denali.c 39.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/interrupt.h>
#include <linux/delay.h>
21
#include <linux/dma-mapping.h>
22 23 24 25 26 27 28 29 30 31 32
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

#define DENALI_NAND_NAME    "denali-nand"

33 34 35 36
/*
 * indicates whether or not the internal value for the flash bank is
 * valid or not
 */
37
#define CHIP_SELECT_INVALID	-1
38

39 40
#define DENALI_NR_BANKS		4

41
/*
42 43 44 45
 * The bus interface clock, clk_x, is phase aligned with the core clock.  The
 * clk_x is an integral multiple N of the core clk.  The value N is configured
 * at IP delivery time, and its available value is 4, 5, or 6.  We need to align
 * to the largest value to make it work with any possible configuration.
46
 */
47
#define DENALI_CLK_X_MULT	6
48

49 50
/*
 * this macro allows us to convert from an MTD structure to our own
51 52
 * device context (denali) structure.
 */
53 54 55 56
static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
}
57

58 59 60 61
/*
 * this is a helper macro that allows us to
 * format the bank into the proper bits for the controller
 */
62 63
#define BANK(x) ((x) << 24)

64 65 66 67
/*
 * Certain operations for the denali NAND controller use an indexed mode to
 * read/write data. The operation is performed by writing the address value
 * of the command to the device memory followed by the data. This function
68
 * abstracts this common operation.
69
 */
70 71
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
72
{
73 74
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
75 76
}

77 78 79 80 81 82 83 84
/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);

85 86 87 88 89
	denali->max_banks = 1 << (features & FEATURES__N_BANKS);

	/* the encoding changed from rev 5.0 to 5.1 */
	if (denali->revision < 0x0501)
		denali->max_banks <<= 1;
90 91
}

92
static void denali_enable_irq(struct denali_nand_info *denali)
93
{
94
	int i;
95

96 97 98
	for (i = 0; i < DENALI_NR_BANKS; i++)
		iowrite32(U32_MAX, denali->flash_reg + INTR_EN(i));
	iowrite32(GLOBAL_INT_EN_FLAG, denali->flash_reg + GLOBAL_INT_ENABLE);
99 100
}

101
static void denali_disable_irq(struct denali_nand_info *denali)
102
{
103
	int i;
104

105 106 107
	for (i = 0; i < DENALI_NR_BANKS; i++)
		iowrite32(0, denali->flash_reg + INTR_EN(i));
	iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
108 109
}

110 111
static void denali_clear_irq(struct denali_nand_info *denali,
			     int bank, uint32_t irq_status)
112
{
113 114
	/* write one to clear bits */
	iowrite32(irq_status, denali->flash_reg + INTR_STATUS(bank));
115 116
}

117
static void denali_clear_irq_all(struct denali_nand_info *denali)
118
{
119 120
	int i;

121 122
	for (i = 0; i < DENALI_NR_BANKS; i++)
		denali_clear_irq(denali, i, U32_MAX);
123 124
}

125
static irqreturn_t denali_isr(int irq, void *dev_id)
126
{
127 128 129 130
	struct denali_nand_info *denali = dev_id;
	irqreturn_t ret = IRQ_NONE;
	uint32_t irq_status;
	int i;
131

132
	spin_lock(&denali->irq_lock);
133

134 135 136 137
	for (i = 0; i < DENALI_NR_BANKS; i++) {
		irq_status = ioread32(denali->flash_reg + INTR_STATUS(i));
		if (irq_status)
			ret = IRQ_HANDLED;
138

139
		denali_clear_irq(denali, i, irq_status);
140

141 142 143 144
		if (i != denali->flash_bank)
			continue;

		denali->irq_status |= irq_status;
145

146 147 148
		if (denali->irq_status & denali->irq_mask)
			complete(&denali->complete);
	}
149

150
	spin_unlock(&denali->irq_lock);
151

152
	return ret;
153 154
}

155
static void denali_reset_irq(struct denali_nand_info *denali)
156
{
157
	unsigned long flags;
158

159 160 161 162
	spin_lock_irqsave(&denali->irq_lock, flags);
	denali->irq_status = 0;
	denali->irq_mask = 0;
	spin_unlock_irqrestore(&denali->irq_lock, flags);
163 164
}

165 166
static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
				    uint32_t irq_mask)
167
{
168
	unsigned long time_left, flags;
169
	uint32_t irq_status;
170

171
	spin_lock_irqsave(&denali->irq_lock, flags);
172

173 174 175 176 177 178
	irq_status = denali->irq_status;

	if (irq_mask & irq_status) {
		/* return immediately if the IRQ has already happened. */
		spin_unlock_irqrestore(&denali->irq_lock, flags);
		return irq_status;
179
	}
180 181 182 183 184 185 186 187 188 189 190 191 192 193

	denali->irq_mask = irq_mask;
	reinit_completion(&denali->complete);
	spin_unlock_irqrestore(&denali->irq_lock, flags);

	time_left = wait_for_completion_timeout(&denali->complete,
						msecs_to_jiffies(1000));
	if (!time_left) {
		dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
			denali->irq_mask);
		return 0;
	}

	return denali->irq_status;
194 195
}

196
static uint32_t denali_check_irq(struct denali_nand_info *denali)
197
{
198
	unsigned long flags;
199
	uint32_t irq_status;
200

201 202 203
	spin_lock_irqsave(&denali->irq_lock, flags);
	irq_status = denali->irq_status;
	spin_unlock_irqrestore(&denali->irq_lock, flags);
204

205
	return irq_status;
206 207
}

208 209 210 211
/*
 * This helper function setups the registers for ECC and whether or not
 * the spare area will be transferred.
 */
212
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
213 214
				bool transfer_spare)
{
215
	int ecc_en_flag, transfer_spare_flag;
216 217 218 219 220 221

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
222
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
223
	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
224 225
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int i;

	iowrite32(MODE_11 | BANK(denali->flash_bank) | 2, denali->flash_mem);

	for (i = 0; i < len; i++)
		buf[i] = ioread32(denali->flash_mem + 0x10);
}

static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int i;

	iowrite32(MODE_11 | BANK(denali->flash_bank) | 2, denali->flash_mem);

	for (i = 0; i < len; i++)
		iowrite32(buf[i], denali->flash_mem + 0x10);
}

static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint16_t *buf16 = (uint16_t *)buf;
	int i;

	iowrite32(MODE_11 | BANK(denali->flash_bank) | 2, denali->flash_mem);

	for (i = 0; i < len / 2; i++)
		buf16[i] = ioread32(denali->flash_mem + 0x10);
}

static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
			       int len)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	const uint16_t *buf16 = (const uint16_t *)buf;
	int i;

	iowrite32(MODE_11 | BANK(denali->flash_bank) | 2, denali->flash_mem);

	for (i = 0; i < len / 2; i++)
		iowrite32(buf16[i], denali->flash_mem + 0x10);
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	uint8_t byte;

	denali_read_buf(mtd, &byte, 1);

	return byte;
}

static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
{
	denali_write_buf(mtd, &byte, 1);
}

static uint16_t denali_read_word(struct mtd_info *mtd)
{
	uint16_t word;

	denali_read_buf16(mtd, (uint8_t *)&word, 2);

	return word;
}

static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t type;

	if (ctrl & NAND_CLE)
		type = 0;
	else if (ctrl & NAND_ALE)
		type = 1;
	else
		return;

	/*
	 * Some commands are followed by chip->dev_ready or chip->waitfunc.
	 * irq_status must be cleared here to catch the R/B# interrupt later.
	 */
	if (ctrl & NAND_CTRL_CHANGE)
		denali_reset_irq(denali);

	index_addr(denali, MODE_11 | BANK(denali->flash_bank) | type, dat);
}

static int denali_dev_ready(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	return !!(denali_check_irq(denali) & INTR__INT_ACT);
}

325 326 327 328
static int denali_check_erased_page(struct mtd_info *mtd,
				    struct nand_chip *chip, uint8_t *buf,
				    unsigned long uncor_ecc_flags,
				    unsigned int max_bitflips)
329
{
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	uint8_t *ecc_code = chip->buffers->ecccode;
	int ecc_steps = chip->ecc.steps;
	int ecc_size = chip->ecc.size;
	int ecc_bytes = chip->ecc.bytes;
	int i, ret, stat;

	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;

	for (i = 0; i < ecc_steps; i++) {
		if (!(uncor_ecc_flags & BIT(i)))
			continue;

		stat = nand_check_erased_ecc_chunk(buf, ecc_size,
						  ecc_code, ecc_bytes,
						  NULL, 0,
						  chip->ecc.strength);
		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}

		buf += ecc_size;
		ecc_code += ecc_bytes;
	}
359

360
	return max_bitflips;
361
}
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
static int denali_hw_ecc_fixup(struct mtd_info *mtd,
			       struct denali_nand_info *denali,
			       unsigned long *uncor_ecc_flags)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	int bank = denali->flash_bank;
	uint32_t ecc_cor;
	unsigned int max_bitflips;

	ecc_cor = ioread32(denali->flash_reg + ECC_COR_INFO(bank));
	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);

	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
		/*
		 * This flag is set when uncorrectable error occurs at least in
		 * one ECC sector.  We can not know "how many sectors", or
		 * "which sector(s)".  We need erase-page check for all sectors.
		 */
		*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
		return 0;
	}

	max_bitflips = ecc_cor & ECC_COR_INFO__MAX_ERRORS;

	/*
	 * The register holds the maximum of per-sector corrected bitflips.
	 * This is suitable for the return value of the ->read_page() callback.
	 * Unfortunately, we can not know the total number of corrected bits in
	 * the page.  Increase the stats by max_bitflips. (compromised solution)
	 */
	mtd->ecc_stats.corrected += max_bitflips;

	return max_bitflips;
}

398 399 400
#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
401
#define ECC_ERROR_UNCORRECTABLE(x) ((x) & ERR_CORRECTION_INFO__ERROR_TYPE)
402
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
403 404
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

405 406 407
static int denali_sw_ecc_fixup(struct mtd_info *mtd,
			       struct denali_nand_info *denali,
			       unsigned long *uncor_ecc_flags, uint8_t *buf)
408
{
409
	unsigned int ecc_size = denali->nand.ecc.size;
410
	unsigned int bitflips = 0;
411 412 413 414 415
	unsigned int max_bitflips = 0;
	uint32_t err_addr, err_cor_info;
	unsigned int err_byte, err_sector, err_device;
	uint8_t err_cor_value;
	unsigned int prev_sector = 0;
416
	uint32_t irq_status;
417

418
	denali_reset_irq(denali);
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

	do {
		err_addr = ioread32(denali->flash_reg + ECC_ERROR_ADDRESS);
		err_sector = ECC_SECTOR(err_addr);
		err_byte = ECC_BYTE(err_addr);

		err_cor_info = ioread32(denali->flash_reg + ERR_CORRECTION_INFO);
		err_cor_value = ECC_CORRECTION_VALUE(err_cor_info);
		err_device = ECC_ERR_DEVICE(err_cor_info);

		/* reset the bitflip counter when crossing ECC sector */
		if (err_sector != prev_sector)
			bitflips = 0;

		if (ECC_ERROR_UNCORRECTABLE(err_cor_info)) {
			/*
435 436
			 * Check later if this is a real ECC error, or
			 * an erased sector.
437
			 */
438
			*uncor_ecc_flags |= BIT(err_sector);
439
		} else if (err_byte < ecc_size) {
440
			/*
441
			 * If err_byte is larger than ecc_size, means error
442 443 444 445 446 447 448 449
			 * happened in OOB, so we ignore it. It's no need for
			 * us to correct it err_device is represented the NAND
			 * error bits are happened in if there are more than
			 * one NAND connected.
			 */
			int offset;
			unsigned int flips_in_byte;

450
			offset = (err_sector * ecc_size + err_byte) *
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
						denali->devnum + err_device;

			/* correct the ECC error */
			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
			buf[offset] ^= err_cor_value;
			mtd->ecc_stats.corrected += flips_in_byte;
			bitflips += flips_in_byte;

			max_bitflips = max(max_bitflips, bitflips);
		}

		prev_sector = err_sector;
	} while (!ECC_LAST_ERR(err_cor_info));

	/*
	 * Once handle all ecc errors, controller will trigger a
	 * ECC_TRANSACTION_DONE interrupt, so here just wait for
	 * a while for this interrupt
	 */
470 471 472
	irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
	if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
		return -EIO;
473 474

	return max_bitflips;
475 476 477
}

/* programs the controller to either enable/disable DMA transfers */
478
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
479
{
480
	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
481 482 483
	ioread32(denali->flash_reg + DMA_ENABLE);
}

484
static void denali_setup_dma64(struct denali_nand_info *denali,
485
			       dma_addr_t dma_addr, int page, int write)
486 487 488 489
{
	uint32_t mode;
	const int page_count = 1;

490
	mode = MODE_10 | BANK(denali->flash_bank) | page;
491 492 493 494 495 496 497

	/* DMA is a three step process */

	/*
	 * 1. setup transfer type, interrupt when complete,
	 *    burst len = 64 bytes, the number of pages
	 */
498 499
	index_addr(denali, mode,
		   0x01002000 | (64 << 16) | (write << 8) | page_count);
500 501

	/* 2. set memory low address */
502
	index_addr(denali, mode, dma_addr);
503 504

	/* 3. set memory high address */
505
	index_addr(denali, mode, (uint64_t)dma_addr >> 32);
506 507
}

508
static void denali_setup_dma32(struct denali_nand_info *denali,
509
			       dma_addr_t dma_addr, int page, int write)
510
{
511
	uint32_t mode;
512 513 514 515 516 517 518
	const int page_count = 1;

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
519
	index_addr(denali, mode | page, 0x2000 | (write << 8) | page_count);
520 521

	/* 2. set memory high address bits 23:8 */
522
	index_addr(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
523 524

	/* 3. set memory low address bits 23:8 */
525
	index_addr(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
526

527
	/* 4. interrupt when complete, burst len = 64 bytes */
528 529 530
	index_addr(denali, mode | 0x14000, 0x2400);
}

531
static void denali_setup_dma(struct denali_nand_info *denali,
532
			     dma_addr_t dma_addr, int page, int write)
533 534
{
	if (denali->caps & DENALI_CAP_DMA_64BIT)
535
		denali_setup_dma64(denali, dma_addr, page, write);
536
	else
537
		denali_setup_dma32(denali, dma_addr, page, write);
538 539
}

540 541
static int denali_pio_read(struct denali_nand_info *denali, void *buf,
			   size_t size, int page, int raw)
542
{
543 544 545 546
	uint32_t addr = BANK(denali->flash_bank) | page;
	uint32_t *buf32 = (uint32_t *)buf;
	uint32_t irq_status, ecc_err_mask;
	int i;
547

548 549 550 551
	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
		ecc_err_mask = INTR__ECC_UNCOR_ERR;
	else
		ecc_err_mask = INTR__ECC_ERR;
552

553
	denali_reset_irq(denali);
554

555 556 557 558 559 560 561
	iowrite32(MODE_01 | addr, denali->flash_mem);
	for (i = 0; i < size / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);

	irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
	if (!(irq_status & INTR__PAGE_XFER_INC))
		return -EIO;
562

563 564 565 566 567 568 569 570 571 572
	return irq_status & ecc_err_mask ? -EBADMSG : 0;
}

static int denali_pio_write(struct denali_nand_info *denali,
			    const void *buf, size_t size, int page, int raw)
{
	uint32_t addr = BANK(denali->flash_bank) | page;
	const uint32_t *buf32 = (uint32_t *)buf;
	uint32_t irq_status;
	int i;
573

574
	denali_reset_irq(denali);
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622

	iowrite32(MODE_01 | addr, denali->flash_mem);
	for (i = 0; i < size / 4; i++)
		iowrite32(*buf32++, denali->flash_mem + 0x10);

	irq_status = denali_wait_for_irq(denali,
				INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
	if (!(irq_status & INTR__PROGRAM_COMP))
		return -EIO;

	return 0;
}

static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
			   size_t size, int page, int raw, int write)
{
	if (write)
		return denali_pio_write(denali, buf, size, page, raw);
	else
		return denali_pio_read(denali, buf, size, page, raw);
}

static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
			   size_t size, int page, int raw, int write)
{
	dma_addr_t dma_addr = denali->dma_addr;
	uint32_t irq_mask, irq_status, ecc_err_mask;
	enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
	int ret = 0;

	dma_sync_single_for_device(denali->dev, dma_addr, size, dir);

	if (write) {
		/*
		 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
		 * We can use INTR__DMA_CMD_COMP instead.  This flag is asserted
		 * when the page program is completed.
		 */
		irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
		ecc_err_mask = 0;
	} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
		irq_mask = INTR__DMA_CMD_COMP;
		ecc_err_mask = INTR__ECC_UNCOR_ERR;
	} else {
		irq_mask = INTR__DMA_CMD_COMP;
		ecc_err_mask = INTR__ECC_ERR;
	}

623
	denali_enable_dma(denali, true);
624

625 626
	denali_reset_irq(denali);
	denali_setup_dma(denali, dma_addr, page, write);
627 628

	/* wait for operation to complete */
629
	irq_status = denali_wait_for_irq(denali, irq_mask);
630
	if (!(irq_status & INTR__DMA_CMD_COMP))
631
		ret = -EIO;
632 633
	else if (irq_status & ecc_err_mask)
		ret = -EBADMSG;
634

635
	denali_enable_dma(denali, false);
636
	dma_sync_single_for_cpu(denali->dev, dma_addr, size, dir);
637

638
	return ret;
639 640
}

641 642
static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
			    size_t size, int page, int raw, int write)
643
{
644 645 646 647 648 649
	setup_ecc_for_xfer(denali, !raw, raw);

	if (denali->dma_avail)
		return denali_dma_xfer(denali, buf, size, page, raw, write);
	else
		return denali_pio_xfer(denali, buf, size, page, raw, write);
650 651
}

652 653
static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
			    int page, int write)
654
{
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	unsigned int start_cmd = write ? NAND_CMD_SEQIN : NAND_CMD_READ0;
	unsigned int rnd_cmd = write ? NAND_CMD_RNDIN : NAND_CMD_RNDOUT;
	int writesize = mtd->writesize;
	int oobsize = mtd->oobsize;
	uint8_t *bufpoi = chip->oob_poi;
	int ecc_steps = chip->ecc.steps;
	int ecc_size = chip->ecc.size;
	int ecc_bytes = chip->ecc.bytes;
	int oob_skip = denali->bbtskipbytes;
	size_t size = writesize + oobsize;
	int i, pos, len;

	/* BBM at the beginning of the OOB area */
	chip->cmdfunc(mtd, start_cmd, writesize, page);
	if (write)
		chip->write_buf(mtd, bufpoi, oob_skip);
	else
		chip->read_buf(mtd, bufpoi, oob_skip);
	bufpoi += oob_skip;

	/* OOB ECC */
	for (i = 0; i < ecc_steps; i++) {
		pos = ecc_size + i * (ecc_size + ecc_bytes);
		len = ecc_bytes;

		if (pos >= writesize)
			pos += oob_skip;
		else if (pos + len > writesize)
			len = writesize - pos;

		chip->cmdfunc(mtd, rnd_cmd, pos, -1);
		if (write)
			chip->write_buf(mtd, bufpoi, len);
		else
			chip->read_buf(mtd, bufpoi, len);
		bufpoi += len;
		if (len < ecc_bytes) {
			len = ecc_bytes - len;
			chip->cmdfunc(mtd, rnd_cmd, writesize + oob_skip, -1);
			if (write)
				chip->write_buf(mtd, bufpoi, len);
			else
				chip->read_buf(mtd, bufpoi, len);
			bufpoi += len;
		}
	}

	/* OOB free */
	len = oobsize - (bufpoi - chip->oob_poi);
	chip->cmdfunc(mtd, rnd_cmd, size - len, -1);
	if (write)
		chip->write_buf(mtd, bufpoi, len);
	else
		chip->read_buf(mtd, bufpoi, len);
710 711
}

712 713
static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
714
{
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int writesize = mtd->writesize;
	int oobsize = mtd->oobsize;
	int ecc_steps = chip->ecc.steps;
	int ecc_size = chip->ecc.size;
	int ecc_bytes = chip->ecc.bytes;
	void *dma_buf = denali->buf;
	int oob_skip = denali->bbtskipbytes;
	size_t size = writesize + oobsize;
	int ret, i, pos, len;

	ret = denali_data_xfer(denali, dma_buf, size, page, 1, 0);
	if (ret)
		return ret;

	/* Arrange the buffer for syndrome payload/ecc layout */
	if (buf) {
		for (i = 0; i < ecc_steps; i++) {
			pos = i * (ecc_size + ecc_bytes);
			len = ecc_size;

			if (pos >= writesize)
				pos += oob_skip;
			else if (pos + len > writesize)
				len = writesize - pos;

			memcpy(buf, dma_buf + pos, len);
			buf += len;
			if (len < ecc_size) {
				len = ecc_size - len;
				memcpy(buf, dma_buf + writesize + oob_skip,
				       len);
				buf += len;
			}
		}
	}

	if (oob_required) {
		uint8_t *oob = chip->oob_poi;

		/* BBM at the beginning of the OOB area */
		memcpy(oob, dma_buf + writesize, oob_skip);
		oob += oob_skip;

		/* OOB ECC */
		for (i = 0; i < ecc_steps; i++) {
			pos = ecc_size + i * (ecc_size + ecc_bytes);
			len = ecc_bytes;

			if (pos >= writesize)
				pos += oob_skip;
			else if (pos + len > writesize)
				len = writesize - pos;

			memcpy(oob, dma_buf + pos, len);
			oob += len;
			if (len < ecc_bytes) {
				len = ecc_bytes - len;
				memcpy(oob, dma_buf + writesize + oob_skip,
				       len);
				oob += len;
			}
		}

		/* OOB free */
		len = oobsize - (oob - chip->oob_poi);
		memcpy(oob, dma_buf + size - len, len);
	}

	return 0;
785 786
}

787
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
788
			   int page)
789
{
790
	denali_oob_xfer(mtd, chip, page, 0);
791

792
	return 0;
793 794
}

795 796
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
			    int page)
797 798
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
799
	int status;
800

801
	denali_reset_irq(denali);
802

803
	denali_oob_xfer(mtd, chip, page, 1);
804

805 806
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);
807

808 809 810 811 812 813 814 815 816 817
	return status & NAND_STATUS_FAIL ? -EIO : 0;
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
			    uint8_t *buf, int oob_required, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	unsigned long uncor_ecc_flags = 0;
	int stat = 0;
	int ret;
818

819 820 821
	ret = denali_data_xfer(denali, denali->buf, mtd->writesize, page, 0, 0);
	if (ret && ret != -EBADMSG)
		return ret;
822

823
	memcpy(buf, denali->buf, mtd->writesize);
824

825 826
	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
827
	else if (ret == -EBADMSG)
828
		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
829

830 831 832 833
	if (stat < 0)
		return stat;

	if (uncor_ecc_flags) {
834 835 836
		ret = denali_read_oob(mtd, chip, page);
		if (ret)
			return ret;
837

838 839
		stat = denali_check_erased_page(mtd, chip, buf,
						uncor_ecc_flags, stat);
840
	}
841 842

	return stat;
843 844
}

845 846
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
				 const uint8_t *buf, int oob_required, int page)
847 848
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
849 850 851 852 853 854 855 856 857
	int writesize = mtd->writesize;
	int oobsize = mtd->oobsize;
	int ecc_steps = chip->ecc.steps;
	int ecc_size = chip->ecc.size;
	int ecc_bytes = chip->ecc.bytes;
	void *dma_buf = denali->buf;
	int oob_skip = denali->bbtskipbytes;
	size_t size = writesize + oobsize;
	int i, pos, len;
858

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	/*
	 * Fill the buffer with 0xff first except the full page transfer.
	 * This simplifies the logic.
	 */
	if (!buf || !oob_required)
		memset(dma_buf, 0xff, size);

	/* Arrange the buffer for syndrome payload/ecc layout */
	if (buf) {
		for (i = 0; i < ecc_steps; i++) {
			pos = i * (ecc_size + ecc_bytes);
			len = ecc_size;

			if (pos >= writesize)
				pos += oob_skip;
			else if (pos + len > writesize)
				len = writesize - pos;

			memcpy(dma_buf + pos, buf, len);
			buf += len;
			if (len < ecc_size) {
				len = ecc_size - len;
				memcpy(dma_buf + writesize + oob_skip, buf,
				       len);
				buf += len;
			}
		}
	}
887

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	if (oob_required) {
		const uint8_t *oob = chip->oob_poi;

		/* BBM at the beginning of the OOB area */
		memcpy(dma_buf + writesize, oob, oob_skip);
		oob += oob_skip;

		/* OOB ECC */
		for (i = 0; i < ecc_steps; i++) {
			pos = ecc_size + i * (ecc_size + ecc_bytes);
			len = ecc_bytes;

			if (pos >= writesize)
				pos += oob_skip;
			else if (pos + len > writesize)
				len = writesize - pos;

			memcpy(dma_buf + pos, oob, len);
			oob += len;
			if (len < ecc_bytes) {
				len = ecc_bytes - len;
				memcpy(dma_buf + writesize + oob_skip, oob,
				       len);
				oob += len;
			}
		}
914

915 916 917 918
		/* OOB free */
		len = oobsize - (oob - chip->oob_poi);
		memcpy(dma_buf + size - len, oob, len);
	}
919

920 921
	return denali_data_xfer(denali, dma_buf, size, page, 1, 1);
}
922

923 924 925 926
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
			     const uint8_t *buf, int oob_required, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
927

928
	memcpy(denali->buf, buf, mtd->writesize);
929

930 931
	return denali_data_xfer(denali, denali->buf, mtd->writesize, page,
				0, 1);
932 933 934 935 936
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
937

938 939 940 941 942
	denali->flash_bank = chip;
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
943 944 945 946 947 948 949
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_status;

	/* R/B# pin transitioned from low to high? */
	irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);

	return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
950 951
}

952
static int denali_erase(struct mtd_info *mtd, int page)
953 954
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
955
	uint32_t cmd, irq_status;
956

957
	denali_reset_irq(denali);
958 959 960

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
961
	index_addr(denali, cmd, 0x1);
962 963

	/* wait for erase to complete or failure to occur */
964 965
	irq_status = denali_wait_for_irq(denali,
					 INTR__ERASE_COMP | INTR__ERASE_FAIL);
966

967
	return irq_status & INTR__ERASE_COMP ? 0 : NAND_STATUS_FAIL;
968 969
}

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
#define DIV_ROUND_DOWN_ULL(ll, d) \
	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })

static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
				       const struct nand_data_interface *conf)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	const struct nand_sdr_timings *timings;
	unsigned long t_clk;
	int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
	int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
	int addr_2_data_mask;
	uint32_t tmp;

	timings = nand_get_sdr_timings(conf);
	if (IS_ERR(timings))
		return PTR_ERR(timings);

	/* clk_x period in picoseconds */
	t_clk = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
	if (!t_clk)
		return -EINVAL;

	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
		return 0;

	/* tREA -> ACC_CLKS */
	acc_clks = DIV_ROUND_UP(timings->tREA_max, t_clk);
	acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);

	tmp = ioread32(denali->flash_reg + ACC_CLKS);
	tmp &= ~ACC_CLKS__VALUE;
	tmp |= acc_clks;
	iowrite32(tmp, denali->flash_reg + ACC_CLKS);

	/* tRWH -> RE_2_WE */
	re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_clk);
	re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);

	tmp = ioread32(denali->flash_reg + RE_2_WE);
	tmp &= ~RE_2_WE__VALUE;
	tmp |= re_2_we;
	iowrite32(tmp, denali->flash_reg + RE_2_WE);

	/* tRHZ -> RE_2_RE */
	re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_clk);
	re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);

	tmp = ioread32(denali->flash_reg + RE_2_RE);
	tmp &= ~RE_2_RE__VALUE;
	tmp |= re_2_re;
	iowrite32(tmp, denali->flash_reg + RE_2_RE);

	/* tWHR -> WE_2_RE */
	we_2_re = DIV_ROUND_UP(timings->tWHR_min, t_clk);
	we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);

	tmp = ioread32(denali->flash_reg + TWHR2_AND_WE_2_RE);
	tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
	tmp |= we_2_re;
	iowrite32(tmp, denali->flash_reg + TWHR2_AND_WE_2_RE);

	/* tADL -> ADDR_2_DATA */

	/* for older versions, ADDR_2_DATA is only 6 bit wide */
	addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
	if (denali->revision < 0x0501)
		addr_2_data_mask >>= 1;

	addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_clk);
	addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);

	tmp = ioread32(denali->flash_reg + TCWAW_AND_ADDR_2_DATA);
	tmp &= ~addr_2_data_mask;
	tmp |= addr_2_data;
	iowrite32(tmp, denali->flash_reg + TCWAW_AND_ADDR_2_DATA);

	/* tREH, tWH -> RDWR_EN_HI_CNT */
	rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
				  t_clk);
	rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);

	tmp = ioread32(denali->flash_reg + RDWR_EN_HI_CNT);
	tmp &= ~RDWR_EN_HI_CNT__VALUE;
	tmp |= rdwr_en_hi;
	iowrite32(tmp, denali->flash_reg + RDWR_EN_HI_CNT);

	/* tRP, tWP -> RDWR_EN_LO_CNT */
	rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min),
				  t_clk);
	rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
				     t_clk);
	rdwr_en_lo_hi = max(rdwr_en_lo_hi, DENALI_CLK_X_MULT);
	rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
	rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);

	tmp = ioread32(denali->flash_reg + RDWR_EN_LO_CNT);
	tmp &= ~RDWR_EN_LO_CNT__VALUE;
	tmp |= rdwr_en_lo;
	iowrite32(tmp, denali->flash_reg + RDWR_EN_LO_CNT);

	/* tCS, tCEA -> CS_SETUP_CNT */
	cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_clk) - rdwr_en_lo,
			(int)DIV_ROUND_UP(timings->tCEA_max, t_clk) - acc_clks,
			0);
	cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);

	tmp = ioread32(denali->flash_reg + CS_SETUP_CNT);
	tmp &= ~CS_SETUP_CNT__VALUE;
	tmp |= cs_setup;
	iowrite32(tmp, denali->flash_reg + CS_SETUP_CNT);

	return 0;
}
1084

1085 1086
static void denali_reset_banks(struct denali_nand_info *denali)
{
1087
	u32 irq_status;
1088 1089 1090
	int i;

	for (i = 0; i < denali->max_banks; i++) {
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		denali->flash_bank = i;

		denali_reset_irq(denali);

		iowrite32(DEVICE_RESET__BANK(i),
			  denali->flash_reg + DEVICE_RESET);

		irq_status = denali_wait_for_irq(denali,
			INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT);
		if (!(irq_status & INTR__INT_ACT))
1101 1102 1103 1104 1105 1106 1107
			break;
	}

	dev_dbg(denali->dev, "%d chips connected\n", i);
	denali->max_banks = i;
}

1108 1109
static void denali_hw_init(struct denali_nand_info *denali)
{
1110 1111 1112 1113 1114 1115 1116 1117
	/*
	 * The REVISION register may not be reliable.  Platforms are allowed to
	 * override it.
	 */
	if (!denali->revision)
		denali->revision =
				swab16(ioread32(denali->flash_reg + REVISION));

1118 1119
	/*
	 * tell driver how many bit controller will skip before
1120 1121 1122
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
1123
	 */
1124 1125
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1126
	detect_max_banks(denali);
1127 1128
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1129
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1130

1131
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1132 1133

	/* Should set value for these registers when init */
1134 1135
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1136 1137
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
int denali_calc_ecc_bytes(int step_size, int strength)
{
	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
	return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
}
EXPORT_SYMBOL(denali_calc_ecc_bytes);

static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip,
			    struct denali_nand_info *denali)
{
	int oobavail = mtd->oobsize - denali->bbtskipbytes;
	int ret;

	/*
	 * If .size and .strength are already set (usually by DT),
	 * check if they are supported by this controller.
	 */
	if (chip->ecc.size && chip->ecc.strength)
		return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail);

	/*
	 * We want .size and .strength closest to the chip's requirement
	 * unless NAND_ECC_MAXIMIZE is requested.
	 */
	if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
		ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail);
		if (!ret)
			return 0;
	}

	/* Max ECC strength is the last thing we can do */
	return nand_maximize_ecc(chip, denali->ecc_caps, oobavail);
}
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
				struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = denali->bbtskipbytes;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int denali_ooblayout_free(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = chip->ecc.total + denali->bbtskipbytes;
	oobregion->length = mtd->oobsize - oobregion->offset;

	return 0;
}

static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
	.ecc = denali_ooblayout_ecc,
	.free = denali_ooblayout_free,
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1230
/* initialize driver data structures */
1231
static void denali_drv_init(struct denali_nand_info *denali)
1232
{
1233 1234 1235 1236
	/*
	 * the completion object will be used to notify
	 * the callee that the interrupt is done
	 */
1237 1238
	init_completion(&denali->complete);

1239 1240 1241 1242
	/*
	 * the spinlock will be used to synchronize the ISR with any
	 * element that might be access shared data (interrupt status)
	 */
1243 1244 1245
	spin_lock_init(&denali->irq_lock);
}

1246
static int denali_multidev_fixup(struct denali_nand_info *denali)
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
{
	struct nand_chip *chip = &denali->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);

	/*
	 * Support for multi device:
	 * When the IP configuration is x16 capable and two x8 chips are
	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
	 * In this case, the core framework knows nothing about this fact,
	 * so we should tell it the _logical_ pagesize and anything necessary.
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);

1260 1261 1262 1263 1264 1265 1266 1267 1268
	/*
	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
	 */
	if (denali->devnum == 0) {
		denali->devnum = 1;
		iowrite32(1, denali->flash_reg + DEVICES_CONNECTED);
	}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	if (denali->devnum == 1)
		return 0;

	if (denali->devnum != 2) {
		dev_err(denali->dev, "unsupported number of devices %d\n",
			denali->devnum);
		return -EINVAL;
	}

	/* 2 chips in parallel */
	mtd->size <<= 1;
	mtd->erasesize <<= 1;
	mtd->writesize <<= 1;
	mtd->oobsize <<= 1;
	chip->chipsize <<= 1;
	chip->page_shift += 1;
	chip->phys_erase_shift += 1;
	chip->bbt_erase_shift += 1;
	chip->chip_shift += 1;
	chip->pagemask <<= 1;
	chip->ecc.size <<= 1;
	chip->ecc.bytes <<= 1;
	chip->ecc.strength <<= 1;
	denali->bbtskipbytes <<= 1;

	return 0;
1295 1296
}

1297
int denali_init(struct denali_nand_info *denali)
1298
{
1299 1300
	struct nand_chip *chip = &denali->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);
1301
	int ret;
1302

1303
	mtd->dev.parent = denali->dev;
1304 1305 1306
	denali_hw_init(denali);
	denali_drv_init(denali);

1307 1308
	denali_clear_irq_all(denali);

1309 1310 1311 1312
	/* Request IRQ after all the hardware initialization is finished */
	ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
			       IRQF_SHARED, DENALI_NAND_NAME, denali);
	if (ret) {
1313
		dev_err(denali->dev, "Unable to request IRQ\n");
1314
		return ret;
1315 1316
	}

1317
	denali_enable_irq(denali);
1318 1319 1320
	denali_reset_banks(denali);

	denali->flash_bank = CHIP_SELECT_INVALID;
1321

1322
	nand_set_flash_node(chip, denali->dev->of_node);
1323 1324 1325
	/* Fallback to the default name if DT did not give "label" property */
	if (!mtd->name)
		mtd->name = "denali-nand";
1326 1327

	/* register the driver with the NAND core subsystem */
1328 1329
	chip->select_chip = denali_select_chip;
	chip->read_byte = denali_read_byte;
1330 1331 1332 1333
	chip->write_byte = denali_write_byte;
	chip->read_word = denali_read_word;
	chip->cmd_ctrl = denali_cmd_ctrl;
	chip->dev_ready = denali_dev_ready;
1334
	chip->waitfunc = denali_waitfunc;
1335

1336 1337 1338 1339
	/* clk rate info is needed for setup_data_interface */
	if (denali->clk_x_rate)
		chip->setup_data_interface = denali_setup_data_interface;

1340 1341
	/*
	 * scan for NAND devices attached to the controller
1342
	 * this is the first stage in a two step process to register
1343 1344
	 * with the nand subsystem
	 */
1345 1346
	ret = nand_scan_ident(mtd, denali->max_banks, NULL);
	if (ret)
1347
		goto disable_irq;
1348

1349 1350 1351
	denali->buf = devm_kzalloc(denali->dev, mtd->writesize + mtd->oobsize,
				   GFP_KERNEL);
	if (!denali->buf) {
1352
		ret = -ENOMEM;
1353
		goto disable_irq;
1354 1355
	}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__DMA)
		denali->dma_avail = 1;

	if (denali->dma_avail) {
		int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;

		ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit));
		if (ret) {
			dev_info(denali->dev,
				 "Failed to set DMA mask. Disabling DMA.\n");
			denali->dma_avail = 0;
		}
1368 1369
	}

1370 1371 1372 1373 1374 1375 1376 1377 1378
	if (denali->dma_avail) {
		denali->dma_addr = dma_map_single(denali->dev, denali->buf,
						  mtd->writesize + mtd->oobsize,
						  DMA_BIDIRECTIONAL);
		if (dma_mapping_error(denali->dev, denali->dma_addr)) {
			dev_info(denali->dev,
				 "Failed to map DMA buffer. Disabling DMA.\n");
			denali->dma_avail = 0;
		};
1379 1380
	}

1381 1382
	/*
	 * second stage of the NAND scan
1383
	 * this stage requires information regarding ECC and
1384 1385
	 * bad block management.
	 */
1386 1387

	/* Bad block management */
1388 1389
	chip->bbt_td = &bbt_main_descr;
	chip->bbt_md = &bbt_mirror_descr;
1390 1391

	/* skip the scan for now until we have OOB read and write support */
1392 1393 1394
	chip->bbt_options |= NAND_BBT_USE_FLASH;
	chip->options |= NAND_SKIP_BBTSCAN;
	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
1395

1396
	/* no subpage writes on denali */
1397
	chip->options |= NAND_NO_SUBPAGE_WRITE;
1398

1399 1400 1401
	ret = denali_ecc_setup(mtd, chip, denali);
	if (ret) {
		dev_err(denali->dev, "Failed to setup ECC settings.\n");
1402
		goto disable_irq;
1403 1404
	}

1405 1406 1407 1408 1409
	dev_dbg(denali->dev,
		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);

	iowrite32(chip->ecc.strength, denali->flash_reg + ECC_CORRECTION);
1410 1411 1412 1413 1414 1415
	iowrite32(mtd->erasesize / mtd->writesize,
		  denali->flash_reg + PAGES_PER_BLOCK);
	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
		  denali->flash_reg + DEVICE_WIDTH);
	iowrite32(mtd->writesize, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
	iowrite32(mtd->oobsize, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
1416 1417 1418 1419 1420 1421 1422

	iowrite32(chip->ecc.size, denali->flash_reg + CFG_DATA_BLOCK_SIZE);
	iowrite32(chip->ecc.size, denali->flash_reg + CFG_LAST_DATA_BLOCK_SIZE);
	/* chip->ecc.steps is set by nand_scan_tail(); not available here */
	iowrite32(mtd->writesize / chip->ecc.size,
		  denali->flash_reg + CFG_NUM_DATA_BLOCKS);

1423
	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1424

1425 1426 1427 1428 1429 1430 1431
	if (chip->options & NAND_BUSWIDTH_16) {
		chip->read_buf = denali_read_buf16;
		chip->write_buf = denali_write_buf16;
	} else {
		chip->read_buf = denali_read_buf;
		chip->write_buf = denali_write_buf;
	}
1432
	chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
1433 1434 1435 1436 1437 1438 1439
	chip->ecc.read_page = denali_read_page;
	chip->ecc.read_page_raw = denali_read_page_raw;
	chip->ecc.write_page = denali_write_page;
	chip->ecc.write_page_raw = denali_write_page_raw;
	chip->ecc.read_oob = denali_read_oob;
	chip->ecc.write_oob = denali_write_oob;
	chip->erase = denali_erase;
1440

1441 1442
	ret = denali_multidev_fixup(denali);
	if (ret)
1443
		goto disable_irq;
1444

1445 1446
	ret = nand_scan_tail(mtd);
	if (ret)
1447
		goto disable_irq;
1448

1449
	ret = mtd_device_register(mtd, NULL, 0);
1450
	if (ret) {
1451
		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1452
		goto disable_irq;
1453 1454 1455
	}
	return 0;

1456 1457
disable_irq:
	denali_disable_irq(denali);
1458

1459 1460
	return ret;
}
1461
EXPORT_SYMBOL(denali_init);
1462 1463

/* driver exit point */
1464
void denali_remove(struct denali_nand_info *denali)
1465
{
1466
	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1467 1468 1469 1470 1471
	/*
	 * Pre-compute DMA buffer size to avoid any problems in case
	 * nand_release() ever changes in a way that mtd->writesize and
	 * mtd->oobsize are not reliable after this call.
	 */
1472
	int bufsize = mtd->writesize + mtd->oobsize;
1473

1474
	nand_release(mtd);
1475
	denali_disable_irq(denali);
1476
	dma_unmap_single(denali->dev, denali->dma_addr, bufsize,
1477
			 DMA_BIDIRECTIONAL);
1478
}
1479
EXPORT_SYMBOL(denali_remove);