5154
out_unlock:
	apply_wqattrs_unlock();
5155 5156 5157 5158 5159 5160 5161 5162 5163
	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;
5164

5165 5166 5167 5168
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);
5169

5170
	return written;
5171 5172
}

5173 5174
static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
5175
{
5176 5177
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
5178 5179 5180
	int v, ret = -ENOMEM;

	apply_wqattrs_lock();
5181

5182 5183
	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
5184
		goto out_unlock;
5185

5186 5187 5188
	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
5189
		ret = apply_workqueue_attrs_locked(wq, attrs);
5190
	}
5191

5192 5193
out_unlock:
	apply_wqattrs_unlock();
5194 5195
	free_workqueue_attrs(attrs);
	return ret ?: count;
5196 5197
}

5198 5199 5200 5201 5202 5203 5204
static struct device_attribute wq_sysfs_unbound_attrs[] = {
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
	__ATTR_NULL,
};
5205

5206 5207 5208
static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_groups			= wq_sysfs_groups,
5209 5210
};

5211 5212 5213 5214 5215
static ssize_t wq_unbound_cpumask_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int written;

5216
	mutex_lock(&wq_pool_mutex);
5217 5218
	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
			    cpumask_pr_args(wq_unbound_cpumask));
5219
	mutex_unlock(&wq_pool_mutex);
5220 5221 5222 5223

	return written;
}

5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
static ssize_t wq_unbound_cpumask_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	cpumask_var_t cpumask;
	int ret;

	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
		return -ENOMEM;

	ret = cpumask_parse(buf, cpumask);
	if (!ret)
		ret = workqueue_set_unbound_cpumask(cpumask);

	free_cpumask_var(cpumask);
	return ret ? ret : count;
}

5241
static struct device_attribute wq_sysfs_cpumask_attr =
5242 5243
	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
	       wq_unbound_cpumask_store);
5244

5245
static int __init wq_sysfs_init(void)
5246
{
5247 5248 5249 5250 5251 5252 5253
	int err;

	err = subsys_virtual_register(&wq_subsys, NULL);
	if (err)
		return err;

	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5254
}
5255
core_initcall(wq_sysfs_init);
5256

5257
static void wq_device_release(struct device *dev)
5258
{
5259
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5260

5261
	kfree(wq_dev);
5262
}
5263 5264

/**
5265 5266
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
5267
 *
5268 5269 5270
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
5271
 *
5272 5273 5274 5275 5276 5277
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Return: 0 on success, -errno on failure.
5278
 */
5279
int workqueue_sysfs_register(struct workqueue_struct *wq)
5280
{
5281 5282
	struct wq_device *wq_dev;
	int ret;
5283

5284
	/*
5285
	 * Adjusting max_active or creating new pwqs by applying
5286 5287 5288
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
5289
	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5290
		return -EINVAL;
5291

5292 5293 5294
	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;
5295

5296 5297 5298
	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.release = wq_device_release;
5299
	dev_set_name(&wq_dev->dev, "%s", wq->name);
5300

5301 5302 5303 5304 5305
	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);
5306

5307 5308 5309 5310 5311 5312
	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}
5313

5314 5315
	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;
5316

5317 5318 5319 5320 5321 5322
		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
5323 5324 5325
			}
		}
	}
5326 5327 5328 5329

	dev_set_uevent_suppress(&wq_dev->dev, false);
	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
5330 5331 5332
}

/**
5333 5334
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
5335
 *
5336
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5337
 */
5338
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5339
{
5340
	struct wq_device *wq_dev = wq->wq_dev;
5341

5342 5343
	if (!wq->wq_dev)
		return;
5344

5345 5346
	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
5347
}
5348 5349 5350
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */
5351

T
Tejun Heo 已提交
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
/*
 * Workqueue watchdog.
 *
 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
 * flush dependency, a concurrency managed work item which stays RUNNING
 * indefinitely.  Workqueue stalls can be very difficult to debug as the
 * usual warning mechanisms don't trigger and internal workqueue state is
 * largely opaque.
 *
 * Workqueue watchdog monitors all worker pools periodically and dumps
 * state if some pools failed to make forward progress for a while where
 * forward progress is defined as the first item on ->worklist changing.
 *
 * This mechanism is controlled through the kernel parameter
 * "workqueue.watchdog_thresh" which can be updated at runtime through the
 * corresponding sysfs parameter file.
 */
#ifdef CONFIG_WQ_WATCHDOG

static unsigned long wq_watchdog_thresh = 30;
5372
static struct timer_list wq_watchdog_timer;
T
Tejun Heo 已提交
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385

static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;

static void wq_watchdog_reset_touched(void)
{
	int cpu;

	wq_watchdog_touched = jiffies;
	for_each_possible_cpu(cpu)
		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
}

5386
static void wq_watchdog_timer_fn(struct timer_list *unused)
T
Tejun Heo 已提交
5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
{
	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
	bool lockup_detected = false;
	struct worker_pool *pool;
	int pi;

	if (!thresh)
		return;

	rcu_read_lock();

	for_each_pool(pool, pi) {
		unsigned long pool_ts, touched, ts;

		if (list_empty(&pool->worklist))
			continue;

		/* get the latest of pool and touched timestamps */
		pool_ts = READ_ONCE(pool->watchdog_ts);
		touched = READ_ONCE(wq_watchdog_touched);

		if (time_after(pool_ts, touched))
			ts = pool_ts;
		else
			ts = touched;

		if (pool->cpu >= 0) {
			unsigned long cpu_touched =
				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
						  pool->cpu));
			if (time_after(cpu_touched, ts))
				ts = cpu_touched;
		}

		/* did we stall? */
		if (time_after(jiffies, ts + thresh)) {
			lockup_detected = true;
			pr_emerg("BUG: workqueue lockup - pool");
			pr_cont_pool_info(pool);
			pr_cont(" stuck for %us!\n",
				jiffies_to_msecs(jiffies - pool_ts) / 1000);
		}
	}

	rcu_read_unlock();

	if (lockup_detected)
		show_workqueue_state();

	wq_watchdog_reset_touched();
	mod_timer(&wq_watchdog_timer, jiffies + thresh);
}

void wq_watchdog_touch(int cpu)
{
	if (cpu >= 0)
		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
	else
		wq_watchdog_touched = jiffies;
}

static void wq_watchdog_set_thresh(unsigned long thresh)
{
	wq_watchdog_thresh = 0;
	del_timer_sync(&wq_watchdog_timer);

	if (thresh) {
		wq_watchdog_thresh = thresh;
		wq_watchdog_reset_touched();
		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
	}
}

static int wq_watchdog_param_set_thresh(const char *val,
					const struct kernel_param *kp)
{
	unsigned long thresh;
	int ret;

	ret = kstrtoul(val, 0, &thresh);
	if (ret)
		return ret;

	if (system_wq)
		wq_watchdog_set_thresh(thresh);
	else
		wq_watchdog_thresh = thresh;

	return 0;
}

static const struct kernel_param_ops wq_watchdog_thresh_ops = {
	.set	= wq_watchdog_param_set_thresh,
	.get	= param_get_ulong,
};

module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
		0644);

static void wq_watchdog_init(void)
{
5488
	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
T
Tejun Heo 已提交
5489 5490 5491 5492 5493 5494 5495 5496 5497
	wq_watchdog_set_thresh(wq_watchdog_thresh);
}

#else	/* CONFIG_WQ_WATCHDOG */

static inline void wq_watchdog_init(void) { }

#endif	/* CONFIG_WQ_WATCHDOG */

5498 5499 5500 5501 5502 5503 5504 5505
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	if (num_possible_nodes() <= 1)
		return;

5506 5507 5508 5509 5510
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

5511 5512 5513
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

5514 5515 5516 5517 5518
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
5519
	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5520 5521 5522
	BUG_ON(!tbl);

	for_each_node(node)
5523
		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5524
				node_online(node) ? node : NUMA_NO_NODE));
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
/**
 * workqueue_init_early - early init for workqueue subsystem
 *
 * This is the first half of two-staged workqueue subsystem initialization
 * and invoked as soon as the bare basics - memory allocation, cpumasks and
 * idr are up.  It sets up all the data structures and system workqueues
 * and allows early boot code to create workqueues and queue/cancel work
 * items.  Actual work item execution starts only after kthreads can be
 * created and scheduled right before early initcalls.
 */
int __init workqueue_init_early(void)
L
Linus Torvalds 已提交
5551
{
T
Tejun Heo 已提交
5552 5553
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
5554

5555 5556
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

5557 5558 5559
	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);

5560 5561
	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

5562
	/* initialize CPU pools */
5563
	for_each_possible_cpu(cpu) {
5564
		struct worker_pool *pool;
5565

T
Tejun Heo 已提交
5566
		i = 0;
5567
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
5568
			BUG_ON(init_worker_pool(pool));
5569
			pool->cpu = cpu;
5570
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5571
			pool->attrs->nice = std_nice[i++];
5572
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5573

T
Tejun Heo 已提交
5574
			/* alloc pool ID */
5575
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5576
			BUG_ON(worker_pool_assign_id(pool));
5577
			mutex_unlock(&wq_pool_mutex);
5578
		}
5579 5580
	}

5581
	/* create default unbound and ordered wq attrs */
5582 5583 5584 5585 5586 5587
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
5588 5589 5590 5591 5592 5593 5594 5595 5596 5597

		/*
		 * An ordered wq should have only one pwq as ordering is
		 * guaranteed by max_active which is enforced by pwqs.
		 * Turn off NUMA so that dfl_pwq is used for all nodes.
		 */
		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		attrs->no_numa = true;
		ordered_wq_attrs[i] = attrs;
5598 5599
	}

5600
	system_wq = alloc_workqueue("events", 0, 0);
5601
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5602
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5603 5604
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5605 5606
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5607 5608 5609 5610 5611
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5612
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5613 5614 5615
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
T
Tejun Heo 已提交
5616

5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630
	return 0;
}

/**
 * workqueue_init - bring workqueue subsystem fully online
 *
 * This is the latter half of two-staged workqueue subsystem initialization
 * and invoked as soon as kthreads can be created and scheduled.
 * Workqueues have been created and work items queued on them, but there
 * are no kworkers executing the work items yet.  Populate the worker pools
 * with the initial workers and enable future kworker creations.
 */
int __init workqueue_init(void)
{
5631
	struct workqueue_struct *wq;
5632 5633 5634
	struct worker_pool *pool;
	int cpu, bkt;

5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
	/*
	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
	 * CPU to node mapping may not be available that early on some
	 * archs such as power and arm64.  As per-cpu pools created
	 * previously could be missing node hint and unbound pools NUMA
	 * affinity, fix them up.
	 */
	wq_numa_init();

	mutex_lock(&wq_pool_mutex);

	for_each_possible_cpu(cpu) {
		for_each_cpu_worker_pool(pool, cpu) {
			pool->node = cpu_to_node(cpu);
		}
	}

	list_for_each_entry(wq, &workqueues, list)
		wq_update_unbound_numa(wq, smp_processor_id(), true);

	mutex_unlock(&wq_pool_mutex);

5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668
	/* create the initial workers */
	for_each_online_cpu(cpu) {
		for_each_cpu_worker_pool(pool, cpu) {
			pool->flags &= ~POOL_DISASSOCIATED;
			BUG_ON(!create_worker(pool));
		}
	}

	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
		BUG_ON(!create_worker(pool));

	wq_online = true;
T
Tejun Heo 已提交
5669 5670
	wq_watchdog_init();

5671
	return 0;
L
Linus Torvalds 已提交
5672
}