sched.c 178.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46
#include <linux/blkdev.h>
#include <linux/delay.h>
47
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
48 49 50 51 52 53 54
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
55
#include <linux/cpu_acct.h>
L
Linus Torvalds 已提交
56 57
#include <linux/kthread.h>
#include <linux/seq_file.h>
58
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
59 60
#include <linux/syscalls.h>
#include <linux/times.h>
61
#include <linux/tsacct_kern.h>
62
#include <linux/kprobes.h>
63
#include <linux/delayacct.h>
64
#include <linux/reciprocal_div.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
67

68
#include <asm/tlb.h>
69
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
70

71 72 73 74 75 76 77
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
78
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
79 80
}

L
Linus Torvalds 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
102 103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

137 138 139 140 141 142 143 144 145 146 147 148
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
149
/*
I
Ingo Molnar 已提交
150
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
151
 */
I
Ingo Molnar 已提交
152 153 154 155 156
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
157 158
#ifdef CONFIG_FAIR_GROUP_SCHED

159 160
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
161 162 163
struct cfs_rq;

/* task group related information */
164
struct task_group {
165 166 167
#ifdef CONFIG_FAIR_CGROUP_SCHED
	struct cgroup_subsys_state css;
#endif
S
Srivatsa Vaddagiri 已提交
168 169 170 171 172
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
173 174
	/* spinlock to serialize modification to shares */
	spinlock_t lock;
175
	struct rcu_head rcu;
S
Srivatsa Vaddagiri 已提交
176 177 178 179 180 181 182
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

183 184
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
185 186

/* Default task group.
I
Ingo Molnar 已提交
187
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
188
 */
189
struct task_group init_task_group = {
I
Ingo Molnar 已提交
190 191 192
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
193

194
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
195
# define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
196
#else
I
Ingo Molnar 已提交
197
# define INIT_TASK_GRP_LOAD	NICE_0_LOAD
198 199
#endif

200
static int init_task_group_load = INIT_TASK_GRP_LOAD;
S
Srivatsa Vaddagiri 已提交
201 202

/* return group to which a task belongs */
203
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
204
{
205
	struct task_group *tg;
206

207 208
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
209 210 211
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
212
#else
213
	tg  = &init_task_group;
214
#endif
215 216

	return tg;
S
Srivatsa Vaddagiri 已提交
217 218 219 220 221
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_cfs_rq(struct task_struct *p)
{
222 223
	p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
	p->se.parent = task_group(p)->se[task_cpu(p)];
S
Srivatsa Vaddagiri 已提交
224 225 226 227 228 229 230 231
}

#else

static inline void set_task_cfs_rq(struct task_struct *p) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
232 233 234 235 236 237
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
238
	u64 min_vruntime;
I
Ingo Molnar 已提交
239 240 241 242 243 244 245 246

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
247 248 249

	unsigned long nr_spread_over;

250
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
251 252 253 254 255 256 257 258 259 260
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
261
	struct task_group *tg;    /* group that "owns" this runqueue */
I
Ingo Molnar 已提交
262 263
#endif
};
L
Linus Torvalds 已提交
264

I
Ingo Molnar 已提交
265 266 267 268 269 270 271
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
272 273 274 275 276 277 278
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
279
struct rq {
280 281
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
282 283 284 285 286 287

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
288 289
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
290
	unsigned char idle_at_tick;
291 292 293
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
294 295
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
296 297 298 299 300
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
301 302
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
L
Linus Torvalds 已提交
303
#endif
I
Ingo Molnar 已提交
304
	struct rt_rq  rt;
L
Linus Torvalds 已提交
305 306 307 308 309 310 311 312 313

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

314
	struct task_struct *curr, *idle;
315
	unsigned long next_balance;
L
Linus Torvalds 已提交
316
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
317 318 319 320 321

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
322 323
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
324
	u64 tick_timestamp;
I
Ingo Molnar 已提交
325

L
Linus Torvalds 已提交
326 327 328 329 330 331 332 333
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
334 335
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
336

337
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
338 339 340 341 342 343 344 345
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
346 347 348 349
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
350 351

	/* schedule() stats */
352 353 354
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
355 356

	/* try_to_wake_up() stats */
357 358
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
359 360

	/* BKL stats */
361
	unsigned int bkl_count;
L
Linus Torvalds 已提交
362
#endif
363
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
364 365
};

366
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
367
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
368

I
Ingo Molnar 已提交
369 370 371 372 373
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

374 375 376 377 378 379 380 381 382
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
383
/*
I
Ingo Molnar 已提交
384 385
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
386
 */
I
Ingo Molnar 已提交
387
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
388 389 390 391 392 393
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
394 395 396
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
397 398 399 400 401 402 403 404 405 406
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
407 408 409 410 411
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
412 413 414 415 416 417 418 419 420 421
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
422
}
I
Ingo Molnar 已提交
423

I
Ingo Molnar 已提交
424 425 426 427
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
428 429
}

N
Nick Piggin 已提交
430 431
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
432
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
433 434 435 436
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
437 438
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
439 440 441 442 443 444

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
458 459
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_START_DEBIT		= 2,
460
	SCHED_FEAT_TREE_AVG             = 4,
461
	SCHED_FEAT_APPROX_AVG           = 8,
462
	SCHED_FEAT_WAKEUP_PREEMPT	= 16,
I
Ingo Molnar 已提交
463 464 465
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
466 467 468 469
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
		SCHED_FEAT_APPROX_AVG		* 0 |
I
Ingo Molnar 已提交
470
		SCHED_FEAT_WAKEUP_PREEMPT	* 1;
I
Ingo Molnar 已提交
471 472 473

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

474 475 476 477 478 479
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

480 481 482 483 484 485 486 487
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
488
	struct rq *rq;
489

490
	local_irq_save(flags);
I
Ingo Molnar 已提交
491 492 493
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
494
	local_irq_restore(flags);
495 496 497

	return now;
}
P
Paul E. McKenney 已提交
498
EXPORT_SYMBOL_GPL(cpu_clock);
499

L
Linus Torvalds 已提交
500
#ifndef prepare_arch_switch
501 502 503 504 505 506 507
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
508
static inline int task_running(struct rq *rq, struct task_struct *p)
509 510 511 512
{
	return rq->curr == p;
}

513
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
514 515 516
{
}

517
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
518
{
519 520 521 522
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
523 524 525 526 527 528 529
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

530 531 532 533
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
534
static inline int task_running(struct rq *rq, struct task_struct *p)
535 536 537 538 539 540 541 542
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

543
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

560
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
561 562 563 564 565 566 567 568 569 570 571 572
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
573
#endif
574 575
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
576

577 578 579 580
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
581
static inline struct rq *__task_rq_lock(struct task_struct *p)
582 583
	__acquires(rq->lock)
{
584 585 586 587 588
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
589 590 591 592
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
593 594 595 596 597
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
598
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
599 600
	__acquires(rq->lock)
{
601
	struct rq *rq;
L
Linus Torvalds 已提交
602

603 604 605 606 607 608
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
609 610 611 612
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
613
static void __task_rq_unlock(struct rq *rq)
614 615 616 617 618
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

619
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
620 621 622 623 624 625
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
626
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
627
 */
A
Alexey Dobriyan 已提交
628
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
629 630
	__acquires(rq->lock)
{
631
	struct rq *rq;
L
Linus Torvalds 已提交
632 633 634 635 636 637 638 639

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

640
/*
641
 * We are going deep-idle (irqs are disabled):
642
 */
643
void sched_clock_idle_sleep_event(void)
644
{
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
661

662 663 664 665 666 667 668 669 670 671 672
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
673
}
674
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
675

I
Ingo Molnar 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

728 729 730 731 732 733 734 735
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
736 737 738
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
739
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
740

741
static unsigned long
742 743 744 745 746 747
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
748
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
749 750 751 752 753

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
754
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
755
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
756 757
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
758
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
759

760
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
761 762 763 764 765 766 767 768
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

769
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
770 771 772 773
{
	lw->weight += inc;
}

774
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
775 776 777 778
{
	lw->weight -= dec;
}

779 780 781 782 783 784 785 786 787
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
788 789 790 791 792 793 794 795 796 797 798
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
799 800 801
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
802 803
 */
static const int prio_to_weight[40] = {
804 805 806 807 808 809 810 811
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
812 813
};

814 815 816 817 818 819 820
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
821
static const u32 prio_to_wmult[40] = {
822 823 824 825 826 827 828 829
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
830
};
831

I
Ingo Molnar 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

845 846 847 848 849 850 851 852 853 854 855 856
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
857 858 859

#include "sched_stats.h"
#include "sched_idletask.c"
860 861
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
862 863 864 865 866 867
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

868 869 870 871
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
872
 * total load (rq->load.weight) on the runqueue, while
873 874 875 876 877 878 879
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
880
 * This function is called /before/ updating rq->load
881 882
 * and when switching tasks.
 */
883
static inline void inc_load(struct rq *rq, const struct task_struct *p)
884
{
885
	update_load_add(&rq->load, p->se.load.weight);
886 887
}

888
static inline void dec_load(struct rq *rq, const struct task_struct *p)
889
{
890
	update_load_sub(&rq->load, p->se.load.weight);
891 892
}

893
static void inc_nr_running(struct task_struct *p, struct rq *rq)
894 895
{
	rq->nr_running++;
896
	inc_load(rq, p);
897 898
}

899
static void dec_nr_running(struct task_struct *p, struct rq *rq)
900 901
{
	rq->nr_running--;
902
	dec_load(rq, p);
903 904
}

905 906 907
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
908 909 910 911
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
912

I
Ingo Molnar 已提交
913 914 915 916 917 918 919 920
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
921

I
Ingo Molnar 已提交
922 923
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
924 925
}

926
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
927
{
I
Ingo Molnar 已提交
928
	sched_info_queued(p);
929
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
930
	p->se.on_rq = 1;
931 932
}

933
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
934
{
935
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
936
	p->se.on_rq = 0;
937 938
}

939
/*
I
Ingo Molnar 已提交
940
 * __normal_prio - return the priority that is based on the static prio
941 942 943
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
944
	return p->static_prio;
945 946
}

947 948 949 950 951 952 953
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
954
static inline int normal_prio(struct task_struct *p)
955 956 957
{
	int prio;

958
	if (task_has_rt_policy(p))
959 960 961 962 963 964 965 966 967 968 969 970 971
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
972
static int effective_prio(struct task_struct *p)
973 974 975 976 977 978 979 980 981 982 983 984
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
985
/*
I
Ingo Molnar 已提交
986
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
987
 */
I
Ingo Molnar 已提交
988
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
989
{
I
Ingo Molnar 已提交
990 991
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
992

993
	enqueue_task(rq, p, wakeup);
994
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
995 996 997 998 999
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1000
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1001
{
I
Ingo Molnar 已提交
1002 1003 1004
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

1005
	dequeue_task(rq, p, sleep);
1006
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1007 1008 1009 1010 1011 1012
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1013
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1014 1015 1016 1017
{
	return cpu_curr(task_cpu(p)) == p;
}

1018 1019 1020
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1021
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1022 1023 1024 1025 1026 1027 1028
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
#endif
S
Srivatsa Vaddagiri 已提交
1029
	set_task_cfs_rq(p);
1030 1031
}

L
Linus Torvalds 已提交
1032
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1033

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1045 1046 1047 1048 1049
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1050 1051 1052 1053 1054 1055
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1056
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1057
{
I
Ingo Molnar 已提交
1058 1059
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1060 1061
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1062
	u64 clock_offset;
I
Ingo Molnar 已提交
1063 1064

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1065 1066 1067 1068

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1069 1070 1071 1072
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1073 1074 1075 1076 1077
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1078
#endif
1079 1080
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1081 1082

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1083 1084
}

1085
struct migration_req {
L
Linus Torvalds 已提交
1086 1087
	struct list_head list;

1088
	struct task_struct *task;
L
Linus Torvalds 已提交
1089 1090 1091
	int dest_cpu;

	struct completion done;
1092
};
L
Linus Torvalds 已提交
1093 1094 1095 1096 1097

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1098
static int
1099
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1100
{
1101
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1102 1103 1104 1105 1106

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1107
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1108 1109 1110 1111 1112 1113 1114 1115
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1116

L
Linus Torvalds 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1129
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1130 1131
{
	unsigned long flags;
I
Ingo Molnar 已提交
1132
	int running, on_rq;
1133
	struct rq *rq;
L
Linus Torvalds 已提交
1134

1135 1136 1137 1138 1139 1140 1141 1142
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1143

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1167

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1178

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1192

1193 1194 1195 1196 1197 1198 1199
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1215
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1227 1228
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1229 1230 1231 1232
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1233
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1234
{
1235
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1236
	unsigned long total = weighted_cpuload(cpu);
1237

1238
	if (type == 0)
I
Ingo Molnar 已提交
1239
		return total;
1240

I
Ingo Molnar 已提交
1241
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1242 1243 1244
}

/*
1245 1246
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1247
 */
A
Alexey Dobriyan 已提交
1248
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1249
{
1250
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1251
	unsigned long total = weighted_cpuload(cpu);
1252

N
Nick Piggin 已提交
1253
	if (type == 0)
I
Ingo Molnar 已提交
1254
		return total;
1255

I
Ingo Molnar 已提交
1256
	return max(rq->cpu_load[type-1], total);
1257 1258 1259 1260 1261 1262 1263
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1264
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1265
	unsigned long total = weighted_cpuload(cpu);
1266 1267
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1268
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1269 1270
}

N
Nick Piggin 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1288 1289
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1290
			continue;
1291

N
Nick Piggin 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1308 1309
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1310 1311 1312 1313 1314 1315 1316 1317

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1318
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1319 1320 1321 1322 1323 1324 1325

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1326
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1327
 */
I
Ingo Molnar 已提交
1328 1329
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1330
{
1331
	cpumask_t tmp;
N
Nick Piggin 已提交
1332 1333 1334 1335
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1336 1337 1338 1339
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1340
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1366

1367
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1368 1369 1370
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1371 1372
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1373 1374
		if (tmp->flags & flag)
			sd = tmp;
1375
	}
N
Nick Piggin 已提交
1376 1377 1378 1379

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1380 1381 1382 1383 1384 1385
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1386 1387 1388

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1389 1390 1391 1392
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1393

1394
		new_cpu = find_idlest_cpu(group, t, cpu);
1395 1396 1397 1398 1399
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1400

1401
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1428
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1429 1430 1431 1432 1433
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1444 1445 1446 1447
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1448
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1449
			for_each_cpu_mask(i, tmp) {
1450 1451 1452 1453 1454
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1455
					return i;
1456
				}
L
Linus Torvalds 已提交
1457
			}
I
Ingo Molnar 已提交
1458
		} else {
N
Nick Piggin 已提交
1459
			break;
I
Ingo Molnar 已提交
1460
		}
L
Linus Torvalds 已提交
1461 1462 1463 1464
	}
	return cpu;
}
#else
1465
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1485
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1486
{
1487
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1488 1489
	unsigned long flags;
	long old_state;
1490
	struct rq *rq;
L
Linus Torvalds 已提交
1491
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1492
	struct sched_domain *sd, *this_sd = NULL;
1493
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1494 1495 1496 1497 1498 1499 1500 1501
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1502
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1503 1504 1505
		goto out_running;

	cpu = task_cpu(p);
1506
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1507 1508 1509 1510 1511 1512
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1513 1514
	new_cpu = cpu;

1515
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1516 1517
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1518 1519 1520 1521 1522 1523 1524 1525
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1526 1527 1528
		}
	}

N
Nick Piggin 已提交
1529
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1530 1531 1532
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1533
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1534
	 */
N
Nick Piggin 已提交
1535 1536 1537
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1538

1539 1540
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1541 1542
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1543

N
Nick Piggin 已提交
1544 1545
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1546 1547
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1548 1549
			unsigned long tl_per_task;

I
Ingo Molnar 已提交
1550 1551 1552 1553 1554 1555
			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

1556
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1557
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1558

L
Linus Torvalds 已提交
1559
			/*
1560 1561 1562
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1563
			 */
1564
			if (sync)
I
Ingo Molnar 已提交
1565
				tl -= current->se.load.weight;
1566 1567

			if ((tl <= load &&
1568
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1569
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1570 1571 1572 1573 1574 1575
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1576
				schedstat_inc(p, se.nr_wakeups_affine);
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1588
				schedstat_inc(p, se.nr_wakeups_passive);
1589 1590
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1605
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1606 1607 1608 1609 1610 1611 1612 1613
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1614 1615 1616 1617 1618 1619 1620 1621 1622
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1623
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1624
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1625
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1636
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1637 1638 1639 1640 1641 1642
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1643
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1644 1645 1646 1647 1648 1649 1650
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1651 1652 1653 1654 1655 1656 1657
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1658
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1659 1660 1661

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1662 1663 1664 1665 1666 1667
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1668
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1669
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1670
#endif
N
Nick Piggin 已提交
1671

I
Ingo Molnar 已提交
1672 1673
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1674

1675 1676 1677 1678
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1679 1680 1681 1682 1683 1684 1685
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1700
	set_task_cpu(p, cpu);
1701 1702 1703 1704 1705

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1706 1707
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1708

1709
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1710
	if (likely(sched_info_on()))
1711
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1712
#endif
1713
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1714 1715
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1716
#ifdef CONFIG_PREEMPT
1717
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1718
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1719
#endif
N
Nick Piggin 已提交
1720
	put_cpu();
L
Linus Torvalds 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1730
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1731 1732
{
	unsigned long flags;
I
Ingo Molnar 已提交
1733
	struct rq *rq;
L
Linus Torvalds 已提交
1734 1735

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1736
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1737
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1738 1739 1740

	p->prio = effective_prio(p);

1741
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1742
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1743 1744
	} else {
		/*
I
Ingo Molnar 已提交
1745 1746
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1747
		 */
1748
		p->sched_class->task_new(rq, p);
1749
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1750
	}
I
Ingo Molnar 已提交
1751 1752
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1753 1754
}

1755 1756 1757
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1758 1759
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1760 1761 1762 1763 1764 1765 1766 1767 1768
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1769
 * @notifier: notifier struct to unregister
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1813 1814 1815
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1816
 * @prev: the current task that is being switched out
1817 1818 1819 1820 1821 1822 1823 1824 1825
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1826 1827 1828
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1829
{
1830
	fire_sched_out_preempt_notifiers(prev, next);
1831 1832 1833 1834
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1835 1836
/**
 * finish_task_switch - clean up after a task-switch
1837
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1838 1839
 * @prev: the thread we just switched away from.
 *
1840 1841 1842 1843
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1844 1845 1846 1847 1848 1849
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1850
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1851 1852 1853
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1854
	long prev_state;
L
Linus Torvalds 已提交
1855 1856 1857 1858 1859

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1860
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1861 1862
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1863
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1864 1865 1866 1867 1868
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1869
	prev_state = prev->state;
1870 1871
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1872
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1873 1874
	if (mm)
		mmdrop(mm);
1875
	if (unlikely(prev_state == TASK_DEAD)) {
1876 1877 1878
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1879
		 */
1880
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1881
		put_task_struct(prev);
1882
	}
L
Linus Torvalds 已提交
1883 1884 1885 1886 1887 1888
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1889
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1890 1891
	__releases(rq->lock)
{
1892 1893
	struct rq *rq = this_rq();

1894 1895 1896 1897 1898
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1899
	if (current->set_child_tid)
1900
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1901 1902 1903 1904 1905 1906
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1907
static inline void
1908
context_switch(struct rq *rq, struct task_struct *prev,
1909
	       struct task_struct *next)
L
Linus Torvalds 已提交
1910
{
I
Ingo Molnar 已提交
1911
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1912

1913
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1914 1915
	mm = next->mm;
	oldmm = prev->active_mm;
1916 1917 1918 1919 1920 1921 1922
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1923
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1924 1925 1926 1927 1928 1929
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1930
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1931 1932 1933
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1934 1935 1936 1937 1938 1939 1940
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1941
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1942
#endif
L
Linus Torvalds 已提交
1943 1944 1945 1946

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1947 1948 1949 1950 1951 1952 1953
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1977
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1992 1993
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1994

1995
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2005
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2006 2007 2008 2009 2010
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2026
/*
I
Ingo Molnar 已提交
2027 2028
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2029
 */
I
Ingo Molnar 已提交
2030
static void update_cpu_load(struct rq *this_rq)
2031
{
2032
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2045 2046 2047 2048 2049 2050 2051
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2052 2053
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2054 2055
}

I
Ingo Molnar 已提交
2056 2057
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2058 2059 2060 2061 2062 2063
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2064
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2065 2066 2067
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2068
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2069 2070 2071 2072
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2073
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2074 2075 2076 2077 2078 2079 2080
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2081 2082
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2083 2084 2085 2086 2087 2088 2089 2090
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2091
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2105
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2106 2107 2108 2109
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2110 2111 2112 2113 2114
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2115
	if (unlikely(!spin_trylock(&busiest->lock))) {
2116
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2131
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2132
{
2133
	struct migration_req req;
L
Linus Torvalds 已提交
2134
	unsigned long flags;
2135
	struct rq *rq;
L
Linus Torvalds 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2146

L
Linus Torvalds 已提交
2147 2148 2149 2150 2151
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2152

L
Linus Torvalds 已提交
2153 2154 2155 2156 2157 2158 2159
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2160 2161
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2162 2163 2164 2165
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2166
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2167
	put_cpu();
N
Nick Piggin 已提交
2168 2169
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2170 2171 2172 2173 2174 2175
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2176 2177
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2178
{
2179
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2180
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2181
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2182 2183 2184 2185
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2186
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2187 2188 2189 2190 2191
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2192
static
2193
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2194
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2195
		     int *all_pinned)
L
Linus Torvalds 已提交
2196 2197 2198 2199 2200 2201 2202
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2203 2204
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2205
		return 0;
2206
	}
2207 2208
	*all_pinned = 0;

2209 2210
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2211
		return 0;
2212
	}
L
Linus Torvalds 已提交
2213

2214 2215 2216 2217 2218 2219
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2220 2221
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2222
#ifdef CONFIG_SCHEDSTATS
2223
		if (task_hot(p, rq->clock, sd)) {
2224
			schedstat_inc(sd, lb_hot_gained[idle]);
2225 2226
			schedstat_inc(p, se.nr_forced_migrations);
		}
2227 2228 2229 2230
#endif
		return 1;
	}

2231 2232
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2233
		return 0;
2234
	}
L
Linus Torvalds 已提交
2235 2236 2237
	return 1;
}

2238 2239 2240 2241 2242
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2243
{
2244
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2245 2246
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2247

2248
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2249 2250
		goto out;

2251 2252
	pinned = 1;

L
Linus Torvalds 已提交
2253
	/*
I
Ingo Molnar 已提交
2254
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2255
	 */
I
Ingo Molnar 已提交
2256 2257
	p = iterator->start(iterator->arg);
next:
2258
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2259
		goto out;
2260
	/*
2261
	 * To help distribute high priority tasks across CPUs we don't
2262 2263 2264
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2265 2266
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2267
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2268 2269 2270
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2271 2272
	}

I
Ingo Molnar 已提交
2273
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2274
	pulled++;
I
Ingo Molnar 已提交
2275
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2276

2277
	/*
2278
	 * We only want to steal up to the prescribed amount of weighted load.
2279
	 */
2280
	if (rem_load_move > 0) {
2281 2282
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2283 2284
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2285 2286 2287
	}
out:
	/*
2288
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2289 2290 2291 2292
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2293 2294 2295

	if (all_pinned)
		*all_pinned = pinned;
2296 2297

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2298 2299
}

I
Ingo Molnar 已提交
2300
/*
P
Peter Williams 已提交
2301 2302 2303
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2304 2305 2306 2307
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2308
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2309 2310 2311
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2312
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2313
	unsigned long total_load_moved = 0;
2314
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2315 2316

	do {
P
Peter Williams 已提交
2317 2318
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2319
				max_load_move - total_load_moved,
2320
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2321
		class = class->next;
P
Peter Williams 已提交
2322
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2323

P
Peter Williams 已提交
2324 2325 2326
	return total_load_moved > 0;
}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2363
	const struct sched_class *class;
P
Peter Williams 已提交
2364 2365

	for (class = sched_class_highest; class; class = class->next)
2366
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2367 2368 2369
			return 1;

	return 0;
I
Ingo Molnar 已提交
2370 2371
}

L
Linus Torvalds 已提交
2372 2373
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2374 2375
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2376 2377 2378
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2379 2380
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2381 2382 2383
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2384
	unsigned long max_pull;
2385 2386
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2387
	int load_idx, group_imb = 0;
2388 2389 2390 2391 2392 2393
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2394 2395

	max_load = this_load = total_load = total_pwr = 0;
2396 2397
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2398
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2399
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2400
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2401 2402 2403
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2404 2405

	do {
2406
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2407 2408
		int local_group;
		int i;
2409
		int __group_imb = 0;
2410
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2411
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2412 2413 2414

		local_group = cpu_isset(this_cpu, group->cpumask);

2415 2416 2417
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2418
		/* Tally up the load of all CPUs in the group */
2419
		sum_weighted_load = sum_nr_running = avg_load = 0;
2420 2421
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2422 2423

		for_each_cpu_mask(i, group->cpumask) {
2424 2425 2426 2427 2428 2429
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2430

2431
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2432 2433
				*sd_idle = 0;

L
Linus Torvalds 已提交
2434
			/* Bias balancing toward cpus of our domain */
2435 2436 2437 2438 2439 2440
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2441
				load = target_load(i, load_idx);
2442
			} else {
N
Nick Piggin 已提交
2443
				load = source_load(i, load_idx);
2444 2445 2446 2447 2448
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2449 2450

			avg_load += load;
2451
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2452
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2453 2454
		}

2455 2456 2457
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2458 2459
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2460
		 */
2461 2462
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2463 2464 2465 2466
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2467
		total_load += avg_load;
2468
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2469 2470

		/* Adjust by relative CPU power of the group */
2471 2472
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2473

2474 2475 2476
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2477
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2478

L
Linus Torvalds 已提交
2479 2480 2481
		if (local_group) {
			this_load = avg_load;
			this = group;
2482 2483 2484
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2485
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2486 2487
			max_load = avg_load;
			busiest = group;
2488 2489
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2490
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2491
		}
2492 2493 2494 2495 2496 2497

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2498 2499 2500
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2501 2502 2503 2504 2505 2506 2507 2508 2509

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2510
		/*
2511 2512
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2513 2514
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2515
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2516
			goto group_next;
2517

I
Ingo Molnar 已提交
2518
		/*
2519
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2520 2521 2522 2523 2524
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2525 2526
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2527 2528
			group_min = group;
			min_nr_running = sum_nr_running;
2529 2530
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2531
		}
2532

I
Ingo Molnar 已提交
2533
		/*
2534
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2546
		}
2547 2548
group_next:
#endif
L
Linus Torvalds 已提交
2549 2550 2551
		group = group->next;
	} while (group != sd->groups);

2552
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2553 2554 2555 2556 2557 2558 2559 2560
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2561
	busiest_load_per_task /= busiest_nr_running;
2562 2563 2564
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2588 2589

	/* Don't want to pull so many tasks that a group would go idle */
2590
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2591

L
Linus Torvalds 已提交
2592
	/* How much load to actually move to equalise the imbalance */
2593 2594
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2595 2596
			/ SCHED_LOAD_SCALE;

2597 2598 2599 2600 2601 2602
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2603
	if (*imbalance < busiest_load_per_task) {
2604
		unsigned long tmp, pwr_now, pwr_move;
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2616

I
Ingo Molnar 已提交
2617 2618
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2619
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2629 2630 2631 2632
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2633 2634 2635
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2636 2637
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2638
		if (max_load > tmp)
2639
			pwr_move += busiest->__cpu_power *
2640
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2641 2642

		/* Amount of load we'd add */
2643
		if (max_load * busiest->__cpu_power <
2644
				busiest_load_per_task * SCHED_LOAD_SCALE)
2645 2646
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2647
		else
2648 2649 2650 2651
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2652 2653 2654
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2655 2656
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2657 2658 2659 2660 2661
	}

	return busiest;

out_balanced:
2662
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2663
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2664
		goto ret;
L
Linus Torvalds 已提交
2665

2666 2667 2668 2669 2670
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2671
ret:
L
Linus Torvalds 已提交
2672 2673 2674 2675 2676 2677 2678
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2679
static struct rq *
I
Ingo Molnar 已提交
2680
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2681
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2682
{
2683
	struct rq *busiest = NULL, *rq;
2684
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2685 2686 2687
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2688
		unsigned long wl;
2689 2690 2691 2692

		if (!cpu_isset(i, *cpus))
			continue;

2693
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2694
		wl = weighted_cpuload(i);
2695

I
Ingo Molnar 已提交
2696
		if (rq->nr_running == 1 && wl > imbalance)
2697
			continue;
L
Linus Torvalds 已提交
2698

I
Ingo Molnar 已提交
2699 2700
		if (wl > max_load) {
			max_load = wl;
2701
			busiest = rq;
L
Linus Torvalds 已提交
2702 2703 2704 2705 2706 2707
		}
	}

	return busiest;
}

2708 2709 2710 2711 2712 2713
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2714 2715 2716 2717
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2718
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2719
			struct sched_domain *sd, enum cpu_idle_type idle,
2720
			int *balance)
L
Linus Torvalds 已提交
2721
{
P
Peter Williams 已提交
2722
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2723 2724
	struct sched_group *group;
	unsigned long imbalance;
2725
	struct rq *busiest;
2726
	cpumask_t cpus = CPU_MASK_ALL;
2727
	unsigned long flags;
N
Nick Piggin 已提交
2728

2729 2730 2731
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2732
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2733
	 * portraying it as CPU_NOT_IDLE.
2734
	 */
I
Ingo Molnar 已提交
2735
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2736
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2737
		sd_idle = 1;
L
Linus Torvalds 已提交
2738

2739
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2740

2741 2742
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2743 2744
				   &cpus, balance);

2745
	if (*balance == 0)
2746 2747
		goto out_balanced;

L
Linus Torvalds 已提交
2748 2749 2750 2751 2752
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2753
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2754 2755 2756 2757 2758
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2759
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2760 2761 2762

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2763
	ld_moved = 0;
L
Linus Torvalds 已提交
2764 2765 2766 2767
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2768
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2769 2770
		 * correctly treated as an imbalance.
		 */
2771
		local_irq_save(flags);
N
Nick Piggin 已提交
2772
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2773
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2774
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2775
		double_rq_unlock(this_rq, busiest);
2776
		local_irq_restore(flags);
2777

2778 2779 2780
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2781
		if (ld_moved && this_cpu != smp_processor_id())
2782 2783
			resched_cpu(this_cpu);

2784
		/* All tasks on this runqueue were pinned by CPU affinity */
2785 2786 2787 2788
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2789
			goto out_balanced;
2790
		}
L
Linus Torvalds 已提交
2791
	}
2792

P
Peter Williams 已提交
2793
	if (!ld_moved) {
L
Linus Torvalds 已提交
2794 2795 2796 2797 2798
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2799
			spin_lock_irqsave(&busiest->lock, flags);
2800 2801 2802 2803 2804

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2805
				spin_unlock_irqrestore(&busiest->lock, flags);
2806 2807 2808 2809
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2810 2811 2812
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2813
				active_balance = 1;
L
Linus Torvalds 已提交
2814
			}
2815
			spin_unlock_irqrestore(&busiest->lock, flags);
2816
			if (active_balance)
L
Linus Torvalds 已提交
2817 2818 2819 2820 2821 2822
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2823
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2824
		}
2825
	} else
L
Linus Torvalds 已提交
2826 2827
		sd->nr_balance_failed = 0;

2828
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2829 2830
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2831 2832 2833 2834 2835 2836 2837 2838 2839
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2840 2841
	}

P
Peter Williams 已提交
2842
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2843
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2844
		return -1;
P
Peter Williams 已提交
2845
	return ld_moved;
L
Linus Torvalds 已提交
2846 2847 2848 2849

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2850
	sd->nr_balance_failed = 0;
2851 2852

out_one_pinned:
L
Linus Torvalds 已提交
2853
	/* tune up the balancing interval */
2854 2855
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2856 2857
		sd->balance_interval *= 2;

2858
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2859
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2860
		return -1;
L
Linus Torvalds 已提交
2861 2862 2863 2864 2865 2866 2867
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2868
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2869 2870
 * this_rq is locked.
 */
2871
static int
2872
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2873 2874
{
	struct sched_group *group;
2875
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2876
	unsigned long imbalance;
P
Peter Williams 已提交
2877
	int ld_moved = 0;
N
Nick Piggin 已提交
2878
	int sd_idle = 0;
2879
	int all_pinned = 0;
2880
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2881

2882 2883 2884 2885
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2886
	 * portraying it as CPU_NOT_IDLE.
2887 2888 2889
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2890
		sd_idle = 1;
L
Linus Torvalds 已提交
2891

2892
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2893
redo:
I
Ingo Molnar 已提交
2894
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2895
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2896
	if (!group) {
I
Ingo Molnar 已提交
2897
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2898
		goto out_balanced;
L
Linus Torvalds 已提交
2899 2900
	}

I
Ingo Molnar 已提交
2901
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2902
				&cpus);
N
Nick Piggin 已提交
2903
	if (!busiest) {
I
Ingo Molnar 已提交
2904
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2905
		goto out_balanced;
L
Linus Torvalds 已提交
2906 2907
	}

N
Nick Piggin 已提交
2908 2909
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2910
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2911

P
Peter Williams 已提交
2912
	ld_moved = 0;
2913 2914 2915
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2916 2917
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2918
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2919 2920
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2921
		spin_unlock(&busiest->lock);
2922

2923
		if (unlikely(all_pinned)) {
2924 2925 2926 2927
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2928 2929
	}

P
Peter Williams 已提交
2930
	if (!ld_moved) {
I
Ingo Molnar 已提交
2931
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2932 2933
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2934 2935
			return -1;
	} else
2936
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2937

P
Peter Williams 已提交
2938
	return ld_moved;
2939 2940

out_balanced:
I
Ingo Molnar 已提交
2941
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2942
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2943
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2944
		return -1;
2945
	sd->nr_balance_failed = 0;
2946

2947
	return 0;
L
Linus Torvalds 已提交
2948 2949 2950 2951 2952 2953
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2954
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2955 2956
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2957 2958
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2959 2960

	for_each_domain(this_cpu, sd) {
2961 2962 2963 2964 2965 2966
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2967
			/* If we've pulled tasks over stop searching: */
2968
			pulled_task = load_balance_newidle(this_cpu,
2969 2970 2971 2972 2973 2974 2975
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2976
	}
I
Ingo Molnar 已提交
2977
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2978 2979 2980 2981 2982
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2983
	}
L
Linus Torvalds 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2994
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2995
{
2996
	int target_cpu = busiest_rq->push_cpu;
2997 2998
	struct sched_domain *sd;
	struct rq *target_rq;
2999

3000
	/* Is there any task to move? */
3001 3002 3003 3004
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3005 3006

	/*
3007 3008 3009
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3010
	 */
3011
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3012

3013 3014
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3015 3016
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3017 3018

	/* Search for an sd spanning us and the target CPU. */
3019
	for_each_domain(target_cpu, sd) {
3020
		if ((sd->flags & SD_LOAD_BALANCE) &&
3021
		    cpu_isset(busiest_cpu, sd->span))
3022
				break;
3023
	}
3024

3025
	if (likely(sd)) {
3026
		schedstat_inc(sd, alb_count);
3027

P
Peter Williams 已提交
3028 3029
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3030 3031 3032 3033
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3034
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3035 3036
}

3037 3038 3039 3040 3041 3042 3043 3044 3045
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3046
/*
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3057
 *
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3114 3115 3116 3117 3118
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3119
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3120
{
3121 3122
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3123 3124
	unsigned long interval;
	struct sched_domain *sd;
3125
	/* Earliest time when we have to do rebalance again */
3126
	unsigned long next_balance = jiffies + 60*HZ;
3127
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3128

3129
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3130 3131 3132 3133
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3134
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3135 3136 3137 3138 3139 3140
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3141 3142 3143
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3144

3145 3146 3147 3148 3149
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3150
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3151
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3152 3153
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3154 3155 3156
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3157
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3158
			}
3159
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3160
		}
3161 3162 3163
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3164
		if (time_after(next_balance, sd->last_balance + interval)) {
3165
			next_balance = sd->last_balance + interval;
3166 3167
			update_next_balance = 1;
		}
3168 3169 3170 3171 3172 3173 3174 3175

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3176
	}
3177 3178 3179 3180 3181 3182 3183 3184

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3185 3186 3187 3188 3189 3190 3191 3192 3193
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3194 3195 3196 3197
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3198

I
Ingo Molnar 已提交
3199
	rebalance_domains(this_cpu, idle);
3200 3201 3202 3203 3204 3205 3206

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3207 3208
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3209 3210 3211 3212
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3213
		cpu_clear(this_cpu, cpus);
3214 3215 3216 3217 3218 3219 3220 3221 3222
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3223
			rebalance_domains(balance_cpu, CPU_IDLE);
3224 3225

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3226 3227
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3240
static inline void trigger_load_balance(struct rq *rq, int cpu)
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3292
}
I
Ingo Molnar 已提交
3293 3294 3295

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3296 3297 3298
/*
 * on UP we do not need to balance between CPUs:
 */
3299
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3300 3301
{
}
I
Ingo Molnar 已提交
3302

L
Linus Torvalds 已提交
3303 3304 3305 3306 3307 3308 3309
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3310 3311
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3312
 */
3313
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3314 3315
{
	unsigned long flags;
3316 3317
	u64 ns, delta_exec;
	struct rq *rq;
3318

3319 3320 3321
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3322 3323
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3324 3325 3326 3327
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3328

L
Linus Torvalds 已提交
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;
3341
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3342 3343 3344

	p->utime = cputime_add(p->utime, cputime);

3345 3346 3347
	if (p != rq->idle)
		cpuacct_charge(p, cputime);

L
Linus Torvalds 已提交
3348 3349 3350 3351 3352 3353 3354 3355
	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3356 3357 3358 3359 3360
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3361
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3395
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3396 3397
	cputime64_t tmp;

3398 3399 3400 3401 3402
	if (p->flags & PF_VCPU) {
		account_guest_time(p, cputime);
		return;
	}

L
Linus Torvalds 已提交
3403 3404 3405 3406 3407 3408 3409 3410
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3411
	else if (p != rq->idle) {
L
Linus Torvalds 已提交
3412
		cpustat->system = cputime64_add(cpustat->system, tmp);
3413 3414
		cpuacct_charge(p, cputime);
	} else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3415 3416 3417 3418 3419 3420 3421
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3442
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3443 3444 3445 3446 3447 3448 3449

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3450
	} else {
L
Linus Torvalds 已提交
3451
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
3452 3453
		cpuacct_charge(p, -tmp);
	}
L
Linus Torvalds 已提交
3454 3455
}

3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3467
	struct task_struct *curr = rq->curr;
3468
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3469 3470

	spin_lock(&rq->lock);
3471
	__update_rq_clock(rq);
3472 3473 3474 3475 3476 3477
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3478
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3479 3480 3481
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3482

3483
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3484 3485
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3486
#endif
L
Linus Torvalds 已提交
3487 3488 3489 3490 3491 3492 3493 3494 3495
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3496 3497
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3498 3499 3500 3501
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3502 3503
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3504 3505 3506 3507 3508 3509 3510 3511
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3512 3513
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3514 3515 3516
	/*
	 * Is the spinlock portion underflowing?
	 */
3517 3518 3519 3520
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3521 3522 3523 3524 3525 3526 3527
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3528
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3529
 */
I
Ingo Molnar 已提交
3530
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3531
{
3532 3533 3534 3535 3536
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3537 3538 3539
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3540 3541 3542 3543 3544

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3545
}
L
Linus Torvalds 已提交
3546

I
Ingo Molnar 已提交
3547 3548 3549 3550 3551
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3552 3553 3554 3555 3556
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3557 3558 3559
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3560 3561
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3562
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3563 3564
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3565 3566
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3567 3568
	}
#endif
I
Ingo Molnar 已提交
3569 3570 3571 3572 3573 3574
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3575
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3576
{
3577
	const struct sched_class *class;
I
Ingo Molnar 已提交
3578
	struct task_struct *p;
L
Linus Torvalds 已提交
3579 3580

	/*
I
Ingo Molnar 已提交
3581 3582
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3583
	 */
I
Ingo Molnar 已提交
3584
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3585
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3586 3587
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3588 3589
	}

I
Ingo Molnar 已提交
3590 3591
	class = sched_class_highest;
	for ( ; ; ) {
3592
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3593 3594 3595 3596 3597 3598 3599 3600 3601
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3602

I
Ingo Molnar 已提交
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3625

3626 3627 3628 3629
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3630
	__update_rq_clock(rq);
3631 3632
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3633 3634 3635

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3636
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3637
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3638
		} else {
3639
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3640
		}
I
Ingo Molnar 已提交
3641
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3642 3643
	}

I
Ingo Molnar 已提交
3644
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3645 3646
		idle_balance(cpu, rq);

3647
	prev->sched_class->put_prev_task(rq, prev);
3648
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3649 3650

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3651

L
Linus Torvalds 已提交
3652 3653 3654 3655 3656
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3657
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3658 3659 3660
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3661 3662 3663
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3664
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3665
	}
L
Linus Torvalds 已提交
3666 3667 3668 3669 3670 3671 3672 3673
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3674
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3689
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3690 3691
		return;

3692 3693 3694 3695 3696 3697 3698 3699
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3700
#ifdef CONFIG_PREEMPT_BKL
3701 3702
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3703
#endif
3704
		schedule();
L
Linus Torvalds 已提交
3705
#ifdef CONFIG_PREEMPT_BKL
3706
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3707
#endif
3708
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3709

3710 3711 3712 3713 3714 3715
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3716 3717 3718 3719
}
EXPORT_SYMBOL(preempt_schedule);

/*
3720
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3732
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3733 3734
	BUG_ON(ti->preempt_count || !irqs_disabled());

3735 3736 3737 3738 3739 3740 3741 3742
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3743
#ifdef CONFIG_PREEMPT_BKL
3744 3745
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3746
#endif
3747 3748 3749
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3750
#ifdef CONFIG_PREEMPT_BKL
3751
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3752
#endif
3753
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3754

3755 3756 3757 3758 3759 3760
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3761 3762 3763 3764
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3765 3766
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3767
{
3768
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3784
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3785

3786
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3787 3788
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3789
		if (curr->func(curr, mode, sync, key) &&
3790
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3791 3792 3793 3794 3795 3796 3797 3798 3799
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3800
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3801 3802
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3803
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3822
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3834 3835
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3852
void complete(struct completion *x)
L
Linus Torvalds 已提交
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3864
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3876 3877
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3878 3879 3880 3881 3882 3883 3884
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3885 3886 3887 3888 3889 3890
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3891 3892 3893 3894 3895
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3896
				return timeout;
L
Linus Torvalds 已提交
3897 3898 3899 3900 3901 3902 3903 3904
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3905 3906
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3907 3908 3909 3910
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3911
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3912
	spin_unlock_irq(&x->wait.lock);
3913 3914
	return timeout;
}
L
Linus Torvalds 已提交
3915

3916
void __sched wait_for_completion(struct completion *x)
3917 3918
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3919
}
3920
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3921

3922
unsigned long __sched
3923
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3924
{
3925
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3926
}
3927
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3928

3929
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3930
{
3931 3932 3933 3934
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3935
}
3936
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3937

3938
unsigned long __sched
3939 3940
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3941
{
3942
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3943
}
3944
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3945

3946 3947
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3948
{
I
Ingo Molnar 已提交
3949 3950 3951 3952
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3953

3954
	__set_current_state(state);
L
Linus Torvalds 已提交
3955

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3970 3971 3972
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3973
long __sched
I
Ingo Molnar 已提交
3974
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3975
{
3976
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3977 3978 3979
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3980
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3981
{
3982
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3983 3984 3985
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3986
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3987
{
3988
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3989 3990 3991
}
EXPORT_SYMBOL(sleep_on_timeout);

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4004
void rt_mutex_setprio(struct task_struct *p, int prio)
4005 4006
{
	unsigned long flags;
4007
	int oldprio, on_rq, running;
4008
	struct rq *rq;
4009 4010 4011 4012

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4013
	update_rq_clock(rq);
4014

4015
	oldprio = p->prio;
I
Ingo Molnar 已提交
4016
	on_rq = p->se.on_rq;
4017 4018
	running = task_running(rq, p);
	if (on_rq) {
4019
		dequeue_task(rq, p, 0);
4020 4021 4022
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4023 4024 4025 4026 4027 4028

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4029 4030
	p->prio = prio;

I
Ingo Molnar 已提交
4031
	if (on_rq) {
4032 4033
		if (running)
			p->sched_class->set_curr_task(rq);
4034
		enqueue_task(rq, p, 0);
4035 4036
		/*
		 * Reschedule if we are currently running on this runqueue and
4037 4038
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4039
		 */
4040
		if (running) {
4041 4042
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4043 4044 4045
		} else {
			check_preempt_curr(rq, p);
		}
4046 4047 4048 4049 4050 4051
	}
	task_rq_unlock(rq, &flags);
}

#endif

4052
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4053
{
I
Ingo Molnar 已提交
4054
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4055
	unsigned long flags;
4056
	struct rq *rq;
L
Linus Torvalds 已提交
4057 4058 4059 4060 4061 4062 4063 4064

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4065
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4066 4067 4068 4069
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4070
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4071
	 */
4072
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4073 4074 4075
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4076 4077
	on_rq = p->se.on_rq;
	if (on_rq) {
4078
		dequeue_task(rq, p, 0);
4079
		dec_load(rq, p);
4080
	}
L
Linus Torvalds 已提交
4081 4082

	p->static_prio = NICE_TO_PRIO(nice);
4083
	set_load_weight(p);
4084 4085 4086
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4087

I
Ingo Molnar 已提交
4088
	if (on_rq) {
4089
		enqueue_task(rq, p, 0);
4090
		inc_load(rq, p);
L
Linus Torvalds 已提交
4091
		/*
4092 4093
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4094
		 */
4095
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4096 4097 4098 4099 4100 4101 4102
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4103 4104 4105 4106 4107
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4108
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4109
{
4110 4111
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4112

M
Matt Mackall 已提交
4113 4114 4115 4116
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4128
	long nice, retval;
L
Linus Torvalds 已提交
4129 4130 4131 4132 4133 4134

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4135 4136
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4137 4138 4139 4140 4141 4142 4143 4144 4145
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4146 4147 4148
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4167
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4168 4169 4170 4171 4172 4173 4174 4175
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4176
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4195
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4196 4197 4198 4199 4200 4201 4202 4203
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4204
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4205
{
4206
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4207 4208 4209
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4210 4211
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4212
{
I
Ingo Molnar 已提交
4213
	BUG_ON(p->se.on_rq);
4214

L
Linus Torvalds 已提交
4215
	p->policy = policy;
I
Ingo Molnar 已提交
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4228
	p->rt_priority = prio;
4229 4230 4231
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4232
	set_load_weight(p);
L
Linus Torvalds 已提交
4233 4234 4235
}

/**
4236
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4237 4238 4239
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4240
 *
4241
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4242
 */
I
Ingo Molnar 已提交
4243 4244
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4245
{
4246
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4247
	unsigned long flags;
4248
	struct rq *rq;
L
Linus Torvalds 已提交
4249

4250 4251
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4252 4253 4254 4255 4256
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4257 4258
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4259
		return -EINVAL;
L
Linus Torvalds 已提交
4260 4261
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4262 4263
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4264 4265
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4266
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4267
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4268
		return -EINVAL;
4269
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4270 4271
		return -EINVAL;

4272 4273 4274 4275
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4276
		if (rt_policy(policy)) {
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4293 4294 4295 4296 4297 4298
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4299

4300 4301 4302 4303 4304
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4305 4306 4307 4308

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4309 4310 4311 4312 4313
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4314 4315 4316 4317
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4318
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4319 4320 4321
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4322 4323
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4324 4325
		goto recheck;
	}
I
Ingo Molnar 已提交
4326
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4327
	on_rq = p->se.on_rq;
4328 4329
	running = task_running(rq, p);
	if (on_rq) {
4330
		deactivate_task(rq, p, 0);
4331 4332 4333
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4334

L
Linus Torvalds 已提交
4335
	oldprio = p->prio;
I
Ingo Molnar 已提交
4336
	__setscheduler(rq, p, policy, param->sched_priority);
4337

I
Ingo Molnar 已提交
4338
	if (on_rq) {
4339 4340
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4341
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4342 4343
		/*
		 * Reschedule if we are currently running on this runqueue and
4344 4345
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4346
		 */
4347
		if (running) {
4348 4349
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4350 4351 4352
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4353
	}
4354 4355 4356
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4357 4358
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4359 4360 4361 4362
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4363 4364
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4365 4366 4367
{
	struct sched_param lparam;
	struct task_struct *p;
4368
	int retval;
L
Linus Torvalds 已提交
4369 4370 4371 4372 4373

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4374 4375 4376

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4377
	p = find_process_by_pid(pid);
4378 4379 4380
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4381

L
Linus Torvalds 已提交
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4394 4395 4396 4397
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4417
	struct task_struct *p;
4418
	int retval;
L
Linus Torvalds 已提交
4419 4420

	if (pid < 0)
4421
		return -EINVAL;
L
Linus Torvalds 已提交
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4443
	struct task_struct *p;
4444
	int retval;
L
Linus Torvalds 已提交
4445 4446

	if (!param || pid < 0)
4447
		return -EINVAL;
L
Linus Torvalds 已提交
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4477 4478
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4479

4480
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4481 4482 4483 4484 4485
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4486
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4503 4504 4505 4506
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4507 4508
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4509
 again:
L
Linus Torvalds 已提交
4510 4511
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4524 4525
out_unlock:
	put_task_struct(p);
4526
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4567
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4568 4569 4570
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4571
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4572 4573
EXPORT_SYMBOL(cpu_online_map);

4574
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4575
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4576 4577 4578 4579
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4580
	struct task_struct *p;
L
Linus Torvalds 已提交
4581 4582
	int retval;

4583
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4584 4585 4586 4587 4588 4589 4590
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4591 4592 4593 4594
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4595
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4596 4597 4598

out_unlock:
	read_unlock(&tasklist_lock);
4599
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4600

4601
	return retval;
L
Linus Torvalds 已提交
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4632 4633
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4634 4635 4636
 */
asmlinkage long sys_sched_yield(void)
{
4637
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4638

4639
	schedstat_inc(rq, yld_count);
4640
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4641 4642 4643 4644 4645 4646

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4647
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4648 4649 4650 4651 4652 4653 4654 4655
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4656
static void __cond_resched(void)
L
Linus Torvalds 已提交
4657
{
4658 4659 4660
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4661 4662 4663 4664 4665
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4666 4667 4668 4669 4670 4671 4672 4673 4674
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4675 4676
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4692
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4693
{
J
Jan Kara 已提交
4694 4695
	int ret = 0;

L
Linus Torvalds 已提交
4696 4697 4698
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4699
		ret = 1;
L
Linus Torvalds 已提交
4700 4701
		spin_lock(lock);
	}
4702
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4703
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4704 4705 4706
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4707
		ret = 1;
L
Linus Torvalds 已提交
4708 4709
		spin_lock(lock);
	}
J
Jan Kara 已提交
4710
	return ret;
L
Linus Torvalds 已提交
4711 4712 4713 4714 4715 4716 4717
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4718
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4719
		local_bh_enable();
L
Linus Torvalds 已提交
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4731
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4750
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4751

4752
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4753 4754 4755
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4756
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4757 4758 4759 4760 4761
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4762
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4763 4764
	long ret;

4765
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4766 4767 4768
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4769
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4790
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4791
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4815
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4816
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4833
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4834
	unsigned int time_slice;
4835
	int retval;
L
Linus Torvalds 已提交
4836 4837 4838
	struct timespec t;

	if (pid < 0)
4839
		return -EINVAL;
L
Linus Torvalds 已提交
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

D
Dmitry Adamushko 已提交
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
	if (p->policy == SCHED_FIFO)
		time_slice = 0;
	else if (p->policy == SCHED_RR)
		time_slice = DEF_TIMESLICE;
	else {
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
		time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4864
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4865
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4866 4867
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4868

L
Linus Torvalds 已提交
4869 4870 4871 4872 4873
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4874
static const char stat_nam[] = "RSDTtZX";
4875 4876

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4877 4878
{
	unsigned long free = 0;
4879
	unsigned state;
L
Linus Torvalds 已提交
4880 4881

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
4882
	printk(KERN_INFO "%-13.13s %c", p->comm,
4883
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4884
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4885
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4886
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4887
	else
I
Ingo Molnar 已提交
4888
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4889 4890
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4891
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4892
	else
I
Ingo Molnar 已提交
4893
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4894 4895 4896
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4897
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4898 4899
		while (!*n)
			n++;
4900
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4901 4902
	}
#endif
4903 4904
	printk(KERN_CONT "%5lu %5d %6d\n", free,
		task_pid_nr(p), task_pid_nr(p->parent));
L
Linus Torvalds 已提交
4905 4906 4907 4908 4909

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4910
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4911
{
4912
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4913

4914 4915 4916
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4917
#else
4918 4919
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4920 4921 4922 4923 4924 4925 4926 4927
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4928
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4929
			show_task(p);
L
Linus Torvalds 已提交
4930 4931
	} while_each_thread(g, p);

4932 4933
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4934 4935 4936
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4937
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4938 4939 4940 4941 4942
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4943 4944
}

I
Ingo Molnar 已提交
4945 4946
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4947
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4948 4949
}

4950 4951 4952 4953 4954 4955 4956 4957
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4958
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4959
{
4960
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4961 4962
	unsigned long flags;

I
Ingo Molnar 已提交
4963 4964 4965
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4966
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4967
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4968
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4969 4970 4971

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4972 4973 4974
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4975 4976 4977 4978
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4979
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4980
#else
A
Al Viro 已提交
4981
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4982
#endif
I
Ingo Molnar 已提交
4983 4984 4985 4986
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5024 5025 5026 5027
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5028
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
5050
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5051
{
5052
	struct migration_req req;
L
Linus Torvalds 已提交
5053
	unsigned long flags;
5054
	struct rq *rq;
5055
	int ret = 0;
L
Linus Torvalds 已提交
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5078

L
Linus Torvalds 已提交
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5091 5092
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5093
 */
5094
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5095
{
5096
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5097
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5098 5099

	if (unlikely(cpu_is_offline(dest_cpu)))
5100
		return ret;
L
Linus Torvalds 已提交
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5113
	on_rq = p->se.on_rq;
5114
	if (on_rq)
5115
		deactivate_task(rq_src, p, 0);
5116

L
Linus Torvalds 已提交
5117
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5118 5119 5120
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5121
	}
5122
	ret = 1;
L
Linus Torvalds 已提交
5123 5124
out:
	double_rq_unlock(rq_src, rq_dest);
5125
	return ret;
L
Linus Torvalds 已提交
5126 5127 5128 5129 5130 5131 5132
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5133
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5134 5135
{
	int cpu = (long)data;
5136
	struct rq *rq;
L
Linus Torvalds 已提交
5137 5138 5139 5140 5141 5142

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5143
		struct migration_req *req;
L
Linus Torvalds 已提交
5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5166
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5167 5168
		list_del_init(head->next);

N
Nick Piggin 已提交
5169 5170 5171
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5201
/*
5202
 * Figure out where task on dead CPU should go, use force if necessary.
5203 5204
 * NOTE: interrupts should be disabled by the caller
 */
5205
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5206
{
5207
	unsigned long flags;
L
Linus Torvalds 已提交
5208
	cpumask_t mask;
5209 5210
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5211

5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5224 5225 5226 5227 5228 5229 5230 5231
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
			 * cpuset_cpus_allowed() will not block.  It must be
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5232
			rq = task_rq_lock(p, &flags);
5233
			p->cpus_allowed = cpus_allowed;
5234 5235
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5236

5237 5238 5239 5240 5241 5242 5243 5244
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
			if (p->mm && printk_ratelimit())
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
5245
			       task_pid_nr(p), p->comm, dead_cpu);
5246
		}
5247
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5248 5249 5250 5251 5252 5253 5254 5255 5256
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5257
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5258
{
5259
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5273
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5274

5275
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5276

5277 5278
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5279 5280
			continue;

5281 5282 5283
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5284

5285
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5286 5287
}

A
Alexey Dobriyan 已提交
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
/*
 * activate_idle_task - move idle task to the _front_ of runqueue.
 */
static void activate_idle_task(struct task_struct *p, struct rq *rq)
{
	update_rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;

	enqueue_task(rq, p, 0);
	inc_nr_running(p, rq);
}

I
Ingo Molnar 已提交
5302 5303
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5304
 * It does so by boosting its priority to highest possible and adding it to
5305
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5306 5307 5308
 */
void sched_idle_next(void)
{
5309
	int this_cpu = smp_processor_id();
5310
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5311 5312 5313 5314
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5315
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5316

5317 5318 5319
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5320 5321 5322
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5323
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5324 5325

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5326
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5327 5328 5329 5330

	spin_unlock_irqrestore(&rq->lock, flags);
}

5331 5332
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5346
/* called under rq->lock with disabled interrupts */
5347
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5348
{
5349
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5350 5351

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5352
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5353 5354

	/* Cannot have done final schedule yet: would have vanished. */
5355
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5356

5357
	get_task_struct(p);
L
Linus Torvalds 已提交
5358 5359 5360 5361 5362 5363

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
	 */
5364
	spin_unlock_irq(&rq->lock);
5365
	move_task_off_dead_cpu(dead_cpu, p);
5366
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5367

5368
	put_task_struct(p);
L
Linus Torvalds 已提交
5369 5370 5371 5372 5373
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5374
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5375
	struct task_struct *next;
5376

I
Ingo Molnar 已提交
5377 5378 5379
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5380
		update_rq_clock(rq);
5381
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5382 5383 5384
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5385

L
Linus Torvalds 已提交
5386 5387 5388 5389
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5390 5391 5392
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5393 5394
	{
		.procname	= "sched_domain",
5395
		.mode		= 0555,
5396
	},
I
Ingo Molnar 已提交
5397
	{0, },
5398 5399 5400
};

static struct ctl_table sd_ctl_root[] = {
5401
	{
5402
		.ctl_name	= CTL_KERN,
5403
		.procname	= "kernel",
5404
		.mode		= 0555,
5405 5406
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5407
	{0, },
5408 5409 5410 5411 5412
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5413
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5414 5415 5416 5417

	return entry;
}

5418 5419
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5420
	struct ctl_table *entry;
5421

5422 5423 5424 5425 5426 5427 5428
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
	 * will always be set.  In the lowest directory the names are
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5429 5430
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5431 5432 5433
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5434 5435 5436 5437 5438

	kfree(*tablep);
	*tablep = NULL;
}

5439
static void
5440
set_table_entry(struct ctl_table *entry,
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5454
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5455

5456 5457 5458
	if (table == NULL)
		return NULL;

5459
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5460
		sizeof(long), 0644, proc_doulongvec_minmax);
5461
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5462
		sizeof(long), 0644, proc_doulongvec_minmax);
5463
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5464
		sizeof(int), 0644, proc_dointvec_minmax);
5465
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5466
		sizeof(int), 0644, proc_dointvec_minmax);
5467
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5468
		sizeof(int), 0644, proc_dointvec_minmax);
5469
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5470
		sizeof(int), 0644, proc_dointvec_minmax);
5471
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5472
		sizeof(int), 0644, proc_dointvec_minmax);
5473
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5474
		sizeof(int), 0644, proc_dointvec_minmax);
5475
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5476
		sizeof(int), 0644, proc_dointvec_minmax);
5477
	set_table_entry(&table[9], "cache_nice_tries",
5478 5479
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5480
	set_table_entry(&table[10], "flags", &sd->flags,
5481
		sizeof(int), 0644, proc_dointvec_minmax);
5482
	/* &table[11] is terminator */
5483 5484 5485 5486

	return table;
}

I
Ingo Molnar 已提交
5487
static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
5488 5489 5490 5491 5492 5493 5494 5495 5496
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5497 5498
	if (table == NULL)
		return NULL;
5499 5500 5501 5502 5503

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5504
		entry->mode = 0555;
5505 5506 5507 5508 5509 5510 5511 5512
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5513
static void register_sched_domain_sysctl(void)
5514 5515 5516 5517 5518
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5519 5520 5521
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5522 5523 5524
	if (entry == NULL)
		return;

5525
	for_each_online_cpu(i) {
5526 5527
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5528
		entry->mode = 0555;
5529
		entry->child = sd_alloc_ctl_cpu_table(i);
5530
		entry++;
5531
	}
5532 5533

	WARN_ON(sd_sysctl_header);
5534 5535
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5536

5537
/* may be called multiple times per register */
5538 5539
static void unregister_sched_domain_sysctl(void)
{
5540 5541
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5542
	sd_sysctl_header = NULL;
5543 5544
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5545
}
5546
#else
5547 5548 5549 5550
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5551 5552 5553 5554
{
}
#endif

L
Linus Torvalds 已提交
5555 5556 5557 5558
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5559 5560
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5561 5562
{
	struct task_struct *p;
5563
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5564
	unsigned long flags;
5565
	struct rq *rq;
L
Linus Torvalds 已提交
5566 5567

	switch (action) {
5568 5569 5570 5571
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5572
	case CPU_UP_PREPARE:
5573
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5574
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5575 5576 5577 5578 5579
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5580
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5581 5582 5583
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5584

L
Linus Torvalds 已提交
5585
	case CPU_ONLINE:
5586
	case CPU_ONLINE_FROZEN:
5587
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5588 5589
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5590

L
Linus Torvalds 已提交
5591 5592
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5593
	case CPU_UP_CANCELED_FROZEN:
5594 5595
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5596
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5597 5598
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5599 5600 5601
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5602

L
Linus Torvalds 已提交
5603
	case CPU_DEAD:
5604
	case CPU_DEAD_FROZEN:
5605
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5606 5607 5608 5609 5610
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5611
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5612
		update_rq_clock(rq);
5613
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5614
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5615 5616
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5617
		migrate_dead_tasks(cpu);
5618
		spin_unlock_irq(&rq->lock);
5619
		cpuset_unlock();
L
Linus Torvalds 已提交
5620 5621 5622 5623
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5624
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5625 5626 5627
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5628 5629
			struct migration_req *req;

L
Linus Torvalds 已提交
5630
			req = list_entry(rq->migration_queue.next,
5631
					 struct migration_req, list);
L
Linus Torvalds 已提交
5632 5633 5634 5635 5636 5637
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5638 5639 5640
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5641 5642 5643 5644 5645 5646 5647
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5648
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5649 5650 5651 5652 5653 5654 5655
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5656
	int err;
5657 5658

	/* Start one for the boot CPU: */
5659 5660
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5661 5662
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5663

L
Linus Torvalds 已提交
5664 5665 5666 5667 5668
	return 0;
}
#endif

#ifdef CONFIG_SMP
5669 5670 5671 5672 5673

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5674
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5675 5676

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5677
{
I
Ingo Molnar 已提交
5678 5679 5680
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5681

I
Ingo Molnar 已提交
5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5693 5694
	}

I
Ingo Molnar 已提交
5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5705

I
Ingo Molnar 已提交
5706
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5707
	do {
I
Ingo Molnar 已提交
5708 5709 5710
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5711 5712 5713
			break;
		}

I
Ingo Molnar 已提交
5714 5715 5716 5717 5718 5719
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5720

I
Ingo Molnar 已提交
5721 5722 5723 5724 5725
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5726

I
Ingo Molnar 已提交
5727 5728 5729 5730 5731
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5732

I
Ingo Molnar 已提交
5733
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5734

I
Ingo Molnar 已提交
5735 5736
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5737

I
Ingo Molnar 已提交
5738 5739 5740
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5741

I
Ingo Molnar 已提交
5742 5743
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5744

I
Ingo Molnar 已提交
5745 5746 5747 5748 5749
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
5750

I
Ingo Molnar 已提交
5751 5752 5753
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5754

I
Ingo Molnar 已提交
5755 5756 5757 5758
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5759

I
Ingo Molnar 已提交
5760 5761 5762 5763 5764
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
5765 5766
		level++;
		sd = sd->parent;
5767
		if (!sd)
I
Ingo Molnar 已提交
5768 5769
			break;
	}
L
Linus Torvalds 已提交
5770 5771
}
#else
5772
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5773 5774
#endif

5775
static int sd_degenerate(struct sched_domain *sd)
5776 5777 5778 5779 5780 5781 5782 5783
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5784 5785 5786
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5800 5801
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5820 5821 5822
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5823 5824 5825 5826 5827 5828 5829
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5830 5831 5832 5833
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5834
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5835
{
5836
	struct rq *rq = cpu_rq(cpu);
5837 5838 5839 5840 5841 5842 5843
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5844
		if (sd_parent_degenerate(tmp, parent)) {
5845
			tmp->parent = parent->parent;
5846 5847 5848
			if (parent->parent)
				parent->parent->child = tmp;
		}
5849 5850
	}

5851
	if (sd && sd_degenerate(sd)) {
5852
		sd = sd->parent;
5853 5854 5855
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5856 5857 5858

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5859
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5860 5861 5862
}

/* cpus with isolated domains */
5863
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5878
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5879 5880

/*
5881 5882 5883 5884
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5885 5886 5887 5888 5889
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5890
static void
5891 5892 5893
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5894 5895 5896 5897 5898 5899
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5900 5901
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5902 5903 5904 5905 5906 5907
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5908
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5909 5910

		for_each_cpu_mask(j, span) {
5911
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5926
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5927

5928
#ifdef CONFIG_NUMA
5929

5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5982 5983
	cpumask_t span, nodemask;
	int i;
5984 5985 5986 5987 5988 5989 5990 5991 5992 5993

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5994

5995 5996 5997 5998 5999 6000 6001 6002
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6003
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6004

6005
/*
6006
 * SMT sched-domains:
6007
 */
L
Linus Torvalds 已提交
6008 6009
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6010
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6011

6012 6013
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
6014
{
6015 6016
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6017 6018 6019 6020
	return cpu;
}
#endif

6021 6022 6023
/*
 * multi-core sched-domains:
 */
6024 6025
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6026
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6027 6028 6029
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6030 6031
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
6032
{
6033
	int group;
6034
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6035
	cpus_and(mask, mask, *cpu_map);
6036 6037 6038 6039
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6040 6041
}
#elif defined(CONFIG_SCHED_MC)
6042 6043
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
6044
{
6045 6046
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6047 6048 6049 6050
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6051
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6052
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6053

6054 6055
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
6056
{
6057
	int group;
6058
#ifdef CONFIG_SCHED_MC
6059
	cpumask_t mask = cpu_coregroup_map(cpu);
6060
	cpus_and(mask, mask, *cpu_map);
6061
	group = first_cpu(mask);
6062
#elif defined(CONFIG_SCHED_SMT)
6063
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6064
	cpus_and(mask, mask, *cpu_map);
6065
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6066
#else
6067
	group = cpu;
L
Linus Torvalds 已提交
6068
#endif
6069 6070 6071
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6072 6073 6074 6075
}

#ifdef CONFIG_NUMA
/*
6076 6077 6078
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6079
 */
6080
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6081
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6082

6083
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6084
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6085

6086 6087
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6088
{
6089 6090 6091 6092 6093 6094 6095 6096 6097
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6098
}
6099

6100 6101 6102 6103 6104 6105 6106
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6107 6108 6109
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6110

6111 6112 6113 6114 6115 6116 6117 6118
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6119

6120 6121 6122 6123
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6124
}
L
Linus Torvalds 已提交
6125 6126
#endif

6127
#ifdef CONFIG_NUMA
6128 6129 6130
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6131
	int cpu, i;
6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6162 6163 6164 6165 6166
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6167

6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6194 6195
	sd->groups->__cpu_power = 0;

6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6206
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6207 6208 6209 6210 6211 6212 6213 6214
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6215
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6216 6217 6218 6219
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6220
/*
6221 6222
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6223
 */
6224
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6225 6226
{
	int i;
6227 6228
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6229
	int sd_allnodes = 0;
6230 6231 6232 6233

	/*
	 * Allocate the per-node list of sched groups
	 */
6234
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6235
					   GFP_KERNEL);
6236 6237
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6238
		return -ENOMEM;
6239 6240 6241
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6242 6243

	/*
6244
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6245
	 */
6246
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6247 6248 6249
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6250
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6251 6252

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6253 6254
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6255 6256 6257
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6258
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6259
			p = sd;
6260
			sd_allnodes = 1;
6261 6262 6263
		} else
			p = NULL;

L
Linus Torvalds 已提交
6264 6265
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6266 6267
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6268 6269
		if (p)
			p->child = sd;
6270
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6271 6272 6273 6274 6275 6276 6277
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6278 6279
		if (p)
			p->child = sd;
6280
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6281

6282 6283 6284 6285 6286 6287 6288
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6289
		p->child = sd;
6290
		cpu_to_core_group(i, cpu_map, &sd->groups);
6291 6292
#endif

L
Linus Torvalds 已提交
6293 6294 6295 6296
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6297
		sd->span = per_cpu(cpu_sibling_map, i);
6298
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6299
		sd->parent = p;
6300
		p->child = sd;
6301
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6302 6303 6304 6305 6306
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6307
	for_each_cpu_mask(i, *cpu_map) {
6308
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6309
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6310 6311 6312
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6313 6314
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6315 6316 6317
	}
#endif

6318 6319 6320 6321 6322 6323 6324
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6325 6326
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6327 6328 6329
	}
#endif

L
Linus Torvalds 已提交
6330 6331 6332 6333
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6334
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6335 6336 6337
		if (cpus_empty(nodemask))
			continue;

6338
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6339 6340 6341 6342
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6343
	if (sd_allnodes)
I
Ingo Molnar 已提交
6344 6345
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6346 6347 6348 6349 6350 6351 6352 6353 6354 6355

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6356 6357
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6358
			continue;
6359
		}
6360 6361 6362 6363

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6364
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6365 6366 6367 6368 6369
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6370 6371 6372
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6373

6374 6375 6376
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6377
		sg->__cpu_power = 0;
6378
		sg->cpumask = nodemask;
6379
		sg->next = sg;
6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6398 6399
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6400 6401 6402
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6403
				goto error;
6404
			}
6405
			sg->__cpu_power = 0;
6406
			sg->cpumask = tmp;
6407
			sg->next = prev->next;
6408 6409 6410 6411 6412
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6413 6414 6415
#endif

	/* Calculate CPU power for physical packages and nodes */
6416
#ifdef CONFIG_SCHED_SMT
6417
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6418 6419
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6420
		init_sched_groups_power(i, sd);
6421
	}
L
Linus Torvalds 已提交
6422
#endif
6423
#ifdef CONFIG_SCHED_MC
6424
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6425 6426
		struct sched_domain *sd = &per_cpu(core_domains, i);

6427
		init_sched_groups_power(i, sd);
6428 6429
	}
#endif
6430

6431
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6432 6433
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6434
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6435 6436
	}

6437
#ifdef CONFIG_NUMA
6438 6439
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6440

6441 6442
	if (sd_allnodes) {
		struct sched_group *sg;
6443

6444
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6445 6446
		init_numa_sched_groups_power(sg);
	}
6447 6448
#endif

L
Linus Torvalds 已提交
6449
	/* Attach the domains */
6450
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6451 6452 6453
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6454 6455
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6456 6457 6458 6459 6460
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6461 6462 6463

	return 0;

6464
#ifdef CONFIG_NUMA
6465 6466 6467
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6468
#endif
L
Linus Torvalds 已提交
6469
}
P
Paul Jackson 已提交
6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6481 6482
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6483 6484
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6485
 */
6486
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6487
{
6488 6489
	int err;

P
Paul Jackson 已提交
6490 6491 6492 6493 6494
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6495
	err = build_sched_domains(doms_cur);
6496
	register_sched_domain_sysctl();
6497 6498

	return err;
6499 6500 6501
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6502
{
6503
	free_sched_groups(cpu_map);
6504
}
L
Linus Torvalds 已提交
6505

6506 6507 6508 6509
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6510
static void detach_destroy_domains(const cpumask_t *cpu_map)
6511 6512 6513
{
	int i;

6514 6515
	unregister_sched_domain_sysctl();

6516 6517 6518 6519 6520 6521
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546
/*
 * Partition sched domains as specified by the 'ndoms_new'
 * cpumasks in the array doms_new[] of cpumasks.  This compares
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
 * The masks don't intersect (don't overlap.)  We should setup one
 * sched domain for each mask.  CPUs not in any of the cpumasks will
 * not be load balanced.  If the same cpumask appears both in the
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
 * The passed in 'doms_new' should be kmalloc'd.  This routine takes
 * ownership of it and will kfree it when done with it.  If the caller
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6547 6548 6549
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6585 6586

	register_sched_domain_sysctl();
P
Paul Jackson 已提交
6587 6588
}

6589
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6590
static int arch_reinit_sched_domains(void)
6591 6592 6593
{
	int err;

6594
	mutex_lock(&sched_hotcpu_mutex);
6595 6596
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6597
	mutex_unlock(&sched_hotcpu_mutex);
6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6624 6625
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6626 6627 6628
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6629 6630
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6631 6632 6633 6634 6635 6636 6637
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6638 6639
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6640 6641 6642
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6663 6664
#endif

L
Linus Torvalds 已提交
6665 6666 6667
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6668
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6669 6670 6671 6672 6673 6674 6675
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6676
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6677
	case CPU_DOWN_PREPARE:
6678
	case CPU_DOWN_PREPARE_FROZEN:
6679
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6680 6681 6682
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6683
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6684
	case CPU_DOWN_FAILED:
6685
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6686
	case CPU_ONLINE:
6687
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6688
	case CPU_DEAD:
6689
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6690 6691 6692 6693 6694 6695 6696 6697 6698
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6699
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6700 6701 6702 6703 6704 6705

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6706 6707
	cpumask_t non_isolated_cpus;

6708
	mutex_lock(&sched_hotcpu_mutex);
6709
	arch_init_sched_domains(&cpu_online_map);
6710
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6711 6712
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6713
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6714 6715
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6716 6717 6718 6719

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6720
	sched_init_granularity();
L
Linus Torvalds 已提交
6721 6722 6723 6724
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6725
	sched_init_granularity();
L
Linus Torvalds 已提交
6726 6727 6728 6729 6730 6731 6732
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6733

L
Linus Torvalds 已提交
6734 6735 6736 6737 6738
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6739
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6740 6741 6742 6743 6744
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6745
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6746 6747
}

L
Linus Torvalds 已提交
6748 6749
void __init sched_init(void)
{
6750
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6751 6752
	int i, j;

6753
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6754
		struct rt_prio_array *array;
6755
		struct rq *rq;
L
Linus Torvalds 已提交
6756 6757 6758

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6759
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6760
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6761 6762 6763 6764
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6765 6766 6767 6768 6769 6770 6771
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6772
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6773
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6774 6775
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6776 6777 6778
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6779
			se->load.weight = init_task_group_load;
6780
			se->load.inv_weight =
6781
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6782 6783
			se->parent = NULL;
		}
6784
		init_task_group.shares = init_task_group_load;
6785
		spin_lock_init(&init_task_group.lock);
I
Ingo Molnar 已提交
6786
#endif
L
Linus Torvalds 已提交
6787

I
Ingo Molnar 已提交
6788 6789
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6790
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6791
		rq->sd = NULL;
L
Linus Torvalds 已提交
6792
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6793
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6794
		rq->push_cpu = 0;
6795
		rq->cpu = i;
L
Linus Torvalds 已提交
6796 6797 6798 6799 6800
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6801 6802 6803 6804
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6805
		}
6806
		highest_cpu = i;
I
Ingo Molnar 已提交
6807 6808
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6809 6810
	}

6811
	set_load_weight(&init_task);
6812

6813 6814 6815 6816
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6817
#ifdef CONFIG_SMP
6818
	nr_cpu_ids = highest_cpu + 1;
6819 6820 6821
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6822 6823 6824 6825
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6839 6840 6841 6842
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6843 6844 6845 6846 6847
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6848
#ifdef in_atomic
L
Linus Torvalds 已提交
6849 6850 6851 6852 6853 6854 6855
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6856
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6857 6858 6859
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6860
		debug_show_held_locks(current);
6861 6862
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6863 6864 6865 6866 6867 6868 6869 6870
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6885 6886
void normalize_rt_tasks(void)
{
6887
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6888
	unsigned long flags;
6889
	struct rq *rq;
L
Linus Torvalds 已提交
6890 6891

	read_lock_irq(&tasklist_lock);
6892
	do_each_thread(g, p) {
6893 6894 6895 6896 6897 6898
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6899 6900
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6901 6902 6903
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6904
#endif
I
Ingo Molnar 已提交
6905 6906 6907 6908 6909 6910 6911 6912 6913
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6914
			continue;
I
Ingo Molnar 已提交
6915
		}
L
Linus Torvalds 已提交
6916

6917 6918
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6919

6920
		normalize_task(rq, p);
6921

6922 6923
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6924 6925
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6926 6927 6928 6929
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6948
struct task_struct *curr_task(int cpu)
6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6968
void set_curr_task(int cpu, struct task_struct *p)
6969 6970 6971 6972 6973
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6974 6975 6976 6977

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6978
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6979
{
6980
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6981 6982
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6983
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6984 6985 6986 6987 6988 6989
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6990
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6991 6992
	if (!tg->cfs_rq)
		goto err;
6993
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6994 6995 6996 6997
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6998
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

7025 7026 7027 7028 7029
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
7030

7031
	tg->shares = NICE_0_LOAD;
7032
	spin_lock_init(&tg->lock);
S
Srivatsa Vaddagiri 已提交
7033

7034
	return tg;
S
Srivatsa Vaddagiri 已提交
7035 7036 7037

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
7038
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
7039
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
7040
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
7041 7042
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
7043 7044 7045
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
7046 7047 7048 7049

	return ERR_PTR(-ENOMEM);
}

7050 7051
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7052
{
7053 7054
	struct task_group *tg = container_of(rhp, struct task_group, rcu);
	struct cfs_rq *cfs_rq;
S
Srivatsa Vaddagiri 已提交
7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

7072
/* Destroy runqueue etc associated with a task group */
7073
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7074
{
7075
	struct cfs_rq *cfs_rq = NULL;
7076
	int i;
S
Srivatsa Vaddagiri 已提交
7077

7078 7079 7080 7081 7082
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

7083
	BUG_ON(!cfs_rq);
7084 7085

	/* wait for possible concurrent references to cfs_rqs complete */
7086
	call_rcu(&tg->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
7087 7088
}

7089
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7090 7091 7092
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7093 7094
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	if (tsk->sched_class != &fair_sched_class)
		goto done;

	update_rq_clock(rq);

	running = task_running(rq, tsk);
	on_rq = tsk->se.on_rq;

7110
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7111
		dequeue_task(rq, tsk, 0);
7112 7113 7114
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7115 7116 7117

	set_task_cfs_rq(tsk);

7118 7119 7120
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7121
		enqueue_task(rq, tsk, 0);
7122
	}
S
Srivatsa Vaddagiri 已提交
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

7149
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7150 7151 7152
{
	int i;

7153
	spin_lock(&tg->lock);
7154
	if (tg->shares == shares)
7155
		goto done;
S
Srivatsa Vaddagiri 已提交
7156

7157
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
7158
	for_each_possible_cpu(i)
7159
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
7160

7161 7162
done:
	spin_unlock(&tg->lock);
7163
	return 0;
S
Srivatsa Vaddagiri 已提交
7164 7165
}

7166 7167 7168 7169 7170
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
7171
#endif	/* CONFIG_FAIR_GROUP_SCHED */
7172 7173 7174 7175

#ifdef CONFIG_FAIR_CGROUP_SCHED

/* return corresponding task_group object of a cgroup */
7176
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7177
{
7178 7179
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7180 7181 7182
}

static struct cgroup_subsys_state *
7183
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7184 7185 7186
{
	struct task_group *tg;

7187
	if (!cgrp->parent) {
7188
		/* This is early initialization for the top cgroup */
7189
		init_task_group.css.cgroup = cgrp;
7190 7191 7192 7193
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7194
	if (cgrp->parent->parent)
7195 7196 7197 7198 7199 7200 7201
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7202
	tg->css.cgroup = cgrp;
7203 7204 7205 7206 7207

	return &tg->css;
}

static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
7208
			       struct cgroup *cgrp)
7209
{
7210
	struct task_group *tg = cgroup_tg(cgrp);
7211 7212 7213 7214 7215

	sched_destroy_group(tg);
}

static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
7216
			     struct cgroup *cgrp, struct task_struct *tsk)
7217 7218 7219 7220 7221 7222 7223 7224 7225
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

static void
7226
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7227 7228 7229 7230 7231
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7232 7233
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7234
{
7235
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7236 7237
}

7238
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7239
{
7240
	struct task_group *tg = cgroup_tg(cgrp);
7241 7242 7243 7244

	return (u64) tg->shares;
}

7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
static u64 cpu_usage_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct task_group *tg = cgroup_tg(cgrp);
	unsigned long flags;
	u64 res = 0;
	int i;

	for_each_possible_cpu(i) {
		/*
		 * Lock to prevent races with updating 64-bit counters
		 * on 32-bit arches.
		 */
		spin_lock_irqsave(&cpu_rq(i)->lock, flags);
		res += tg->se[i]->sum_exec_runtime;
		spin_unlock_irqrestore(&cpu_rq(i)->lock, flags);
	}
	/* Convert from ns to ms */
7262
	do_div(res, NSEC_PER_MSEC);
7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276

	return res;
}

static struct cftype cpu_files[] = {
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
	{
		.name = "usage",
		.read_uint = cpu_usage_read,
	},
7277 7278 7279 7280
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7281
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7282 7283 7284
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7285 7286 7287 7288 7289 7290 7291
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7292 7293 7294 7295
	.early_init	= 1,
};

#endif	/* CONFIG_FAIR_CGROUP_SCHED */