sched.c 164.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
L
Linus Torvalds 已提交
64

65
#include <asm/tlb.h>
L
Linus Torvalds 已提交
66

67 68 69 70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
101 102 103
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
135 136 137
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

138
/*
I
Ingo Molnar 已提交
139
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 141
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
142
static unsigned int static_prio_timeslice(int static_prio)
143
{
I
Ingo Molnar 已提交
144 145 146 147 148 149 150
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
165
/*
I
Ingo Molnar 已提交
166
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
167
 */
I
Ingo Molnar 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
210

I
Ingo Molnar 已提交
211 212 213 214 215 216 217
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
218 219 220 221 222 223 224
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
225
struct rq {
I
Ingo Molnar 已提交
226
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
227 228 229 230 231 232

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
233 234
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235
	unsigned char idle_at_tick;
236 237 238
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
239 240 241 242 243 244 245
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
246
#endif
I
Ingo Molnar 已提交
247
	struct rt_rq  rt;
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

257
	struct task_struct *curr, *idle;
258
	unsigned long next_balance;
L
Linus Torvalds 已提交
259
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
260 261 262 263 264 265 266

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
	unsigned int clock_unstable_events;

L
Linus Torvalds 已提交
267 268 269 270 271 272 273 274
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
275
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
276

277
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
300
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
301 302
};

303
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
304
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
305

I
Ingo Molnar 已提交
306 307 308 309 310
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

311 312 313 314 315 316 317 318 319
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/*
 * Per-runqueue clock, as finegrained as the platform can give us:
 */
static unsigned long long __rq_clock(struct rq *rq)
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
		if (unlikely(delta > 2*TICK_NSEC)) {
			clock++;
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;

	return clock;
}

I
Ingo Molnar 已提交
356
static unsigned long long rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
357 358 359 360 361 362 363 364 365
{
	int this_cpu = smp_processor_id();

	if (this_cpu == cpu_of(rq))
		return __rq_clock(rq);

	return rq->clock;
}

N
Nick Piggin 已提交
366 367
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
368
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
369 370 371 372
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
373 374
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
375 376 377 378 379 380

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

381 382 383 384 385 386 387 388 389
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;

390 391 392
	local_irq_save(flags);
	now = rq_clock(cpu_rq(cpu));
	local_irq_restore(flags);
393 394 395 396

	return now;
}

I
Ingo Molnar 已提交
397 398 399 400 401 402 403 404 405 406 407 408
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
409
#ifndef prepare_arch_switch
410 411 412 413 414 415 416
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
417
static inline int task_running(struct rq *rq, struct task_struct *p)
418 419 420 421
{
	return rq->curr == p;
}

422
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
423 424 425
{
}

426
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
427
{
428 429 430 431
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
432 433 434 435 436 437 438
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

439 440 441 442
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
443
static inline int task_running(struct rq *rq, struct task_struct *p)
444 445 446 447 448 449 450 451
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

452
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

469
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
470 471 472 473 474 475 476 477 478 479 480 481
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
482
#endif
483 484
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
485

486 487 488 489
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
490
static inline struct rq *__task_rq_lock(struct task_struct *p)
491 492
	__acquires(rq->lock)
{
493
	struct rq *rq;
494 495 496 497 498 499 500 501 502 503 504

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
505 506 507 508 509
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
510
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
511 512
	__acquires(rq->lock)
{
513
	struct rq *rq;
L
Linus Torvalds 已提交
514 515 516 517 518 519 520 521 522 523 524 525

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

526
static inline void __task_rq_unlock(struct rq *rq)
527 528 529 530 531
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

532
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
533 534 535 536 537 538
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
539
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
540
 */
541
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
542 543
	__acquires(rq->lock)
{
544
	struct rq *rq;
L
Linus Torvalds 已提交
545 546 547 548 549 550 551 552

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

553 554 555 556 557 558 559 560 561 562 563 564 565 566
/*
 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
 */
void sched_clock_unstable_event(void)
{
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(current, &flags);
	rq->prev_clock_raw = sched_clock();
	rq->clock_unstable_events++;
	task_rq_unlock(rq, &flags);
}

I
Ingo Molnar 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
static u64 div64_likely32(u64 divident, unsigned long divisor)
{
#if BITS_PER_LONG == 32
	if (likely(divident <= 0xffffffffULL))
		return (u32)divident / divisor;
	do_div(divident, divisor);

	return divident;
#else
	return divident / divisor;
#endif
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

640
static unsigned long
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
		lw->inv_weight = WMULT_CONST / lw->weight;

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST)) {
		tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
				>> (WMULT_SHIFT/2);
	} else {
		tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
	}

660
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

static void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

681 682 683 684 685 686 687 688 689
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
690 691 692 693 694 695 696 697 698 699 700
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
701 702 703
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
704 705 706 707 708 709 710 711 712
 */
static const int prio_to_weight[40] = {
/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
/* -10 */  9537,  7629,  6103,  4883,  3906,  3125,  2500,  2000,  1600,  1280,
/*   0 */  NICE_0_LOAD /* 1024 */,
/*   1 */          819,   655,   524,   419,   336,   268,   215,   172,   137,
/*  10 */   110,    87,    70,    56,    45,    36,    29,    23,    18,    15,
};

713 714 715 716 717 718 719
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
720
static const u32 prio_to_wmult[40] = {
721 722 723 724 725 726 727 728
/* -20 */     48356,     60446,     75558,     94446,    118058,
/* -15 */    147573,    184467,    230589,    288233,    360285,
/* -10 */    450347,    562979,    703746,    879575,   1099582,
/*  -5 */   1374389,   1717986,   2147483,   2684354,   3355443,
/*   0 */   4194304,   5244160,   6557201,   8196502,  10250518,
/*   5 */  12782640,  16025997,  19976592,  24970740,  31350126,
/*  10 */  39045157,  49367440,  61356675,  76695844,  95443717,
/*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
729
};
730

I
Ingo Molnar 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
748
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
749 750 751 752 753 754 755 756 757 758 759

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
static void __update_curr_load(struct rq *rq, struct load_stat *ls)
{
	if (rq->curr != rq->idle && ls->load.weight) {
		ls->delta_exec += ls->delta_stat;
		ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
		ls->delta_stat = 0;
	}
}

/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
 * total load (rq->ls.load.weight) on the runqueue, while
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
 * This function is called /before/ updating rq->ls.load
 * and when switching tasks.
 */
static void update_curr_load(struct rq *rq, u64 now)
{
	struct load_stat *ls = &rq->ls;
	u64 start;

	start = ls->load_update_start;
	ls->load_update_start = now;
	ls->delta_stat += now - start;
	/*
	 * Stagger updates to ls->delta_fair. Very frequent updates
	 * can be expensive.
	 */
	if (ls->delta_stat >= sysctl_sched_stat_granularity)
		__update_curr_load(rq, ls);
}

static inline void
inc_load(struct rq *rq, const struct task_struct *p, u64 now)
{
	update_curr_load(rq, now);
	update_load_add(&rq->ls.load, p->se.load.weight);
}

static inline void
dec_load(struct rq *rq, const struct task_struct *p, u64 now)
{
	update_curr_load(rq, now);
	update_load_sub(&rq->ls.load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
{
	rq->nr_running++;
	inc_load(rq, p, now);
}

static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
{
	rq->nr_running--;
	dec_load(rq, p, now);
}

826 827
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
828 829 830
	task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
	p->se.wait_runtime = 0;

831
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
832 833 834 835
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
836

I
Ingo Molnar 已提交
837 838 839 840 841 842 843 844
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
845

I
Ingo Molnar 已提交
846 847
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
848 849
}

I
Ingo Molnar 已提交
850 851
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
852
{
I
Ingo Molnar 已提交
853 854 855
	sched_info_queued(p);
	p->sched_class->enqueue_task(rq, p, wakeup, now);
	p->se.on_rq = 1;
856 857
}

I
Ingo Molnar 已提交
858 859
static void
dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
860
{
I
Ingo Molnar 已提交
861 862
	p->sched_class->dequeue_task(rq, p, sleep, now);
	p->se.on_rq = 0;
863 864
}

865
/*
I
Ingo Molnar 已提交
866
 * __normal_prio - return the priority that is based on the static prio
867 868 869
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
870
	return p->static_prio;
871 872
}

873 874 875 876 877 878 879
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
880
static inline int normal_prio(struct task_struct *p)
881 882 883
{
	int prio;

884
	if (task_has_rt_policy(p))
885 886 887 888 889 890 891 892 893 894 895 896 897
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
898
static int effective_prio(struct task_struct *p)
899 900 901 902 903 904 905 906 907 908 909 910
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
911
/*
I
Ingo Molnar 已提交
912
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
913
 */
I
Ingo Molnar 已提交
914
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
915
{
I
Ingo Molnar 已提交
916
	u64 now = rq_clock(rq);
917

I
Ingo Molnar 已提交
918 919
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
920

I
Ingo Molnar 已提交
921 922
	enqueue_task(rq, p, wakeup, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
923 924 925
}

/*
I
Ingo Molnar 已提交
926
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
927
 */
I
Ingo Molnar 已提交
928
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
929
{
I
Ingo Molnar 已提交
930
	u64 now = rq_clock(rq);
L
Linus Torvalds 已提交
931

I
Ingo Molnar 已提交
932 933
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
934

I
Ingo Molnar 已提交
935 936
	enqueue_task(rq, p, 0, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
937 938 939 940 941
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
I
Ingo Molnar 已提交
942 943
static void
deactivate_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
L
Linus Torvalds 已提交
944
{
I
Ingo Molnar 已提交
945 946 947 948 949
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep, now);
	dec_nr_running(p, rq, now);
L
Linus Torvalds 已提交
950 951 952 953 954 955
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
956
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
957 958 959 960
{
	return cpu_curr(task_cpu(p)) == p;
}

961 962 963
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
I
Ingo Molnar 已提交
964 965 966 967 968 969 970 971 972
	return cpu_rq(cpu)->ls.load.weight;
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
973 974
}

L
Linus Torvalds 已提交
975
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
976

I
Ingo Molnar 已提交
977
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
978
{
I
Ingo Molnar 已提交
979 980 981 982 983
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
984 985
	fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;

I
Ingo Molnar 已提交
986 987
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
I
Ingo Molnar 已提交
988 989 990 991 992 993
	if (p->se.sleep_start_fair)
		p->se.sleep_start_fair -= fair_clock_offset;

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
994 995 996 997
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
I
Ingo Molnar 已提交
998
#endif
I
Ingo Molnar 已提交
999 1000

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1001 1002
}

1003
struct migration_req {
L
Linus Torvalds 已提交
1004 1005
	struct list_head list;

1006
	struct task_struct *task;
L
Linus Torvalds 已提交
1007 1008 1009
	int dest_cpu;

	struct completion done;
1010
};
L
Linus Torvalds 已提交
1011 1012 1013 1014 1015

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1016
static int
1017
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1018
{
1019
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1020 1021 1022 1023 1024

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1025
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1026 1027 1028 1029 1030 1031 1032 1033
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1034

L
Linus Torvalds 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1047
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1048 1049
{
	unsigned long flags;
I
Ingo Molnar 已提交
1050
	int running, on_rq;
1051
	struct rq *rq;
L
Linus Torvalds 已提交
1052 1053

repeat:
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1081
	rq = task_rq_lock(p, &flags);
1082
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1083
	on_rq = p->se.on_rq;
1084 1085 1086 1087 1088 1089 1090 1091 1092
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1093 1094 1095
		cpu_relax();
		goto repeat;
	}
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1106
	if (unlikely(on_rq)) {
1107 1108 1109 1110 1111 1112 1113 1114 1115
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1131
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1143 1144
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1145 1146 1147 1148
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1149
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1150
{
1151
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1152
	unsigned long total = weighted_cpuload(cpu);
1153

1154
	if (type == 0)
I
Ingo Molnar 已提交
1155
		return total;
1156

I
Ingo Molnar 已提交
1157
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1158 1159 1160
}

/*
1161 1162
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1163
 */
N
Nick Piggin 已提交
1164
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1165
{
1166
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1167
	unsigned long total = weighted_cpuload(cpu);
1168

N
Nick Piggin 已提交
1169
	if (type == 0)
I
Ingo Molnar 已提交
1170
		return total;
1171

I
Ingo Molnar 已提交
1172
	return max(rq->cpu_load[type-1], total);
1173 1174 1175 1176 1177 1178 1179
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1180
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1181
	unsigned long total = weighted_cpuload(cpu);
1182 1183
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1184
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1185 1186
}

N
Nick Piggin 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1204 1205 1206 1207
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1224 1225
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1226 1227 1228 1229 1230 1231 1232 1233

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1234
nextgroup:
N
Nick Piggin 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1244
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1245
 */
I
Ingo Molnar 已提交
1246 1247
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1248
{
1249
	cpumask_t tmp;
N
Nick Piggin 已提交
1250 1251 1252 1253
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1254 1255 1256 1257
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1258
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1284

1285
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1286 1287 1288
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1289 1290
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1291 1292
		if (tmp->flags & flag)
			sd = tmp;
1293
	}
N
Nick Piggin 已提交
1294 1295 1296 1297

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1298 1299 1300 1301 1302 1303
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1304 1305 1306

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1307 1308 1309 1310
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1311

1312
		new_cpu = find_idlest_cpu(group, t, cpu);
1313 1314 1315 1316 1317
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1318

1319
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1346
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1347 1348 1349 1350 1351
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1362 1363 1364 1365
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1366
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1367 1368 1369 1370
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1371
		} else {
N
Nick Piggin 已提交
1372
			break;
I
Ingo Molnar 已提交
1373
		}
L
Linus Torvalds 已提交
1374 1375 1376 1377
	}
	return cpu;
}
#else
1378
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1398
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1399 1400 1401 1402
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1403
	struct rq *rq;
L
Linus Torvalds 已提交
1404
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1405
	struct sched_domain *sd, *this_sd = NULL;
1406
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1407 1408 1409 1410 1411 1412 1413 1414
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1415
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1425 1426
	new_cpu = cpu;

L
Linus Torvalds 已提交
1427 1428 1429
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1430 1431 1432 1433 1434 1435 1436 1437
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1438 1439 1440
		}
	}

N
Nick Piggin 已提交
1441
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1442 1443 1444
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1445
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1446
	 */
N
Nick Piggin 已提交
1447 1448 1449
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1450

1451 1452
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1453 1454
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1455

N
Nick Piggin 已提交
1456 1457
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1458 1459
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1460 1461 1462
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1463

L
Linus Torvalds 已提交
1464
			/*
1465 1466 1467
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1468
			 */
1469
			if (sync)
I
Ingo Molnar 已提交
1470
				tl -= current->se.load.weight;
1471 1472

			if ((tl <= load &&
1473
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1474
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1508
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1509 1510 1511 1512 1513 1514 1515 1516
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1517
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1518 1519 1520 1521 1522 1523 1524 1525
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1526 1527
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1538
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1539 1540 1541 1542 1543 1544
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1545
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1546 1547 1548 1549 1550 1551 1552
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
	p->se.delta_exec		= 0;
	p->se.delta_fair_run		= 0;
	p->se.delta_fair_sleep		= 0;
	p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
1565 1566 1567 1568
	p->se.sleep_start_fair		= 0;

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
I
Ingo Molnar 已提交
1579
#endif
N
Nick Piggin 已提交
1580

I
Ingo Molnar 已提交
1581 1582
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1583

1584 1585 1586 1587
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1588 1589 1590 1591 1592 1593 1594
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1610 1611 1612 1613 1614 1615

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1616
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1617
	if (likely(sched_info_on()))
1618
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1619
#endif
1620
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1621 1622
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1623
#ifdef CONFIG_PREEMPT
1624
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1625
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1626
#endif
N
Nick Piggin 已提交
1627
	put_cpu();
L
Linus Torvalds 已提交
1628 1629
}

I
Ingo Molnar 已提交
1630 1631 1632 1633 1634 1635
/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
unsigned int __read_mostly sysctl_sched_child_runs_first = 1;

L
Linus Torvalds 已提交
1636 1637 1638 1639 1640 1641 1642
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1643
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1644 1645
{
	unsigned long flags;
I
Ingo Molnar 已提交
1646 1647
	struct rq *rq;
	int this_cpu;
I
Ingo Molnar 已提交
1648
	u64 now;
L
Linus Torvalds 已提交
1649 1650

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1651
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1652
	this_cpu = smp_processor_id(); /* parent's CPU */
I
Ingo Molnar 已提交
1653
	now = rq_clock(rq);
L
Linus Torvalds 已提交
1654 1655 1656

	p->prio = effective_prio(p);

I
Ingo Molnar 已提交
1657 1658 1659 1660
	if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
			(clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
			!current->se.on_rq) {

I
Ingo Molnar 已提交
1661
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1662 1663
	} else {
		/*
I
Ingo Molnar 已提交
1664 1665
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1666
		 */
I
Ingo Molnar 已提交
1667 1668
		p->sched_class->task_new(rq, p, now);
		inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
1669
	}
I
Ingo Molnar 已提交
1670 1671
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1672 1673
}

1674 1675 1676
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1677 1678
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1679 1680 1681 1682 1683 1684 1685 1686 1687
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1688
 * @notifier: notifier struct to unregister
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1732 1733 1734
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1735
 * @prev: the current task that is being switched out
1736 1737 1738 1739 1740 1741 1742 1743 1744
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1745 1746 1747
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1748
{
1749
	fire_sched_out_preempt_notifiers(prev, next);
1750 1751 1752 1753
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1754 1755
/**
 * finish_task_switch - clean up after a task-switch
1756
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1757 1758
 * @prev: the thread we just switched away from.
 *
1759 1760 1761 1762
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1763 1764 1765 1766 1767 1768
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1769
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1770 1771 1772
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1773
	long prev_state;
L
Linus Torvalds 已提交
1774 1775 1776 1777 1778

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1779
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1780 1781
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1782
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1783 1784 1785 1786 1787
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1788
	prev_state = prev->state;
1789 1790
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1791
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1792 1793
	if (mm)
		mmdrop(mm);
1794
	if (unlikely(prev_state == TASK_DEAD)) {
1795 1796 1797
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1798
		 */
1799
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1800
		put_task_struct(prev);
1801
	}
L
Linus Torvalds 已提交
1802 1803 1804 1805 1806 1807
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1808
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1809 1810
	__releases(rq->lock)
{
1811 1812
	struct rq *rq = this_rq();

1813 1814 1815 1816 1817
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1818 1819 1820 1821 1822 1823 1824 1825
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1826
static inline void
1827
context_switch(struct rq *rq, struct task_struct *prev,
1828
	       struct task_struct *next)
L
Linus Torvalds 已提交
1829
{
I
Ingo Molnar 已提交
1830
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1831

1832
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1833 1834
	mm = next->mm;
	oldmm = prev->active_mm;
1835 1836 1837 1838 1839 1840 1841
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1842
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1843 1844 1845 1846 1847 1848
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1849
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1850 1851 1852
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1853 1854 1855 1856 1857 1858 1859
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1860
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1861
#endif
L
Linus Torvalds 已提交
1862 1863 1864 1865

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1866 1867 1868 1869 1870 1871 1872
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1896
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1911 1912
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1913

1914
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1924
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1925 1926 1927 1928 1929
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1945
/*
I
Ingo Molnar 已提交
1946 1947
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1948
 */
I
Ingo Molnar 已提交
1949
static void update_cpu_load(struct rq *this_rq)
1950
{
I
Ingo Molnar 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
	u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
	unsigned long total_load = this_rq->ls.load.weight;
	unsigned long this_load =  total_load;
	struct load_stat *ls = &this_rq->ls;
	u64 now = __rq_clock(this_rq);
	int i, scale;

	this_rq->nr_load_updates++;
	if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
		goto do_avg;

	/* Update delta_fair/delta_exec fields first */
	update_curr_load(this_rq, now);

	fair_delta64 = ls->delta_fair + 1;
	ls->delta_fair = 0;

	exec_delta64 = ls->delta_exec + 1;
	ls->delta_exec = 0;

	sample_interval64 = now - ls->load_update_last;
	ls->load_update_last = now;

	if ((s64)sample_interval64 < (s64)TICK_NSEC)
		sample_interval64 = TICK_NSEC;

	if (exec_delta64 > sample_interval64)
		exec_delta64 = sample_interval64;

	idle_delta64 = sample_interval64 - exec_delta64;

	tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
	tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);

	this_load = (unsigned long)tmp64;

do_avg:

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;

		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2000 2001
}

I
Ingo Molnar 已提交
2002 2003
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2004 2005 2006 2007 2008 2009
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2010
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2011 2012 2013
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2014
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2015 2016 2017 2018
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2019
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2035
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2049
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2050 2051 2052 2053
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2054 2055 2056 2057 2058
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2059
	if (unlikely(!spin_trylock(&busiest->lock))) {
2060
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2075
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2076
{
2077
	struct migration_req req;
L
Linus Torvalds 已提交
2078
	unsigned long flags;
2079
	struct rq *rq;
L
Linus Torvalds 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2090

L
Linus Torvalds 已提交
2091 2092 2093 2094 2095
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2096

L
Linus Torvalds 已提交
2097 2098 2099 2100 2101 2102 2103
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2104 2105
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2106 2107 2108 2109
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2110
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2111
	put_cpu();
N
Nick Piggin 已提交
2112 2113
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2114 2115 2116 2117 2118 2119
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2120 2121
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2122
{
I
Ingo Molnar 已提交
2123
	deactivate_task(src_rq, p, 0, rq_clock(src_rq));
L
Linus Torvalds 已提交
2124
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2125
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2126 2127 2128 2129
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2130
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2131 2132 2133 2134 2135
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2136
static
2137
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2138
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2139
		     int *all_pinned)
L
Linus Torvalds 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2149 2150 2151 2152
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2153 2154

	/*
I
Ingo Molnar 已提交
2155
	 * Aggressive migration if too many balance attempts have failed:
L
Linus Torvalds 已提交
2156
	 */
I
Ingo Molnar 已提交
2157
	if (sd->nr_balance_failed > sd->cache_nice_tries)
L
Linus Torvalds 已提交
2158 2159 2160 2161 2162
		return 1;

	return 1;
}

I
Ingo Molnar 已提交
2163
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2164
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2165
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2166
		      int *all_pinned, unsigned long *load_moved,
2167
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2168
{
I
Ingo Molnar 已提交
2169 2170 2171
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2172

2173
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2174 2175
		goto out;

2176 2177
	pinned = 1;

L
Linus Torvalds 已提交
2178
	/*
I
Ingo Molnar 已提交
2179
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2180
	 */
I
Ingo Molnar 已提交
2181 2182 2183
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2184
		goto out;
2185 2186 2187 2188 2189
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2190 2191
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2192
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2193 2194 2195
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2196 2197
	}

I
Ingo Molnar 已提交
2198
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2199
	pulled++;
I
Ingo Molnar 已提交
2200
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2201

2202 2203 2204 2205 2206
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2207 2208
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2209 2210
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2211 2212 2213 2214 2215 2216 2217 2218
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2219 2220 2221

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2222
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2223 2224 2225
	return pulled;
}

I
Ingo Molnar 已提交
2226
/*
P
Peter Williams 已提交
2227 2228 2229
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2230 2231 2232 2233
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2234
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2235 2236 2237 2238
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2239
	unsigned long total_load_moved = 0;
2240
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2241 2242

	do {
P
Peter Williams 已提交
2243 2244 2245
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2246
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2247
		class = class->next;
P
Peter Williams 已提交
2248
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2249

P
Peter Williams 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct sched_class *class;
2264
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2265 2266 2267

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2268 2269
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2270 2271 2272
			return 1;

	return 0;
I
Ingo Molnar 已提交
2273 2274
}

L
Linus Torvalds 已提交
2275 2276
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2277 2278
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2279 2280 2281
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2282 2283
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2284 2285 2286
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2287
	unsigned long max_pull;
2288 2289
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2290
	int load_idx;
2291 2292 2293 2294 2295 2296
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2297 2298

	max_load = this_load = total_load = total_pwr = 0;
2299 2300
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2301
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2302
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2303
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2304 2305 2306
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2307 2308

	do {
2309
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2310 2311
		int local_group;
		int i;
2312
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2313
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2314 2315 2316

		local_group = cpu_isset(this_cpu, group->cpumask);

2317 2318 2319
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2320
		/* Tally up the load of all CPUs in the group */
2321
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2322 2323

		for_each_cpu_mask(i, group->cpumask) {
2324 2325 2326 2327 2328 2329
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2330

2331
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2332 2333
				*sd_idle = 0;

L
Linus Torvalds 已提交
2334
			/* Bias balancing toward cpus of our domain */
2335 2336 2337 2338 2339 2340
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2341
				load = target_load(i, load_idx);
2342
			} else
N
Nick Piggin 已提交
2343
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2344 2345

			avg_load += load;
2346
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2347
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2348 2349
		}

2350 2351 2352
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2353 2354
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2355
		 */
2356 2357
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2358 2359 2360 2361
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2362
		total_load += avg_load;
2363
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2364 2365

		/* Adjust by relative CPU power of the group */
2366 2367
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2368

2369
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2370

L
Linus Torvalds 已提交
2371 2372 2373
		if (local_group) {
			this_load = avg_load;
			this = group;
2374 2375 2376
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2377
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2378 2379
			max_load = avg_load;
			busiest = group;
2380 2381
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2382
		}
2383 2384 2385 2386 2387 2388

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2389 2390 2391
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2392 2393 2394 2395 2396 2397 2398 2399 2400

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2401
		/*
2402 2403
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2404 2405
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2406
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2407
			goto group_next;
2408

I
Ingo Molnar 已提交
2409
		/*
2410
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2411 2412 2413 2414 2415
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2416 2417
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2418 2419
			group_min = group;
			min_nr_running = sum_nr_running;
2420 2421
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2422
		}
2423

I
Ingo Molnar 已提交
2424
		/*
2425
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2437
		}
2438 2439
group_next:
#endif
L
Linus Torvalds 已提交
2440 2441 2442
		group = group->next;
	} while (group != sd->groups);

2443
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2444 2445 2446 2447 2448 2449 2450 2451
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2452
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2476 2477

	/* Don't want to pull so many tasks that a group would go idle */
2478
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2479

L
Linus Torvalds 已提交
2480
	/* How much load to actually move to equalise the imbalance */
2481 2482
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2483 2484
			/ SCHED_LOAD_SCALE;

2485 2486 2487 2488 2489 2490
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
I
Ingo Molnar 已提交
2491
	if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2492
		unsigned long tmp, pwr_now, pwr_move;
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2504

I
Ingo Molnar 已提交
2505 2506
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2507
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2508 2509 2510 2511 2512 2513 2514 2515 2516
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2517 2518 2519 2520
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2521 2522 2523
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2524 2525
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2526
		if (max_load > tmp)
2527
			pwr_move += busiest->__cpu_power *
2528
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2529 2530

		/* Amount of load we'd add */
2531
		if (max_load * busiest->__cpu_power <
2532
				busiest_load_per_task * SCHED_LOAD_SCALE)
2533 2534
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2535
		else
2536 2537 2538 2539
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2540 2541 2542 2543 2544 2545
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2546
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2547 2548 2549 2550 2551
	}

	return busiest;

out_balanced:
2552
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2553
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2554
		goto ret;
L
Linus Torvalds 已提交
2555

2556 2557 2558 2559 2560
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2561
ret:
L
Linus Torvalds 已提交
2562 2563 2564 2565 2566 2567 2568
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2569
static struct rq *
I
Ingo Molnar 已提交
2570
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2571
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2572
{
2573
	struct rq *busiest = NULL, *rq;
2574
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2575 2576 2577
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2578
		unsigned long wl;
2579 2580 2581 2582

		if (!cpu_isset(i, *cpus))
			continue;

2583
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2584
		wl = weighted_cpuload(i);
2585

I
Ingo Molnar 已提交
2586
		if (rq->nr_running == 1 && wl > imbalance)
2587
			continue;
L
Linus Torvalds 已提交
2588

I
Ingo Molnar 已提交
2589 2590
		if (wl > max_load) {
			max_load = wl;
2591
			busiest = rq;
L
Linus Torvalds 已提交
2592 2593 2594 2595 2596 2597
		}
	}

	return busiest;
}

2598 2599 2600 2601 2602 2603
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2604 2605 2606 2607
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2608
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2609
			struct sched_domain *sd, enum cpu_idle_type idle,
2610
			int *balance)
L
Linus Torvalds 已提交
2611
{
P
Peter Williams 已提交
2612
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2613 2614
	struct sched_group *group;
	unsigned long imbalance;
2615
	struct rq *busiest;
2616
	cpumask_t cpus = CPU_MASK_ALL;
2617
	unsigned long flags;
N
Nick Piggin 已提交
2618

2619 2620 2621
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2622
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2623
	 * portraying it as CPU_NOT_IDLE.
2624
	 */
I
Ingo Molnar 已提交
2625
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2626
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2627
		sd_idle = 1;
L
Linus Torvalds 已提交
2628 2629 2630

	schedstat_inc(sd, lb_cnt[idle]);

2631 2632
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2633 2634
				   &cpus, balance);

2635
	if (*balance == 0)
2636 2637
		goto out_balanced;

L
Linus Torvalds 已提交
2638 2639 2640 2641 2642
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2643
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2644 2645 2646 2647 2648
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2649
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2650 2651 2652

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2653
	ld_moved = 0;
L
Linus Torvalds 已提交
2654 2655 2656 2657
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2658
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2659 2660
		 * correctly treated as an imbalance.
		 */
2661
		local_irq_save(flags);
N
Nick Piggin 已提交
2662
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2663
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2664
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2665
		double_rq_unlock(this_rq, busiest);
2666
		local_irq_restore(flags);
2667

2668 2669 2670
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2671
		if (ld_moved && this_cpu != smp_processor_id())
2672 2673
			resched_cpu(this_cpu);

2674
		/* All tasks on this runqueue were pinned by CPU affinity */
2675 2676 2677 2678
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2679
			goto out_balanced;
2680
		}
L
Linus Torvalds 已提交
2681
	}
2682

P
Peter Williams 已提交
2683
	if (!ld_moved) {
L
Linus Torvalds 已提交
2684 2685 2686 2687 2688
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2689
			spin_lock_irqsave(&busiest->lock, flags);
2690 2691 2692 2693 2694

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2695
				spin_unlock_irqrestore(&busiest->lock, flags);
2696 2697 2698 2699
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2700 2701 2702
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2703
				active_balance = 1;
L
Linus Torvalds 已提交
2704
			}
2705
			spin_unlock_irqrestore(&busiest->lock, flags);
2706
			if (active_balance)
L
Linus Torvalds 已提交
2707 2708 2709 2710 2711 2712
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2713
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2714
		}
2715
	} else
L
Linus Torvalds 已提交
2716 2717
		sd->nr_balance_failed = 0;

2718
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2719 2720
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2721 2722 2723 2724 2725 2726 2727 2728 2729
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2730 2731
	}

P
Peter Williams 已提交
2732
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2733
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2734
		return -1;
P
Peter Williams 已提交
2735
	return ld_moved;
L
Linus Torvalds 已提交
2736 2737 2738 2739

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2740
	sd->nr_balance_failed = 0;
2741 2742

out_one_pinned:
L
Linus Torvalds 已提交
2743
	/* tune up the balancing interval */
2744 2745
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2746 2747
		sd->balance_interval *= 2;

2748
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2749
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2750
		return -1;
L
Linus Torvalds 已提交
2751 2752 2753 2754 2755 2756 2757
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2758
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2759 2760
 * this_rq is locked.
 */
2761
static int
2762
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2763 2764
{
	struct sched_group *group;
2765
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2766
	unsigned long imbalance;
P
Peter Williams 已提交
2767
	int ld_moved = 0;
N
Nick Piggin 已提交
2768
	int sd_idle = 0;
2769
	int all_pinned = 0;
2770
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2771

2772 2773 2774 2775
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2776
	 * portraying it as CPU_NOT_IDLE.
2777 2778 2779
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2780
		sd_idle = 1;
L
Linus Torvalds 已提交
2781

I
Ingo Molnar 已提交
2782
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2783
redo:
I
Ingo Molnar 已提交
2784
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2785
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2786
	if (!group) {
I
Ingo Molnar 已提交
2787
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2788
		goto out_balanced;
L
Linus Torvalds 已提交
2789 2790
	}

I
Ingo Molnar 已提交
2791
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2792
				&cpus);
N
Nick Piggin 已提交
2793
	if (!busiest) {
I
Ingo Molnar 已提交
2794
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2795
		goto out_balanced;
L
Linus Torvalds 已提交
2796 2797
	}

N
Nick Piggin 已提交
2798 2799
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2800
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2801

P
Peter Williams 已提交
2802
	ld_moved = 0;
2803 2804 2805
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
P
Peter Williams 已提交
2806
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2807 2808
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2809
		spin_unlock(&busiest->lock);
2810

2811
		if (unlikely(all_pinned)) {
2812 2813 2814 2815
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2816 2817
	}

P
Peter Williams 已提交
2818
	if (!ld_moved) {
I
Ingo Molnar 已提交
2819
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2820 2821
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2822 2823
			return -1;
	} else
2824
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2825

P
Peter Williams 已提交
2826
	return ld_moved;
2827 2828

out_balanced:
I
Ingo Molnar 已提交
2829
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2830
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2831
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2832
		return -1;
2833
	sd->nr_balance_failed = 0;
2834

2835
	return 0;
L
Linus Torvalds 已提交
2836 2837 2838 2839 2840 2841
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2842
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2843 2844
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2845 2846
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2847 2848

	for_each_domain(this_cpu, sd) {
2849 2850 2851 2852 2853 2854
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2855
			/* If we've pulled tasks over stop searching: */
2856
			pulled_task = load_balance_newidle(this_cpu,
2857 2858 2859 2860 2861 2862 2863
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2864
	}
I
Ingo Molnar 已提交
2865
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2866 2867 2868 2869 2870
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2871
	}
L
Linus Torvalds 已提交
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2882
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2883
{
2884
	int target_cpu = busiest_rq->push_cpu;
2885 2886
	struct sched_domain *sd;
	struct rq *target_rq;
2887

2888
	/* Is there any task to move? */
2889 2890 2891 2892
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2893 2894

	/*
2895 2896 2897
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2898
	 */
2899
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2900

2901 2902 2903 2904
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2905
	for_each_domain(target_cpu, sd) {
2906
		if ((sd->flags & SD_LOAD_BALANCE) &&
2907
		    cpu_isset(busiest_cpu, sd->span))
2908
				break;
2909
	}
2910

2911 2912
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2913

P
Peter Williams 已提交
2914 2915
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2916 2917 2918 2919
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2920
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2921 2922
}

2923 2924 2925 2926 2927 2928 2929 2930 2931
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2932
/*
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2943
 *
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3000 3001 3002 3003 3004
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
3005
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3006
{
3007 3008
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3009 3010
	unsigned long interval;
	struct sched_domain *sd;
3011
	/* Earliest time when we have to do rebalance again */
3012
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
3013

3014
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3015 3016 3017 3018
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3019
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3020 3021 3022 3023 3024 3025
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3026 3027 3028
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3029

3030 3031 3032 3033 3034
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3035
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3036
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3037 3038
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3039 3040 3041
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3042
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3043
			}
3044
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3045
		}
3046 3047 3048
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3049 3050
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
3051 3052 3053 3054 3055 3056 3057 3058

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3059
	}
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3070 3071 3072 3073
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3074

I
Ingo Molnar 已提交
3075
	rebalance_domains(this_cpu, idle);
3076 3077 3078 3079 3080 3081 3082

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3083 3084
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3085 3086 3087 3088
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3089
		cpu_clear(this_cpu, cpus);
3090 3091 3092 3093 3094 3095 3096 3097 3098
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

I
Ingo Molnar 已提交
3099
			rebalance_domains(balance_cpu, SCHED_IDLE);
3100 3101

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3102 3103
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3116
static inline void trigger_load_balance(struct rq *rq, int cpu)
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3168
}
I
Ingo Molnar 已提交
3169 3170 3171

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3172 3173 3174
/*
 * on UP we do not need to balance between CPUs:
 */
3175
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3176 3177
{
}
I
Ingo Molnar 已提交
3178 3179 3180 3181 3182 3183

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3184
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3185 3186 3187 3188 3189 3190
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3191 3192 3193 3194 3195 3196 3197
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3198 3199
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3200
 */
3201
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3202 3203
{
	unsigned long flags;
3204 3205
	u64 ns, delta_exec;
	struct rq *rq;
3206

3207 3208 3209 3210 3211 3212 3213 3214
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
		delta_exec = rq_clock(rq) - p->se.exec_start;
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3215

L
Linus Torvalds 已提交
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3250
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3280
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3303 3304 3305
	struct task_struct *curr = rq->curr;

	spin_lock(&rq->lock);
3306
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3307 3308 3309
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3310

3311
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3312 3313
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3314
#endif
L
Linus Torvalds 已提交
3315 3316 3317 3318 3319 3320 3321 3322 3323
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3324 3325
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3326 3327 3328 3329
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3330 3331
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3332 3333 3334 3335 3336 3337 3338 3339
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3340 3341
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3342 3343 3344
	/*
	 * Is the spinlock portion underflowing?
	 */
3345 3346 3347 3348
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3349 3350 3351 3352 3353 3354 3355
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3356
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3357
 */
I
Ingo Molnar 已提交
3358
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3359
{
I
Ingo Molnar 已提交
3360 3361 3362 3363 3364 3365 3366
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3367

I
Ingo Molnar 已提交
3368 3369 3370 3371 3372
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3373 3374 3375 3376 3377
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3378 3379 3380
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3381 3382
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3394 3395

	/*
I
Ingo Molnar 已提交
3396 3397
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3398
	 */
I
Ingo Molnar 已提交
3399 3400 3401 3402
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
		p = fair_sched_class.pick_next_task(rq, now);
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3403 3404
	}

I
Ingo Molnar 已提交
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
	class = sched_class_highest;
	for ( ; ; ) {
		p = class->pick_next_task(rq, now);
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3417

I
Ingo Molnar 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	u64 now;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3441 3442

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3443
	clear_tsk_need_resched(prev);
I
Ingo Molnar 已提交
3444
	now = __rq_clock(rq);
L
Linus Torvalds 已提交
3445 3446 3447

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3448
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3449
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3450
		} else {
I
Ingo Molnar 已提交
3451
			deactivate_task(rq, prev, 1, now);
L
Linus Torvalds 已提交
3452
		}
I
Ingo Molnar 已提交
3453
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3454 3455
	}

I
Ingo Molnar 已提交
3456
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3457 3458
		idle_balance(cpu, rq);

I
Ingo Molnar 已提交
3459 3460
	prev->sched_class->put_prev_task(rq, prev, now);
	next = pick_next_task(rq, prev, now);
L
Linus Torvalds 已提交
3461 3462

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3463

L
Linus Torvalds 已提交
3464 3465 3466 3467 3468
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3469
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3470 3471 3472
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3473 3474 3475
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3476
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3477
	}
L
Linus Torvalds 已提交
3478 3479 3480 3481 3482 3483 3484 3485
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3486
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3501
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3529
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3541
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3571 3572
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3573
{
3574
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3593 3594 3595
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3596
		if (curr->func(curr, mode, sync, key) &&
3597
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3598 3599 3600 3601 3602 3603 3604 3605 3606
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3607
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3608 3609
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3610
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3629
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3641 3642
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3686

L
Linus Torvalds 已提交
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3805 3806 3807 3808 3809
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3810
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3811
}
L
Linus Torvalds 已提交
3812

I
Ingo Molnar 已提交
3813 3814 3815 3816 3817 3818 3819
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3820

I
Ingo Molnar 已提交
3821
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3822
{
I
Ingo Molnar 已提交
3823 3824 3825 3826
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3827 3828 3829

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3830
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3831
	schedule();
I
Ingo Molnar 已提交
3832
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3833 3834 3835
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3836
long __sched
I
Ingo Molnar 已提交
3837
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3838
{
I
Ingo Molnar 已提交
3839 3840 3841 3842
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3843 3844 3845

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3846
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3847
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3848
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3849 3850 3851 3852 3853

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3854
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3855
{
I
Ingo Molnar 已提交
3856 3857 3858 3859
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3860 3861 3862

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3863
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3864
	schedule();
I
Ingo Molnar 已提交
3865
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3866 3867 3868
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3869
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3870
{
I
Ingo Molnar 已提交
3871 3872 3873 3874
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3875 3876 3877

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3878
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3879
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3880
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3881 3882 3883 3884 3885

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3898
void rt_mutex_setprio(struct task_struct *p, int prio)
3899 3900
{
	unsigned long flags;
I
Ingo Molnar 已提交
3901
	int oldprio, on_rq;
3902
	struct rq *rq;
I
Ingo Molnar 已提交
3903
	u64 now;
3904 3905 3906 3907

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3908
	now = rq_clock(rq);
3909

3910
	oldprio = p->prio;
I
Ingo Molnar 已提交
3911 3912 3913 3914 3915 3916 3917 3918 3919
	on_rq = p->se.on_rq;
	if (on_rq)
		dequeue_task(rq, p, 0, now);

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3920 3921
	p->prio = prio;

I
Ingo Molnar 已提交
3922 3923
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
3924 3925
		/*
		 * Reschedule if we are currently running on this runqueue and
3926 3927
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3928
		 */
3929 3930 3931
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3932 3933 3934
		} else {
			check_preempt_curr(rq, p);
		}
3935 3936 3937 3938 3939 3940
	}
	task_rq_unlock(rq, &flags);
}

#endif

3941
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3942
{
I
Ingo Molnar 已提交
3943
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3944
	unsigned long flags;
3945
	struct rq *rq;
I
Ingo Molnar 已提交
3946
	u64 now;
L
Linus Torvalds 已提交
3947 3948 3949 3950 3951 3952 3953 3954

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3955
	now = rq_clock(rq);
L
Linus Torvalds 已提交
3956 3957 3958 3959
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3960
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3961
	 */
3962
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3963 3964 3965
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3966 3967 3968 3969
	on_rq = p->se.on_rq;
	if (on_rq) {
		dequeue_task(rq, p, 0, now);
		dec_load(rq, p, now);
3970
	}
L
Linus Torvalds 已提交
3971 3972

	p->static_prio = NICE_TO_PRIO(nice);
3973
	set_load_weight(p);
3974 3975 3976
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3977

I
Ingo Molnar 已提交
3978 3979 3980
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
		inc_load(rq, p, now);
L
Linus Torvalds 已提交
3981
		/*
3982 3983
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3984
		 */
3985
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3986 3987 3988 3989 3990 3991 3992
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3993 3994 3995 3996 3997
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3998
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3999
{
4000 4001
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4002

M
Matt Mackall 已提交
4003 4004 4005 4006
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4018
	long nice, retval;
L
Linus Torvalds 已提交
4019 4020 4021 4022 4023 4024

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4025 4026
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4027 4028 4029 4030 4031 4032 4033 4034 4035
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4036 4037 4038
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4057
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4058 4059 4060 4061 4062 4063 4064 4065
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4066
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4085
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4086 4087 4088 4089 4090 4091 4092 4093
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4094
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4095 4096 4097 4098 4099
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4100 4101
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4102
{
I
Ingo Molnar 已提交
4103
	BUG_ON(p->se.on_rq);
4104

L
Linus Torvalds 已提交
4105
	p->policy = policy;
I
Ingo Molnar 已提交
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4118
	p->rt_priority = prio;
4119 4120 4121
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4122
	set_load_weight(p);
L
Linus Torvalds 已提交
4123 4124 4125
}

/**
4126
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4127 4128 4129
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4130
 *
4131
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4132
 */
I
Ingo Molnar 已提交
4133 4134
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4135
{
I
Ingo Molnar 已提交
4136
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4137
	unsigned long flags;
4138
	struct rq *rq;
L
Linus Torvalds 已提交
4139

4140 4141
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4142 4143 4144 4145 4146
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4147 4148
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4149
		return -EINVAL;
L
Linus Torvalds 已提交
4150 4151
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4152 4153
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4154 4155
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4156
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4157
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4158
		return -EINVAL;
4159
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4160 4161
		return -EINVAL;

4162 4163 4164 4165
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4166
		if (rt_policy(policy)) {
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4183 4184 4185 4186 4187 4188
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4189

4190 4191 4192 4193 4194
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4195 4196 4197 4198

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4199 4200 4201 4202 4203
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4204 4205 4206 4207
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4208
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4209 4210 4211
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4212 4213
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4214 4215
		goto recheck;
	}
I
Ingo Molnar 已提交
4216 4217
	on_rq = p->se.on_rq;
	if (on_rq)
I
Ingo Molnar 已提交
4218
		deactivate_task(rq, p, 0, rq_clock(rq));
L
Linus Torvalds 已提交
4219
	oldprio = p->prio;
I
Ingo Molnar 已提交
4220 4221 4222
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4223 4224
		/*
		 * Reschedule if we are currently running on this runqueue and
4225 4226
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4227
		 */
4228 4229 4230
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4231 4232 4233
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4234
	}
4235 4236 4237
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4238 4239
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4240 4241 4242 4243
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4244 4245
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4246 4247 4248
{
	struct sched_param lparam;
	struct task_struct *p;
4249
	int retval;
L
Linus Torvalds 已提交
4250 4251 4252 4253 4254

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4255 4256 4257

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4258
	p = find_process_by_pid(pid);
4259 4260 4261
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4262

L
Linus Torvalds 已提交
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4275 4276 4277 4278
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4298
	struct task_struct *p;
L
Linus Torvalds 已提交
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4326
	struct task_struct *p;
L
Linus Torvalds 已提交
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4361 4362
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4363

4364
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4365 4366 4367 4368 4369
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4370
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4387 4388 4389 4390
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4391 4392 4393 4394 4395 4396
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4397
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4438
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4439 4440 4441
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4442
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4443 4444
EXPORT_SYMBOL(cpu_online_map);

4445
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4446
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4447 4448 4449 4450
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4451
	struct task_struct *p;
L
Linus Torvalds 已提交
4452 4453
	int retval;

4454
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4455 4456 4457 4458 4459 4460 4461
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4462 4463 4464 4465
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4466
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4467 4468 4469

out_unlock:
	read_unlock(&tasklist_lock);
4470
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4471

4472
	return retval;
L
Linus Torvalds 已提交
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4503 4504
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4505 4506 4507
 */
asmlinkage long sys_sched_yield(void)
{
4508
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4509 4510

	schedstat_inc(rq, yld_cnt);
I
Ingo Molnar 已提交
4511
	if (unlikely(rq->nr_running == 1))
L
Linus Torvalds 已提交
4512
		schedstat_inc(rq, yld_act_empty);
I
Ingo Molnar 已提交
4513 4514
	else
		current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4515 4516 4517 4518 4519 4520

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4521
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4522 4523 4524 4525 4526 4527 4528 4529
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4530
static void __cond_resched(void)
L
Linus Torvalds 已提交
4531
{
4532 4533 4534
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4535 4536 4537 4538 4539
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4540 4541 4542 4543 4544 4545 4546 4547 4548
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4549 4550
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4566
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4567
{
J
Jan Kara 已提交
4568 4569
	int ret = 0;

L
Linus Torvalds 已提交
4570 4571 4572
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4573
		ret = 1;
L
Linus Torvalds 已提交
4574 4575
		spin_lock(lock);
	}
4576
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4577
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4578 4579 4580
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4581
		ret = 1;
L
Linus Torvalds 已提交
4582 4583
		spin_lock(lock);
	}
J
Jan Kara 已提交
4584
	return ret;
L
Linus Torvalds 已提交
4585 4586 4587 4588 4589 4590 4591
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4592
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4593
		local_bh_enable();
L
Linus Torvalds 已提交
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4605
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4624
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4625

4626
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4627 4628 4629
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4630
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4631 4632 4633 4634 4635
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4636
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4637 4638
	long ret;

4639
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4640 4641 4642
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4643
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4664
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4665
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4689
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4690
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4707
	struct task_struct *p;
L
Linus Torvalds 已提交
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4724
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4725
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4726 4727 4728 4729 4730 4731 4732 4733 4734
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4735
static const char stat_nam[] = "RSDTtZX";
4736 4737

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4738 4739
{
	unsigned long free = 0;
4740
	unsigned state;
L
Linus Torvalds 已提交
4741 4742

	state = p->state ? __ffs(p->state) + 1 : 0;
4743 4744
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4745
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4746
	if (state == TASK_RUNNING)
4747
		printk(" running  ");
L
Linus Torvalds 已提交
4748
	else
4749
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4750 4751
#else
	if (state == TASK_RUNNING)
4752
		printk("  running task    ");
L
Linus Torvalds 已提交
4753 4754 4755 4756 4757
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4758
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4759 4760
		while (!*n)
			n++;
4761
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4762 4763
	}
#endif
4764
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4765 4766 4767 4768 4769

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4770
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4771
{
4772
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4773

4774 4775 4776
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4777
#else
4778 4779
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4780 4781 4782 4783 4784 4785 4786 4787
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4788
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4789
			show_task(p);
L
Linus Torvalds 已提交
4790 4791
	} while_each_thread(g, p);

4792 4793
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4794 4795 4796
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4797
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4798 4799 4800 4801 4802
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4803 4804
}

I
Ingo Molnar 已提交
4805 4806
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4807
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4808 4809
}

4810 4811 4812 4813 4814 4815 4816 4817
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4818
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4819
{
4820
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4821 4822
	unsigned long flags;

I
Ingo Molnar 已提交
4823 4824 4825
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4826
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4827
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4828
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4829 4830 4831

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4832 4833 4834
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4835 4836 4837 4838
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4839
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4840
#else
A
Al Viro 已提交
4841
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4842
#endif
I
Ingo Molnar 已提交
4843 4844 4845 4846
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
4870
	const unsigned long gran_limit = 100000000;
I
Ingo Molnar 已提交
4871 4872 4873 4874 4875 4876 4877 4878 4879

	sysctl_sched_granularity *= factor;
	if (sysctl_sched_granularity > gran_limit)
		sysctl_sched_granularity = gran_limit;

	sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
	sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
}

L
Linus Torvalds 已提交
4880 4881 4882 4883
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4884
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4906
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4907
{
4908
	struct migration_req req;
L
Linus Torvalds 已提交
4909
	unsigned long flags;
4910
	struct rq *rq;
4911
	int ret = 0;
L
Linus Torvalds 已提交
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4934

L
Linus Torvalds 已提交
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4947 4948
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4949
 */
4950
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4951
{
4952
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4953
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4954 4955

	if (unlikely(cpu_is_offline(dest_cpu)))
4956
		return ret;
L
Linus Torvalds 已提交
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4969 4970
	on_rq = p->se.on_rq;
	if (on_rq)
I
Ingo Molnar 已提交
4971
		deactivate_task(rq_src, p, 0, rq_clock(rq_src));
L
Linus Torvalds 已提交
4972
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4973 4974 4975
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4976
	}
4977
	ret = 1;
L
Linus Torvalds 已提交
4978 4979
out:
	double_rq_unlock(rq_src, rq_dest);
4980
	return ret;
L
Linus Torvalds 已提交
4981 4982 4983 4984 4985 4986 4987
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4988
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4989 4990
{
	int cpu = (long)data;
4991
	struct rq *rq;
L
Linus Torvalds 已提交
4992 4993 4994 4995 4996 4997

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
4998
		struct migration_req *req;
L
Linus Torvalds 已提交
4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5021
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5022 5023
		list_del_init(head->next);

N
Nick Piggin 已提交
5024 5025 5026
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5045 5046 5047 5048
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5049
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5050
{
5051
	unsigned long flags;
L
Linus Torvalds 已提交
5052
	cpumask_t mask;
5053 5054
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5055

5056
restart:
L
Linus Torvalds 已提交
5057 5058
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5059
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5060 5061 5062 5063
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5064
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5065 5066 5067

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5068 5069 5070
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5071
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5072 5073 5074 5075 5076 5077

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5078
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5079 5080
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5081
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5082
	}
5083
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5084
		goto restart;
L
Linus Torvalds 已提交
5085 5086 5087 5088 5089 5090 5091 5092 5093
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5094
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5095
{
5096
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5110
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5111 5112 5113

	write_lock_irq(&tasklist_lock);

5114 5115
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5116 5117
			continue;

5118 5119 5120
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5121 5122 5123 5124

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5125 5126
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5127
 * It does so by boosting its priority to highest possible and adding it to
5128
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5129 5130 5131
 */
void sched_idle_next(void)
{
5132
	int this_cpu = smp_processor_id();
5133
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5134 5135 5136 5137
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5138
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5139

5140 5141 5142
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5143 5144 5145
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5146
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5147 5148

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5149
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5150 5151 5152 5153

	spin_unlock_irqrestore(&rq->lock, flags);
}

5154 5155
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5169
/* called under rq->lock with disabled interrupts */
5170
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5171
{
5172
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5173 5174

	/* Must be exiting, otherwise would be on tasklist. */
5175
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5176 5177

	/* Cannot have done final schedule yet: would have vanished. */
5178
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5179

5180
	get_task_struct(p);
L
Linus Torvalds 已提交
5181 5182 5183 5184 5185

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5186
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5187
	 */
5188
	spin_unlock(&rq->lock);
5189
	move_task_off_dead_cpu(dead_cpu, p);
5190
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5191

5192
	put_task_struct(p);
L
Linus Torvalds 已提交
5193 5194 5195 5196 5197
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5198
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5199
	struct task_struct *next;
5200

I
Ingo Molnar 已提交
5201 5202 5203 5204 5205 5206 5207
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
		next = pick_next_task(rq, rq->curr, rq_clock(rq));
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5208

L
Linus Torvalds 已提交
5209 5210 5211 5212
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5213 5214 5215
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5216 5217 5218 5219
	{
		.procname	= "sched_domain",
		.mode		= 0755,
	},
5220 5221 5222 5223
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5224 5225 5226 5227 5228
	{
		.procname	= "kernel",
		.mode		= 0755,
		.child		= sd_ctl_dir,
	},
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
5244
set_table_entry(struct ctl_table *entry,
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
	struct ctl_table *table = sd_alloc_ctl_entry(14);

5260
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5261
		sizeof(long), 0644, proc_doulongvec_minmax);
5262
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5263
		sizeof(long), 0644, proc_doulongvec_minmax);
5264
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5265
		sizeof(int), 0644, proc_dointvec_minmax);
5266
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5267
		sizeof(int), 0644, proc_dointvec_minmax);
5268
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5269
		sizeof(int), 0644, proc_dointvec_minmax);
5270
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5271
		sizeof(int), 0644, proc_dointvec_minmax);
5272
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5273
		sizeof(int), 0644, proc_dointvec_minmax);
5274
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5275
		sizeof(int), 0644, proc_dointvec_minmax);
5276
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5277
		sizeof(int), 0644, proc_dointvec_minmax);
5278
	set_table_entry(&table[10], "cache_nice_tries",
5279 5280
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5281
	set_table_entry(&table[12], "flags", &sd->flags,
5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
		entry->mode = 0755;
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
		entry->mode = 0755;
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5333 5334 5335 5336
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5337 5338
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5339 5340
{
	struct task_struct *p;
5341
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5342
	unsigned long flags;
5343
	struct rq *rq;
L
Linus Torvalds 已提交
5344 5345

	switch (action) {
5346 5347 5348 5349
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5350
	case CPU_UP_PREPARE:
5351
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5352
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5353 5354 5355 5356 5357
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5358
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5359 5360 5361
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5362

L
Linus Torvalds 已提交
5363
	case CPU_ONLINE:
5364
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5365 5366 5367
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5368

L
Linus Torvalds 已提交
5369 5370
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5371
	case CPU_UP_CANCELED_FROZEN:
5372 5373
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5374
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5375 5376
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5377 5378 5379
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5380

L
Linus Torvalds 已提交
5381
	case CPU_DEAD:
5382
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5383 5384 5385 5386 5387 5388
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5389
		deactivate_task(rq, rq->idle, 0, rq_clock(rq));
L
Linus Torvalds 已提交
5390
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5391 5392
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5393 5394 5395 5396 5397 5398
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5399
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5400 5401 5402
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5403 5404
			struct migration_req *req;

L
Linus Torvalds 已提交
5405
			req = list_entry(rq->migration_queue.next,
5406
					 struct migration_req, list);
L
Linus Torvalds 已提交
5407 5408 5409 5410 5411 5412
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5413 5414 5415
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5416 5417 5418 5419 5420 5421 5422
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5423
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5424 5425 5426 5427 5428 5429 5430
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5431
	int err;
5432 5433

	/* Start one for the boot CPU: */
5434 5435
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5436 5437
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5438

L
Linus Torvalds 已提交
5439 5440 5441 5442 5443
	return 0;
}
#endif

#ifdef CONFIG_SMP
5444 5445 5446 5447 5448

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5449
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5450 5451 5452 5453 5454
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5455 5456 5457 5458 5459
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5479 5480
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5481 5482 5483 5484 5485 5486
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5487 5488
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5489
		if (!cpu_isset(cpu, group->cpumask))
5490 5491
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5504
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5505
				printk("\n");
5506 5507
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5530 5531
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5532 5533 5534

		level++;
		sd = sd->parent;
5535 5536
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5537

5538 5539 5540
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5541 5542 5543 5544

	} while (sd);
}
#else
5545
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5546 5547
#endif

5548
static int sd_degenerate(struct sched_domain *sd)
5549 5550 5551 5552 5553 5554 5555 5556
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5557 5558 5559
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5573 5574
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5593 5594 5595
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5596 5597 5598 5599 5600 5601 5602
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5603 5604 5605 5606
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5607
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5608
{
5609
	struct rq *rq = cpu_rq(cpu);
5610 5611 5612 5613 5614 5615 5616
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5617
		if (sd_parent_degenerate(tmp, parent)) {
5618
			tmp->parent = parent->parent;
5619 5620 5621
			if (parent->parent)
				parent->parent->child = tmp;
		}
5622 5623
	}

5624
	if (sd && sd_degenerate(sd)) {
5625
		sd = sd->parent;
5626 5627 5628
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5629 5630 5631

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5632
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5633 5634 5635
}

/* cpus with isolated domains */
5636
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5654 5655 5656 5657
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5658 5659 5660 5661 5662
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5663
static void
5664 5665 5666
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5667 5668 5669 5670 5671 5672
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5673 5674
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5675 5676 5677 5678 5679 5680
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5681
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5682 5683

		for_each_cpu_mask(j, span) {
5684
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5699
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5700

5701
#ifdef CONFIG_NUMA
5702

5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5755 5756
	cpumask_t span, nodemask;
	int i;
5757 5758 5759 5760 5761 5762 5763 5764 5765 5766

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5767

5768 5769 5770 5771 5772 5773 5774 5775
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5776
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5777

5778
/*
5779
 * SMT sched-domains:
5780
 */
L
Linus Torvalds 已提交
5781 5782
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5783
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5784

5785 5786
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5787
{
5788 5789
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5790 5791 5792 5793
	return cpu;
}
#endif

5794 5795 5796
/*
 * multi-core sched-domains:
 */
5797 5798
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5799
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5800 5801 5802
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5803 5804
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5805
{
5806
	int group;
5807 5808
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5809 5810 5811 5812
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5813 5814
}
#elif defined(CONFIG_SCHED_MC)
5815 5816
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5817
{
5818 5819
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5820 5821 5822 5823
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5824
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5825
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5826

5827 5828
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5829
{
5830
	int group;
5831
#ifdef CONFIG_SCHED_MC
5832
	cpumask_t mask = cpu_coregroup_map(cpu);
5833
	cpus_and(mask, mask, *cpu_map);
5834
	group = first_cpu(mask);
5835
#elif defined(CONFIG_SCHED_SMT)
5836 5837
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5838
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5839
#else
5840
	group = cpu;
L
Linus Torvalds 已提交
5841
#endif
5842 5843 5844
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5845 5846 5847 5848
}

#ifdef CONFIG_NUMA
/*
5849 5850 5851
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5852
 */
5853
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5854
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5855

5856
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5857
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5858

5859 5860
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5861
{
5862 5863 5864 5865 5866 5867 5868 5869 5870
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5871
}
5872

5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5893
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5894 5895 5896 5897 5898
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5899 5900
#endif

5901
#ifdef CONFIG_NUMA
5902 5903 5904
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5905
	int cpu, i;
5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5936 5937 5938 5939 5940
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5941

5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5968 5969
	sd->groups->__cpu_power = 0;

5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5980
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5981 5982 5983 5984 5985 5986 5987 5988
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5989
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5990 5991 5992 5993
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5994
/*
5995 5996
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
5997
 */
5998
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
5999 6000
{
	int i;
6001 6002
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6003
	int sd_allnodes = 0;
6004 6005 6006 6007

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
6008
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6009
					   GFP_KERNEL);
6010 6011
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6012
		return -ENOMEM;
6013 6014 6015
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6016 6017

	/*
6018
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6019
	 */
6020
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6021 6022 6023
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6024
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6025 6026

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6027 6028
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6029 6030 6031
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6032
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6033
			p = sd;
6034
			sd_allnodes = 1;
6035 6036 6037
		} else
			p = NULL;

L
Linus Torvalds 已提交
6038 6039
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6040 6041
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6042 6043
		if (p)
			p->child = sd;
6044
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6045 6046 6047 6048 6049 6050 6051
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6052 6053
		if (p)
			p->child = sd;
6054
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6055

6056 6057 6058 6059 6060 6061 6062
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6063
		p->child = sd;
6064
		cpu_to_core_group(i, cpu_map, &sd->groups);
6065 6066
#endif

L
Linus Torvalds 已提交
6067 6068 6069 6070 6071
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6072
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6073
		sd->parent = p;
6074
		p->child = sd;
6075
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6076 6077 6078 6079 6080
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6081
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6082
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6083
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6084 6085 6086
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6087 6088
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6089 6090 6091
	}
#endif

6092 6093 6094 6095 6096 6097 6098
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6099 6100
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6101 6102 6103
	}
#endif

L
Linus Torvalds 已提交
6104 6105 6106 6107
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6108
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6109 6110 6111
		if (cpus_empty(nodemask))
			continue;

6112
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6113 6114 6115 6116
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6117
	if (sd_allnodes)
I
Ingo Molnar 已提交
6118 6119
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6130 6131
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6132
			continue;
6133
		}
6134 6135 6136 6137

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6138
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6139 6140 6141 6142 6143
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6144 6145 6146
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6147

6148 6149 6150
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6151
		sg->__cpu_power = 0;
6152
		sg->cpumask = nodemask;
6153
		sg->next = sg;
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6172 6173
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6174 6175 6176
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6177
				goto error;
6178
			}
6179
			sg->__cpu_power = 0;
6180
			sg->cpumask = tmp;
6181
			sg->next = prev->next;
6182 6183 6184 6185 6186
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6187 6188 6189
#endif

	/* Calculate CPU power for physical packages and nodes */
6190
#ifdef CONFIG_SCHED_SMT
6191
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6192 6193
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6194
		init_sched_groups_power(i, sd);
6195
	}
L
Linus Torvalds 已提交
6196
#endif
6197
#ifdef CONFIG_SCHED_MC
6198
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6199 6200
		struct sched_domain *sd = &per_cpu(core_domains, i);

6201
		init_sched_groups_power(i, sd);
6202 6203
	}
#endif
6204

6205
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6206 6207
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6208
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6209 6210
	}

6211
#ifdef CONFIG_NUMA
6212 6213
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6214

6215 6216
	if (sd_allnodes) {
		struct sched_group *sg;
6217

6218
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6219 6220
		init_numa_sched_groups_power(sg);
	}
6221 6222
#endif

L
Linus Torvalds 已提交
6223
	/* Attach the domains */
6224
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6225 6226 6227
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6228 6229
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6230 6231 6232 6233 6234
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6235 6236 6237

	return 0;

6238
#ifdef CONFIG_NUMA
6239 6240 6241
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6242
#endif
L
Linus Torvalds 已提交
6243
}
6244 6245 6246
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6247
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6248 6249
{
	cpumask_t cpu_default_map;
6250
	int err;
L
Linus Torvalds 已提交
6251

6252 6253 6254 6255 6256 6257 6258
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6259 6260 6261
	err = build_sched_domains(&cpu_default_map);

	return err;
6262 6263 6264
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6265
{
6266
	free_sched_groups(cpu_map);
6267
}
L
Linus Torvalds 已提交
6268

6269 6270 6271 6272
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6273
static void detach_destroy_domains(const cpumask_t *cpu_map)
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6291
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6292 6293
{
	cpumask_t change_map;
6294
	int err = 0;
6295 6296 6297 6298 6299 6300 6301 6302

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6303 6304 6305 6306 6307
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6308 6309
}

6310 6311 6312 6313 6314
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6315
	mutex_lock(&sched_hotcpu_mutex);
6316 6317
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6318
	mutex_unlock(&sched_hotcpu_mutex);
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6343

6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6363 6364
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6377 6378
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6379 6380 6381 6382 6383 6384 6385
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6386 6387 6388
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6389
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6390 6391 6392 6393 6394 6395 6396
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6397
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6398
	case CPU_DOWN_PREPARE:
6399
	case CPU_DOWN_PREPARE_FROZEN:
6400
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6401 6402 6403
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6404
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6405
	case CPU_DOWN_FAILED:
6406
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6407
	case CPU_ONLINE:
6408
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6409
	case CPU_DEAD:
6410
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6411 6412 6413 6414 6415 6416 6417 6418 6419
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6420
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6421 6422 6423 6424 6425 6426

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6427 6428
	cpumask_t non_isolated_cpus;

6429
	mutex_lock(&sched_hotcpu_mutex);
6430
	arch_init_sched_domains(&cpu_online_map);
6431
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6432 6433
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6434
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6435 6436
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6437

6438 6439
	init_sched_domain_sysctl();

6440 6441 6442
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6443
	sched_init_granularity();
L
Linus Torvalds 已提交
6444 6445 6446 6447
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6448
	sched_init_granularity();
L
Linus Torvalds 已提交
6449 6450 6451 6452 6453 6454 6455
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6456

L
Linus Torvalds 已提交
6457 6458 6459 6460 6461
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6462 6463 6464 6465 6466 6467 6468 6469 6470
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6471 6472
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6473
	u64 now = sched_clock();
6474
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6475 6476 6477 6478 6479 6480 6481 6482
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6483

6484
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6485
		struct rt_prio_array *array;
6486
		struct rq *rq;
L
Linus Torvalds 已提交
6487 6488 6489

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6490
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6491
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6492 6493 6494 6495 6496 6497 6498 6499
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
		rq->ls.load_update_last = now;
		rq->ls.load_update_start = now;
L
Linus Torvalds 已提交
6500

I
Ingo Molnar 已提交
6501 6502
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6503
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6504
		rq->sd = NULL;
L
Linus Torvalds 已提交
6505
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6506
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6507
		rq->push_cpu = 0;
6508
		rq->cpu = i;
L
Linus Torvalds 已提交
6509 6510 6511 6512 6513
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6514 6515 6516 6517
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6518
		}
6519
		highest_cpu = i;
I
Ingo Molnar 已提交
6520 6521
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6522 6523
	}

6524
	set_load_weight(&init_task);
6525

6526 6527 6528 6529
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6530
#ifdef CONFIG_SMP
6531
	nr_cpu_ids = highest_cpu + 1;
6532 6533 6534
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6535 6536 6537 6538
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6552 6553 6554 6555
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6556 6557 6558 6559 6560
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6561
#ifdef in_atomic
L
Linus Torvalds 已提交
6562 6563 6564 6565 6566 6567 6568
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6569
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6570 6571 6572
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6573
		debug_show_held_locks(current);
6574 6575
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6576 6577 6578 6579 6580 6581 6582 6583 6584 6585
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6586
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6587
	unsigned long flags;
6588
	struct rq *rq;
I
Ingo Molnar 已提交
6589
	int on_rq;
L
Linus Torvalds 已提交
6590 6591

	read_lock_irq(&tasklist_lock);
6592
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6593 6594
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
6595
		p->se.exec_start		= 0;
I
Ingo Molnar 已提交
6596
		p->se.wait_start_fair		= 0;
I
Ingo Molnar 已提交
6597 6598
		p->se.sleep_start_fair		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6599 6600 6601
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6602
#endif
I
Ingo Molnar 已提交
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6613
			continue;
I
Ingo Molnar 已提交
6614
		}
L
Linus Torvalds 已提交
6615

6616 6617
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6618 6619 6620 6621 6622 6623 6624
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6625

I
Ingo Molnar 已提交
6626 6627
		on_rq = p->se.on_rq;
		if (on_rq)
I
Ingo Molnar 已提交
6628
			deactivate_task(task_rq(p), p, 0, rq_clock(task_rq(p)));
I
Ingo Molnar 已提交
6629 6630 6631
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
			activate_task(task_rq(p), p, 0);
L
Linus Torvalds 已提交
6632 6633
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6634 6635 6636
#ifdef CONFIG_SMP
 out_unlock:
#endif
6637 6638
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6639 6640
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6641 6642 6643 6644
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6663
struct task_struct *curr_task(int cpu)
6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6683
void set_curr_task(int cpu, struct task_struct *p)
6684 6685 6686 6687 6688
{
	cpu_curr(cpu) = p;
}

#endif