sched.c 178.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46
#include <linux/blkdev.h>
#include <linux/delay.h>
47
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
57
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
58 59
#include <linux/syscalls.h>
#include <linux/times.h>
60
#include <linux/tsacct_kern.h>
61
#include <linux/kprobes.h>
62
#include <linux/delayacct.h>
63
#include <linux/reciprocal_div.h>
64
#include <linux/unistd.h>
J
Jens Axboe 已提交
65
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
66

67
#include <asm/tlb.h>
68
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
69

70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
77
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78 79
}

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
101 102
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
103

I
Ingo Molnar 已提交
104 105 106
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
107 108 109
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
110
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
111 112 113
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

136 137 138 139 140 141 142 143 144 145 146 147
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
148
/*
I
Ingo Molnar 已提交
149
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
150
 */
I
Ingo Molnar 已提交
151 152 153 154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
156 157
#ifdef CONFIG_FAIR_GROUP_SCHED

158 159
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
160 161 162
struct cfs_rq;

/* task group related information */
163
struct task_group {
164 165 166
#ifdef CONFIG_FAIR_CGROUP_SCHED
	struct cgroup_subsys_state css;
#endif
S
Srivatsa Vaddagiri 已提交
167 168 169 170 171
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
172 173
	/* spinlock to serialize modification to shares */
	spinlock_t lock;
174
	struct rcu_head rcu;
S
Srivatsa Vaddagiri 已提交
175 176 177 178 179 180 181
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

182 183
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
184 185

/* Default task group.
I
Ingo Molnar 已提交
186
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
187
 */
188
struct task_group init_task_group = {
I
Ingo Molnar 已提交
189 190 191
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
192

193
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
194
# define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
195
#else
I
Ingo Molnar 已提交
196
# define INIT_TASK_GRP_LOAD	NICE_0_LOAD
197 198
#endif

199
static int init_task_group_load = INIT_TASK_GRP_LOAD;
S
Srivatsa Vaddagiri 已提交
200 201

/* return group to which a task belongs */
202
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
203
{
204
	struct task_group *tg;
205

206 207
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
208 209 210
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
211
#else
212
	tg  = &init_task_group;
213
#endif
214 215

	return tg;
S
Srivatsa Vaddagiri 已提交
216 217 218
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
219
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
220
{
221 222
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
S
Srivatsa Vaddagiri 已提交
223 224 225 226
}

#else

227
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
228 229 230

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
231 232 233 234 235 236
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
237
	u64 min_vruntime;
I
Ingo Molnar 已提交
238 239 240 241 242 243 244 245

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
246 247 248

	unsigned long nr_spread_over;

249
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
250 251 252 253 254 255 256 257 258 259
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
260
	struct task_group *tg;    /* group that "owns" this runqueue */
I
Ingo Molnar 已提交
261 262
#endif
};
L
Linus Torvalds 已提交
263

I
Ingo Molnar 已提交
264 265 266 267 268 269 270
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
271 272 273 274 275 276 277
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
278
struct rq {
279 280
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
281 282 283 284 285 286

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
287 288
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
289
	unsigned char idle_at_tick;
290 291 292
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
293 294
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
295 296 297 298 299
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
300 301
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
L
Linus Torvalds 已提交
302
#endif
I
Ingo Molnar 已提交
303
	struct rt_rq  rt;
L
Linus Torvalds 已提交
304 305 306 307 308 309 310 311 312

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

313
	struct task_struct *curr, *idle;
314
	unsigned long next_balance;
L
Linus Torvalds 已提交
315
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
316 317 318 319 320

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
321 322
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
323
	u64 tick_timestamp;
I
Ingo Molnar 已提交
324

L
Linus Torvalds 已提交
325 326 327 328 329 330 331 332
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
333 334
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
335

336
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
337 338 339 340 341 342 343 344
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
345 346 347 348
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
349 350

	/* schedule() stats */
351 352 353
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
354 355

	/* try_to_wake_up() stats */
356 357
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
358 359

	/* BKL stats */
360
	unsigned int bkl_count;
L
Linus Torvalds 已提交
361
#endif
362
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
363 364
};

365
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
366
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
367

I
Ingo Molnar 已提交
368 369 370 371 372
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

373 374 375 376 377 378 379 380 381
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
382
/*
I
Ingo Molnar 已提交
383 384
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
385
 */
I
Ingo Molnar 已提交
386
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
387 388 389 390 391 392
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
393 394 395
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
396 397 398 399 400 401 402 403 404 405
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
406 407 408 409 410
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
411 412 413 414 415 416 417 418 419 420
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
421
}
I
Ingo Molnar 已提交
422

I
Ingo Molnar 已提交
423 424 425 426
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
427 428
}

N
Nick Piggin 已提交
429 430
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
432 433 434 435
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
436 437
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
438 439 440 441 442 443

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
457 458
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_START_DEBIT		= 2,
459
	SCHED_FEAT_TREE_AVG             = 4,
460
	SCHED_FEAT_APPROX_AVG           = 8,
461
	SCHED_FEAT_WAKEUP_PREEMPT	= 16,
I
Ingo Molnar 已提交
462 463 464
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
465 466 467 468
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
		SCHED_FEAT_APPROX_AVG		* 0 |
I
Ingo Molnar 已提交
469
		SCHED_FEAT_WAKEUP_PREEMPT	* 1;
I
Ingo Molnar 已提交
470 471 472

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

473 474 475 476 477 478
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

479 480 481 482 483 484 485 486
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
487
	struct rq *rq;
488

489
	local_irq_save(flags);
I
Ingo Molnar 已提交
490 491 492
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
493
	local_irq_restore(flags);
494 495 496

	return now;
}
P
Paul E. McKenney 已提交
497
EXPORT_SYMBOL_GPL(cpu_clock);
498

L
Linus Torvalds 已提交
499
#ifndef prepare_arch_switch
500 501 502 503 504 505 506
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
507
static inline int task_running(struct rq *rq, struct task_struct *p)
508 509 510 511
{
	return rq->curr == p;
}

512
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
513 514 515
{
}

516
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
517
{
518 519 520 521
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
522 523 524 525 526 527 528
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

529 530 531 532
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
533
static inline int task_running(struct rq *rq, struct task_struct *p)
534 535 536 537 538 539 540 541
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

542
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

559
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
560 561 562 563 564 565 566 567 568 569 570 571
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
572
#endif
573 574
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
575

576 577 578 579
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
580
static inline struct rq *__task_rq_lock(struct task_struct *p)
581 582
	__acquires(rq->lock)
{
583 584 585 586 587
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
588 589 590 591
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
592 593 594 595 596
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
597
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
598 599
	__acquires(rq->lock)
{
600
	struct rq *rq;
L
Linus Torvalds 已提交
601

602 603 604 605 606 607
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
608 609 610 611
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
612
static void __task_rq_unlock(struct rq *rq)
613 614 615 616 617
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

618
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
619 620 621 622 623 624
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
625
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
626
 */
A
Alexey Dobriyan 已提交
627
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
628 629
	__acquires(rq->lock)
{
630
	struct rq *rq;
L
Linus Torvalds 已提交
631 632 633 634 635 636 637 638

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

639
/*
640
 * We are going deep-idle (irqs are disabled):
641
 */
642
void sched_clock_idle_sleep_event(void)
643
{
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
660

661 662 663 664 665 666 667 668 669 670 671
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
672
}
673
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
674

I
Ingo Molnar 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

727 728 729 730 731 732 733 734
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
735 736 737
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
738
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
739

740
static unsigned long
741 742 743 744 745 746
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
747
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
748 749 750 751 752

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
753
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
754
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
755 756
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
757
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
758

759
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
760 761 762 763 764 765 766 767
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

768
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
769 770 771 772
{
	lw->weight += inc;
}

773
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
774 775 776 777
{
	lw->weight -= dec;
}

778 779 780 781 782 783 784 785 786
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
787 788 789 790 791 792 793 794 795 796 797
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
798 799 800
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
801 802
 */
static const int prio_to_weight[40] = {
803 804 805 806 807 808 809 810
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
811 812
};

813 814 815 816 817 818 819
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
820
static const u32 prio_to_wmult[40] = {
821 822 823 824 825 826 827 828
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
829
};
830

I
Ingo Molnar 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

844 845 846 847 848 849 850 851 852 853 854 855
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
856 857 858

#include "sched_stats.h"
#include "sched_idletask.c"
859 860
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
861 862 863 864 865 866
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

867 868 869 870
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
871
 * total load (rq->load.weight) on the runqueue, while
872 873 874 875 876 877 878
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
879
 * This function is called /before/ updating rq->load
880 881
 * and when switching tasks.
 */
882
static inline void inc_load(struct rq *rq, const struct task_struct *p)
883
{
884
	update_load_add(&rq->load, p->se.load.weight);
885 886
}

887
static inline void dec_load(struct rq *rq, const struct task_struct *p)
888
{
889
	update_load_sub(&rq->load, p->se.load.weight);
890 891
}

892
static void inc_nr_running(struct task_struct *p, struct rq *rq)
893 894
{
	rq->nr_running++;
895
	inc_load(rq, p);
896 897
}

898
static void dec_nr_running(struct task_struct *p, struct rq *rq)
899 900
{
	rq->nr_running--;
901
	dec_load(rq, p);
902 903
}

904 905 906
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
907 908 909 910
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
911

I
Ingo Molnar 已提交
912 913 914 915 916 917 918 919
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
920

I
Ingo Molnar 已提交
921 922
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
923 924
}

925
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
926
{
I
Ingo Molnar 已提交
927
	sched_info_queued(p);
928
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
929
	p->se.on_rq = 1;
930 931
}

932
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
933
{
934
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
935
	p->se.on_rq = 0;
936 937
}

938
/*
I
Ingo Molnar 已提交
939
 * __normal_prio - return the priority that is based on the static prio
940 941 942
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
943
	return p->static_prio;
944 945
}

946 947 948 949 950 951 952
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
953
static inline int normal_prio(struct task_struct *p)
954 955 956
{
	int prio;

957
	if (task_has_rt_policy(p))
958 959 960 961 962 963 964 965 966 967 968 969 970
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
971
static int effective_prio(struct task_struct *p)
972 973 974 975 976 977 978 979 980 981 982 983
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
984
/*
I
Ingo Molnar 已提交
985
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
986
 */
I
Ingo Molnar 已提交
987
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
988
{
I
Ingo Molnar 已提交
989 990
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
991

992
	enqueue_task(rq, p, wakeup);
993
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
994 995 996 997 998
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
999
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1000
{
I
Ingo Molnar 已提交
1001 1002 1003
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

1004
	dequeue_task(rq, p, sleep);
1005
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1006 1007 1008 1009 1010 1011
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1012
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1013 1014 1015 1016
{
	return cpu_curr(task_cpu(p)) == p;
}

1017 1018 1019
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1020
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1021 1022 1023 1024
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
1025
	set_task_cfs_rq(p, cpu);
I
Ingo Molnar 已提交
1026
#ifdef CONFIG_SMP
1027 1028 1029 1030 1031 1032
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1033 1034
	task_thread_info(p)->cpu = cpu;
#endif
1035 1036
}

L
Linus Torvalds 已提交
1037
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1050 1051 1052 1053 1054
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1055 1056 1057 1058 1059 1060
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1061
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1062
{
I
Ingo Molnar 已提交
1063 1064
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1065 1066
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1067
	u64 clock_offset;
I
Ingo Molnar 已提交
1068 1069

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1070 1071 1072 1073

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1074 1075 1076 1077
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1078 1079 1080 1081 1082
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1083
#endif
1084 1085
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1086 1087

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1088 1089
}

1090
struct migration_req {
L
Linus Torvalds 已提交
1091 1092
	struct list_head list;

1093
	struct task_struct *task;
L
Linus Torvalds 已提交
1094 1095 1096
	int dest_cpu;

	struct completion done;
1097
};
L
Linus Torvalds 已提交
1098 1099 1100 1101 1102

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1103
static int
1104
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1105
{
1106
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1107 1108 1109 1110 1111

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1112
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1113 1114 1115 1116 1117 1118 1119 1120
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1121

L
Linus Torvalds 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1134
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1135 1136
{
	unsigned long flags;
I
Ingo Molnar 已提交
1137
	int running, on_rq;
1138
	struct rq *rq;
L
Linus Torvalds 已提交
1139

1140 1141 1142 1143 1144 1145 1146 1147
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1197

1198 1199 1200 1201 1202 1203 1204
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1220
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1232 1233
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1234 1235 1236 1237
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1238
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1239
{
1240
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1241
	unsigned long total = weighted_cpuload(cpu);
1242

1243
	if (type == 0)
I
Ingo Molnar 已提交
1244
		return total;
1245

I
Ingo Molnar 已提交
1246
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1247 1248 1249
}

/*
1250 1251
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1252
 */
A
Alexey Dobriyan 已提交
1253
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1254
{
1255
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1256
	unsigned long total = weighted_cpuload(cpu);
1257

N
Nick Piggin 已提交
1258
	if (type == 0)
I
Ingo Molnar 已提交
1259
		return total;
1260

I
Ingo Molnar 已提交
1261
	return max(rq->cpu_load[type-1], total);
1262 1263 1264 1265 1266 1267 1268
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1269
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1270
	unsigned long total = weighted_cpuload(cpu);
1271 1272
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1273
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1274 1275
}

N
Nick Piggin 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1293 1294
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1295
			continue;
1296

N
Nick Piggin 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1313 1314
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1315 1316 1317 1318 1319 1320 1321 1322

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1323
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1324 1325 1326 1327 1328 1329 1330

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1331
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1332
 */
I
Ingo Molnar 已提交
1333 1334
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1335
{
1336
	cpumask_t tmp;
N
Nick Piggin 已提交
1337 1338 1339 1340
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1341 1342 1343 1344
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1345
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1371

1372
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1373 1374 1375
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1376 1377
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1378 1379
		if (tmp->flags & flag)
			sd = tmp;
1380
	}
N
Nick Piggin 已提交
1381 1382 1383 1384

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1385 1386 1387 1388 1389 1390
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1391 1392 1393

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1394 1395 1396 1397
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1398

1399
		new_cpu = find_idlest_cpu(group, t, cpu);
1400 1401 1402 1403 1404
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1405

1406
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1433
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1434 1435 1436 1437 1438
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1449 1450 1451 1452
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1453
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1454
			for_each_cpu_mask(i, tmp) {
1455 1456 1457 1458 1459
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1460
					return i;
1461
				}
L
Linus Torvalds 已提交
1462
			}
I
Ingo Molnar 已提交
1463
		} else {
N
Nick Piggin 已提交
1464
			break;
I
Ingo Molnar 已提交
1465
		}
L
Linus Torvalds 已提交
1466 1467 1468 1469
	}
	return cpu;
}
#else
1470
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1490
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1491
{
1492
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1493 1494
	unsigned long flags;
	long old_state;
1495
	struct rq *rq;
L
Linus Torvalds 已提交
1496
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1497
	struct sched_domain *sd, *this_sd = NULL;
1498
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1499 1500 1501 1502 1503 1504 1505 1506
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1507
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1508 1509 1510
		goto out_running;

	cpu = task_cpu(p);
1511
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1512 1513 1514 1515 1516 1517
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1518 1519
	new_cpu = cpu;

1520
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1521 1522
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1523 1524 1525 1526 1527 1528 1529 1530
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1531 1532 1533
		}
	}

N
Nick Piggin 已提交
1534
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1535 1536 1537
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1538
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1539
	 */
N
Nick Piggin 已提交
1540 1541 1542
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1543

1544 1545
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1546 1547
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1548

N
Nick Piggin 已提交
1549 1550
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1551 1552
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1553 1554
			unsigned long tl_per_task;

I
Ingo Molnar 已提交
1555 1556 1557 1558 1559 1560
			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

1561
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1562
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1563

L
Linus Torvalds 已提交
1564
			/*
1565 1566 1567
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1568
			 */
1569
			if (sync)
I
Ingo Molnar 已提交
1570
				tl -= current->se.load.weight;
1571 1572

			if ((tl <= load &&
1573
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1574
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1575 1576 1577 1578 1579 1580
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1581
				schedstat_inc(p, se.nr_wakeups_affine);
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1593
				schedstat_inc(p, se.nr_wakeups_passive);
1594 1595
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1610
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1611 1612 1613 1614 1615 1616 1617 1618
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1619 1620 1621 1622 1623 1624 1625 1626 1627
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1628
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1629
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1630
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1641
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1642 1643 1644 1645 1646 1647
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1648
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1649 1650 1651 1652 1653 1654 1655
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1656 1657 1658 1659 1660 1661 1662
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1663
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1664 1665 1666

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1667 1668 1669 1670 1671 1672
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1673
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1674
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1675
#endif
N
Nick Piggin 已提交
1676

I
Ingo Molnar 已提交
1677 1678
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1679

1680 1681 1682 1683
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1684 1685 1686 1687 1688 1689 1690
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1705
	set_task_cpu(p, cpu);
1706 1707 1708 1709 1710

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1711 1712
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1713

1714
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1715
	if (likely(sched_info_on()))
1716
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1717
#endif
1718
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1719 1720
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1721
#ifdef CONFIG_PREEMPT
1722
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1723
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1724
#endif
N
Nick Piggin 已提交
1725
	put_cpu();
L
Linus Torvalds 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1735
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1736 1737
{
	unsigned long flags;
I
Ingo Molnar 已提交
1738
	struct rq *rq;
L
Linus Torvalds 已提交
1739 1740

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1741
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1742
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1743 1744 1745

	p->prio = effective_prio(p);

1746
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1747
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1748 1749
	} else {
		/*
I
Ingo Molnar 已提交
1750 1751
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1752
		 */
1753
		p->sched_class->task_new(rq, p);
1754
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1755
	}
I
Ingo Molnar 已提交
1756 1757
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1758 1759
}

1760 1761 1762
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1763 1764
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1765 1766 1767 1768 1769 1770 1771 1772 1773
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1774
 * @notifier: notifier struct to unregister
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1818 1819 1820
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1821
 * @prev: the current task that is being switched out
1822 1823 1824 1825 1826 1827 1828 1829 1830
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1831 1832 1833
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1834
{
1835
	fire_sched_out_preempt_notifiers(prev, next);
1836 1837 1838 1839
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1840 1841
/**
 * finish_task_switch - clean up after a task-switch
1842
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1843 1844
 * @prev: the thread we just switched away from.
 *
1845 1846 1847 1848
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1849 1850 1851 1852 1853 1854
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1855
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1856 1857 1858
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1859
	long prev_state;
L
Linus Torvalds 已提交
1860 1861 1862 1863 1864

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1865
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1866 1867
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1868
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1869 1870 1871 1872 1873
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1874
	prev_state = prev->state;
1875 1876
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1877
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1878 1879
	if (mm)
		mmdrop(mm);
1880
	if (unlikely(prev_state == TASK_DEAD)) {
1881 1882 1883
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1884
		 */
1885
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1886
		put_task_struct(prev);
1887
	}
L
Linus Torvalds 已提交
1888 1889 1890 1891 1892 1893
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1894
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1895 1896
	__releases(rq->lock)
{
1897 1898
	struct rq *rq = this_rq();

1899 1900 1901 1902 1903
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1904
	if (current->set_child_tid)
1905
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1906 1907 1908 1909 1910 1911
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1912
static inline void
1913
context_switch(struct rq *rq, struct task_struct *prev,
1914
	       struct task_struct *next)
L
Linus Torvalds 已提交
1915
{
I
Ingo Molnar 已提交
1916
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1917

1918
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1919 1920
	mm = next->mm;
	oldmm = prev->active_mm;
1921 1922 1923 1924 1925 1926 1927
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1928
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1929 1930 1931 1932 1933 1934
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1935
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1936 1937 1938
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1939 1940 1941 1942 1943 1944 1945
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1946
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1947
#endif
L
Linus Torvalds 已提交
1948 1949 1950 1951

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1952 1953 1954 1955 1956 1957 1958
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1982
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1997 1998
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1999

2000
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2010
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2011 2012 2013 2014 2015
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2031
/*
I
Ingo Molnar 已提交
2032 2033
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2034
 */
I
Ingo Molnar 已提交
2035
static void update_cpu_load(struct rq *this_rq)
2036
{
2037
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2050 2051 2052 2053 2054 2055 2056
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2057 2058
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2059 2060
}

I
Ingo Molnar 已提交
2061 2062
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2063 2064 2065 2066 2067 2068
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2069
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2070 2071 2072
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2073
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2074 2075 2076 2077
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2078
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2079 2080 2081 2082 2083 2084 2085
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2086 2087
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2088 2089 2090 2091 2092 2093 2094 2095
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2096
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2110
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2111 2112 2113 2114
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2115 2116 2117 2118 2119
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2120
	if (unlikely(!spin_trylock(&busiest->lock))) {
2121
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2136
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2137
{
2138
	struct migration_req req;
L
Linus Torvalds 已提交
2139
	unsigned long flags;
2140
	struct rq *rq;
L
Linus Torvalds 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2151

L
Linus Torvalds 已提交
2152 2153 2154 2155 2156
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2157

L
Linus Torvalds 已提交
2158 2159 2160 2161 2162 2163 2164
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2165 2166
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2167 2168 2169 2170
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2171
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2172
	put_cpu();
N
Nick Piggin 已提交
2173 2174
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2175 2176 2177 2178 2179 2180
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2181 2182
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2183
{
2184
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2185
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2186
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2187 2188 2189 2190
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2191
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2192 2193 2194 2195 2196
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2197
static
2198
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2199
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2200
		     int *all_pinned)
L
Linus Torvalds 已提交
2201 2202 2203 2204 2205 2206 2207
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2208 2209
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2210
		return 0;
2211
	}
2212 2213
	*all_pinned = 0;

2214 2215
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2216
		return 0;
2217
	}
L
Linus Torvalds 已提交
2218

2219 2220 2221 2222 2223 2224
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2225 2226
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2227
#ifdef CONFIG_SCHEDSTATS
2228
		if (task_hot(p, rq->clock, sd)) {
2229
			schedstat_inc(sd, lb_hot_gained[idle]);
2230 2231
			schedstat_inc(p, se.nr_forced_migrations);
		}
2232 2233 2234 2235
#endif
		return 1;
	}

2236 2237
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2238
		return 0;
2239
	}
L
Linus Torvalds 已提交
2240 2241 2242
	return 1;
}

2243 2244 2245 2246 2247
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2248
{
2249
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2250 2251
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2252

2253
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2254 2255
		goto out;

2256 2257
	pinned = 1;

L
Linus Torvalds 已提交
2258
	/*
I
Ingo Molnar 已提交
2259
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2260
	 */
I
Ingo Molnar 已提交
2261 2262
	p = iterator->start(iterator->arg);
next:
2263
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2264
		goto out;
2265
	/*
2266
	 * To help distribute high priority tasks across CPUs we don't
2267 2268 2269
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2270 2271
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2272
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2273 2274 2275
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2276 2277
	}

I
Ingo Molnar 已提交
2278
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2279
	pulled++;
I
Ingo Molnar 已提交
2280
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2281

2282
	/*
2283
	 * We only want to steal up to the prescribed amount of weighted load.
2284
	 */
2285
	if (rem_load_move > 0) {
2286 2287
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2288 2289
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2290 2291 2292
	}
out:
	/*
2293
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2294 2295 2296 2297
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2298 2299 2300

	if (all_pinned)
		*all_pinned = pinned;
2301 2302

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2303 2304
}

I
Ingo Molnar 已提交
2305
/*
P
Peter Williams 已提交
2306 2307 2308
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2309 2310 2311 2312
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2313
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2314 2315 2316
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2317
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2318
	unsigned long total_load_moved = 0;
2319
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2320 2321

	do {
P
Peter Williams 已提交
2322 2323
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2324
				max_load_move - total_load_moved,
2325
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2326
		class = class->next;
P
Peter Williams 已提交
2327
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2328

P
Peter Williams 已提交
2329 2330 2331
	return total_load_moved > 0;
}

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2368
	const struct sched_class *class;
P
Peter Williams 已提交
2369 2370

	for (class = sched_class_highest; class; class = class->next)
2371
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2372 2373 2374
			return 1;

	return 0;
I
Ingo Molnar 已提交
2375 2376
}

L
Linus Torvalds 已提交
2377 2378
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2379 2380
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2381 2382 2383
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2384 2385
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2386 2387 2388
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2389
	unsigned long max_pull;
2390 2391
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2392
	int load_idx, group_imb = 0;
2393 2394 2395 2396 2397 2398
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2399 2400

	max_load = this_load = total_load = total_pwr = 0;
2401 2402
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2403
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2404
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2405
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2406 2407 2408
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2409 2410

	do {
2411
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2412 2413
		int local_group;
		int i;
2414
		int __group_imb = 0;
2415
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2416
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2417 2418 2419

		local_group = cpu_isset(this_cpu, group->cpumask);

2420 2421 2422
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2423
		/* Tally up the load of all CPUs in the group */
2424
		sum_weighted_load = sum_nr_running = avg_load = 0;
2425 2426
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2427 2428

		for_each_cpu_mask(i, group->cpumask) {
2429 2430 2431 2432 2433 2434
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2435

2436
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2437 2438
				*sd_idle = 0;

L
Linus Torvalds 已提交
2439
			/* Bias balancing toward cpus of our domain */
2440 2441 2442 2443 2444 2445
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2446
				load = target_load(i, load_idx);
2447
			} else {
N
Nick Piggin 已提交
2448
				load = source_load(i, load_idx);
2449 2450 2451 2452 2453
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2454 2455

			avg_load += load;
2456
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2457
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2458 2459
		}

2460 2461 2462
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2463 2464
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2465
		 */
2466 2467
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2468 2469 2470 2471
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2472
		total_load += avg_load;
2473
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2474 2475

		/* Adjust by relative CPU power of the group */
2476 2477
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2478

2479 2480 2481
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2482
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2483

L
Linus Torvalds 已提交
2484 2485 2486
		if (local_group) {
			this_load = avg_load;
			this = group;
2487 2488 2489
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2490
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2491 2492
			max_load = avg_load;
			busiest = group;
2493 2494
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2495
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2496
		}
2497 2498 2499 2500 2501 2502

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2503 2504 2505
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2506 2507 2508 2509 2510 2511 2512 2513 2514

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2515
		/*
2516 2517
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2518 2519
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2520
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2521
			goto group_next;
2522

I
Ingo Molnar 已提交
2523
		/*
2524
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2525 2526 2527 2528 2529
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2530 2531
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2532 2533
			group_min = group;
			min_nr_running = sum_nr_running;
2534 2535
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2536
		}
2537

I
Ingo Molnar 已提交
2538
		/*
2539
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2551
		}
2552 2553
group_next:
#endif
L
Linus Torvalds 已提交
2554 2555 2556
		group = group->next;
	} while (group != sd->groups);

2557
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2558 2559 2560 2561 2562 2563 2564 2565
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2566
	busiest_load_per_task /= busiest_nr_running;
2567 2568 2569
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2593 2594

	/* Don't want to pull so many tasks that a group would go idle */
2595
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2596

L
Linus Torvalds 已提交
2597
	/* How much load to actually move to equalise the imbalance */
2598 2599
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2600 2601
			/ SCHED_LOAD_SCALE;

2602 2603 2604 2605 2606 2607
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2608
	if (*imbalance < busiest_load_per_task) {
2609
		unsigned long tmp, pwr_now, pwr_move;
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2621

I
Ingo Molnar 已提交
2622 2623
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2624
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2634 2635 2636 2637
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2638 2639 2640
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2641 2642
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2643
		if (max_load > tmp)
2644
			pwr_move += busiest->__cpu_power *
2645
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2646 2647

		/* Amount of load we'd add */
2648
		if (max_load * busiest->__cpu_power <
2649
				busiest_load_per_task * SCHED_LOAD_SCALE)
2650 2651
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2652
		else
2653 2654 2655 2656
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2657 2658 2659
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2660 2661
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2662 2663 2664 2665 2666
	}

	return busiest;

out_balanced:
2667
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2668
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2669
		goto ret;
L
Linus Torvalds 已提交
2670

2671 2672 2673 2674 2675
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2676
ret:
L
Linus Torvalds 已提交
2677 2678 2679 2680 2681 2682 2683
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2684
static struct rq *
I
Ingo Molnar 已提交
2685
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2686
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2687
{
2688
	struct rq *busiest = NULL, *rq;
2689
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2690 2691 2692
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2693
		unsigned long wl;
2694 2695 2696 2697

		if (!cpu_isset(i, *cpus))
			continue;

2698
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2699
		wl = weighted_cpuload(i);
2700

I
Ingo Molnar 已提交
2701
		if (rq->nr_running == 1 && wl > imbalance)
2702
			continue;
L
Linus Torvalds 已提交
2703

I
Ingo Molnar 已提交
2704 2705
		if (wl > max_load) {
			max_load = wl;
2706
			busiest = rq;
L
Linus Torvalds 已提交
2707 2708 2709 2710 2711 2712
		}
	}

	return busiest;
}

2713 2714 2715 2716 2717 2718
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2719 2720 2721 2722
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2723
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2724
			struct sched_domain *sd, enum cpu_idle_type idle,
2725
			int *balance)
L
Linus Torvalds 已提交
2726
{
P
Peter Williams 已提交
2727
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2728 2729
	struct sched_group *group;
	unsigned long imbalance;
2730
	struct rq *busiest;
2731
	cpumask_t cpus = CPU_MASK_ALL;
2732
	unsigned long flags;
N
Nick Piggin 已提交
2733

2734 2735 2736
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2737
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2738
	 * portraying it as CPU_NOT_IDLE.
2739
	 */
I
Ingo Molnar 已提交
2740
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2741
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2742
		sd_idle = 1;
L
Linus Torvalds 已提交
2743

2744
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2745

2746 2747
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2748 2749
				   &cpus, balance);

2750
	if (*balance == 0)
2751 2752
		goto out_balanced;

L
Linus Torvalds 已提交
2753 2754 2755 2756 2757
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2758
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2759 2760 2761 2762 2763
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2764
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2765 2766 2767

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2768
	ld_moved = 0;
L
Linus Torvalds 已提交
2769 2770 2771 2772
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2773
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2774 2775
		 * correctly treated as an imbalance.
		 */
2776
		local_irq_save(flags);
N
Nick Piggin 已提交
2777
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2778
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2779
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2780
		double_rq_unlock(this_rq, busiest);
2781
		local_irq_restore(flags);
2782

2783 2784 2785
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2786
		if (ld_moved && this_cpu != smp_processor_id())
2787 2788
			resched_cpu(this_cpu);

2789
		/* All tasks on this runqueue were pinned by CPU affinity */
2790 2791 2792 2793
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2794
			goto out_balanced;
2795
		}
L
Linus Torvalds 已提交
2796
	}
2797

P
Peter Williams 已提交
2798
	if (!ld_moved) {
L
Linus Torvalds 已提交
2799 2800 2801 2802 2803
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2804
			spin_lock_irqsave(&busiest->lock, flags);
2805 2806 2807 2808 2809

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2810
				spin_unlock_irqrestore(&busiest->lock, flags);
2811 2812 2813 2814
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2815 2816 2817
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2818
				active_balance = 1;
L
Linus Torvalds 已提交
2819
			}
2820
			spin_unlock_irqrestore(&busiest->lock, flags);
2821
			if (active_balance)
L
Linus Torvalds 已提交
2822 2823 2824 2825 2826 2827
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2828
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2829
		}
2830
	} else
L
Linus Torvalds 已提交
2831 2832
		sd->nr_balance_failed = 0;

2833
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2834 2835
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2836 2837 2838 2839 2840 2841 2842 2843 2844
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2845 2846
	}

P
Peter Williams 已提交
2847
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2848
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2849
		return -1;
P
Peter Williams 已提交
2850
	return ld_moved;
L
Linus Torvalds 已提交
2851 2852 2853 2854

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2855
	sd->nr_balance_failed = 0;
2856 2857

out_one_pinned:
L
Linus Torvalds 已提交
2858
	/* tune up the balancing interval */
2859 2860
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2861 2862
		sd->balance_interval *= 2;

2863
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2864
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2865
		return -1;
L
Linus Torvalds 已提交
2866 2867 2868 2869 2870 2871 2872
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2873
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2874 2875
 * this_rq is locked.
 */
2876
static int
2877
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2878 2879
{
	struct sched_group *group;
2880
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2881
	unsigned long imbalance;
P
Peter Williams 已提交
2882
	int ld_moved = 0;
N
Nick Piggin 已提交
2883
	int sd_idle = 0;
2884
	int all_pinned = 0;
2885
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2886

2887 2888 2889 2890
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2891
	 * portraying it as CPU_NOT_IDLE.
2892 2893 2894
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2895
		sd_idle = 1;
L
Linus Torvalds 已提交
2896

2897
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2898
redo:
I
Ingo Molnar 已提交
2899
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2900
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2901
	if (!group) {
I
Ingo Molnar 已提交
2902
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2903
		goto out_balanced;
L
Linus Torvalds 已提交
2904 2905
	}

I
Ingo Molnar 已提交
2906
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2907
				&cpus);
N
Nick Piggin 已提交
2908
	if (!busiest) {
I
Ingo Molnar 已提交
2909
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2910
		goto out_balanced;
L
Linus Torvalds 已提交
2911 2912
	}

N
Nick Piggin 已提交
2913 2914
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2915
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2916

P
Peter Williams 已提交
2917
	ld_moved = 0;
2918 2919 2920
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2921 2922
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2923
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2924 2925
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2926
		spin_unlock(&busiest->lock);
2927

2928
		if (unlikely(all_pinned)) {
2929 2930 2931 2932
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2933 2934
	}

P
Peter Williams 已提交
2935
	if (!ld_moved) {
I
Ingo Molnar 已提交
2936
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2937 2938
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2939 2940
			return -1;
	} else
2941
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2942

P
Peter Williams 已提交
2943
	return ld_moved;
2944 2945

out_balanced:
I
Ingo Molnar 已提交
2946
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2947
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2948
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2949
		return -1;
2950
	sd->nr_balance_failed = 0;
2951

2952
	return 0;
L
Linus Torvalds 已提交
2953 2954 2955 2956 2957 2958
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2959
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2960 2961
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2962 2963
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2964 2965

	for_each_domain(this_cpu, sd) {
2966 2967 2968 2969 2970 2971
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2972
			/* If we've pulled tasks over stop searching: */
2973
			pulled_task = load_balance_newidle(this_cpu,
2974 2975 2976 2977 2978 2979 2980
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2981
	}
I
Ingo Molnar 已提交
2982
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2983 2984 2985 2986 2987
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2988
	}
L
Linus Torvalds 已提交
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2999
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3000
{
3001
	int target_cpu = busiest_rq->push_cpu;
3002 3003
	struct sched_domain *sd;
	struct rq *target_rq;
3004

3005
	/* Is there any task to move? */
3006 3007 3008 3009
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3010 3011

	/*
3012 3013 3014
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3015
	 */
3016
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3017

3018 3019
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3020 3021
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3022 3023

	/* Search for an sd spanning us and the target CPU. */
3024
	for_each_domain(target_cpu, sd) {
3025
		if ((sd->flags & SD_LOAD_BALANCE) &&
3026
		    cpu_isset(busiest_cpu, sd->span))
3027
				break;
3028
	}
3029

3030
	if (likely(sd)) {
3031
		schedstat_inc(sd, alb_count);
3032

P
Peter Williams 已提交
3033 3034
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3035 3036 3037 3038
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3039
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3040 3041
}

3042 3043 3044 3045 3046 3047 3048 3049 3050
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3051
/*
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3062
 *
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3119 3120 3121 3122 3123
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3124
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3125
{
3126 3127
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3128 3129
	unsigned long interval;
	struct sched_domain *sd;
3130
	/* Earliest time when we have to do rebalance again */
3131
	unsigned long next_balance = jiffies + 60*HZ;
3132
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3133

3134
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3135 3136 3137 3138
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3139
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3140 3141 3142 3143 3144 3145
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3146 3147 3148
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3149

3150 3151 3152 3153 3154
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3155
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3156
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3157 3158
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3159 3160 3161
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3162
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3163
			}
3164
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3165
		}
3166 3167 3168
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3169
		if (time_after(next_balance, sd->last_balance + interval)) {
3170
			next_balance = sd->last_balance + interval;
3171 3172
			update_next_balance = 1;
		}
3173 3174 3175 3176 3177 3178 3179 3180

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3181
	}
3182 3183 3184 3185 3186 3187 3188 3189

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3190 3191 3192 3193 3194 3195 3196 3197 3198
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3199 3200 3201 3202
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3203

I
Ingo Molnar 已提交
3204
	rebalance_domains(this_cpu, idle);
3205 3206 3207 3208 3209 3210 3211

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3212 3213
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3214 3215 3216 3217
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3218
		cpu_clear(this_cpu, cpus);
3219 3220 3221 3222 3223 3224 3225 3226 3227
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3228
			rebalance_domains(balance_cpu, CPU_IDLE);
3229 3230

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3231 3232
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3245
static inline void trigger_load_balance(struct rq *rq, int cpu)
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3297
}
I
Ingo Molnar 已提交
3298 3299 3300

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3301 3302 3303
/*
 * on UP we do not need to balance between CPUs:
 */
3304
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3305 3306
{
}
I
Ingo Molnar 已提交
3307

L
Linus Torvalds 已提交
3308 3309 3310 3311 3312 3313 3314
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3315 3316
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3317
 */
3318
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3319 3320
{
	unsigned long flags;
3321 3322
	u64 ns, delta_exec;
	struct rq *rq;
3323

3324 3325 3326
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3327 3328
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3329 3330 3331 3332
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3333

L
Linus Torvalds 已提交
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3357 3358 3359 3360 3361
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3362
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3396
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3397 3398
	cputime64_t tmp;

3399 3400
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3401

L
Linus Torvalds 已提交
3402 3403 3404 3405 3406 3407 3408 3409
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3410
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3411
		cpustat->system = cputime64_add(cpustat->system, tmp);
3412
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3413 3414 3415 3416 3417 3418 3419
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3431 3432 3433 3434 3435 3436 3437 3438 3439
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3440
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3441 3442 3443 3444 3445 3446 3447

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3448
	} else
L
Linus Torvalds 已提交
3449 3450 3451
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3463
	struct task_struct *curr = rq->curr;
3464
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3465 3466

	spin_lock(&rq->lock);
3467
	__update_rq_clock(rq);
3468 3469 3470 3471 3472 3473
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3474
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3475 3476 3477
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3478

3479
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3480 3481
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3482
#endif
L
Linus Torvalds 已提交
3483 3484 3485 3486 3487 3488 3489 3490 3491
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3492 3493
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3494 3495 3496 3497
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3498 3499
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3500 3501 3502 3503 3504 3505 3506 3507
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3508 3509
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3510 3511 3512
	/*
	 * Is the spinlock portion underflowing?
	 */
3513 3514 3515 3516
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3517 3518 3519 3520 3521 3522 3523
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3524
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3525
 */
I
Ingo Molnar 已提交
3526
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3527
{
3528 3529 3530 3531 3532
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3533 3534 3535
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3536 3537 3538 3539 3540

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3541
}
L
Linus Torvalds 已提交
3542

I
Ingo Molnar 已提交
3543 3544 3545 3546 3547
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3548 3549 3550 3551 3552
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3553 3554 3555
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3556 3557
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3558
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3559 3560
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3561 3562
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3563 3564
	}
#endif
I
Ingo Molnar 已提交
3565 3566 3567 3568 3569 3570
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3571
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3572
{
3573
	const struct sched_class *class;
I
Ingo Molnar 已提交
3574
	struct task_struct *p;
L
Linus Torvalds 已提交
3575 3576

	/*
I
Ingo Molnar 已提交
3577 3578
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3579
	 */
I
Ingo Molnar 已提交
3580
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3581
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3582 3583
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3584 3585
	}

I
Ingo Molnar 已提交
3586 3587
	class = sched_class_highest;
	for ( ; ; ) {
3588
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3589 3590 3591 3592 3593 3594 3595 3596 3597
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3598

I
Ingo Molnar 已提交
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3621

3622 3623 3624 3625
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3626
	__update_rq_clock(rq);
3627 3628
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3629 3630 3631

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3632
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3633
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3634
		} else {
3635
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3636
		}
I
Ingo Molnar 已提交
3637
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3638 3639
	}

I
Ingo Molnar 已提交
3640
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3641 3642
		idle_balance(cpu, rq);

3643
	prev->sched_class->put_prev_task(rq, prev);
3644
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3645 3646

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3647

L
Linus Torvalds 已提交
3648 3649 3650 3651 3652
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3653
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3654 3655 3656
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3657 3658 3659
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3660
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3661
	}
L
Linus Torvalds 已提交
3662 3663 3664 3665 3666 3667 3668 3669
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3670
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3685
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3686 3687
		return;

3688 3689 3690 3691 3692 3693 3694 3695
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3696
#ifdef CONFIG_PREEMPT_BKL
3697 3698
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3699
#endif
3700
		schedule();
L
Linus Torvalds 已提交
3701
#ifdef CONFIG_PREEMPT_BKL
3702
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3703
#endif
3704
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3705

3706 3707 3708 3709 3710 3711
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3712 3713 3714 3715
}
EXPORT_SYMBOL(preempt_schedule);

/*
3716
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3728
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3729 3730
	BUG_ON(ti->preempt_count || !irqs_disabled());

3731 3732 3733 3734 3735 3736 3737 3738
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3739
#ifdef CONFIG_PREEMPT_BKL
3740 3741
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3742
#endif
3743 3744 3745
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3746
#ifdef CONFIG_PREEMPT_BKL
3747
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3748
#endif
3749
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3750

3751 3752 3753 3754 3755 3756
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3757 3758 3759 3760
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3761 3762
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3763
{
3764
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3780
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3781

3782
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3783 3784
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3785
		if (curr->func(curr, mode, sync, key) &&
3786
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3787 3788 3789 3790 3791 3792 3793 3794 3795
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3796
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3797 3798
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3799
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3818
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3830 3831
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3848
void complete(struct completion *x)
L
Linus Torvalds 已提交
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3860
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3872 3873
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3874 3875 3876 3877 3878 3879 3880
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3881 3882 3883 3884 3885 3886
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3887 3888 3889 3890 3891
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3892
				return timeout;
L
Linus Torvalds 已提交
3893 3894 3895 3896 3897 3898 3899 3900
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3901 3902
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3903 3904 3905 3906
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3907
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3908
	spin_unlock_irq(&x->wait.lock);
3909 3910
	return timeout;
}
L
Linus Torvalds 已提交
3911

3912
void __sched wait_for_completion(struct completion *x)
3913 3914
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3915
}
3916
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3917

3918
unsigned long __sched
3919
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3920
{
3921
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3922
}
3923
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3924

3925
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3926
{
3927 3928 3929 3930
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3931
}
3932
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3933

3934
unsigned long __sched
3935 3936
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3937
{
3938
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3939
}
3940
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3941

3942 3943
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3944
{
I
Ingo Molnar 已提交
3945 3946 3947 3948
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3949

3950
	__set_current_state(state);
L
Linus Torvalds 已提交
3951

3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3966 3967 3968
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3969
long __sched
I
Ingo Molnar 已提交
3970
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3971
{
3972
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3973 3974 3975
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3976
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3977
{
3978
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3979 3980 3981
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3982
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3983
{
3984
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3985 3986 3987
}
EXPORT_SYMBOL(sleep_on_timeout);

3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4000
void rt_mutex_setprio(struct task_struct *p, int prio)
4001 4002
{
	unsigned long flags;
4003
	int oldprio, on_rq, running;
4004
	struct rq *rq;
4005 4006 4007 4008

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4009
	update_rq_clock(rq);
4010

4011
	oldprio = p->prio;
I
Ingo Molnar 已提交
4012
	on_rq = p->se.on_rq;
4013 4014
	running = task_running(rq, p);
	if (on_rq) {
4015
		dequeue_task(rq, p, 0);
4016 4017 4018
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4019 4020 4021 4022 4023 4024

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4025 4026
	p->prio = prio;

I
Ingo Molnar 已提交
4027
	if (on_rq) {
4028 4029
		if (running)
			p->sched_class->set_curr_task(rq);
4030
		enqueue_task(rq, p, 0);
4031 4032
		/*
		 * Reschedule if we are currently running on this runqueue and
4033 4034
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4035
		 */
4036
		if (running) {
4037 4038
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4039 4040 4041
		} else {
			check_preempt_curr(rq, p);
		}
4042 4043 4044 4045 4046 4047
	}
	task_rq_unlock(rq, &flags);
}

#endif

4048
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4049
{
I
Ingo Molnar 已提交
4050
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4051
	unsigned long flags;
4052
	struct rq *rq;
L
Linus Torvalds 已提交
4053 4054 4055 4056 4057 4058 4059 4060

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4061
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4062 4063 4064 4065
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4066
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4067
	 */
4068
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4069 4070 4071
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4072 4073
	on_rq = p->se.on_rq;
	if (on_rq) {
4074
		dequeue_task(rq, p, 0);
4075
		dec_load(rq, p);
4076
	}
L
Linus Torvalds 已提交
4077 4078

	p->static_prio = NICE_TO_PRIO(nice);
4079
	set_load_weight(p);
4080 4081 4082
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4083

I
Ingo Molnar 已提交
4084
	if (on_rq) {
4085
		enqueue_task(rq, p, 0);
4086
		inc_load(rq, p);
L
Linus Torvalds 已提交
4087
		/*
4088 4089
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4090
		 */
4091
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4092 4093 4094 4095 4096 4097 4098
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4099 4100 4101 4102 4103
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4104
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4105
{
4106 4107
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4108

M
Matt Mackall 已提交
4109 4110 4111 4112
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4124
	long nice, retval;
L
Linus Torvalds 已提交
4125 4126 4127 4128 4129 4130

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4131 4132
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4133 4134 4135 4136 4137 4138 4139 4140 4141
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4142 4143 4144
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4163
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4164 4165 4166 4167 4168 4169 4170 4171
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4172
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4191
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4192 4193 4194 4195 4196 4197 4198 4199
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4200
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4201
{
4202
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4203 4204 4205
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4206 4207
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4208
{
I
Ingo Molnar 已提交
4209
	BUG_ON(p->se.on_rq);
4210

L
Linus Torvalds 已提交
4211
	p->policy = policy;
I
Ingo Molnar 已提交
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4224
	p->rt_priority = prio;
4225 4226 4227
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4228
	set_load_weight(p);
L
Linus Torvalds 已提交
4229 4230 4231
}

/**
4232
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4233 4234 4235
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4236
 *
4237
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4238
 */
I
Ingo Molnar 已提交
4239 4240
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4241
{
4242
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4243
	unsigned long flags;
4244
	struct rq *rq;
L
Linus Torvalds 已提交
4245

4246 4247
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4248 4249 4250 4251 4252
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4253 4254
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4255
		return -EINVAL;
L
Linus Torvalds 已提交
4256 4257
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4258 4259
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4260 4261
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4262
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4263
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4264
		return -EINVAL;
4265
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4266 4267
		return -EINVAL;

4268 4269 4270 4271
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4272
		if (rt_policy(policy)) {
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4289 4290 4291 4292 4293 4294
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4295

4296 4297 4298 4299 4300
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4301 4302 4303 4304

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4305 4306 4307 4308 4309
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4310 4311 4312 4313
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4314
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4315 4316 4317
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4318 4319
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4320 4321
		goto recheck;
	}
I
Ingo Molnar 已提交
4322
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4323
	on_rq = p->se.on_rq;
4324 4325
	running = task_running(rq, p);
	if (on_rq) {
4326
		deactivate_task(rq, p, 0);
4327 4328 4329
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4330

L
Linus Torvalds 已提交
4331
	oldprio = p->prio;
I
Ingo Molnar 已提交
4332
	__setscheduler(rq, p, policy, param->sched_priority);
4333

I
Ingo Molnar 已提交
4334
	if (on_rq) {
4335 4336
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4337
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4338 4339
		/*
		 * Reschedule if we are currently running on this runqueue and
4340 4341
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4342
		 */
4343
		if (running) {
4344 4345
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4346 4347 4348
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4349
	}
4350 4351 4352
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4353 4354
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4355 4356 4357 4358
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4359 4360
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4361 4362 4363
{
	struct sched_param lparam;
	struct task_struct *p;
4364
	int retval;
L
Linus Torvalds 已提交
4365 4366 4367 4368 4369

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4370 4371 4372

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4373
	p = find_process_by_pid(pid);
4374 4375 4376
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4377

L
Linus Torvalds 已提交
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4390 4391 4392 4393
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4413
	struct task_struct *p;
4414
	int retval;
L
Linus Torvalds 已提交
4415 4416

	if (pid < 0)
4417
		return -EINVAL;
L
Linus Torvalds 已提交
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4439
	struct task_struct *p;
4440
	int retval;
L
Linus Torvalds 已提交
4441 4442

	if (!param || pid < 0)
4443
		return -EINVAL;
L
Linus Torvalds 已提交
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4473 4474
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4475

4476
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4477 4478 4479 4480 4481
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4482
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4499 4500 4501 4502
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4503 4504
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4505
 again:
L
Linus Torvalds 已提交
4506 4507
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4520 4521
out_unlock:
	put_task_struct(p);
4522
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4563
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4564 4565 4566
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4567
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4568 4569
EXPORT_SYMBOL(cpu_online_map);

4570
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4571
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4572 4573 4574 4575
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4576
	struct task_struct *p;
L
Linus Torvalds 已提交
4577 4578
	int retval;

4579
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4580 4581 4582 4583 4584 4585 4586
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4587 4588 4589 4590
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4591
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4592 4593 4594

out_unlock:
	read_unlock(&tasklist_lock);
4595
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4596

4597
	return retval;
L
Linus Torvalds 已提交
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4628 4629
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4630 4631 4632
 */
asmlinkage long sys_sched_yield(void)
{
4633
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4634

4635
	schedstat_inc(rq, yld_count);
4636
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4637 4638 4639 4640 4641 4642

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4643
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4644 4645 4646 4647 4648 4649 4650 4651
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4652
static void __cond_resched(void)
L
Linus Torvalds 已提交
4653
{
4654 4655 4656
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4657 4658 4659 4660 4661
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4662 4663 4664 4665 4666 4667 4668 4669 4670
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4671 4672
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4688
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4689
{
J
Jan Kara 已提交
4690 4691
	int ret = 0;

L
Linus Torvalds 已提交
4692 4693 4694
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4695
		ret = 1;
L
Linus Torvalds 已提交
4696 4697
		spin_lock(lock);
	}
4698
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4699
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4700 4701 4702
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4703
		ret = 1;
L
Linus Torvalds 已提交
4704 4705
		spin_lock(lock);
	}
J
Jan Kara 已提交
4706
	return ret;
L
Linus Torvalds 已提交
4707 4708 4709 4710 4711 4712 4713
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4714
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4715
		local_bh_enable();
L
Linus Torvalds 已提交
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4727
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4746
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4747

4748
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4749 4750 4751
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4752
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4753 4754 4755 4756 4757
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4758
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4759 4760
	long ret;

4761
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4762 4763 4764
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4765
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4786
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4787
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4811
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4812
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4829
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4830
	unsigned int time_slice;
4831
	int retval;
L
Linus Torvalds 已提交
4832 4833 4834
	struct timespec t;

	if (pid < 0)
4835
		return -EINVAL;
L
Linus Torvalds 已提交
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

D
Dmitry Adamushko 已提交
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
	if (p->policy == SCHED_FIFO)
		time_slice = 0;
	else if (p->policy == SCHED_RR)
		time_slice = DEF_TIMESLICE;
	else {
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
		time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4860
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4861
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4862 4863
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4864

L
Linus Torvalds 已提交
4865 4866 4867 4868 4869
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4870
static const char stat_nam[] = "RSDTtZX";
4871 4872

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4873 4874
{
	unsigned long free = 0;
4875
	unsigned state;
L
Linus Torvalds 已提交
4876 4877

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
4878
	printk(KERN_INFO "%-13.13s %c", p->comm,
4879
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4880
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4881
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4882
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4883
	else
I
Ingo Molnar 已提交
4884
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4885 4886
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4887
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4888
	else
I
Ingo Molnar 已提交
4889
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4890 4891 4892
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4893
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4894 4895
		while (!*n)
			n++;
4896
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4897 4898
	}
#endif
4899 4900
	printk(KERN_CONT "%5lu %5d %6d\n", free,
		task_pid_nr(p), task_pid_nr(p->parent));
L
Linus Torvalds 已提交
4901 4902 4903 4904 4905

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4906
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4907
{
4908
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4909

4910 4911 4912
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4913
#else
4914 4915
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4916 4917 4918 4919 4920 4921 4922 4923
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4924
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4925
			show_task(p);
L
Linus Torvalds 已提交
4926 4927
	} while_each_thread(g, p);

4928 4929
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4930 4931 4932
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4933
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4934 4935 4936 4937 4938
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4939 4940
}

I
Ingo Molnar 已提交
4941 4942
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4943
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4944 4945
}

4946 4947 4948 4949 4950 4951 4952 4953
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4954
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4955
{
4956
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4957 4958
	unsigned long flags;

I
Ingo Molnar 已提交
4959 4960 4961
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4962
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4963
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4964
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4965 4966 4967

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4968 4969 4970
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4971 4972 4973 4974
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4975
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4976
#else
A
Al Viro 已提交
4977
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4978
#endif
I
Ingo Molnar 已提交
4979 4980 4981 4982
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5020 5021 5022 5023
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5024
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
5046
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5047
{
5048
	struct migration_req req;
L
Linus Torvalds 已提交
5049
	unsigned long flags;
5050
	struct rq *rq;
5051
	int ret = 0;
L
Linus Torvalds 已提交
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5074

L
Linus Torvalds 已提交
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5087 5088
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5089
 */
5090
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5091
{
5092
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5093
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5094 5095

	if (unlikely(cpu_is_offline(dest_cpu)))
5096
		return ret;
L
Linus Torvalds 已提交
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5109
	on_rq = p->se.on_rq;
5110
	if (on_rq)
5111
		deactivate_task(rq_src, p, 0);
5112

L
Linus Torvalds 已提交
5113
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5114 5115 5116
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5117
	}
5118
	ret = 1;
L
Linus Torvalds 已提交
5119 5120
out:
	double_rq_unlock(rq_src, rq_dest);
5121
	return ret;
L
Linus Torvalds 已提交
5122 5123 5124 5125 5126 5127 5128
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5129
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5130 5131
{
	int cpu = (long)data;
5132
	struct rq *rq;
L
Linus Torvalds 已提交
5133 5134 5135 5136 5137 5138

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5139
		struct migration_req *req;
L
Linus Torvalds 已提交
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5162
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5163 5164
		list_del_init(head->next);

N
Nick Piggin 已提交
5165 5166 5167
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5197
/*
5198
 * Figure out where task on dead CPU should go, use force if necessary.
5199 5200
 * NOTE: interrupts should be disabled by the caller
 */
5201
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5202
{
5203
	unsigned long flags;
L
Linus Torvalds 已提交
5204
	cpumask_t mask;
5205 5206
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5207

5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5220 5221 5222 5223 5224 5225 5226 5227
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
			 * cpuset_cpus_allowed() will not block.  It must be
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5228
			rq = task_rq_lock(p, &flags);
5229
			p->cpus_allowed = cpus_allowed;
5230 5231
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5232

5233 5234 5235 5236 5237 5238 5239 5240
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
			if (p->mm && printk_ratelimit())
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
5241
			       task_pid_nr(p), p->comm, dead_cpu);
5242
		}
5243
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5244 5245 5246 5247 5248 5249 5250 5251 5252
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5253
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5254
{
5255
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5269
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5270

5271
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5272

5273 5274
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5275 5276
			continue;

5277 5278 5279
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5280

5281
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5282 5283
}

I
Ingo Molnar 已提交
5284 5285
/*
 * Schedules idle task to be the next runnable task on current CPU.
5286 5287
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5288 5289 5290
 */
void sched_idle_next(void)
{
5291
	int this_cpu = smp_processor_id();
5292
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5293 5294 5295 5296
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5297
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5298

5299 5300 5301
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5302 5303 5304
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5305
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5306

5307 5308
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5309 5310 5311 5312

	spin_unlock_irqrestore(&rq->lock, flags);
}

5313 5314
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5328
/* called under rq->lock with disabled interrupts */
5329
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5330
{
5331
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5332 5333

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5334
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5335 5336

	/* Cannot have done final schedule yet: would have vanished. */
5337
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5338

5339
	get_task_struct(p);
L
Linus Torvalds 已提交
5340 5341 5342 5343 5344 5345

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
	 */
5346
	spin_unlock_irq(&rq->lock);
5347
	move_task_off_dead_cpu(dead_cpu, p);
5348
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5349

5350
	put_task_struct(p);
L
Linus Torvalds 已提交
5351 5352 5353 5354 5355
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5356
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5357
	struct task_struct *next;
5358

I
Ingo Molnar 已提交
5359 5360 5361
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5362
		update_rq_clock(rq);
5363
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5364 5365 5366
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5367

L
Linus Torvalds 已提交
5368 5369 5370 5371
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5372 5373 5374
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5375 5376
	{
		.procname	= "sched_domain",
5377
		.mode		= 0555,
5378
	},
I
Ingo Molnar 已提交
5379
	{0, },
5380 5381 5382
};

static struct ctl_table sd_ctl_root[] = {
5383
	{
5384
		.ctl_name	= CTL_KERN,
5385
		.procname	= "kernel",
5386
		.mode		= 0555,
5387 5388
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5389
	{0, },
5390 5391 5392 5393 5394
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5395
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5396 5397 5398 5399

	return entry;
}

5400 5401
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5402
	struct ctl_table *entry;
5403

5404 5405 5406 5407 5408 5409 5410
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
	 * will always be set.  In the lowest directory the names are
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5411 5412
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5413 5414 5415
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5416 5417 5418 5419 5420

	kfree(*tablep);
	*tablep = NULL;
}

5421
static void
5422
set_table_entry(struct ctl_table *entry,
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5436
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5437

5438 5439 5440
	if (table == NULL)
		return NULL;

5441
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5442
		sizeof(long), 0644, proc_doulongvec_minmax);
5443
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5444
		sizeof(long), 0644, proc_doulongvec_minmax);
5445
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5446
		sizeof(int), 0644, proc_dointvec_minmax);
5447
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5448
		sizeof(int), 0644, proc_dointvec_minmax);
5449
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5450
		sizeof(int), 0644, proc_dointvec_minmax);
5451
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5452
		sizeof(int), 0644, proc_dointvec_minmax);
5453
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5454
		sizeof(int), 0644, proc_dointvec_minmax);
5455
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5456
		sizeof(int), 0644, proc_dointvec_minmax);
5457
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5458
		sizeof(int), 0644, proc_dointvec_minmax);
5459
	set_table_entry(&table[9], "cache_nice_tries",
5460 5461
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5462
	set_table_entry(&table[10], "flags", &sd->flags,
5463
		sizeof(int), 0644, proc_dointvec_minmax);
5464
	/* &table[11] is terminator */
5465 5466 5467 5468

	return table;
}

I
Ingo Molnar 已提交
5469
static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
5470 5471 5472 5473 5474 5475 5476 5477 5478
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5479 5480
	if (table == NULL)
		return NULL;
5481 5482 5483 5484 5485

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5486
		entry->mode = 0555;
5487 5488 5489 5490 5491 5492 5493 5494
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5495
static void register_sched_domain_sysctl(void)
5496 5497 5498 5499 5500
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5501 5502 5503
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5504 5505 5506
	if (entry == NULL)
		return;

5507
	for_each_online_cpu(i) {
5508 5509
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5510
		entry->mode = 0555;
5511
		entry->child = sd_alloc_ctl_cpu_table(i);
5512
		entry++;
5513
	}
5514 5515

	WARN_ON(sd_sysctl_header);
5516 5517
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5518

5519
/* may be called multiple times per register */
5520 5521
static void unregister_sched_domain_sysctl(void)
{
5522 5523
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5524
	sd_sysctl_header = NULL;
5525 5526
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5527
}
5528
#else
5529 5530 5531 5532
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5533 5534 5535 5536
{
}
#endif

L
Linus Torvalds 已提交
5537 5538 5539 5540
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5541 5542
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5543 5544
{
	struct task_struct *p;
5545
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5546
	unsigned long flags;
5547
	struct rq *rq;
L
Linus Torvalds 已提交
5548 5549

	switch (action) {
5550 5551 5552 5553
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5554
	case CPU_UP_PREPARE:
5555
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5556
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5557 5558 5559 5560 5561
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5562
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5563 5564 5565
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5566

L
Linus Torvalds 已提交
5567
	case CPU_ONLINE:
5568
	case CPU_ONLINE_FROZEN:
5569
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5570 5571
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5572

L
Linus Torvalds 已提交
5573 5574
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5575
	case CPU_UP_CANCELED_FROZEN:
5576 5577
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5578
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5579 5580
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5581 5582 5583
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5584

L
Linus Torvalds 已提交
5585
	case CPU_DEAD:
5586
	case CPU_DEAD_FROZEN:
5587
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5588 5589 5590 5591 5592
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5593
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5594
		update_rq_clock(rq);
5595
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5596
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5597 5598
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5599
		migrate_dead_tasks(cpu);
5600
		spin_unlock_irq(&rq->lock);
5601
		cpuset_unlock();
L
Linus Torvalds 已提交
5602 5603 5604 5605
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5606
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5607 5608 5609
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5610 5611
			struct migration_req *req;

L
Linus Torvalds 已提交
5612
			req = list_entry(rq->migration_queue.next,
5613
					 struct migration_req, list);
L
Linus Torvalds 已提交
5614 5615 5616 5617 5618 5619
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5620 5621 5622
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5623 5624 5625 5626 5627 5628 5629
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5630
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5631 5632 5633 5634
	.notifier_call = migration_call,
	.priority = 10
};

5635
void __init migration_init(void)
L
Linus Torvalds 已提交
5636 5637
{
	void *cpu = (void *)(long)smp_processor_id();
5638
	int err;
5639 5640

	/* Start one for the boot CPU: */
5641 5642
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5643 5644 5645 5646 5647 5648
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5649 5650 5651 5652 5653

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5654
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5655 5656

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5657
{
I
Ingo Molnar 已提交
5658 5659 5660
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5661

I
Ingo Molnar 已提交
5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5673 5674
	}

I
Ingo Molnar 已提交
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5685

I
Ingo Molnar 已提交
5686
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5687
	do {
I
Ingo Molnar 已提交
5688 5689 5690
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5691 5692 5693
			break;
		}

I
Ingo Molnar 已提交
5694 5695 5696 5697 5698 5699
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5700

I
Ingo Molnar 已提交
5701 5702 5703 5704 5705
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5706

I
Ingo Molnar 已提交
5707 5708 5709 5710 5711
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5712

I
Ingo Molnar 已提交
5713
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5714

I
Ingo Molnar 已提交
5715 5716
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5717

I
Ingo Molnar 已提交
5718 5719 5720
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5721

I
Ingo Molnar 已提交
5722 5723
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5724

I
Ingo Molnar 已提交
5725 5726 5727 5728 5729
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
5730

I
Ingo Molnar 已提交
5731 5732 5733
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5734

I
Ingo Molnar 已提交
5735 5736 5737 5738
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5739

I
Ingo Molnar 已提交
5740 5741 5742 5743 5744
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
5745 5746
		level++;
		sd = sd->parent;
5747
		if (!sd)
I
Ingo Molnar 已提交
5748 5749
			break;
	}
L
Linus Torvalds 已提交
5750 5751
}
#else
5752
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5753 5754
#endif

5755
static int sd_degenerate(struct sched_domain *sd)
5756 5757 5758 5759 5760 5761 5762 5763
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5764 5765 5766
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5780 5781
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5800 5801 5802
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5803 5804 5805 5806 5807 5808 5809
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5810 5811 5812 5813
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5814
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5815
{
5816
	struct rq *rq = cpu_rq(cpu);
5817 5818 5819 5820 5821 5822 5823
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5824
		if (sd_parent_degenerate(tmp, parent)) {
5825
			tmp->parent = parent->parent;
5826 5827 5828
			if (parent->parent)
				parent->parent->child = tmp;
		}
5829 5830
	}

5831
	if (sd && sd_degenerate(sd)) {
5832
		sd = sd->parent;
5833 5834 5835
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5836 5837 5838

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5839
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5840 5841 5842
}

/* cpus with isolated domains */
5843
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5858
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5859 5860

/*
5861 5862 5863 5864
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5865 5866 5867 5868 5869
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5870
static void
5871 5872 5873
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5874 5875 5876 5877 5878 5879
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5880 5881
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5882 5883 5884 5885 5886 5887
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5888
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5889 5890

		for_each_cpu_mask(j, span) {
5891
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5906
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5907

5908
#ifdef CONFIG_NUMA
5909

5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5962 5963
	cpumask_t span, nodemask;
	int i;
5964 5965 5966 5967 5968 5969 5970 5971 5972 5973

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5974

5975 5976 5977 5978 5979 5980 5981 5982
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5983
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5984

5985
/*
5986
 * SMT sched-domains:
5987
 */
L
Linus Torvalds 已提交
5988 5989
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5990
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5991

5992 5993
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5994
{
5995 5996
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5997 5998 5999 6000
	return cpu;
}
#endif

6001 6002 6003
/*
 * multi-core sched-domains:
 */
6004 6005
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6006
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6007 6008 6009
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6010 6011
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
6012
{
6013
	int group;
6014
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6015
	cpus_and(mask, mask, *cpu_map);
6016 6017 6018 6019
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6020 6021
}
#elif defined(CONFIG_SCHED_MC)
6022 6023
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
6024
{
6025 6026
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6027 6028 6029 6030
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6031
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6032
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6033

6034 6035
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
6036
{
6037
	int group;
6038
#ifdef CONFIG_SCHED_MC
6039
	cpumask_t mask = cpu_coregroup_map(cpu);
6040
	cpus_and(mask, mask, *cpu_map);
6041
	group = first_cpu(mask);
6042
#elif defined(CONFIG_SCHED_SMT)
6043
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6044
	cpus_and(mask, mask, *cpu_map);
6045
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6046
#else
6047
	group = cpu;
L
Linus Torvalds 已提交
6048
#endif
6049 6050 6051
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6052 6053 6054 6055
}

#ifdef CONFIG_NUMA
/*
6056 6057 6058
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6059
 */
6060
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6061
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6062

6063
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6064
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6065

6066 6067
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6068
{
6069 6070 6071 6072 6073 6074 6075 6076 6077
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6078
}
6079

6080 6081 6082 6083 6084 6085 6086
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6087 6088 6089
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6090

6091 6092 6093 6094 6095 6096 6097 6098
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6099

6100 6101 6102 6103
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6104
}
L
Linus Torvalds 已提交
6105 6106
#endif

6107
#ifdef CONFIG_NUMA
6108 6109 6110
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6111
	int cpu, i;
6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6142 6143 6144 6145 6146
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6147

6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6174 6175
	sd->groups->__cpu_power = 0;

6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6186
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6187 6188 6189 6190 6191 6192 6193 6194
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6195
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6196 6197 6198 6199
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6200
/*
6201 6202
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6203
 */
6204
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6205 6206
{
	int i;
6207 6208
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6209
	int sd_allnodes = 0;
6210 6211 6212 6213

	/*
	 * Allocate the per-node list of sched groups
	 */
6214
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6215
					   GFP_KERNEL);
6216 6217
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6218
		return -ENOMEM;
6219 6220 6221
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6222 6223

	/*
6224
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6225
	 */
6226
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6227 6228 6229
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6230
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6231 6232

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6233 6234
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6235 6236 6237
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6238
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6239
			p = sd;
6240
			sd_allnodes = 1;
6241 6242 6243
		} else
			p = NULL;

L
Linus Torvalds 已提交
6244 6245
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6246 6247
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6248 6249
		if (p)
			p->child = sd;
6250
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6251 6252 6253 6254 6255 6256 6257
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6258 6259
		if (p)
			p->child = sd;
6260
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6261

6262 6263 6264 6265 6266 6267 6268
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6269
		p->child = sd;
6270
		cpu_to_core_group(i, cpu_map, &sd->groups);
6271 6272
#endif

L
Linus Torvalds 已提交
6273 6274 6275 6276
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6277
		sd->span = per_cpu(cpu_sibling_map, i);
6278
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6279
		sd->parent = p;
6280
		p->child = sd;
6281
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6282 6283 6284 6285 6286
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6287
	for_each_cpu_mask(i, *cpu_map) {
6288
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6289
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6290 6291 6292
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6293 6294
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6295 6296 6297
	}
#endif

6298 6299 6300 6301 6302 6303 6304
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6305 6306
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6307 6308 6309
	}
#endif

L
Linus Torvalds 已提交
6310 6311 6312 6313
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6314
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6315 6316 6317
		if (cpus_empty(nodemask))
			continue;

6318
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6319 6320 6321 6322
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6323
	if (sd_allnodes)
I
Ingo Molnar 已提交
6324 6325
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6326 6327 6328 6329 6330 6331 6332 6333 6334 6335

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6336 6337
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6338
			continue;
6339
		}
6340 6341 6342 6343

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6344
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6345 6346 6347 6348 6349
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6350 6351 6352
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6353

6354 6355 6356
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6357
		sg->__cpu_power = 0;
6358
		sg->cpumask = nodemask;
6359
		sg->next = sg;
6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6378 6379
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6380 6381 6382
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6383
				goto error;
6384
			}
6385
			sg->__cpu_power = 0;
6386
			sg->cpumask = tmp;
6387
			sg->next = prev->next;
6388 6389 6390 6391 6392
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6393 6394 6395
#endif

	/* Calculate CPU power for physical packages and nodes */
6396
#ifdef CONFIG_SCHED_SMT
6397
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6398 6399
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6400
		init_sched_groups_power(i, sd);
6401
	}
L
Linus Torvalds 已提交
6402
#endif
6403
#ifdef CONFIG_SCHED_MC
6404
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6405 6406
		struct sched_domain *sd = &per_cpu(core_domains, i);

6407
		init_sched_groups_power(i, sd);
6408 6409
	}
#endif
6410

6411
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6412 6413
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6414
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6415 6416
	}

6417
#ifdef CONFIG_NUMA
6418 6419
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6420

6421 6422
	if (sd_allnodes) {
		struct sched_group *sg;
6423

6424
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6425 6426
		init_numa_sched_groups_power(sg);
	}
6427 6428
#endif

L
Linus Torvalds 已提交
6429
	/* Attach the domains */
6430
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6431 6432 6433
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6434 6435
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6436 6437 6438 6439 6440
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6441 6442 6443

	return 0;

6444
#ifdef CONFIG_NUMA
6445 6446 6447
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6448
#endif
L
Linus Torvalds 已提交
6449
}
P
Paul Jackson 已提交
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6461 6462
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6463 6464
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6465
 */
6466
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6467
{
6468 6469
	int err;

P
Paul Jackson 已提交
6470 6471 6472 6473 6474
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6475
	err = build_sched_domains(doms_cur);
6476
	register_sched_domain_sysctl();
6477 6478

	return err;
6479 6480 6481
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6482
{
6483
	free_sched_groups(cpu_map);
6484
}
L
Linus Torvalds 已提交
6485

6486 6487 6488 6489
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6490
static void detach_destroy_domains(const cpumask_t *cpu_map)
6491 6492 6493
{
	int i;

6494 6495
	unregister_sched_domain_sysctl();

6496 6497 6498 6499 6500 6501
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526
/*
 * Partition sched domains as specified by the 'ndoms_new'
 * cpumasks in the array doms_new[] of cpumasks.  This compares
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
 * The masks don't intersect (don't overlap.)  We should setup one
 * sched domain for each mask.  CPUs not in any of the cpumasks will
 * not be load balanced.  If the same cpumask appears both in the
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
 * The passed in 'doms_new' should be kmalloc'd.  This routine takes
 * ownership of it and will kfree it when done with it.  If the caller
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6527 6528 6529
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6565 6566

	register_sched_domain_sysctl();
P
Paul Jackson 已提交
6567 6568
}

6569
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6570
static int arch_reinit_sched_domains(void)
6571 6572 6573
{
	int err;

6574
	mutex_lock(&sched_hotcpu_mutex);
6575 6576
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6577
	mutex_unlock(&sched_hotcpu_mutex);
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6604 6605
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6606 6607 6608
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6609 6610
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6611 6612 6613 6614 6615 6616 6617
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6618 6619
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6620 6621 6622
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6643 6644
#endif

L
Linus Torvalds 已提交
6645 6646 6647
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6648
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6649 6650 6651 6652 6653 6654 6655
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6656
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6657
	case CPU_DOWN_PREPARE:
6658
	case CPU_DOWN_PREPARE_FROZEN:
6659
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6660 6661 6662
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6663
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6664
	case CPU_DOWN_FAILED:
6665
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6666
	case CPU_ONLINE:
6667
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6668
	case CPU_DEAD:
6669
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6670 6671 6672 6673 6674 6675 6676 6677 6678
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6679
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6680 6681 6682 6683 6684 6685

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6686 6687
	cpumask_t non_isolated_cpus;

6688
	mutex_lock(&sched_hotcpu_mutex);
6689
	arch_init_sched_domains(&cpu_online_map);
6690
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6691 6692
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6693
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6694 6695
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6696 6697 6698 6699

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6700
	sched_init_granularity();
L
Linus Torvalds 已提交
6701 6702 6703 6704
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6705
	sched_init_granularity();
L
Linus Torvalds 已提交
6706 6707 6708 6709 6710 6711 6712
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6713

L
Linus Torvalds 已提交
6714 6715 6716 6717 6718
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6719
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6720 6721 6722 6723 6724
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6725
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6726 6727
}

L
Linus Torvalds 已提交
6728 6729
void __init sched_init(void)
{
6730
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6731 6732
	int i, j;

6733
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6734
		struct rt_prio_array *array;
6735
		struct rq *rq;
L
Linus Torvalds 已提交
6736 6737 6738

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6739
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6740
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6741 6742 6743 6744
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6745 6746 6747 6748 6749 6750 6751
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6752
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6753
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6754 6755
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6756 6757 6758
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6759
			se->load.weight = init_task_group_load;
6760
			se->load.inv_weight =
6761
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6762 6763
			se->parent = NULL;
		}
6764
		init_task_group.shares = init_task_group_load;
6765
		spin_lock_init(&init_task_group.lock);
I
Ingo Molnar 已提交
6766
#endif
L
Linus Torvalds 已提交
6767

I
Ingo Molnar 已提交
6768 6769
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6770
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6771
		rq->sd = NULL;
L
Linus Torvalds 已提交
6772
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6773
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6774
		rq->push_cpu = 0;
6775
		rq->cpu = i;
L
Linus Torvalds 已提交
6776 6777 6778 6779 6780
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6781 6782 6783 6784
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6785
		}
6786
		highest_cpu = i;
I
Ingo Molnar 已提交
6787 6788
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6789 6790
	}

6791
	set_load_weight(&init_task);
6792

6793 6794 6795 6796
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6797
#ifdef CONFIG_SMP
6798
	nr_cpu_ids = highest_cpu + 1;
6799 6800 6801
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6802 6803 6804 6805
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6819 6820 6821 6822
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6823 6824 6825 6826 6827
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6828
#ifdef in_atomic
L
Linus Torvalds 已提交
6829 6830 6831 6832 6833 6834 6835
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6836
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6837 6838 6839
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6840
		debug_show_held_locks(current);
6841 6842
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6843 6844 6845 6846 6847 6848 6849 6850
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6865 6866
void normalize_rt_tasks(void)
{
6867
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6868
	unsigned long flags;
6869
	struct rq *rq;
L
Linus Torvalds 已提交
6870 6871

	read_lock_irq(&tasklist_lock);
6872
	do_each_thread(g, p) {
6873 6874 6875 6876 6877 6878
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6879 6880
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6881 6882 6883
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6884
#endif
I
Ingo Molnar 已提交
6885 6886 6887 6888 6889 6890 6891 6892 6893
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6894
			continue;
I
Ingo Molnar 已提交
6895
		}
L
Linus Torvalds 已提交
6896

6897 6898
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6899

6900
		normalize_task(rq, p);
6901

6902 6903
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6904 6905
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6906 6907 6908 6909
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6928
struct task_struct *curr_task(int cpu)
6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6948
void set_curr_task(int cpu, struct task_struct *p)
6949 6950 6951 6952 6953
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6954 6955 6956 6957

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6958
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6959
{
6960
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6961 6962
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6963
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6964 6965 6966 6967 6968 6969
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6970
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6971 6972
	if (!tg->cfs_rq)
		goto err;
6973
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6974 6975 6976 6977
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6978
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

7005 7006 7007 7008 7009
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
7010

7011
	tg->shares = NICE_0_LOAD;
7012
	spin_lock_init(&tg->lock);
S
Srivatsa Vaddagiri 已提交
7013

7014
	return tg;
S
Srivatsa Vaddagiri 已提交
7015 7016 7017

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
7018
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
7019
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
7020
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
7021 7022
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
7023 7024 7025
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
7026 7027 7028 7029

	return ERR_PTR(-ENOMEM);
}

7030 7031
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7032
{
7033 7034
	struct task_group *tg = container_of(rhp, struct task_group, rcu);
	struct cfs_rq *cfs_rq;
S
Srivatsa Vaddagiri 已提交
7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

7052
/* Destroy runqueue etc associated with a task group */
7053
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7054
{
7055
	struct cfs_rq *cfs_rq = NULL;
7056
	int i;
S
Srivatsa Vaddagiri 已提交
7057

7058 7059 7060 7061 7062
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

7063
	BUG_ON(!cfs_rq);
7064 7065

	/* wait for possible concurrent references to cfs_rqs complete */
7066
	call_rcu(&tg->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
7067 7068
}

7069
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7070 7071 7072
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7073 7074
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7075 7076 7077 7078 7079 7080 7081
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7082
	if (tsk->sched_class != &fair_sched_class) {
7083
		set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7084
		goto done;
7085
	}
S
Srivatsa Vaddagiri 已提交
7086 7087 7088 7089 7090 7091

	update_rq_clock(rq);

	running = task_running(rq, tsk);
	on_rq = tsk->se.on_rq;

7092
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7093
		dequeue_task(rq, tsk, 0);
7094 7095 7096
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7097

7098
	set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7099

7100 7101 7102
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7103
		enqueue_task(rq, tsk, 0);
7104
	}
S
Srivatsa Vaddagiri 已提交
7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

7131
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7132 7133 7134
{
	int i;

7135
	spin_lock(&tg->lock);
7136
	if (tg->shares == shares)
7137
		goto done;
S
Srivatsa Vaddagiri 已提交
7138

7139
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
7140
	for_each_possible_cpu(i)
7141
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
7142

7143 7144
done:
	spin_unlock(&tg->lock);
7145
	return 0;
S
Srivatsa Vaddagiri 已提交
7146 7147
}

7148 7149 7150 7151 7152
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
7153
#endif	/* CONFIG_FAIR_GROUP_SCHED */
7154 7155 7156 7157

#ifdef CONFIG_FAIR_CGROUP_SCHED

/* return corresponding task_group object of a cgroup */
7158
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7159
{
7160 7161
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7162 7163 7164
}

static struct cgroup_subsys_state *
7165
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7166 7167 7168
{
	struct task_group *tg;

7169
	if (!cgrp->parent) {
7170
		/* This is early initialization for the top cgroup */
7171
		init_task_group.css.cgroup = cgrp;
7172 7173 7174 7175
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7176
	if (cgrp->parent->parent)
7177 7178 7179 7180 7181 7182 7183
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7184
	tg->css.cgroup = cgrp;
7185 7186 7187 7188 7189

	return &tg->css;
}

static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
7190
			       struct cgroup *cgrp)
7191
{
7192
	struct task_group *tg = cgroup_tg(cgrp);
7193 7194 7195 7196 7197

	sched_destroy_group(tg);
}

static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
7198
			     struct cgroup *cgrp, struct task_struct *tsk)
7199 7200 7201 7202 7203 7204 7205 7206 7207
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

static void
7208
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7209 7210 7211 7212 7213
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7214 7215
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7216
{
7217
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7218 7219
}

7220
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7221
{
7222
	struct task_group *tg = cgroup_tg(cgrp);
7223 7224 7225 7226

	return (u64) tg->shares;
}

7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243
static u64 cpu_usage_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct task_group *tg = cgroup_tg(cgrp);
	unsigned long flags;
	u64 res = 0;
	int i;

	for_each_possible_cpu(i) {
		/*
		 * Lock to prevent races with updating 64-bit counters
		 * on 32-bit arches.
		 */
		spin_lock_irqsave(&cpu_rq(i)->lock, flags);
		res += tg->se[i]->sum_exec_runtime;
		spin_unlock_irqrestore(&cpu_rq(i)->lock, flags);
	}
	/* Convert from ns to ms */
7244
	do_div(res, NSEC_PER_MSEC);
7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258

	return res;
}

static struct cftype cpu_files[] = {
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
	{
		.name = "usage",
		.read_uint = cpu_usage_read,
	},
7259 7260 7261 7262
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7263
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7264 7265 7266
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7267 7268 7269 7270 7271 7272 7273
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7274 7275 7276 7277
	.early_init	= 1,
};

#endif	/* CONFIG_FAIR_CGROUP_SCHED */