sched.c 161.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
30
#include <linux/capability.h>
L
Linus Torvalds 已提交
31 32
#include <linux/completion.h>
#include <linux/kernel_stat.h>
33
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
37
#include <linux/freezer.h>
38
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/times.h>
52
#include <linux/tsacct_kern.h>
53
#include <linux/kprobes.h>
54
#include <linux/delayacct.h>
55
#include <linux/reciprocal_div.h>
L
Linus Torvalds 已提交
56

57
#include <asm/tlb.h>
L
Linus Torvalds 已提交
58 59
#include <asm/unistd.h>

60 61 62 63 64 65 66 67 68 69
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

70 71 72 73 74 75 76
/*
 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
 */
void sched_clock_unstable_event(void)
{
}

L
Linus Torvalds 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
101 102 103
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
#define ON_RUNQUEUE_WEIGHT	 30
#define CHILD_PENALTY		 95
#define PARENT_PENALTY		100
#define EXIT_WEIGHT		  3
#define PRIO_BONUS_RATIO	 25
#define MAX_BONUS		(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
#define INTERACTIVE_DELTA	  2
#define MAX_SLEEP_AVG		(DEF_TIMESLICE * MAX_BONUS)
#define STARVATION_LIMIT	(MAX_SLEEP_AVG)
#define NS_MAX_SLEEP_AVG	(JIFFIES_TO_NS(MAX_SLEEP_AVG))

/*
 * If a task is 'interactive' then we reinsert it in the active
 * array after it has expired its current timeslice. (it will not
 * continue to run immediately, it will still roundrobin with
 * other interactive tasks.)
 *
 * This part scales the interactivity limit depending on niceness.
 *
 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
 * Here are a few examples of different nice levels:
 *
 *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
 *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
 *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
 *
 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
 *  priority range a task can explore, a value of '1' means the
 *  task is rated interactive.)
 *
 * Ie. nice +19 tasks can never get 'interactive' enough to be
 * reinserted into the active array. And only heavily CPU-hog nice -20
 * tasks will be expired. Default nice 0 tasks are somewhere between,
 * it takes some effort for them to get interactive, but it's not
 * too hard.
 */

#define CURRENT_BONUS(p) \
	(NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
		MAX_SLEEP_AVG)

#define GRANULARITY	(10 * HZ / 1000 ? : 1)

#ifdef CONFIG_SMP
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
			num_online_cpus())
#else
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
#endif

#define SCALE(v1,v1_max,v2_max) \
	(v1) * (v2_max) / (v1_max)

#define DELTA(p) \
171 172
	(SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
		INTERACTIVE_DELTA)
L
Linus Torvalds 已提交
173 174 175 176 177 178 179 180 181

#define TASK_INTERACTIVE(p) \
	((p)->prio <= (p)->static_prio - DELTA(p))

#define INTERACTIVE_SLEEP(p) \
	(JIFFIES_TO_NS(MAX_SLEEP_AVG * \
		(MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))

#define TASK_PREEMPTS_CURR(p, rq) \
182
	((p)->prio < (rq)->curr->prio)
L
Linus Torvalds 已提交
183 184

#define SCALE_PRIO(x, prio) \
185
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
L
Linus Torvalds 已提交
186

187
static unsigned int static_prio_timeslice(int static_prio)
L
Linus Torvalds 已提交
188
{
189 190
	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
L
Linus Torvalds 已提交
191
	else
192
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
L
Linus Torvalds 已提交
193
}
194

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

216 217 218 219 220 221 222 223 224
/*
 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
 * to time slice values: [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */

225
static inline unsigned int task_timeslice(struct task_struct *p)
226 227 228 229
{
	return static_prio_timeslice(p->static_prio);
}

230 231 232 233 234 235 236 237 238 239 240 241
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
242
/*
I
Ingo Molnar 已提交
243
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
244
 */
I
Ingo Molnar 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
287

I
Ingo Molnar 已提交
288 289 290 291 292 293 294 295 296 297
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

/*
 * The prio-array type of the old scheduler:
 */
L
Linus Torvalds 已提交
298 299
struct prio_array {
	unsigned int nr_active;
300
	DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
L
Linus Torvalds 已提交
301 302 303 304 305 306 307 308 309 310
	struct list_head queue[MAX_PRIO];
};

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
311
struct rq {
I
Ingo Molnar 已提交
312
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
313 314 315 316 317 318

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
319
	unsigned long raw_weighted_load;
I
Ingo Molnar 已提交
320 321
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
322
	unsigned char idle_at_tick;
323 324 325
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
326 327 328 329 330 331 332
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
333
#endif
I
Ingo Molnar 已提交
334
	struct rt_rq  rt;
L
Linus Torvalds 已提交
335 336 337 338 339 340 341 342 343 344

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

	unsigned long expired_timestamp;
345
	unsigned long long most_recent_timestamp;
I
Ingo Molnar 已提交
346

347
	struct task_struct *curr, *idle;
348
	unsigned long next_balance;
L
Linus Torvalds 已提交
349
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
350

351
	struct prio_array *active, *expired, arrays[2];
L
Linus Torvalds 已提交
352
	int best_expired_prio;
I
Ingo Molnar 已提交
353 354 355 356 357 358 359 360 361

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
	unsigned int clock_unstable_events;

	struct sched_class *load_balance_class;

L
Linus Torvalds 已提交
362 363 364 365 366 367 368 369
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
370
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
371

372
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
395
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
396 397
};

398
static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
399
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
400

I
Ingo Molnar 已提交
401 402 403 404 405
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

406 407 408 409 410 411 412 413 414
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
/*
 * Per-runqueue clock, as finegrained as the platform can give us:
 */
static unsigned long long __rq_clock(struct rq *rq)
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
		if (unlikely(delta > 2*TICK_NSEC)) {
			clock++;
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;

	return clock;
}

static inline unsigned long long rq_clock(struct rq *rq)
{
	int this_cpu = smp_processor_id();

	if (this_cpu == cpu_of(rq))
		return __rq_clock(rq);

	return rq->clock;
}

N
Nick Piggin 已提交
461 462
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
463
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
464 465 466 467
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
468 469
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
470 471 472 473 474 475

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
476 477 478 479 480 481 482 483 484 485 486 487
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
488
#ifndef prepare_arch_switch
489 490 491 492 493 494 495
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
496
static inline int task_running(struct rq *rq, struct task_struct *p)
497 498 499 500
{
	return rq->curr == p;
}

501
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
502 503 504
{
}

505
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
506
{
507 508 509 510
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
511 512 513 514 515 516 517
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

518 519 520 521
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
522
static inline int task_running(struct rq *rq, struct task_struct *p)
523 524 525 526 527 528 529 530
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

531
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

548
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
549 550 551 552 553 554 555 556 557 558 559 560
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
561
#endif
562 563
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
564

565 566 567 568
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
569
static inline struct rq *__task_rq_lock(struct task_struct *p)
570 571
	__acquires(rq->lock)
{
572
	struct rq *rq;
573 574 575 576 577 578 579 580 581 582 583

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
584 585 586 587 588
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
589
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
590 591
	__acquires(rq->lock)
{
592
	struct rq *rq;
L
Linus Torvalds 已提交
593 594 595 596 597 598 599 600 601 602 603 604

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

605
static inline void __task_rq_unlock(struct rq *rq)
606 607 608 609 610
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

611
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
612 613 614 615 616 617
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
618
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
619
 */
620
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
621 622
	__acquires(rq->lock)
{
623
	struct rq *rq;
L
Linus Torvalds 已提交
624 625 626 627 628 629 630 631

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

I
Ingo Molnar 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
static u64 div64_likely32(u64 divident, unsigned long divisor)
{
#if BITS_PER_LONG == 32
	if (likely(divident <= 0xffffffffULL))
		return (u32)divident / divisor;
	do_div(divident, divisor);

	return divident;
#else
	return divident / divisor;
#endif
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

static inline unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
		lw->inv_weight = WMULT_CONST / lw->weight;

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST)) {
		tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
				>> (WMULT_SHIFT/2);
	} else {
		tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
	}

	return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

static void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static void __update_curr_load(struct rq *rq, struct load_stat *ls)
{
	if (rq->curr != rq->idle && ls->load.weight) {
		ls->delta_exec += ls->delta_stat;
		ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
		ls->delta_stat = 0;
	}
}

/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
 * total load (rq->ls.load.weight) on the runqueue, while
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
 * This function is called /before/ updating rq->ls.load
 * and when switching tasks.
 */
static void update_curr_load(struct rq *rq, u64 now)
{
	struct load_stat *ls = &rq->ls;
	u64 start;

	start = ls->load_update_start;
	ls->load_update_start = now;
	ls->delta_stat += now - start;
	/*
	 * Stagger updates to ls->delta_fair. Very frequent updates
	 * can be expensive.
	 */
	if (ls->delta_stat >= sysctl_sched_stat_granularity)
		__update_curr_load(rq, ls);
}

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

/*
 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
 * If static_prio_timeslice() is ever changed to break this assumption then
 * this code will need modification
 */
#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
I
Ingo Molnar 已提交
801
#define load_weight(lp) \
802 803
	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
#define PRIO_TO_LOAD_WEIGHT(prio) \
I
Ingo Molnar 已提交
804
	load_weight(static_prio_timeslice(prio))
805
#define RTPRIO_TO_LOAD_WEIGHT(rp) \
I
Ingo Molnar 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
	(PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))

#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage.
 */
static const int prio_to_weight[40] = {
/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
/* -10 */  9537,  7629,  6103,  4883,  3906,  3125,  2500,  2000,  1600,  1280,
/*   0 */  NICE_0_LOAD /* 1024 */,
/*   1 */          819,   655,   524,   419,   336,   268,   215,   172,   137,
/*  10 */   110,    87,    70,    56,    45,    36,    29,    23,    18,    15,
};

static const u32 prio_to_wmult[40] = {
	48356,   60446,   75558,   94446,  118058,  147573,
	184467,  230589,  288233,  360285,  450347,
	562979,  703746,  879575, 1099582, 1374389,
	717986, 2147483, 2684354, 3355443, 4194304,
	244160, 6557201, 8196502, 10250518, 12782640,
	16025997, 19976592, 24970740, 31350126, 39045157,
	49367440, 61356675, 76695844, 95443717, 119304647,
	148102320, 186737708, 238609294, 286331153,
};
839

840
static inline void
I
Ingo Molnar 已提交
841
inc_load(struct rq *rq, const struct task_struct *p, u64 now)
842
{
I
Ingo Molnar 已提交
843 844
	update_curr_load(rq, now);
	update_load_add(&rq->ls.load, p->se.load.weight);
845 846
}

847
static inline void
I
Ingo Molnar 已提交
848
dec_load(struct rq *rq, const struct task_struct *p, u64 now)
849
{
I
Ingo Molnar 已提交
850 851
	update_curr_load(rq, now);
	update_load_sub(&rq->ls.load, p->se.load.weight);
852 853
}

I
Ingo Molnar 已提交
854
static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
855 856
{
	rq->nr_running++;
I
Ingo Molnar 已提交
857
	inc_load(rq, p, now);
858 859
}

I
Ingo Molnar 已提交
860
static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
861 862
{
	rq->nr_running--;
I
Ingo Molnar 已提交
863
	dec_load(rq, p, now);
864 865
}

I
Ingo Molnar 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator);

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

896 897
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
898 899 900
	task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
	p->se.wait_runtime = 0;

901
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
902 903 904 905
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
906

I
Ingo Molnar 已提交
907 908 909 910 911 912 913 914
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
915

I
Ingo Molnar 已提交
916 917
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
918 919
}

I
Ingo Molnar 已提交
920 921
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
922
{
I
Ingo Molnar 已提交
923 924 925
	sched_info_queued(p);
	p->sched_class->enqueue_task(rq, p, wakeup, now);
	p->se.on_rq = 1;
926 927
}

I
Ingo Molnar 已提交
928 929
static void
dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
930
{
I
Ingo Molnar 已提交
931 932
	p->sched_class->dequeue_task(rq, p, sleep, now);
	p->se.on_rq = 0;
933 934
}

935
/*
I
Ingo Molnar 已提交
936
 * __normal_prio - return the priority that is based on the static prio
937 938 939
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
940
	return p->static_prio;
941 942
}

943 944 945 946 947 948 949
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
950
static inline int normal_prio(struct task_struct *p)
951 952 953
{
	int prio;

954
	if (task_has_rt_policy(p))
955 956 957 958 959 960 961 962 963 964 965 966 967
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
968
static int effective_prio(struct task_struct *p)
969 970 971 972 973 974 975 976 977 978 979 980
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
981
/*
I
Ingo Molnar 已提交
982
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
983
 */
I
Ingo Molnar 已提交
984
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
985
{
I
Ingo Molnar 已提交
986
	u64 now = rq_clock(rq);
987

I
Ingo Molnar 已提交
988 989
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
990

I
Ingo Molnar 已提交
991 992
	enqueue_task(rq, p, wakeup, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
993 994 995
}

/*
I
Ingo Molnar 已提交
996
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
997
 */
I
Ingo Molnar 已提交
998
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
999
{
I
Ingo Molnar 已提交
1000
	u64 now = rq_clock(rq);
L
Linus Torvalds 已提交
1001

I
Ingo Molnar 已提交
1002 1003
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
1004

I
Ingo Molnar 已提交
1005 1006
	enqueue_task(rq, p, 0, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
1007 1008 1009 1010 1011
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
I
Ingo Molnar 已提交
1012
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1013
{
I
Ingo Molnar 已提交
1014 1015 1016 1017 1018 1019 1020
	u64 now = rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep, now);
	dec_nr_running(p, rq, now);
L
Linus Torvalds 已提交
1021 1022 1023 1024 1025 1026
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1027
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1028 1029 1030 1031
{
	return cpu_curr(task_cpu(p)) == p;
}

1032 1033 1034
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
I
Ingo Molnar 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043
	return cpu_rq(cpu)->ls.load.weight;
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
1044 1045
}

L
Linus Torvalds 已提交
1046
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1047

I
Ingo Molnar 已提交
1048
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1049
{
I
Ingo Molnar 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
	fair_clock_offset = old_rq->cfs.fair_clock -
						 new_rq->cfs.fair_clock;
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
	if (p->se.sleep_start_fair)
		p->se.sleep_start_fair -= fair_clock_offset;

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1069 1070
}

1071
struct migration_req {
L
Linus Torvalds 已提交
1072 1073
	struct list_head list;

1074
	struct task_struct *task;
L
Linus Torvalds 已提交
1075 1076 1077
	int dest_cpu;

	struct completion done;
1078
};
L
Linus Torvalds 已提交
1079 1080 1081 1082 1083

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1084
static int
1085
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1086
{
1087
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1088 1089 1090 1091 1092

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1093
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1094 1095 1096 1097 1098 1099 1100 1101
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1102

L
Linus Torvalds 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1115
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1116 1117
{
	unsigned long flags;
I
Ingo Molnar 已提交
1118
	int running, on_rq;
1119
	struct rq *rq;
L
Linus Torvalds 已提交
1120 1121

repeat:
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1149
	rq = task_rq_lock(p, &flags);
1150
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1151
	on_rq = p->se.on_rq;
1152 1153 1154 1155 1156 1157 1158 1159 1160
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1161 1162 1163
		cpu_relax();
		goto repeat;
	}
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1174
	if (unlikely(on_rq)) {
1175 1176 1177 1178 1179 1180 1181 1182 1183
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1199
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1211 1212
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1213 1214 1215 1216
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1217
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1218
{
1219
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1220
	unsigned long total = weighted_cpuload(cpu);
1221

1222
	if (type == 0)
I
Ingo Molnar 已提交
1223
		return total;
1224

I
Ingo Molnar 已提交
1225
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1226 1227 1228
}

/*
1229 1230
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1231
 */
N
Nick Piggin 已提交
1232
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1233
{
1234
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1235
	unsigned long total = weighted_cpuload(cpu);
1236

N
Nick Piggin 已提交
1237
	if (type == 0)
I
Ingo Molnar 已提交
1238
		return total;
1239

I
Ingo Molnar 已提交
1240
	return max(rq->cpu_load[type-1], total);
1241 1242 1243 1244 1245 1246 1247
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1248
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1249
	unsigned long total = weighted_cpuload(cpu);
1250 1251
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1252
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1253 1254
}

N
Nick Piggin 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1272 1273 1274 1275
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1292 1293
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1294 1295 1296 1297 1298 1299 1300 1301

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1302
nextgroup:
N
Nick Piggin 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1312
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1313
 */
I
Ingo Molnar 已提交
1314 1315
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1316
{
1317
	cpumask_t tmp;
N
Nick Piggin 已提交
1318 1319 1320 1321
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1322 1323 1324 1325
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1326
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1352

1353
	for_each_domain(cpu, tmp) {
1354 1355 1356 1357 1358
 		/*
 	 	 * If power savings logic is enabled for a domain, stop there.
 	 	 */
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1359 1360
		if (tmp->flags & flag)
			sd = tmp;
1361
	}
N
Nick Piggin 已提交
1362 1363 1364 1365

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1366 1367 1368 1369 1370 1371
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1372 1373 1374

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1375 1376 1377 1378
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1379

1380
		new_cpu = find_idlest_cpu(group, t, cpu);
1381 1382 1383 1384 1385
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1386

1387
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1414
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1415 1416 1417 1418 1419
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1430 1431 1432 1433
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1434
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1435 1436 1437 1438 1439
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
		}
N
Nick Piggin 已提交
1440 1441
		else
			break;
L
Linus Torvalds 已提交
1442 1443 1444 1445
	}
	return cpu;
}
#else
1446
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1466
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1467 1468 1469 1470
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1471
	struct rq *rq;
L
Linus Torvalds 已提交
1472
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1473
	struct sched_domain *sd, *this_sd = NULL;
1474
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1475 1476 1477 1478 1479 1480 1481 1482
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1483
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1493 1494
	new_cpu = cpu;

L
Linus Torvalds 已提交
1495 1496 1497
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1498 1499 1500 1501 1502 1503 1504 1505
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1506 1507 1508
		}
	}

N
Nick Piggin 已提交
1509
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1510 1511 1512
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1513
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1514
	 */
N
Nick Piggin 已提交
1515 1516 1517
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1518

1519 1520
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1521 1522
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1523

N
Nick Piggin 已提交
1524 1525
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1526 1527
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1528 1529 1530
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1531

L
Linus Torvalds 已提交
1532
			/*
1533 1534 1535
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1536
			 */
1537
			if (sync)
I
Ingo Molnar 已提交
1538
				tl -= current->se.load.weight;
1539 1540

			if ((tl <= load &&
1541
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1542
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1576
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1577 1578 1579 1580 1581 1582 1583 1584
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1585
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1586 1587 1588 1589 1590 1591 1592 1593
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1594 1595
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1606
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1607 1608 1609 1610 1611 1612
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1613
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1614 1615 1616 1617 1618 1619 1620
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.wait_start		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
	p->se.delta_exec		= 0;
	p->se.delta_fair_run		= 0;
	p->se.delta_fair_sleep		= 0;
	p->se.wait_runtime		= 0;
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.sleep_start_fair		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
N
Nick Piggin 已提交
1645

I
Ingo Molnar 已提交
1646 1647
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1648

L
Linus Torvalds 已提交
1649 1650 1651 1652 1653 1654 1655
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1671 1672 1673 1674 1675 1676

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1677
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1678
	if (likely(sched_info_on()))
1679
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1680
#endif
1681
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1682 1683
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1684
#ifdef CONFIG_PREEMPT
1685
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1686
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1687
#endif
N
Nick Piggin 已提交
1688
	put_cpu();
L
Linus Torvalds 已提交
1689 1690
}

I
Ingo Molnar 已提交
1691 1692 1693 1694 1695 1696
/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
unsigned int __read_mostly sysctl_sched_child_runs_first = 1;

L
Linus Torvalds 已提交
1697 1698 1699 1700 1701 1702 1703
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1704
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1705 1706
{
	unsigned long flags;
I
Ingo Molnar 已提交
1707 1708
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1709 1710

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1711
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1712
	this_cpu = smp_processor_id(); /* parent's CPU */
L
Linus Torvalds 已提交
1713 1714 1715

	p->prio = effective_prio(p);

I
Ingo Molnar 已提交
1716 1717 1718
	if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
			task_cpu(p) != this_cpu || !current->se.on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1719 1720
	} else {
		/*
I
Ingo Molnar 已提交
1721 1722
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1723
		 */
I
Ingo Molnar 已提交
1724
		p->sched_class->task_new(rq, p);
L
Linus Torvalds 已提交
1725
	}
I
Ingo Molnar 已提交
1726 1727
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1728 1729
}

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1742
static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1743 1744 1745 1746 1747
{
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1748 1749
/**
 * finish_task_switch - clean up after a task-switch
1750
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1751 1752
 * @prev: the thread we just switched away from.
 *
1753 1754 1755 1756
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1757 1758 1759 1760 1761 1762
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1763
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1764 1765 1766
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1767
	long prev_state;
L
Linus Torvalds 已提交
1768 1769 1770 1771 1772

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1773
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1774 1775
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1776
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1777 1778 1779 1780 1781
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1782
	prev_state = prev->state;
1783 1784
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
L
Linus Torvalds 已提交
1785 1786
	if (mm)
		mmdrop(mm);
1787
	if (unlikely(prev_state == TASK_DEAD)) {
1788 1789 1790 1791 1792
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
	 	 */
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1793
		put_task_struct(prev);
1794
	}
L
Linus Torvalds 已提交
1795 1796 1797 1798 1799 1800
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1801
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1802 1803
	__releases(rq->lock)
{
1804 1805
	struct rq *rq = this_rq();

1806 1807 1808 1809 1810
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1811 1812 1813 1814 1815 1816 1817 1818
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1819
static inline void
1820
context_switch(struct rq *rq, struct task_struct *prev,
1821
	       struct task_struct *next)
L
Linus Torvalds 已提交
1822
{
I
Ingo Molnar 已提交
1823
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1824

I
Ingo Molnar 已提交
1825 1826 1827
	prepare_task_switch(rq, next);
	mm = next->mm;
	oldmm = prev->active_mm;
1828 1829 1830 1831 1832 1833 1834
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1835
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1836 1837 1838 1839 1840 1841
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1842
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1843 1844 1845
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1846 1847 1848 1849 1850 1851 1852
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1853
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1854
#endif
L
Linus Torvalds 已提交
1855 1856 1857 1858

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1859 1860 1861 1862 1863 1864 1865
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1889
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1904 1905
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1906

1907
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1908 1909 1910 1911 1912 1913 1914 1915 1916
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1917
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1918 1919 1920 1921 1922
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1938
/*
I
Ingo Molnar 已提交
1939 1940
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1941
 */
I
Ingo Molnar 已提交
1942
static void update_cpu_load(struct rq *this_rq)
1943
{
I
Ingo Molnar 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
	unsigned long total_load = this_rq->ls.load.weight;
	unsigned long this_load =  total_load;
	struct load_stat *ls = &this_rq->ls;
	u64 now = __rq_clock(this_rq);
	int i, scale;

	this_rq->nr_load_updates++;
	if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
		goto do_avg;

	/* Update delta_fair/delta_exec fields first */
	update_curr_load(this_rq, now);

	fair_delta64 = ls->delta_fair + 1;
	ls->delta_fair = 0;

	exec_delta64 = ls->delta_exec + 1;
	ls->delta_exec = 0;

	sample_interval64 = now - ls->load_update_last;
	ls->load_update_last = now;

	if ((s64)sample_interval64 < (s64)TICK_NSEC)
		sample_interval64 = TICK_NSEC;

	if (exec_delta64 > sample_interval64)
		exec_delta64 = sample_interval64;

	idle_delta64 = sample_interval64 - exec_delta64;

	tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
	tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);

	this_load = (unsigned long)tmp64;

do_avg:

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;

		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
1993 1994
}

I
Ingo Molnar 已提交
1995 1996
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
1997 1998 1999 2000 2001 2002
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2003
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2004 2005 2006
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2007
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2008 2009 2010 2011
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2012
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2028
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2042
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2043 2044 2045 2046
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2047 2048 2049 2050 2051
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2052
	if (unlikely(!spin_trylock(&busiest->lock))) {
2053
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2068
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2069
{
2070
	struct migration_req req;
L
Linus Torvalds 已提交
2071
	unsigned long flags;
2072
	struct rq *rq;
L
Linus Torvalds 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2083

L
Linus Torvalds 已提交
2084 2085 2086 2087 2088
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2089

L
Linus Torvalds 已提交
2090 2091 2092 2093 2094 2095 2096
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2097 2098
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2099 2100 2101 2102
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2103
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2104
	put_cpu();
N
Nick Piggin 已提交
2105 2106
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2107 2108 2109 2110 2111 2112
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2113 2114
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2115
{
I
Ingo Molnar 已提交
2116
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2117
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2118
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2119 2120 2121 2122
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2123
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2124 2125 2126 2127 2128
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2129
static
2130
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2131
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2132
		     int *all_pinned)
L
Linus Torvalds 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2142 2143 2144 2145
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2146 2147

	/*
I
Ingo Molnar 已提交
2148
	 * Aggressive migration if too many balance attempts have failed:
L
Linus Torvalds 已提交
2149
	 */
I
Ingo Molnar 已提交
2150
	if (sd->nr_balance_failed > sd->cache_nice_tries)
L
Linus Torvalds 已提交
2151 2152 2153 2154 2155
		return 1;

	return 1;
}

I
Ingo Molnar 已提交
2156
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2157
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2158
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2159 2160 2161
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2162
{
I
Ingo Molnar 已提交
2163 2164 2165
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2166

2167
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2168 2169
		goto out;

2170 2171
	pinned = 1;

L
Linus Torvalds 已提交
2172
	/*
I
Ingo Molnar 已提交
2173
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2174
	 */
I
Ingo Molnar 已提交
2175 2176 2177
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2178
		goto out;
2179 2180 2181 2182 2183
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2184 2185 2186 2187
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
	if (skip_for_load && p->prio < this_best_prio)
		skip_for_load = !best_prio_seen && p->prio == best_prio;
2188
	if (skip_for_load ||
I
Ingo Molnar 已提交
2189
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2190

I
Ingo Molnar 已提交
2191 2192 2193
		best_prio_seen |= p->prio == best_prio;
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2194 2195
	}

I
Ingo Molnar 已提交
2196
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2197
	pulled++;
I
Ingo Molnar 已提交
2198
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2199

2200 2201 2202 2203 2204
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
I
Ingo Molnar 已提交
2205 2206 2207 2208
		if (p->prio < this_best_prio)
			this_best_prio = p->prio;
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2209 2210 2211 2212 2213 2214 2215 2216
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2217 2218 2219

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2220
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2221 2222 2223
	return pulled;
}

I
Ingo Molnar 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
/*
 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
 * load from busiest to this_rq, as part of a balancing operation within
 * "domain". Returns the number of tasks moved.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;

	do {
		nr_moved = class->load_balance(this_rq, this_cpu, busiest,
				max_nr_move, (unsigned long)rem_load_move,
				sd, idle, all_pinned, &load_moved);
		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;
		class = class->next;
	} while (class && max_nr_move && rem_load_move > 0);

	return total_nr_moved;
}

L
Linus Torvalds 已提交
2253 2254
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2255 2256
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2257 2258 2259
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2260 2261
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2262 2263 2264
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2265
	unsigned long max_pull;
2266 2267
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2268
	int load_idx;
2269 2270 2271 2272 2273 2274
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2275 2276

	max_load = this_load = total_load = total_pwr = 0;
2277 2278
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2279
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2280
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2281
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2282 2283 2284
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2285 2286

	do {
2287
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2288 2289
		int local_group;
		int i;
2290
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2291
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2292 2293 2294

		local_group = cpu_isset(this_cpu, group->cpumask);

2295 2296 2297
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2298
		/* Tally up the load of all CPUs in the group */
2299
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2300 2301

		for_each_cpu_mask(i, group->cpumask) {
2302 2303 2304 2305 2306 2307
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2308

N
Nick Piggin 已提交
2309 2310 2311
			if (*sd_idle && !idle_cpu(i))
				*sd_idle = 0;

L
Linus Torvalds 已提交
2312
			/* Bias balancing toward cpus of our domain */
2313 2314 2315 2316 2317 2318
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2319
				load = target_load(i, load_idx);
2320
			} else
N
Nick Piggin 已提交
2321
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2322 2323

			avg_load += load;
2324
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2325
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2326 2327
		}

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
		 * domains.
		 */
		if (local_group && balance_cpu != this_cpu && balance) {
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2338
		total_load += avg_load;
2339
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2340 2341

		/* Adjust by relative CPU power of the group */
2342 2343
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2344

2345
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2346

L
Linus Torvalds 已提交
2347 2348 2349
		if (local_group) {
			this_load = avg_load;
			this = group;
2350 2351 2352
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2353
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2354 2355
			max_load = avg_load;
			busiest = group;
2356 2357
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2358
		}
2359 2360 2361 2362 2363 2364

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2365 2366 2367
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2368 2369 2370 2371 2372 2373 2374 2375 2376

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2377
		/*
2378 2379
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2380 2381
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2382
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2383
			goto group_next;
2384

I
Ingo Molnar 已提交
2385
		/*
2386
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2387 2388 2389 2390 2391
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2392 2393
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2394 2395
			group_min = group;
			min_nr_running = sum_nr_running;
2396 2397
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2398
		}
2399

I
Ingo Molnar 已提交
2400
		/*
2401
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2413
		}
2414 2415
group_next:
#endif
L
Linus Torvalds 已提交
2416 2417 2418
		group = group->next;
	} while (group != sd->groups);

2419
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2420 2421 2422 2423 2424 2425 2426 2427
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2428
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2452 2453

	/* Don't want to pull so many tasks that a group would go idle */
2454
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2455

L
Linus Torvalds 已提交
2456
	/* How much load to actually move to equalise the imbalance */
2457 2458
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2459 2460
			/ SCHED_LOAD_SCALE;

2461 2462 2463 2464 2465 2466
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
I
Ingo Molnar 已提交
2467
	if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2468
		unsigned long tmp, pwr_now, pwr_move;
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2480

I
Ingo Molnar 已提交
2481 2482
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2483
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2493 2494 2495 2496
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2497 2498 2499
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2500 2501
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2502
		if (max_load > tmp)
2503
			pwr_move += busiest->__cpu_power *
2504
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2505 2506

		/* Amount of load we'd add */
2507
		if (max_load * busiest->__cpu_power <
2508
				busiest_load_per_task * SCHED_LOAD_SCALE)
2509 2510
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2511
		else
2512 2513 2514 2515
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2516 2517 2518 2519 2520 2521
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2522
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2523 2524 2525 2526 2527
	}

	return busiest;

out_balanced:
2528
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2529
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2530
		goto ret;
L
Linus Torvalds 已提交
2531

2532 2533 2534 2535 2536
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2537
ret:
L
Linus Torvalds 已提交
2538 2539 2540 2541 2542 2543 2544
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2545
static struct rq *
I
Ingo Molnar 已提交
2546
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2547
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2548
{
2549
	struct rq *busiest = NULL, *rq;
2550
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2551 2552 2553
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2554
		unsigned long wl;
2555 2556 2557 2558

		if (!cpu_isset(i, *cpus))
			continue;

2559
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2560
		wl = weighted_cpuload(i);
2561

I
Ingo Molnar 已提交
2562
		if (rq->nr_running == 1 && wl > imbalance)
2563
			continue;
L
Linus Torvalds 已提交
2564

I
Ingo Molnar 已提交
2565 2566
		if (wl > max_load) {
			max_load = wl;
2567
			busiest = rq;
L
Linus Torvalds 已提交
2568 2569 2570 2571 2572 2573
		}
	}

	return busiest;
}

2574 2575 2576 2577 2578 2579
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

2580 2581 2582 2583 2584
static inline unsigned long minus_1_or_zero(unsigned long n)
{
	return n > 0 ? n - 1 : 0;
}

L
Linus Torvalds 已提交
2585 2586 2587 2588
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2589
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2590
			struct sched_domain *sd, enum cpu_idle_type idle,
2591
			int *balance)
L
Linus Torvalds 已提交
2592
{
2593
	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2594 2595
	struct sched_group *group;
	unsigned long imbalance;
2596
	struct rq *busiest;
2597
	cpumask_t cpus = CPU_MASK_ALL;
2598
	unsigned long flags;
N
Nick Piggin 已提交
2599

2600 2601 2602
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2603
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2604
	 * portraying it as CPU_NOT_IDLE.
2605
	 */
I
Ingo Molnar 已提交
2606
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2607
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2608
		sd_idle = 1;
L
Linus Torvalds 已提交
2609 2610 2611

	schedstat_inc(sd, lb_cnt[idle]);

2612 2613
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2614 2615
				   &cpus, balance);

2616
	if (*balance == 0)
2617 2618
		goto out_balanced;

L
Linus Torvalds 已提交
2619 2620 2621 2622 2623
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2624
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2625 2626 2627 2628 2629
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2630
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. nr_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
2642
		local_irq_save(flags);
N
Nick Piggin 已提交
2643
		double_rq_lock(this_rq, busiest);
L
Linus Torvalds 已提交
2644
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2645 2646
				      minus_1_or_zero(busiest->nr_running),
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2647
		double_rq_unlock(this_rq, busiest);
2648
		local_irq_restore(flags);
2649

2650 2651 2652 2653 2654 2655
		/*
		 * some other cpu did the load balance for us.
		 */
		if (nr_moved && this_cpu != smp_processor_id())
			resched_cpu(this_cpu);

2656
		/* All tasks on this runqueue were pinned by CPU affinity */
2657 2658 2659 2660
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2661
			goto out_balanced;
2662
		}
L
Linus Torvalds 已提交
2663
	}
2664

L
Linus Torvalds 已提交
2665 2666 2667 2668 2669 2670
	if (!nr_moved) {
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2671
			spin_lock_irqsave(&busiest->lock, flags);
2672 2673 2674 2675 2676

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2677
				spin_unlock_irqrestore(&busiest->lock, flags);
2678 2679 2680 2681
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2682 2683 2684
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2685
				active_balance = 1;
L
Linus Torvalds 已提交
2686
			}
2687
			spin_unlock_irqrestore(&busiest->lock, flags);
2688
			if (active_balance)
L
Linus Torvalds 已提交
2689 2690 2691 2692 2693 2694
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2695
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2696
		}
2697
	} else
L
Linus Torvalds 已提交
2698 2699
		sd->nr_balance_failed = 0;

2700
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2701 2702
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2703 2704 2705 2706 2707 2708 2709 2710 2711
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2712 2713
	}

2714
	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2715
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2716
		return -1;
L
Linus Torvalds 已提交
2717 2718 2719 2720 2721
	return nr_moved;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2722
	sd->nr_balance_failed = 0;
2723 2724

out_one_pinned:
L
Linus Torvalds 已提交
2725
	/* tune up the balancing interval */
2726 2727
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2728 2729
		sd->balance_interval *= 2;

2730
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2731
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2732
		return -1;
L
Linus Torvalds 已提交
2733 2734 2735 2736 2737 2738 2739
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2740
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2741 2742
 * this_rq is locked.
 */
2743
static int
2744
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2745 2746
{
	struct sched_group *group;
2747
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2748 2749
	unsigned long imbalance;
	int nr_moved = 0;
N
Nick Piggin 已提交
2750
	int sd_idle = 0;
2751
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2752

2753 2754 2755 2756
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2757
	 * portraying it as CPU_NOT_IDLE.
2758 2759 2760
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2761
		sd_idle = 1;
L
Linus Torvalds 已提交
2762

I
Ingo Molnar 已提交
2763
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2764
redo:
I
Ingo Molnar 已提交
2765
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2766
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2767
	if (!group) {
I
Ingo Molnar 已提交
2768
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2769
		goto out_balanced;
L
Linus Torvalds 已提交
2770 2771
	}

I
Ingo Molnar 已提交
2772
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2773
				&cpus);
N
Nick Piggin 已提交
2774
	if (!busiest) {
I
Ingo Molnar 已提交
2775
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2776
		goto out_balanced;
L
Linus Torvalds 已提交
2777 2778
	}

N
Nick Piggin 已提交
2779 2780
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2781
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2782 2783 2784 2785 2786 2787

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2788
					minus_1_or_zero(busiest->nr_running),
I
Ingo Molnar 已提交
2789
					imbalance, sd, CPU_NEWLY_IDLE, NULL);
2790
		spin_unlock(&busiest->lock);
2791 2792 2793 2794 2795 2796

		if (!nr_moved) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2797 2798
	}

N
Nick Piggin 已提交
2799
	if (!nr_moved) {
I
Ingo Molnar 已提交
2800
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2801 2802
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2803 2804
			return -1;
	} else
2805
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2806 2807

	return nr_moved;
2808 2809

out_balanced:
I
Ingo Molnar 已提交
2810
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2811
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2812
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2813
		return -1;
2814
	sd->nr_balance_failed = 0;
2815

2816
	return 0;
L
Linus Torvalds 已提交
2817 2818 2819 2820 2821 2822
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2823
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2824 2825
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2826 2827
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2828 2829

	for_each_domain(this_cpu, sd) {
2830 2831 2832 2833 2834 2835
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2836
			/* If we've pulled tasks over stop searching: */
2837
			pulled_task = load_balance_newidle(this_cpu,
2838 2839 2840 2841 2842 2843 2844
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2845
	}
I
Ingo Molnar 已提交
2846
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2847 2848 2849 2850 2851
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2852
	}
L
Linus Torvalds 已提交
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2863
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2864
{
2865
	int target_cpu = busiest_rq->push_cpu;
2866 2867
	struct sched_domain *sd;
	struct rq *target_rq;
2868

2869
	/* Is there any task to move? */
2870 2871 2872 2873
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2874 2875

	/*
2876 2877 2878
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2879
	 */
2880
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2881

2882 2883 2884 2885
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2886
	for_each_domain(target_cpu, sd) {
2887
		if ((sd->flags & SD_LOAD_BALANCE) &&
2888
		    cpu_isset(busiest_cpu, sd->span))
2889
				break;
2890
	}
2891

2892 2893
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2894

2895
		if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
I
Ingo Molnar 已提交
2896
			       RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
2897 2898 2899 2900 2901
			       NULL))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2902
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2903 2904
}

2905 2906 2907 2908 2909 2910 2911 2912 2913
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2914
/*
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2925
 *
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
2982 2983 2984 2985 2986
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
2987
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2988
{
2989 2990
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
2991 2992
	unsigned long interval;
	struct sched_domain *sd;
2993
	/* Earliest time when we have to do rebalance again */
2994
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
2995

2996
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
2997 2998 2999 3000
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3001
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3002 3003 3004 3005 3006 3007
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3008 3009 3010
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3011

3012 3013 3014 3015 3016
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3017
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3018
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3019 3020
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3021 3022 3023
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3024
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3025
			}
3026
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3027
		}
3028 3029 3030
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3031 3032
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
3033 3034 3035 3036 3037 3038 3039 3040

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3041
	}
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3052 3053 3054 3055
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3056

I
Ingo Molnar 已提交
3057
	rebalance_domains(this_cpu, idle);
3058 3059 3060 3061 3062 3063 3064

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3065 3066
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3067 3068 3069 3070
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3071
		cpu_clear(this_cpu, cpus);
3072 3073 3074 3075 3076 3077 3078 3079 3080
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

I
Ingo Molnar 已提交
3081
			rebalance_domains(balance_cpu, SCHED_IDLE);
3082 3083

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3084 3085
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3098
static inline void trigger_load_balance(struct rq *rq, int cpu)
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3150
}
I
Ingo Molnar 已提交
3151 3152 3153

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3154 3155 3156
/*
 * on UP we do not need to balance between CPUs:
 */
3157
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3158 3159
{
}
I
Ingo Molnar 已提交
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
		      int this_best_prio, int best_prio, int best_prio_seen,
		      struct rq_iterator *iterator)
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3174 3175 3176 3177 3178 3179 3180
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3181 3182
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3183
 */
3184
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3185 3186
{
	unsigned long flags;
3187 3188
	u64 ns, delta_exec;
	struct rq *rq;
3189

3190 3191 3192 3193 3194 3195 3196 3197
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
		delta_exec = rq_clock(rq) - p->se.exec_start;
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3198

L
Linus Torvalds 已提交
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3233
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3263
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3286 3287 3288 3289 3290 3291 3292
	struct task_struct *curr = rq->curr;

	spin_lock(&rq->lock);
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	update_cpu_load(rq);
	spin_unlock(&rq->lock);
3293

3294
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3295 3296
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3297
#endif
L
Linus Torvalds 已提交
3298 3299 3300 3301 3302 3303 3304 3305 3306
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3307 3308
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3309 3310 3311 3312
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3313 3314
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3315 3316 3317 3318 3319 3320 3321 3322
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3323 3324
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3325 3326 3327
	/*
	 * Is the spinlock portion underflowing?
	 */
3328 3329 3330 3331
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3332 3333 3334 3335 3336 3337 3338
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3339
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3340
 */
I
Ingo Molnar 已提交
3341
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3342
{
I
Ingo Molnar 已提交
3343 3344 3345 3346 3347 3348 3349
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3350

I
Ingo Molnar 已提交
3351 3352 3353 3354 3355
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3356 3357 3358 3359 3360
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3361 3362 3363
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3364 3365
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3377 3378

	/*
I
Ingo Molnar 已提交
3379 3380
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3381
	 */
I
Ingo Molnar 已提交
3382 3383 3384 3385
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
		p = fair_sched_class.pick_next_task(rq, now);
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3386 3387
	}

I
Ingo Molnar 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
	class = sched_class_highest;
	for ( ; ; ) {
		p = class->pick_next_task(rq, now);
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3400

I
Ingo Molnar 已提交
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	u64 now;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3424 3425

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3426
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3427 3428 3429

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3430
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3431
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3432 3433
		} else {
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3434
		}
I
Ingo Molnar 已提交
3435
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3436 3437
	}

I
Ingo Molnar 已提交
3438
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3439 3440
		idle_balance(cpu, rq);

I
Ingo Molnar 已提交
3441 3442 3443
	now = __rq_clock(rq);
	prev->sched_class->put_prev_task(rq, prev, now);
	next = pick_next_task(rq, prev, now);
L
Linus Torvalds 已提交
3444 3445

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3446

L
Linus Torvalds 已提交
3447 3448 3449 3450 3451
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3452
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3453 3454 3455
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3456 3457 3458
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3459
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3460
	}
L
Linus Torvalds 已提交
3461 3462 3463 3464 3465 3466 3467 3468
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3469
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3484
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3512
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3524
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3554 3555
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3556
{
3557
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3576 3577 3578
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3579
		if (curr->func(curr, mode, sync, key) &&
3580
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3581 3582 3583 3584 3585 3586 3587 3588 3589
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3590
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3591 3592
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3593
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3612
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3624 3625
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3669

L
Linus Torvalds 已提交
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);


#define	SLEEP_ON_VAR					\
	unsigned long flags;				\
	wait_queue_t wait;				\
	init_waitqueue_entry(&wait, current);

#define SLEEP_ON_HEAD					\
	spin_lock_irqsave(&q->lock,flags);		\
	__add_wait_queue(q, &wait);			\
	spin_unlock(&q->lock);

#define	SLEEP_ON_TAIL					\
	spin_lock_irq(&q->lock);			\
	__remove_wait_queue(q, &wait);			\
	spin_unlock_irqrestore(&q->lock, flags);

void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3816 3817
long fastcall __sched
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

void fastcall __sched sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(sleep_on);

long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}

EXPORT_SYMBOL(sleep_on_timeout);

3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3870
void rt_mutex_setprio(struct task_struct *p, int prio)
3871 3872
{
	unsigned long flags;
I
Ingo Molnar 已提交
3873
	int oldprio, on_rq;
3874
	struct rq *rq;
I
Ingo Molnar 已提交
3875
	u64 now;
3876 3877 3878 3879

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3880
	now = rq_clock(rq);
3881

3882
	oldprio = p->prio;
I
Ingo Molnar 已提交
3883 3884 3885 3886 3887 3888 3889 3890 3891
	on_rq = p->se.on_rq;
	if (on_rq)
		dequeue_task(rq, p, 0, now);

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3892 3893
	p->prio = prio;

I
Ingo Molnar 已提交
3894 3895
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
3896 3897
		/*
		 * Reschedule if we are currently running on this runqueue and
3898 3899
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3900
		 */
3901 3902 3903
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3904 3905 3906
		} else {
			check_preempt_curr(rq, p);
		}
3907 3908 3909 3910 3911 3912
	}
	task_rq_unlock(rq, &flags);
}

#endif

3913
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3914
{
I
Ingo Molnar 已提交
3915
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3916
	unsigned long flags;
3917
	struct rq *rq;
I
Ingo Molnar 已提交
3918
	u64 now;
L
Linus Torvalds 已提交
3919 3920 3921 3922 3923 3924 3925 3926

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3927
	now = rq_clock(rq);
L
Linus Torvalds 已提交
3928 3929 3930 3931
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3932
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3933
	 */
3934
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3935 3936 3937
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3938 3939 3940 3941
	on_rq = p->se.on_rq;
	if (on_rq) {
		dequeue_task(rq, p, 0, now);
		dec_load(rq, p, now);
3942
	}
L
Linus Torvalds 已提交
3943 3944

	p->static_prio = NICE_TO_PRIO(nice);
3945
	set_load_weight(p);
3946 3947 3948
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3949

I
Ingo Molnar 已提交
3950 3951 3952
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
		inc_load(rq, p, now);
L
Linus Torvalds 已提交
3953
		/*
3954 3955
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3956
		 */
3957
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3958 3959 3960 3961 3962 3963 3964
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3965 3966 3967 3968 3969
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3970
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3971
{
3972 3973
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3974

M
Matt Mackall 已提交
3975 3976 3977 3978
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
3990
	long nice, retval;
L
Linus Torvalds 已提交
3991 3992 3993 3994 3995 3996

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3997 3998
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3999 4000 4001 4002 4003 4004 4005 4006 4007
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4008 4009 4010
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4029
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4030 4031 4032 4033 4034 4035 4036 4037
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4038
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4057
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4058 4059 4060 4061 4062 4063 4064 4065
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4066
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4067 4068 4069 4070 4071
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4072 4073
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4074
{
I
Ingo Molnar 已提交
4075
	BUG_ON(p->se.on_rq);
4076

L
Linus Torvalds 已提交
4077
	p->policy = policy;
I
Ingo Molnar 已提交
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4090
	p->rt_priority = prio;
4091 4092 4093
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4094
	set_load_weight(p);
L
Linus Torvalds 已提交
4095 4096 4097
}

/**
4098
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4099 4100 4101
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4102
 *
4103
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4104
 */
I
Ingo Molnar 已提交
4105 4106
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4107
{
I
Ingo Molnar 已提交
4108
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4109
	unsigned long flags;
4110
	struct rq *rq;
L
Linus Torvalds 已提交
4111

4112 4113
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4114 4115 4116 4117 4118
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4119 4120
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4121
		return -EINVAL;
L
Linus Torvalds 已提交
4122 4123
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4124 4125
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4126 4127
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4128
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4129
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4130
		return -EINVAL;
4131
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4132 4133
		return -EINVAL;

4134 4135 4136 4137
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4138
		if (rt_policy(policy)) {
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4155 4156 4157 4158 4159 4160
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4161

4162 4163 4164 4165 4166
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4167 4168 4169 4170

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4171 4172 4173 4174 4175
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4176 4177 4178 4179
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4180
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4181 4182 4183
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4184 4185
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4186 4187
		goto recheck;
	}
I
Ingo Molnar 已提交
4188 4189 4190
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
L
Linus Torvalds 已提交
4191
	oldprio = p->prio;
I
Ingo Molnar 已提交
4192 4193 4194
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4195 4196
		/*
		 * Reschedule if we are currently running on this runqueue and
4197 4198
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4199
		 */
4200 4201 4202
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4203 4204 4205
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4206
	}
4207 4208 4209
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4210 4211
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4212 4213 4214 4215
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4216 4217
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4218 4219 4220
{
	struct sched_param lparam;
	struct task_struct *p;
4221
	int retval;
L
Linus Torvalds 已提交
4222 4223 4224 4225 4226

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4227 4228 4229

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4230
	p = find_process_by_pid(pid);
4231 4232 4233
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4234

L
Linus Torvalds 已提交
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4247 4248 4249 4250
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4270
	struct task_struct *p;
L
Linus Torvalds 已提交
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4298
	struct task_struct *p;
L
Linus Torvalds 已提交
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4333 4334
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4335

4336
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4337 4338 4339 4340 4341
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4342
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4359 4360 4361 4362
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4363 4364 4365 4366 4367 4368
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4369
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4410
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4411 4412 4413
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4414
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4415 4416
EXPORT_SYMBOL(cpu_online_map);

4417
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4418
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4419 4420 4421 4422
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4423
	struct task_struct *p;
L
Linus Torvalds 已提交
4424 4425
	int retval;

4426
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4427 4428 4429 4430 4431 4432 4433
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4434 4435 4436 4437
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4438
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4439 4440 4441

out_unlock:
	read_unlock(&tasklist_lock);
4442
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
	if (retval)
		return retval;

	return 0;
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4477 4478
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4479 4480 4481
 */
asmlinkage long sys_sched_yield(void)
{
4482
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4483 4484

	schedstat_inc(rq, yld_cnt);
I
Ingo Molnar 已提交
4485
	if (unlikely(rq->nr_running == 1))
L
Linus Torvalds 已提交
4486
		schedstat_inc(rq, yld_act_empty);
I
Ingo Molnar 已提交
4487 4488
	else
		current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4489 4490 4491 4492 4493 4494

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4495
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4496 4497 4498 4499 4500 4501 4502 4503
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4504
static void __cond_resched(void)
L
Linus Torvalds 已提交
4505
{
4506 4507 4508
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4509 4510 4511 4512 4513
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4514 4515 4516 4517 4518 4519 4520 4521 4522
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4523 4524
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4540
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4541
{
J
Jan Kara 已提交
4542 4543
	int ret = 0;

L
Linus Torvalds 已提交
4544 4545 4546
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4547
		ret = 1;
L
Linus Torvalds 已提交
4548 4549
		spin_lock(lock);
	}
4550
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4551
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4552 4553 4554
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4555
		ret = 1;
L
Linus Torvalds 已提交
4556 4557
		spin_lock(lock);
	}
J
Jan Kara 已提交
4558
	return ret;
L
Linus Torvalds 已提交
4559 4560 4561 4562 4563 4564 4565
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4566
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4567
		local_bh_enable();
L
Linus Torvalds 已提交
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4579
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4598
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4599

4600
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4601 4602 4603
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4604
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4605 4606 4607 4608 4609
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4610
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4611 4612
	long ret;

4613
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4614 4615 4616
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4617
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4638
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4639
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4663
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4664
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4681
	struct task_struct *p;
L
Linus Torvalds 已提交
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4698
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4699
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4700 4701 4702 4703 4704 4705 4706 4707 4708
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4709
static const char stat_nam[] = "RSDTtZX";
4710 4711

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4712 4713
{
	unsigned long free = 0;
4714
	unsigned state;
L
Linus Torvalds 已提交
4715 4716

	state = p->state ? __ffs(p->state) + 1 : 0;
4717 4718
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
#if (BITS_PER_LONG == 32)
	if (state == TASK_RUNNING)
		printk(" running ");
	else
		printk(" %08lX ", thread_saved_pc(p));
#else
	if (state == TASK_RUNNING)
		printk("  running task   ");
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4732
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4733 4734
		while (!*n)
			n++;
4735
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4736 4737
	}
#endif
4738
	printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4739 4740 4741 4742 4743 4744 4745 4746 4747
	if (!p->mm)
		printk(" (L-TLB)\n");
	else
		printk(" (NOTLB)\n");

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4748
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4749
{
4750
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4751 4752 4753

#if (BITS_PER_LONG == 32)
	printk("\n"
4754 4755
	       "                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4756 4757
#else
	printk("\n"
4758 4759
	       "                                 free                        sibling\n");
	printk("  task                 PC        stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4760 4761 4762 4763 4764 4765 4766 4767
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4768
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4769
			show_task(p);
L
Linus Torvalds 已提交
4770 4771
	} while_each_thread(g, p);

4772 4773
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4774 4775 4776
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4777
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4778 4779 4780 4781 4782
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4783 4784
}

I
Ingo Molnar 已提交
4785 4786
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4787
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4788 4789
}

4790 4791 4792 4793 4794 4795 4796 4797
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4798
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4799
{
4800
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4801 4802
	unsigned long flags;

I
Ingo Molnar 已提交
4803 4804 4805
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4806
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4807
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4808
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4809 4810 4811

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4812 4813 4814
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4815 4816 4817 4818
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4819
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4820
#else
A
Al Viro 已提交
4821
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4822
#endif
I
Ingo Molnar 已提交
4823 4824 4825 4826
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long gran_limit = 10000000;

	sysctl_sched_granularity *= factor;
	if (sysctl_sched_granularity > gran_limit)
		sysctl_sched_granularity = gran_limit;

	sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
	sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
}

L
Linus Torvalds 已提交
4860 4861 4862 4863
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4864
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4886
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4887
{
4888
	struct migration_req req;
L
Linus Torvalds 已提交
4889
	unsigned long flags;
4890
	struct rq *rq;
4891
	int ret = 0;
L
Linus Torvalds 已提交
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4914

L
Linus Torvalds 已提交
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4927 4928
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4929
 */
4930
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4931
{
4932
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4933
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4934 4935

	if (unlikely(cpu_is_offline(dest_cpu)))
4936
		return ret;
L
Linus Torvalds 已提交
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4949 4950 4951
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq_src, p, 0);
L
Linus Torvalds 已提交
4952
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4953 4954 4955
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4956
	}
4957
	ret = 1;
L
Linus Torvalds 已提交
4958 4959
out:
	double_rq_unlock(rq_src, rq_dest);
4960
	return ret;
L
Linus Torvalds 已提交
4961 4962 4963 4964 4965 4966 4967
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4968
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4969 4970
{
	int cpu = (long)data;
4971
	struct rq *rq;
L
Linus Torvalds 已提交
4972 4973 4974 4975 4976 4977

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
4978
		struct migration_req *req;
L
Linus Torvalds 已提交
4979 4980
		struct list_head *head;

4981
		try_to_freeze();
L
Linus Torvalds 已提交
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5003
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5004 5005
		list_del_init(head->next);

N
Nick Piggin 已提交
5006 5007 5008
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5027 5028 5029 5030
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5031
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5032
{
5033
	unsigned long flags;
L
Linus Torvalds 已提交
5034
	cpumask_t mask;
5035 5036
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5037

5038
restart:
L
Linus Torvalds 已提交
5039 5040
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5041
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5042 5043 5044 5045
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5046
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5047 5048 5049

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5050 5051 5052
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5053
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5054 5055 5056 5057 5058 5059

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5060
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5061 5062
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5063
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5064
	}
5065
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5066
		goto restart;
L
Linus Torvalds 已提交
5067 5068 5069 5070 5071 5072 5073 5074 5075
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5076
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5077
{
5078
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5092
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5093 5094 5095

	write_lock_irq(&tasklist_lock);

5096 5097
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5098 5099
			continue;

5100 5101 5102
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5103 5104 5105 5106

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5107 5108
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5109
 * It does so by boosting its priority to highest possible and adding it to
5110
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5111 5112 5113
 */
void sched_idle_next(void)
{
5114
	int this_cpu = smp_processor_id();
5115
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5116 5117 5118 5119
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5120
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5121

5122 5123 5124
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5125 5126 5127
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5128
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5129 5130

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5131
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5132 5133 5134 5135

	spin_unlock_irqrestore(&rq->lock, flags);
}

5136 5137
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5151
/* called under rq->lock with disabled interrupts */
5152
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5153
{
5154
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5155 5156

	/* Must be exiting, otherwise would be on tasklist. */
5157
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5158 5159

	/* Cannot have done final schedule yet: would have vanished. */
5160
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5161

5162
	get_task_struct(p);
L
Linus Torvalds 已提交
5163 5164 5165 5166 5167

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5168
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5169
	 */
5170
	spin_unlock(&rq->lock);
5171
	move_task_off_dead_cpu(dead_cpu, p);
5172
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5173

5174
	put_task_struct(p);
L
Linus Torvalds 已提交
5175 5176 5177 5178 5179
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5180
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5181
	struct task_struct *next;
5182

I
Ingo Molnar 已提交
5183 5184 5185 5186 5187 5188 5189
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
		next = pick_next_task(rq, rq->curr, rq_clock(rq));
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
L
Linus Torvalds 已提交
5190 5191 5192 5193 5194 5195 5196 5197
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5198 5199
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5200 5201
{
	struct task_struct *p;
5202
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5203
	unsigned long flags;
5204
	struct rq *rq;
L
Linus Torvalds 已提交
5205 5206

	switch (action) {
5207 5208 5209 5210
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5211
	case CPU_UP_PREPARE:
5212
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5213
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5214 5215 5216 5217 5218 5219
		if (IS_ERR(p))
			return NOTIFY_BAD;
		p->flags |= PF_NOFREEZE;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5220
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5221 5222 5223
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5224

L
Linus Torvalds 已提交
5225
	case CPU_ONLINE:
5226
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5227 5228 5229
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5230

L
Linus Torvalds 已提交
5231 5232
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5233
	case CPU_UP_CANCELED_FROZEN:
5234 5235
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5236
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5237 5238
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5239 5240 5241
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5242

L
Linus Torvalds 已提交
5243
	case CPU_DEAD:
5244
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5245 5246 5247 5248 5249 5250
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5251
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5252
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5253 5254
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5255 5256 5257 5258 5259 5260
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5261
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5262 5263 5264
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5265 5266
			struct migration_req *req;

L
Linus Torvalds 已提交
5267
			req = list_entry(rq->migration_queue.next,
5268
					 struct migration_req, list);
L
Linus Torvalds 已提交
5269 5270 5271 5272 5273 5274
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5275 5276 5277
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5278 5279 5280 5281 5282 5283 5284
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5285
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5286 5287 5288 5289 5290 5291 5292
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5293
	int err;
5294 5295

	/* Start one for the boot CPU: */
5296 5297
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5298 5299
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5300

L
Linus Torvalds 已提交
5301 5302 5303 5304 5305
	return 0;
}
#endif

#ifdef CONFIG_SMP
5306 5307 5308 5309 5310

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5311
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5312 5313 5314 5315 5316
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5317 5318 5319 5320 5321
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5341 5342
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5343 5344 5345 5346 5347 5348
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5349 5350
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5351
		if (!cpu_isset(cpu, group->cpumask))
5352 5353
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5366
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5367
				printk("\n");
5368 5369
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5392 5393
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5394 5395 5396

		level++;
		sd = sd->parent;
5397 5398
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5399

5400 5401 5402
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5403 5404 5405 5406

	} while (sd);
}
#else
5407
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5408 5409
#endif

5410
static int sd_degenerate(struct sched_domain *sd)
5411 5412 5413 5414 5415 5416 5417 5418
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5419 5420 5421
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5435 5436
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5455 5456 5457
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5458 5459 5460 5461 5462 5463 5464
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5465 5466 5467 5468
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5469
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5470
{
5471
	struct rq *rq = cpu_rq(cpu);
5472 5473 5474 5475 5476 5477 5478
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5479
		if (sd_parent_degenerate(tmp, parent)) {
5480
			tmp->parent = parent->parent;
5481 5482 5483
			if (parent->parent)
				parent->parent->child = tmp;
		}
5484 5485
	}

5486
	if (sd && sd_degenerate(sd)) {
5487
		sd = sd->parent;
5488 5489 5490
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5491 5492 5493

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5494
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5495 5496 5497
}

/* cpus with isolated domains */
5498
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5516 5517 5518 5519
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5520 5521 5522 5523 5524
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5525
static void
5526 5527 5528
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5529 5530 5531 5532 5533 5534
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5535 5536
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5537 5538 5539 5540 5541 5542
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5543
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5544 5545

		for_each_cpu_mask(j, span) {
5546
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5561
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5562

5563
#ifdef CONFIG_NUMA
5564

5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5617 5618
	cpumask_t span, nodemask;
	int i;
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5629

5630 5631 5632 5633 5634 5635 5636 5637
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5638
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5639

5640
/*
5641
 * SMT sched-domains:
5642
 */
L
Linus Torvalds 已提交
5643 5644
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5645
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5646

5647 5648
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5649
{
5650 5651
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5652 5653 5654 5655
	return cpu;
}
#endif

5656 5657 5658
/*
 * multi-core sched-domains:
 */
5659 5660
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5661
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5662 5663 5664
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5665 5666
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5667
{
5668
	int group;
5669 5670
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5671 5672 5673 5674
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5675 5676
}
#elif defined(CONFIG_SCHED_MC)
5677 5678
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5679
{
5680 5681
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5682 5683 5684 5685
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5686
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5687
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5688

5689 5690
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5691
{
5692
	int group;
5693
#ifdef CONFIG_SCHED_MC
5694
	cpumask_t mask = cpu_coregroup_map(cpu);
5695
	cpus_and(mask, mask, *cpu_map);
5696
	group = first_cpu(mask);
5697
#elif defined(CONFIG_SCHED_SMT)
5698 5699
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5700
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5701
#else
5702
	group = cpu;
L
Linus Torvalds 已提交
5703
#endif
5704 5705 5706
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5707 5708 5709 5710
}

#ifdef CONFIG_NUMA
/*
5711 5712 5713
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5714
 */
5715
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5716
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5717

5718
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5719
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5720

5721 5722
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5723
{
5724 5725 5726 5727 5728 5729 5730 5731 5732
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5733
}
5734

5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5755
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5756 5757 5758 5759 5760
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5761 5762
#endif

5763
#ifdef CONFIG_NUMA
5764 5765 5766
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5767
	int cpu, i;
5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5798 5799 5800 5801 5802
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5803

5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5830 5831
	sd->groups->__cpu_power = 0;

5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5842
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5843 5844 5845 5846 5847 5848 5849 5850
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5851
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5852 5853 5854 5855
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5856
/*
5857 5858
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
5859
 */
5860
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
5861 5862
{
	int i;
5863 5864
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
5865
	int sd_allnodes = 0;
5866 5867 5868 5869

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
5870
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5871
					   GFP_KERNEL);
5872 5873
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
5874
		return -ENOMEM;
5875 5876 5877
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
5878 5879

	/*
5880
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
5881
	 */
5882
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5883 5884 5885
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

5886
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5887 5888

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
5889 5890
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5891 5892 5893
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
5894
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
5895
			p = sd;
5896
			sd_allnodes = 1;
5897 5898 5899
		} else
			p = NULL;

L
Linus Torvalds 已提交
5900 5901
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
5902 5903
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
5904 5905
		if (p)
			p->child = sd;
5906
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
5907 5908 5909 5910 5911 5912 5913
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
5914 5915
		if (p)
			p->child = sd;
5916
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
5917

5918 5919 5920 5921 5922 5923 5924
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
5925
		p->child = sd;
5926
		cpu_to_core_group(i, cpu_map, &sd->groups);
5927 5928
#endif

L
Linus Torvalds 已提交
5929 5930 5931 5932 5933
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
5934
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
5935
		sd->parent = p;
5936
		p->child = sd;
5937
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
5938 5939 5940 5941 5942
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
5943
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5944
		cpumask_t this_sibling_map = cpu_sibling_map[i];
5945
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
5946 5947 5948
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
5949 5950
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
5951 5952 5953
	}
#endif

5954 5955 5956 5957 5958 5959 5960
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
5961 5962
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
5963 5964 5965
	}
#endif

L
Linus Torvalds 已提交
5966 5967 5968 5969
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

5970
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5971 5972 5973
		if (cpus_empty(nodemask))
			continue;

5974
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
5975 5976 5977 5978
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
5979
	if (sd_allnodes)
I
Ingo Molnar 已提交
5980 5981
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
5982 5983 5984 5985 5986 5987 5988 5989 5990 5991

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
5992 5993
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
5994
			continue;
5995
		}
5996 5997 5998 5999

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6000
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6001 6002 6003 6004 6005
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6006 6007 6008 6009 6010 6011
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6012
		sg->__cpu_power = 0;
6013
		sg->cpumask = nodemask;
6014
		sg->next = sg;
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6033 6034
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6035 6036 6037
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6038
				goto error;
6039
			}
6040
			sg->__cpu_power = 0;
6041
			sg->cpumask = tmp;
6042
			sg->next = prev->next;
6043 6044 6045 6046 6047
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6048 6049 6050
#endif

	/* Calculate CPU power for physical packages and nodes */
6051
#ifdef CONFIG_SCHED_SMT
6052
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6053 6054
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6055
		init_sched_groups_power(i, sd);
6056
	}
L
Linus Torvalds 已提交
6057
#endif
6058
#ifdef CONFIG_SCHED_MC
6059
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6060 6061
		struct sched_domain *sd = &per_cpu(core_domains, i);

6062
		init_sched_groups_power(i, sd);
6063 6064
	}
#endif
6065

6066
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6067 6068
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6069
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6070 6071
	}

6072
#ifdef CONFIG_NUMA
6073 6074
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6075

6076 6077
	if (sd_allnodes) {
		struct sched_group *sg;
6078

6079
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6080 6081
		init_numa_sched_groups_power(sg);
	}
6082 6083
#endif

L
Linus Torvalds 已提交
6084
	/* Attach the domains */
6085
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6086 6087 6088
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6089 6090
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6091 6092 6093 6094 6095
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6096 6097 6098

	return 0;

6099
#ifdef CONFIG_NUMA
6100 6101 6102
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6103
#endif
L
Linus Torvalds 已提交
6104
}
6105 6106 6107
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6108
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6109 6110
{
	cpumask_t cpu_default_map;
6111
	int err;
L
Linus Torvalds 已提交
6112

6113 6114 6115 6116 6117 6118 6119
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6120 6121 6122
	err = build_sched_domains(&cpu_default_map);

	return err;
6123 6124 6125
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6126
{
6127
	free_sched_groups(cpu_map);
6128
}
L
Linus Torvalds 已提交
6129

6130 6131 6132 6133
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6134
static void detach_destroy_domains(const cpumask_t *cpu_map)
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6152
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6153 6154
{
	cpumask_t change_map;
6155
	int err = 0;
6156 6157 6158 6159 6160 6161 6162 6163

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6164 6165 6166 6167 6168
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6169 6170
}

6171 6172 6173 6174 6175
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6176
	mutex_lock(&sched_hotcpu_mutex);
6177 6178
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6179
	mutex_unlock(&sched_hotcpu_mutex);
6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6204

6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6224 6225
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6238 6239
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6240 6241 6242 6243 6244 6245 6246
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6247 6248 6249
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6250
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6251 6252 6253 6254 6255 6256 6257
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6258
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6259
	case CPU_DOWN_PREPARE:
6260
	case CPU_DOWN_PREPARE_FROZEN:
6261
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6262 6263 6264
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6265
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6266
	case CPU_DOWN_FAILED:
6267
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6268
	case CPU_ONLINE:
6269
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6270
	case CPU_DEAD:
6271
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6272 6273 6274 6275 6276 6277 6278 6279 6280
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6281
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6282 6283 6284 6285 6286 6287

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6288 6289
	cpumask_t non_isolated_cpus;

6290
	mutex_lock(&sched_hotcpu_mutex);
6291
	arch_init_sched_domains(&cpu_online_map);
6292
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6293 6294
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6295
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6296 6297
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6298 6299 6300 6301

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6302
	sched_init_granularity();
L
Linus Torvalds 已提交
6303 6304 6305 6306
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6307
	sched_init_granularity();
L
Linus Torvalds 已提交
6308 6309 6310 6311 6312 6313 6314
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6315

L
Linus Torvalds 已提交
6316 6317 6318 6319 6320
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6321 6322 6323 6324 6325 6326 6327 6328 6329
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6330 6331
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6332
	u64 now = sched_clock();
6333
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6334 6335 6336 6337 6338 6339 6340 6341
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6342

6343
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6344
		struct rt_prio_array *array;
6345
		struct rq *rq;
L
Linus Torvalds 已提交
6346 6347 6348

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6349
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6350
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6351 6352 6353 6354 6355 6356 6357 6358
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
		rq->ls.load_update_last = now;
		rq->ls.load_update_start = now;
L
Linus Torvalds 已提交
6359

I
Ingo Molnar 已提交
6360 6361
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6362
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6363
		rq->sd = NULL;
L
Linus Torvalds 已提交
6364
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6365
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6366
		rq->push_cpu = 0;
6367
		rq->cpu = i;
L
Linus Torvalds 已提交
6368 6369 6370 6371 6372
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6373 6374 6375 6376
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6377
		}
6378
		highest_cpu = i;
I
Ingo Molnar 已提交
6379 6380
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6381 6382
	}

6383
	set_load_weight(&init_task);
6384

6385
#ifdef CONFIG_SMP
6386
	nr_cpu_ids = highest_cpu + 1;
6387 6388 6389
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6390 6391 6392 6393
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6407 6408 6409 6410
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6411 6412 6413 6414 6415
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6416
#ifdef in_atomic
L
Linus Torvalds 已提交
6417 6418 6419 6420 6421 6422 6423
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6424
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6425 6426 6427
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6428
		debug_show_held_locks(current);
6429 6430
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6441
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6442
	unsigned long flags;
6443
	struct rq *rq;
I
Ingo Molnar 已提交
6444
	int on_rq;
L
Linus Torvalds 已提交
6445 6446

	read_lock_irq(&tasklist_lock);
6447
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
		p->se.wait_start_fair		= 0;
		p->se.wait_start		= 0;
		p->se.exec_start		= 0;
		p->se.sleep_start		= 0;
		p->se.sleep_start_fair		= 0;
		p->se.block_start		= 0;
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6466
			continue;
I
Ingo Molnar 已提交
6467
		}
L
Linus Torvalds 已提交
6468

6469 6470
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6471 6472 6473 6474 6475 6476 6477
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6478

I
Ingo Molnar 已提交
6479 6480 6481 6482 6483 6484
		on_rq = p->se.on_rq;
		if (on_rq)
			deactivate_task(task_rq(p), p, 0);
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
			activate_task(task_rq(p), p, 0);
L
Linus Torvalds 已提交
6485 6486
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6487 6488 6489
#ifdef CONFIG_SMP
 out_unlock:
#endif
6490 6491
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6492 6493
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6494 6495 6496 6497
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6516
struct task_struct *curr_task(int cpu)
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6536
void set_curr_task(int cpu, struct task_struct *p)
6537 6538 6539 6540 6541
{
	cpu_curr(cpu) = p;
}

#endif