sched.c 163.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
30
#include <linux/capability.h>
L
Linus Torvalds 已提交
31 32
#include <linux/completion.h>
#include <linux/kernel_stat.h>
33
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
37
#include <linux/freezer.h>
38
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/times.h>
52
#include <linux/tsacct_kern.h>
53
#include <linux/kprobes.h>
54
#include <linux/delayacct.h>
55
#include <linux/reciprocal_div.h>
L
Linus Torvalds 已提交
56

57
#include <asm/tlb.h>
L
Linus Torvalds 已提交
58 59
#include <asm/unistd.h>

60 61 62 63 64 65 66 67 68 69
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
94 95 96
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
#define ON_RUNQUEUE_WEIGHT	 30
#define CHILD_PENALTY		 95
#define PARENT_PENALTY		100
#define EXIT_WEIGHT		  3
#define PRIO_BONUS_RATIO	 25
#define MAX_BONUS		(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
#define INTERACTIVE_DELTA	  2
#define MAX_SLEEP_AVG		(DEF_TIMESLICE * MAX_BONUS)
#define STARVATION_LIMIT	(MAX_SLEEP_AVG)
#define NS_MAX_SLEEP_AVG	(JIFFIES_TO_NS(MAX_SLEEP_AVG))

/*
 * If a task is 'interactive' then we reinsert it in the active
 * array after it has expired its current timeslice. (it will not
 * continue to run immediately, it will still roundrobin with
 * other interactive tasks.)
 *
 * This part scales the interactivity limit depending on niceness.
 *
 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
 * Here are a few examples of different nice levels:
 *
 *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
 *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
 *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
 *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
 *
 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
 *  priority range a task can explore, a value of '1' means the
 *  task is rated interactive.)
 *
 * Ie. nice +19 tasks can never get 'interactive' enough to be
 * reinserted into the active array. And only heavily CPU-hog nice -20
 * tasks will be expired. Default nice 0 tasks are somewhere between,
 * it takes some effort for them to get interactive, but it's not
 * too hard.
 */

#define CURRENT_BONUS(p) \
	(NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
		MAX_SLEEP_AVG)

#define GRANULARITY	(10 * HZ / 1000 ? : 1)

#ifdef CONFIG_SMP
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
			num_online_cpus())
#else
#define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \
		(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
#endif

#define SCALE(v1,v1_max,v2_max) \
	(v1) * (v2_max) / (v1_max)

#define DELTA(p) \
164 165
	(SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
		INTERACTIVE_DELTA)
L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174

#define TASK_INTERACTIVE(p) \
	((p)->prio <= (p)->static_prio - DELTA(p))

#define INTERACTIVE_SLEEP(p) \
	(JIFFIES_TO_NS(MAX_SLEEP_AVG * \
		(MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))

#define TASK_PREEMPTS_CURR(p, rq) \
175
	((p)->prio < (rq)->curr->prio)
L
Linus Torvalds 已提交
176 177

#define SCALE_PRIO(x, prio) \
178
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
L
Linus Torvalds 已提交
179

180
static unsigned int static_prio_timeslice(int static_prio)
L
Linus Torvalds 已提交
181
{
182 183
	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
L
Linus Torvalds 已提交
184
	else
185
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
L
Linus Torvalds 已提交
186
}
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

209 210 211 212 213 214 215 216 217
/*
 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
 * to time slice values: [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */

218
static inline unsigned int task_timeslice(struct task_struct *p)
219 220 221 222
{
	return static_prio_timeslice(p->static_prio);
}

L
Linus Torvalds 已提交
223
/*
I
Ingo Molnar 已提交
224
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
225
 */
I
Ingo Molnar 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
268

I
Ingo Molnar 已提交
269 270 271 272 273 274 275 276 277 278
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

/*
 * The prio-array type of the old scheduler:
 */
L
Linus Torvalds 已提交
279 280
struct prio_array {
	unsigned int nr_active;
281
	DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
L
Linus Torvalds 已提交
282 283 284 285 286 287 288 289 290 291
	struct list_head queue[MAX_PRIO];
};

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
292
struct rq {
I
Ingo Molnar 已提交
293
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
294 295 296 297 298 299

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
300
	unsigned long raw_weighted_load;
I
Ingo Molnar 已提交
301 302
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
303
	unsigned char idle_at_tick;
304 305 306
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
307 308 309 310 311 312 313
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
314
#endif
I
Ingo Molnar 已提交
315
	struct rt_rq  rt;
L
Linus Torvalds 已提交
316 317 318 319 320 321 322 323 324 325

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

	unsigned long expired_timestamp;
326
	unsigned long long most_recent_timestamp;
I
Ingo Molnar 已提交
327

328
	struct task_struct *curr, *idle;
329
	unsigned long next_balance;
L
Linus Torvalds 已提交
330
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
331

332
	struct prio_array *active, *expired, arrays[2];
L
Linus Torvalds 已提交
333
	int best_expired_prio;
I
Ingo Molnar 已提交
334 335 336 337 338 339 340 341 342

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
	unsigned int clock_unstable_events;

	struct sched_class *load_balance_class;

L
Linus Torvalds 已提交
343 344 345 346 347 348 349 350
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
351
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
352

353
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
376
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
377 378
};

379
static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
380
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
381

382 383 384 385 386 387 388 389 390
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
391 392
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
393
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
394 395 396 397
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
398 399
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
400 401 402 403 404 405 406

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

#ifndef prepare_arch_switch
407 408 409 410 411 412 413
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
414
static inline int task_running(struct rq *rq, struct task_struct *p)
415 416 417 418
{
	return rq->curr == p;
}

419
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
420 421 422
{
}

423
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
424
{
425 426 427 428
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
429 430 431 432 433 434 435
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

436 437 438 439
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
440
static inline int task_running(struct rq *rq, struct task_struct *p)
441 442 443 444 445 446 447 448
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

449
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

466
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
467 468 469 470 471 472 473 474 475 476 477 478
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
479
#endif
480 481
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
482

483 484 485 486
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
487
static inline struct rq *__task_rq_lock(struct task_struct *p)
488 489
	__acquires(rq->lock)
{
490
	struct rq *rq;
491 492 493 494 495 496 497 498 499 500 501

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
502 503 504 505 506
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
507
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
508 509
	__acquires(rq->lock)
{
510
	struct rq *rq;
L
Linus Torvalds 已提交
511 512 513 514 515 516 517 518 519 520 521 522

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

523
static inline void __task_rq_unlock(struct rq *rq)
524 525 526 527 528
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

529
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
530 531 532 533 534 535
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
536
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
537
 */
538
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
539 540
	__acquires(rq->lock)
{
541
	struct rq *rq;
L
Linus Torvalds 已提交
542 543 544 545 546 547 548 549

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

550
#include "sched_stats.h"
L
Linus Torvalds 已提交
551 552 553 554

/*
 * Adding/removing a task to/from a priority array:
 */
555
static void dequeue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
556 557 558 559 560 561 562
{
	array->nr_active--;
	list_del(&p->run_list);
	if (list_empty(array->queue + p->prio))
		__clear_bit(p->prio, array->bitmap);
}

563
static void enqueue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
564 565 566 567 568 569 570 571 572 573 574 575
{
	sched_info_queued(p);
	list_add_tail(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
	array->nr_active++;
	p->array = array;
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
576
static void requeue_task(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
577 578 579 580
{
	list_move_tail(&p->run_list, array->queue + p->prio);
}

581 582
static inline void
enqueue_task_head(struct task_struct *p, struct prio_array *array)
L
Linus Torvalds 已提交
583 584 585 586 587 588 589 590
{
	list_add(&p->run_list, array->queue + p->prio);
	__set_bit(p->prio, array->bitmap);
	array->nr_active++;
	p->array = array;
}

/*
591
 * __normal_prio - return the priority that is based on the static
L
Linus Torvalds 已提交
592 593 594 595 596 597 598 599 600 601 602 603
 * priority but is modified by bonuses/penalties.
 *
 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
 * into the -5 ... 0 ... +5 bonus/penalty range.
 *
 * We use 25% of the full 0...39 priority range so that:
 *
 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
 *
 * Both properties are important to certain workloads.
 */
604

605
static inline int __normal_prio(struct task_struct *p)
L
Linus Torvalds 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618
{
	int bonus, prio;

	bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;

	prio = p->static_prio - bonus;
	if (prio < MAX_RT_PRIO)
		prio = MAX_RT_PRIO;
	if (prio > MAX_PRIO-1)
		prio = MAX_PRIO-1;
	return prio;
}

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

/*
 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
 * If static_prio_timeslice() is ever changed to break this assumption then
 * this code will need modification
 */
#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
#define LOAD_WEIGHT(lp) \
	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
#define PRIO_TO_LOAD_WEIGHT(prio) \
	LOAD_WEIGHT(static_prio_timeslice(prio))
#define RTPRIO_TO_LOAD_WEIGHT(rp) \
	(PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))

641
static void set_load_weight(struct task_struct *p)
642
{
643
	if (has_rt_policy(p)) {
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
#ifdef CONFIG_SMP
		if (p == task_rq(p)->migration_thread)
			/*
			 * The migration thread does the actual balancing.
			 * Giving its load any weight will skew balancing
			 * adversely.
			 */
			p->load_weight = 0;
		else
#endif
			p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
	} else
		p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
}

659
static inline void
660
inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
661 662 663 664
{
	rq->raw_weighted_load += p->load_weight;
}

665
static inline void
666
dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
667 668 669 670
{
	rq->raw_weighted_load -= p->load_weight;
}

671
static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
672 673 674 675 676
{
	rq->nr_running++;
	inc_raw_weighted_load(rq, p);
}

677
static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
678 679 680 681 682
{
	rq->nr_running--;
	dec_raw_weighted_load(rq, p);
}

683 684 685 686 687 688 689
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
690
static inline int normal_prio(struct task_struct *p)
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
{
	int prio;

	if (has_rt_policy(p))
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
708
static int effective_prio(struct task_struct *p)
709 710 711 712 713 714 715 716 717 718 719 720
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
721 722 723
/*
 * __activate_task - move a task to the runqueue.
 */
724
static void __activate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
725
{
726
	struct prio_array *target = rq->active;
727

728
	if (batch_task(p))
729 730
		target = rq->expired;
	enqueue_task(p, target);
731
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
732 733 734 735 736
}

/*
 * __activate_idle_task - move idle task to the _front_ of runqueue.
 */
737
static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
738 739
{
	enqueue_task_head(p, rq->active);
740
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
741 742
}

743 744 745 746
/*
 * Recalculate p->normal_prio and p->prio after having slept,
 * updating the sleep-average too:
 */
747
static int recalc_task_prio(struct task_struct *p, unsigned long long now)
L
Linus Torvalds 已提交
748 749
{
	/* Caller must always ensure 'now >= p->timestamp' */
750
	unsigned long sleep_time = now - p->timestamp;
L
Linus Torvalds 已提交
751

752
	if (batch_task(p))
753
		sleep_time = 0;
L
Linus Torvalds 已提交
754 755 756

	if (likely(sleep_time > 0)) {
		/*
757 758 759
		 * This ceiling is set to the lowest priority that would allow
		 * a task to be reinserted into the active array on timeslice
		 * completion.
L
Linus Torvalds 已提交
760
		 */
761
		unsigned long ceiling = INTERACTIVE_SLEEP(p);
762

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
		if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
			/*
			 * Prevents user tasks from achieving best priority
			 * with one single large enough sleep.
			 */
			p->sleep_avg = ceiling;
			/*
			 * Using INTERACTIVE_SLEEP() as a ceiling places a
			 * nice(0) task 1ms sleep away from promotion, and
			 * gives it 700ms to round-robin with no chance of
			 * being demoted.  This is more than generous, so
			 * mark this sleep as non-interactive to prevent the
			 * on-runqueue bonus logic from intervening should
			 * this task not receive cpu immediately.
			 */
			p->sleep_type = SLEEP_NONINTERACTIVE;
L
Linus Torvalds 已提交
779 780 781 782 783 784
		} else {
			/*
			 * Tasks waking from uninterruptible sleep are
			 * limited in their sleep_avg rise as they
			 * are likely to be waiting on I/O
			 */
785
			if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
786
				if (p->sleep_avg >= ceiling)
L
Linus Torvalds 已提交
787 788
					sleep_time = 0;
				else if (p->sleep_avg + sleep_time >=
789 790 791
					 ceiling) {
						p->sleep_avg = ceiling;
						sleep_time = 0;
L
Linus Torvalds 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805
				}
			}

			/*
			 * This code gives a bonus to interactive tasks.
			 *
			 * The boost works by updating the 'average sleep time'
			 * value here, based on ->timestamp. The more time a
			 * task spends sleeping, the higher the average gets -
			 * and the higher the priority boost gets as well.
			 */
			p->sleep_avg += sleep_time;

		}
806 807
		if (p->sleep_avg > NS_MAX_SLEEP_AVG)
			p->sleep_avg = NS_MAX_SLEEP_AVG;
L
Linus Torvalds 已提交
808 809
	}

810
	return effective_prio(p);
L
Linus Torvalds 已提交
811 812 813 814 815 816 817 818
}

/*
 * activate_task - move a task to the runqueue and do priority recalculation
 *
 * Update all the scheduling statistics stuff. (sleep average
 * calculation, priority modifiers, etc.)
 */
819
static void activate_task(struct task_struct *p, struct rq *rq, int local)
L
Linus Torvalds 已提交
820 821 822
{
	unsigned long long now;

823 824 825
	if (rt_task(p))
		goto out;

L
Linus Torvalds 已提交
826 827 828 829
	now = sched_clock();
#ifdef CONFIG_SMP
	if (!local) {
		/* Compensate for drifting sched_clock */
830
		struct rq *this_rq = this_rq();
831 832
		now = (now - this_rq->most_recent_timestamp)
			+ rq->most_recent_timestamp;
L
Linus Torvalds 已提交
833 834 835
	}
#endif

I
Ingo Molnar 已提交
836 837 838 839 840 841 842 843 844 845 846
	/*
	 * Sleep time is in units of nanosecs, so shift by 20 to get a
	 * milliseconds-range estimation of the amount of time that the task
	 * spent sleeping:
	 */
	if (unlikely(prof_on == SLEEP_PROFILING)) {
		if (p->state == TASK_UNINTERRUPTIBLE)
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
				     (now - p->timestamp) >> 20);
	}

847
	p->prio = recalc_task_prio(p, now);
L
Linus Torvalds 已提交
848 849 850 851 852

	/*
	 * This checks to make sure it's not an uninterruptible task
	 * that is now waking up.
	 */
853
	if (p->sleep_type == SLEEP_NORMAL) {
L
Linus Torvalds 已提交
854 855 856 857 858 859 860 861
		/*
		 * Tasks which were woken up by interrupts (ie. hw events)
		 * are most likely of interactive nature. So we give them
		 * the credit of extending their sleep time to the period
		 * of time they spend on the runqueue, waiting for execution
		 * on a CPU, first time around:
		 */
		if (in_interrupt())
862
			p->sleep_type = SLEEP_INTERRUPTED;
L
Linus Torvalds 已提交
863 864 865 866 867
		else {
			/*
			 * Normal first-time wakeups get a credit too for
			 * on-runqueue time, but it will be weighted down:
			 */
868
			p->sleep_type = SLEEP_INTERACTIVE;
L
Linus Torvalds 已提交
869 870 871
		}
	}
	p->timestamp = now;
872
out:
L
Linus Torvalds 已提交
873 874 875 876 877 878
	__activate_task(p, rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
879
static void deactivate_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
880
{
881
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
882 883 884 885 886 887 888 889 890 891 892 893
	dequeue_task(p, p->array);
	p->array = NULL;
}

/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP
894 895 896 897 898

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

899
static void resched_task(struct task_struct *p)
L
Linus Torvalds 已提交
900
{
901
	int cpu;
L
Linus Torvalds 已提交
902 903 904

	assert_spin_locked(&task_rq(p)->lock);

905 906 907 908
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
L
Linus Torvalds 已提交
909

910 911 912 913
	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

914
	/* NEED_RESCHED must be visible before we test polling */
915
	smp_mb();
916
	if (!tsk_is_polling(p))
917
		smp_send_reschedule(cpu);
L
Linus Torvalds 已提交
918
}
919 920 921 922 923 924 925 926 927 928 929

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
L
Linus Torvalds 已提交
930
#else
931
static inline void resched_task(struct task_struct *p)
L
Linus Torvalds 已提交
932
{
933
	assert_spin_locked(&task_rq(p)->lock);
L
Linus Torvalds 已提交
934 935 936 937 938 939 940 941
	set_tsk_need_resched(p);
}
#endif

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
942
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
943 944 945 946
{
	return cpu_curr(task_cpu(p)) == p;
}

947 948 949 950 951 952
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->raw_weighted_load;
}

L
Linus Torvalds 已提交
953
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
954 955 956 957 958 959

void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	task_thread_info(p)->cpu = cpu;
}

960
struct migration_req {
L
Linus Torvalds 已提交
961 962
	struct list_head list;

963
	struct task_struct *task;
L
Linus Torvalds 已提交
964 965 966
	int dest_cpu;

	struct completion done;
967
};
L
Linus Torvalds 已提交
968 969 970 971 972

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
973
static int
974
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
975
{
976
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
977 978 979 980 981 982 983 984 985 986 987 988 989 990

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
	if (!p->array && !task_running(rq, p)) {
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
991

L
Linus Torvalds 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1004
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1005 1006
{
	unsigned long flags;
1007
	struct rq *rq;
1008 1009
	struct prio_array *array;
	int running;
L
Linus Torvalds 已提交
1010 1011

repeat:
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1039
	rq = task_rq_lock(p, &flags);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	running = task_running(rq, p);
	array = p->array;
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1051 1052 1053
		cpu_relax();
		goto repeat;
	}
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
	if (unlikely(array)) {
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1089
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1101 1102
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1103 1104 1105 1106
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1107
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1108
{
1109
	struct rq *rq = cpu_rq(cpu);
1110

1111
	if (type == 0)
1112
		return rq->raw_weighted_load;
1113

1114
	return min(rq->cpu_load[type-1], rq->raw_weighted_load);
L
Linus Torvalds 已提交
1115 1116 1117
}

/*
1118 1119
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1120
 */
N
Nick Piggin 已提交
1121
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1122
{
1123
	struct rq *rq = cpu_rq(cpu);
1124

N
Nick Piggin 已提交
1125
	if (type == 0)
1126
		return rq->raw_weighted_load;
1127

1128 1129 1130 1131 1132 1133 1134 1135
	return max(rq->cpu_load[type-1], rq->raw_weighted_load);
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1136
	struct rq *rq = cpu_rq(cpu);
1137 1138
	unsigned long n = rq->nr_running;

1139
	return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1140 1141
}

N
Nick Piggin 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1159 1160 1161 1162
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1179 1180
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1181 1182 1183 1184 1185 1186 1187 1188

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1189
nextgroup:
N
Nick Piggin 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1199
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1200
 */
I
Ingo Molnar 已提交
1201 1202
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1203
{
1204
	cpumask_t tmp;
N
Nick Piggin 已提交
1205 1206 1207 1208
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1209 1210 1211 1212
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1213
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1239

1240
	for_each_domain(cpu, tmp) {
1241 1242 1243 1244 1245
 		/*
 	 	 * If power savings logic is enabled for a domain, stop there.
 	 	 */
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1246 1247
		if (tmp->flags & flag)
			sd = tmp;
1248
	}
N
Nick Piggin 已提交
1249 1250 1251 1252

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1253 1254 1255 1256 1257 1258
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1259 1260 1261

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1262 1263 1264 1265
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1266

1267
		new_cpu = find_idlest_cpu(group, t, cpu);
1268 1269 1270 1271 1272
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1273

1274
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1301
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1302 1303 1304 1305 1306
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1317 1318 1319 1320
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1321
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1322 1323 1324 1325 1326
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
		}
N
Nick Piggin 已提交
1327 1328
		else
			break;
L
Linus Torvalds 已提交
1329 1330 1331 1332
	}
	return cpu;
}
#else
1333
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1353
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1354 1355 1356 1357
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1358
	struct rq *rq;
L
Linus Torvalds 已提交
1359
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1360
	struct sched_domain *sd, *this_sd = NULL;
1361
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

	if (p->array)
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1380 1381
	new_cpu = cpu;

L
Linus Torvalds 已提交
1382 1383 1384
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1385 1386 1387 1388 1389 1390 1391 1392
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1393 1394 1395
		}
	}

N
Nick Piggin 已提交
1396
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1397 1398 1399
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1400
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1401
	 */
N
Nick Piggin 已提交
1402 1403 1404
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1405

1406 1407
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1408 1409
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1410

N
Nick Piggin 已提交
1411 1412
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1413 1414
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1415 1416 1417
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1418

L
Linus Torvalds 已提交
1419
			/*
1420 1421 1422
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1423
			 */
1424
			if (sync)
1425
				tl -= current->load_weight;
1426 1427

			if ((tl <= load &&
1428 1429
				tl + target_load(cpu, idx) <= tl_per_task) ||
				100*(tl + p->load_weight) <= imbalance*load) {
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
		if (p->array)
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
	if (old_state == TASK_UNINTERRUPTIBLE) {
		rq->nr_uninterruptible--;
		/*
		 * Tasks on involuntary sleep don't earn
		 * sleep_avg beyond just interactive state.
		 */
1478
		p->sleep_type = SLEEP_NONINTERACTIVE;
1479
	} else
L
Linus Torvalds 已提交
1480

I
Ingo Molnar 已提交
1481 1482
	/*
	 * Tasks that have marked their sleep as noninteractive get
1483 1484
	 * woken up with their sleep average not weighted in an
	 * interactive way.
I
Ingo Molnar 已提交
1485
	 */
1486 1487 1488 1489 1490
		if (old_state & TASK_NONINTERACTIVE)
			p->sleep_type = SLEEP_NONINTERACTIVE;


	activate_task(p, rq, cpu == this_cpu);
L
Linus Torvalds 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
	if (!sync || cpu != this_cpu) {
		if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);
	}
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1513
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1514 1515 1516 1517 1518 1519
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1520
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1521 1522 1523 1524
{
	return try_to_wake_up(p, state, 0);
}

1525
static void task_running_tick(struct rq *rq, struct task_struct *p);
L
Linus Torvalds 已提交
1526 1527 1528 1529
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
 */
1530
void fastcall sched_fork(struct task_struct *p, int clone_flags)
L
Linus Torvalds 已提交
1531
{
N
Nick Piggin 已提交
1532 1533 1534 1535 1536 1537 1538
	int cpu = get_cpu();

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	set_task_cpu(p, cpu);

L
Linus Torvalds 已提交
1539 1540 1541 1542 1543 1544 1545
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
1546 1547 1548 1549 1550 1551

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

L
Linus Torvalds 已提交
1552 1553
	INIT_LIST_HEAD(&p->run_list);
	p->array = NULL;
1554 1555 1556
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
	if (unlikely(sched_info_on()))
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1557
#endif
1558
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1559 1560
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1561
#ifdef CONFIG_PREEMPT
1562
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1563
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
#endif
	/*
	 * Share the timeslice between parent and child, thus the
	 * total amount of pending timeslices in the system doesn't change,
	 * resulting in more scheduling fairness.
	 */
	local_irq_disable();
	p->time_slice = (current->time_slice + 1) >> 1;
	/*
	 * The remainder of the first timeslice might be recovered by
	 * the parent if the child exits early enough.
	 */
	p->first_time_slice = 1;
	current->time_slice >>= 1;
	p->timestamp = sched_clock();
	if (unlikely(!current->time_slice)) {
		/*
		 * This case is rare, it happens when the parent has only
		 * a single jiffy left from its timeslice. Taking the
		 * runqueue lock is not a problem.
		 */
		current->time_slice = 1;
1586
		task_running_tick(cpu_rq(cpu), current);
N
Nick Piggin 已提交
1587 1588 1589
	}
	local_irq_enable();
	put_cpu();
L
Linus Torvalds 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1599
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1600
{
1601
	struct rq *rq, *this_rq;
L
Linus Torvalds 已提交
1602 1603 1604 1605
	unsigned long flags;
	int this_cpu, cpu;

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1606
	BUG_ON(p->state != TASK_RUNNING);
L
Linus Torvalds 已提交
1607
	this_cpu = smp_processor_id();
N
Nick Piggin 已提交
1608
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

	/*
	 * We decrease the sleep average of forking parents
	 * and children as well, to keep max-interactive tasks
	 * from forking tasks that are max-interactive. The parent
	 * (current) is done further down, under its lock.
	 */
	p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
		CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);

	p->prio = effective_prio(p);

	if (likely(cpu == this_cpu)) {
		if (!(clone_flags & CLONE_VM)) {
			/*
			 * The VM isn't cloned, so we're in a good position to
			 * do child-runs-first in anticipation of an exec. This
			 * usually avoids a lot of COW overhead.
			 */
			if (unlikely(!current->array))
				__activate_task(p, rq);
			else {
				p->prio = current->prio;
1632
				p->normal_prio = current->normal_prio;
L
Linus Torvalds 已提交
1633 1634 1635
				list_add_tail(&p->run_list, &current->run_list);
				p->array = current->array;
				p->array->nr_active++;
1636
				inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
			}
			set_need_resched();
		} else
			/* Run child last */
			__activate_task(p, rq);
		/*
		 * We skip the following code due to cpu == this_cpu
	 	 *
		 *   task_rq_unlock(rq, &flags);
		 *   this_rq = task_rq_lock(current, &flags);
		 */
		this_rq = rq;
	} else {
		this_rq = cpu_rq(this_cpu);

		/*
		 * Not the local CPU - must adjust timestamp. This should
		 * get optimised away in the !CONFIG_SMP case.
		 */
1656 1657
		p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
					+ rq->most_recent_timestamp;
L
Linus Torvalds 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
		__activate_task(p, rq);
		if (TASK_PREEMPTS_CURR(p, rq))
			resched_task(rq->curr);

		/*
		 * Parent and child are on different CPUs, now get the
		 * parent runqueue to update the parent's ->sleep_avg:
		 */
		task_rq_unlock(rq, &flags);
		this_rq = task_rq_lock(current, &flags);
	}
	current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
		PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
	task_rq_unlock(this_rq, &flags);
}

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1686
static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1687 1688 1689 1690 1691
{
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1692 1693
/**
 * finish_task_switch - clean up after a task-switch
1694
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1695 1696
 * @prev: the thread we just switched away from.
 *
1697 1698 1699 1700
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1701 1702 1703 1704 1705 1706
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1707
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1708 1709 1710
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1711
	long prev_state;
L
Linus Torvalds 已提交
1712 1713 1714 1715 1716

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1717
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1718 1719
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1720
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1721 1722 1723 1724 1725
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1726
	prev_state = prev->state;
1727 1728
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
L
Linus Torvalds 已提交
1729 1730
	if (mm)
		mmdrop(mm);
1731
	if (unlikely(prev_state == TASK_DEAD)) {
1732 1733 1734 1735 1736
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
	 	 */
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1737
		put_task_struct(prev);
1738
	}
L
Linus Torvalds 已提交
1739 1740 1741 1742 1743 1744
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1745
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1746 1747
	__releases(rq->lock)
{
1748 1749
	struct rq *rq = this_rq();

1750 1751 1752 1753 1754
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1755 1756 1757 1758 1759 1760 1761 1762
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
1763
static inline struct task_struct *
1764
context_switch(struct rq *rq, struct task_struct *prev,
1765
	       struct task_struct *next)
L
Linus Torvalds 已提交
1766 1767 1768 1769
{
	struct mm_struct *mm = next->mm;
	struct mm_struct *oldmm = prev->active_mm;

1770 1771 1772 1773 1774 1775 1776
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

N
Nick Piggin 已提交
1777
	if (!mm) {
L
Linus Torvalds 已提交
1778 1779 1780 1781 1782 1783
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

N
Nick Piggin 已提交
1784
	if (!prev->mm) {
L
Linus Torvalds 已提交
1785 1786 1787 1788
		prev->active_mm = NULL;
		WARN_ON(rq->prev_mm);
		rq->prev_mm = oldmm;
	}
1789 1790 1791 1792 1793 1794 1795
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1796
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1797
#endif
L
Linus Torvalds 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

	return prev;
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1826
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1841 1842
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1843

1844
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1854
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1855 1856 1857 1858 1859
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

L
Linus Torvalds 已提交
1875 1876
#ifdef CONFIG_SMP

1877 1878 1879 1880 1881 1882 1883 1884 1885
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
{
	return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
}

L
Linus Torvalds 已提交
1886 1887 1888 1889 1890 1891
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
1892
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1893 1894 1895
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
1896
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
1897 1898 1899 1900
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
1901
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
1917
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
1931
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
1932 1933 1934 1935
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1936 1937 1938 1939 1940
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
1941
	if (unlikely(!spin_trylock(&busiest->lock))) {
1942
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
1957
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
1958
{
1959
	struct migration_req req;
L
Linus Torvalds 已提交
1960
	unsigned long flags;
1961
	struct rq *rq;
L
Linus Torvalds 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
1972

L
Linus Torvalds 已提交
1973 1974 1975 1976 1977
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
1978

L
Linus Torvalds 已提交
1979 1980 1981 1982 1983 1984 1985
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
1986 1987
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
1988 1989 1990 1991
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
1992
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
1993
	put_cpu();
N
Nick Piggin 已提交
1994 1995
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
1996 1997 1998 1999 2000 2001
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
2002 2003 2004
static void pull_task(struct rq *src_rq, struct prio_array *src_array,
		      struct task_struct *p, struct rq *this_rq,
		      struct prio_array *this_array, int this_cpu)
L
Linus Torvalds 已提交
2005 2006
{
	dequeue_task(p, src_array);
2007
	dec_nr_running(p, src_rq);
L
Linus Torvalds 已提交
2008
	set_task_cpu(p, this_cpu);
2009
	inc_nr_running(p, this_rq);
L
Linus Torvalds 已提交
2010
	enqueue_task(p, this_array);
2011 2012
	p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
				+ this_rq->most_recent_timestamp;
L
Linus Torvalds 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
	if (TASK_PREEMPTS_CURR(p, this_rq))
		resched_task(this_rq->curr);
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2024
static
2025
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2026
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2027
		     int *all_pinned)
L
Linus Torvalds 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2037 2038 2039 2040
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2041 2042 2043

	/*
	 * Aggressive migration if:
2044
	 * 1) task is cache cold, or
L
Linus Torvalds 已提交
2045 2046 2047
	 * 2) too many balance attempts have failed.
	 */

2048 2049 2050 2051 2052
	if (sd->nr_balance_failed > sd->cache_nice_tries) {
#ifdef CONFIG_SCHEDSTATS
		if (task_hot(p, rq->most_recent_timestamp, sd))
			schedstat_inc(sd, lb_hot_gained[idle]);
#endif
L
Linus Torvalds 已提交
2053
		return 1;
2054
	}
L
Linus Torvalds 已提交
2055

2056
	if (task_hot(p, rq->most_recent_timestamp, sd))
2057
		return 0;
L
Linus Torvalds 已提交
2058 2059 2060
	return 1;
}

2061
#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2062

L
Linus Torvalds 已提交
2063
/*
2064 2065 2066
 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
 * load from busiest to this_rq, as part of a balancing operation within
 * "domain". Returns the number of tasks moved.
L
Linus Torvalds 已提交
2067 2068 2069
 *
 * Called with both runqueues locked.
 */
2070
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2071
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2072
		      struct sched_domain *sd, enum cpu_idle_type idle,
2073
		      int *all_pinned)
L
Linus Torvalds 已提交
2074
{
2075 2076
	int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
	    best_prio_seen, skip_for_load;
2077
	struct prio_array *array, *dst_array;
L
Linus Torvalds 已提交
2078
	struct list_head *head, *curr;
2079
	struct task_struct *tmp;
2080
	long rem_load_move;
L
Linus Torvalds 已提交
2081

2082
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2083 2084
		goto out;

2085
	rem_load_move = max_load_move;
2086
	pinned = 1;
2087
	this_best_prio = rq_best_prio(this_rq);
2088
	best_prio = rq_best_prio(busiest);
2089 2090 2091
	/*
	 * Enable handling of the case where there is more than one task
	 * with the best priority.   If the current running task is one
2092
	 * of those with prio==best_prio we know it won't be moved
2093 2094 2095
	 * and therefore it's safe to override the skip (based on load) of
	 * any task we find with that prio.
	 */
2096
	best_prio_seen = best_prio == busiest->curr->prio;
2097

L
Linus Torvalds 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	/*
	 * We first consider expired tasks. Those will likely not be
	 * executed in the near future, and they are most likely to
	 * be cache-cold, thus switching CPUs has the least effect
	 * on them.
	 */
	if (busiest->expired->nr_active) {
		array = busiest->expired;
		dst_array = this_rq->expired;
	} else {
		array = busiest->active;
		dst_array = this_rq->active;
	}

new_array:
	/* Start searching at priority 0: */
	idx = 0;
skip_bitmap:
	if (!idx)
		idx = sched_find_first_bit(array->bitmap);
	else
		idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
	if (idx >= MAX_PRIO) {
		if (array == busiest->expired && busiest->active->nr_active) {
			array = busiest->active;
			dst_array = this_rq->active;
			goto new_array;
		}
		goto out;
	}

	head = array->queue + idx;
	curr = head->prev;
skip_queue:
2132
	tmp = list_entry(curr, struct task_struct, run_list);
L
Linus Torvalds 已提交
2133 2134 2135

	curr = curr->prev;

2136 2137 2138 2139 2140
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
2141 2142
	skip_for_load = tmp->load_weight > rem_load_move;
	if (skip_for_load && idx < this_best_prio)
2143
		skip_for_load = !best_prio_seen && idx == best_prio;
2144
	if (skip_for_load ||
2145
	    !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2146 2147

		best_prio_seen |= idx == best_prio;
L
Linus Torvalds 已提交
2148 2149 2150 2151 2152 2153 2154 2155
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}

	pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
	pulled++;
2156
	rem_load_move -= tmp->load_weight;
L
Linus Torvalds 已提交
2157

2158 2159 2160 2161 2162
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2163 2164
		if (idx < this_best_prio)
			this_best_prio = idx;
L
Linus Torvalds 已提交
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
		if (curr != head)
			goto skip_queue;
		idx++;
		goto skip_bitmap;
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2177 2178 2179

	if (all_pinned)
		*all_pinned = pinned;
L
Linus Torvalds 已提交
2180 2181 2182 2183 2184
	return pulled;
}

/*
 * find_busiest_group finds and returns the busiest CPU group within the
2185 2186
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2187 2188 2189
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2190
		   unsigned long *imbalance, enum cpu_idle_type idle, int *sd_idle,
2191
		   cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2192 2193 2194
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2195
	unsigned long max_pull;
2196 2197
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2198
	int load_idx;
2199 2200 2201 2202 2203 2204
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2205 2206

	max_load = this_load = total_load = total_pwr = 0;
2207 2208
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2209
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2210
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2211
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2212 2213 2214
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2215 2216

	do {
2217
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2218 2219
		int local_group;
		int i;
2220
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2221
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2222 2223 2224

		local_group = cpu_isset(this_cpu, group->cpumask);

2225 2226 2227
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2228
		/* Tally up the load of all CPUs in the group */
2229
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2230 2231

		for_each_cpu_mask(i, group->cpumask) {
2232 2233 2234 2235 2236 2237
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2238

N
Nick Piggin 已提交
2239 2240 2241
			if (*sd_idle && !idle_cpu(i))
				*sd_idle = 0;

L
Linus Torvalds 已提交
2242
			/* Bias balancing toward cpus of our domain */
2243 2244 2245 2246 2247 2248
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2249
				load = target_load(i, load_idx);
2250
			} else
N
Nick Piggin 已提交
2251
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2252 2253

			avg_load += load;
2254 2255
			sum_nr_running += rq->nr_running;
			sum_weighted_load += rq->raw_weighted_load;
L
Linus Torvalds 已提交
2256 2257
		}

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
		 * domains.
		 */
		if (local_group && balance_cpu != this_cpu && balance) {
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2268
		total_load += avg_load;
2269
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2270 2271

		/* Adjust by relative CPU power of the group */
2272 2273
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2274

2275
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2276

L
Linus Torvalds 已提交
2277 2278 2279
		if (local_group) {
			this_load = avg_load;
			this = group;
2280 2281 2282
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2283
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2284 2285
			max_load = avg_load;
			busiest = group;
2286 2287
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2288
		}
2289 2290 2291 2292 2293 2294

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2295
 		if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
 			goto group_next;

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

 		/*
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
 		 */
 		if (!power_savings_balance || sum_nr_running >= group_capacity
		    || !sum_nr_running)
 			goto group_next;

 		/*
		 * Calculate the group which has the least non-idle load.
 		 * This is the group from where we need to pick up the load
 		 * for saving power
 		 */
 		if ((sum_nr_running < min_nr_running) ||
 		    (sum_nr_running == min_nr_running &&
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
 			group_min = group;
 			min_nr_running = sum_nr_running;
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
 		}

 		/*
		 * Calculate the group which is almost near its
 		 * capacity but still has some space to pick up some load
 		 * from other group and save more power
 		 */
2334
 		if (sum_nr_running <= group_capacity - 1) {
2335 2336 2337 2338 2339 2340 2341
 			if (sum_nr_running > leader_nr_running ||
 			    (sum_nr_running == leader_nr_running &&
 			     first_cpu(group->cpumask) >
 			      first_cpu(group_leader->cpumask))) {
 				group_leader = group;
 				leader_nr_running = sum_nr_running;
 			}
2342
		}
2343 2344
group_next:
#endif
L
Linus Torvalds 已提交
2345 2346 2347
		group = group->next;
	} while (group != sd->groups);

2348
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2349 2350 2351 2352 2353 2354 2355 2356
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2357
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2381 2382

	/* Don't want to pull so many tasks that a group would go idle */
2383
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2384

L
Linus Torvalds 已提交
2385
	/* How much load to actually move to equalise the imbalance */
2386 2387
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2388 2389
			/ SCHED_LOAD_SCALE;

2390 2391 2392 2393 2394 2395 2396
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
	if (*imbalance < busiest_load_per_task) {
2397
		unsigned long tmp, pwr_now, pwr_move;
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2409

2410 2411
		if (max_load - this_load >= busiest_load_per_task * imbn) {
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2421 2422 2423 2424
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2425 2426 2427
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2428 2429
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2430
		if (max_load > tmp)
2431
			pwr_move += busiest->__cpu_power *
2432
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2433 2434

		/* Amount of load we'd add */
2435
		if (max_load * busiest->__cpu_power <
2436
				busiest_load_per_task * SCHED_LOAD_SCALE)
2437 2438
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2439
		else
2440 2441 2442 2443
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2444 2445 2446 2447 2448 2449
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2450
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2451 2452 2453 2454 2455
	}

	return busiest;

out_balanced:
2456
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2457
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2458
		goto ret;
L
Linus Torvalds 已提交
2459

2460 2461 2462 2463 2464
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2465
ret:
L
Linus Torvalds 已提交
2466 2467 2468 2469 2470 2471 2472
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2473
static struct rq *
I
Ingo Molnar 已提交
2474
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2475
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2476
{
2477
	struct rq *busiest = NULL, *rq;
2478
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2479 2480 2481
	int i;

	for_each_cpu_mask(i, group->cpumask) {
2482 2483 2484 2485

		if (!cpu_isset(i, *cpus))
			continue;

2486
		rq = cpu_rq(i);
2487

2488
		if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2489
			continue;
L
Linus Torvalds 已提交
2490

2491 2492 2493
		if (rq->raw_weighted_load > max_load) {
			max_load = rq->raw_weighted_load;
			busiest = rq;
L
Linus Torvalds 已提交
2494 2495 2496 2497 2498 2499
		}
	}

	return busiest;
}

2500 2501 2502 2503 2504 2505
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

2506 2507 2508 2509 2510
static inline unsigned long minus_1_or_zero(unsigned long n)
{
	return n > 0 ? n - 1 : 0;
}

L
Linus Torvalds 已提交
2511 2512 2513 2514
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2515
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2516
			struct sched_domain *sd, enum cpu_idle_type idle,
2517
			int *balance)
L
Linus Torvalds 已提交
2518
{
2519
	int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2520 2521
	struct sched_group *group;
	unsigned long imbalance;
2522
	struct rq *busiest;
2523
	cpumask_t cpus = CPU_MASK_ALL;
2524
	unsigned long flags;
N
Nick Piggin 已提交
2525

2526 2527 2528 2529
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2530
	 * portraying it as CPU_NOT_IDLE.
2531
	 */
I
Ingo Molnar 已提交
2532
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2533
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2534
		sd_idle = 1;
L
Linus Torvalds 已提交
2535 2536 2537

	schedstat_inc(sd, lb_cnt[idle]);

2538 2539
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2540 2541
				   &cpus, balance);

2542
	if (*balance == 0)
2543 2544
		goto out_balanced;

L
Linus Torvalds 已提交
2545 2546 2547 2548 2549
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2550
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2551 2552 2553 2554 2555
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2556
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. nr_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
2568
		local_irq_save(flags);
N
Nick Piggin 已提交
2569
		double_rq_lock(this_rq, busiest);
L
Linus Torvalds 已提交
2570
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2571 2572
				      minus_1_or_zero(busiest->nr_running),
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2573
		double_rq_unlock(this_rq, busiest);
2574
		local_irq_restore(flags);
2575

2576 2577 2578 2579 2580 2581
		/*
		 * some other cpu did the load balance for us.
		 */
		if (nr_moved && this_cpu != smp_processor_id())
			resched_cpu(this_cpu);

2582
		/* All tasks on this runqueue were pinned by CPU affinity */
2583 2584 2585 2586
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2587
			goto out_balanced;
2588
		}
L
Linus Torvalds 已提交
2589
	}
2590

L
Linus Torvalds 已提交
2591 2592 2593 2594 2595 2596
	if (!nr_moved) {
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2597
			spin_lock_irqsave(&busiest->lock, flags);
2598 2599 2600 2601 2602

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2603
				spin_unlock_irqrestore(&busiest->lock, flags);
2604 2605 2606 2607
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2608 2609 2610
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2611
				active_balance = 1;
L
Linus Torvalds 已提交
2612
			}
2613
			spin_unlock_irqrestore(&busiest->lock, flags);
2614
			if (active_balance)
L
Linus Torvalds 已提交
2615 2616 2617 2618 2619 2620
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2621
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2622
		}
2623
	} else
L
Linus Torvalds 已提交
2624 2625
		sd->nr_balance_failed = 0;

2626
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2627 2628
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2629 2630 2631 2632 2633 2634 2635 2636 2637
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2638 2639
	}

2640
	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2641
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2642
		return -1;
L
Linus Torvalds 已提交
2643 2644 2645 2646 2647
	return nr_moved;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2648
	sd->nr_balance_failed = 0;
2649 2650

out_one_pinned:
L
Linus Torvalds 已提交
2651
	/* tune up the balancing interval */
2652 2653
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2654 2655
		sd->balance_interval *= 2;

2656
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2657
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2658
		return -1;
L
Linus Torvalds 已提交
2659 2660 2661 2662 2663 2664 2665
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2666
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2667 2668
 * this_rq is locked.
 */
2669
static int
2670
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2671 2672
{
	struct sched_group *group;
2673
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2674 2675
	unsigned long imbalance;
	int nr_moved = 0;
N
Nick Piggin 已提交
2676
	int sd_idle = 0;
2677
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2678

2679 2680 2681 2682
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2683
	 * portraying it as CPU_NOT_IDLE.
2684 2685 2686
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2687
		sd_idle = 1;
L
Linus Torvalds 已提交
2688

I
Ingo Molnar 已提交
2689
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2690
redo:
I
Ingo Molnar 已提交
2691
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2692
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2693
	if (!group) {
I
Ingo Molnar 已提交
2694
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2695
		goto out_balanced;
L
Linus Torvalds 已提交
2696 2697
	}

I
Ingo Molnar 已提交
2698
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2699
				&cpus);
N
Nick Piggin 已提交
2700
	if (!busiest) {
I
Ingo Molnar 已提交
2701
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2702
		goto out_balanced;
L
Linus Torvalds 已提交
2703 2704
	}

N
Nick Piggin 已提交
2705 2706
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2707
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2708 2709 2710 2711 2712 2713

	nr_moved = 0;
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
		nr_moved = move_tasks(this_rq, this_cpu, busiest,
2714
					minus_1_or_zero(busiest->nr_running),
I
Ingo Molnar 已提交
2715
					imbalance, sd, CPU_NEWLY_IDLE, NULL);
2716
		spin_unlock(&busiest->lock);
2717 2718 2719 2720 2721 2722

		if (!nr_moved) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2723 2724
	}

N
Nick Piggin 已提交
2725
	if (!nr_moved) {
I
Ingo Molnar 已提交
2726
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2727 2728
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2729 2730
			return -1;
	} else
2731
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2732 2733

	return nr_moved;
2734 2735

out_balanced:
I
Ingo Molnar 已提交
2736
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2737
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2738
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2739
		return -1;
2740
	sd->nr_balance_failed = 0;
2741

2742
	return 0;
L
Linus Torvalds 已提交
2743 2744 2745 2746 2747 2748
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2749
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2750 2751
{
	struct sched_domain *sd;
2752 2753
	int pulled_task = 0;
	unsigned long next_balance = jiffies + 60 *  HZ;
L
Linus Torvalds 已提交
2754 2755

	for_each_domain(this_cpu, sd) {
2756 2757 2758 2759 2760 2761
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2762
			/* If we've pulled tasks over stop searching: */
2763
			pulled_task = load_balance_newidle(this_cpu,
2764 2765 2766 2767 2768 2769 2770
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2771
	}
2772 2773 2774 2775 2776 2777
	if (!pulled_task)
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
L
Linus Torvalds 已提交
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2788
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2789
{
2790
	int target_cpu = busiest_rq->push_cpu;
2791 2792
	struct sched_domain *sd;
	struct rq *target_rq;
2793

2794
	/* Is there any task to move? */
2795 2796 2797 2798
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2799 2800

	/*
2801 2802 2803
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2804
	 */
2805
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2806

2807 2808 2809 2810
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2811
	for_each_domain(target_cpu, sd) {
2812
		if ((sd->flags & SD_LOAD_BALANCE) &&
2813
		    cpu_isset(busiest_cpu, sd->span))
2814
				break;
2815
	}
2816

2817 2818
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2819

2820
		if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
I
Ingo Molnar 已提交
2821
			       RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
2822 2823 2824 2825 2826
			       NULL))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2827
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2828 2829
}

2830
static void update_load(struct rq *this_rq)
L
Linus Torvalds 已提交
2831
{
2832
	unsigned long this_load;
2833
	unsigned int i, scale;
L
Linus Torvalds 已提交
2834

2835
	this_load = this_rq->raw_weighted_load;
2836 2837

	/* Update our load: */
2838
	for (i = 0, scale = 1; i < 3; i++, scale += scale) {
2839 2840
		unsigned long old_load, new_load;

2841 2842
		/* scale is effectively 1 << i now, and >> i divides by scale */

N
Nick Piggin 已提交
2843
		old_load = this_rq->cpu_load[i];
2844
		new_load = this_load;
N
Nick Piggin 已提交
2845 2846 2847 2848 2849 2850 2851
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
2852
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
N
Nick Piggin 已提交
2853
	}
2854 2855
}

2856 2857 2858 2859 2860 2861 2862 2863 2864
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2865
/*
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2876
 *
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
2933 2934 2935 2936 2937
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
2938
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2939
{
2940 2941
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
2942 2943
	unsigned long interval;
	struct sched_domain *sd;
2944
	/* Earliest time when we have to do rebalance again */
2945
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
2946

2947
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
2948 2949 2950 2951
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
2952
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
2953 2954 2955 2956 2957 2958 2959
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;

2960 2961 2962 2963 2964
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

2965
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
2966
			if (load_balance(cpu, rq, sd, idle, &balance)) {
2967 2968
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
2969 2970 2971
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
2972
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
2973
			}
2974
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
2975
		}
2976 2977 2978
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
2979 2980
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
2981 2982 2983 2984 2985 2986 2987 2988

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
2989
	}
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
	int local_cpu = smp_processor_id();
	struct rq *local_rq = cpu_rq(local_cpu);
I
Ingo Molnar 已提交
3002
	enum cpu_idle_type idle = local_rq->idle_at_tick ? CPU_IDLE : CPU_NOT_IDLE;
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027

	rebalance_domains(local_cpu, idle);

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
	if (local_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == local_cpu) {
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

		cpu_clear(local_cpu, cpus);
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

I
Ingo Molnar 已提交
3028
			rebalance_domains(balance_cpu, CPU_IDLE);
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097

			rq = cpu_rq(balance_cpu);
			if (time_after(local_rq->next_balance, rq->next_balance))
				local_rq->next_balance = rq->next_balance;
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
static inline void trigger_load_balance(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3098 3099 3100 3101 3102
}
#else
/*
 * on UP we do not need to balance between CPUs:
 */
3103
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
{
}
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
 * This is called on clock ticks and on context switches.
 * Bank in p->sched_time the ns elapsed since the last tick or switch.
 */
3116
static inline void
3117
update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
L
Linus Torvalds 已提交
3118
{
3119 3120
	p->sched_time += now - p->last_ran;
	p->last_ran = rq->most_recent_timestamp = now;
L
Linus Torvalds 已提交
3121 3122 3123 3124 3125 3126
}

/*
 * Return current->sched_time plus any more ns on the sched_clock
 * that have not yet been banked.
 */
3127
unsigned long long current_sched_time(const struct task_struct *p)
L
Linus Torvalds 已提交
3128 3129 3130
{
	unsigned long long ns;
	unsigned long flags;
3131

L
Linus Torvalds 已提交
3132
	local_irq_save(flags);
3133
	ns = p->sched_time + sched_clock() - p->last_ran;
L
Linus Torvalds 已提交
3134
	local_irq_restore(flags);
3135

L
Linus Torvalds 已提交
3136 3137 3138
	return ns;
}

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
/*
 * We place interactive tasks back into the active array, if possible.
 *
 * To guarantee that this does not starve expired tasks we ignore the
 * interactivity of a task if the first expired task had to wait more
 * than a 'reasonable' amount of time. This deadline timeout is
 * load-dependent, as the frequency of array switched decreases with
 * increasing number of running tasks. We also ignore the interactivity
 * if a better static_prio task has expired:
 */
3149
static inline int expired_starving(struct rq *rq)
3150 3151 3152 3153 3154 3155 3156 3157 3158
{
	if (rq->curr->static_prio > rq->best_expired_prio)
		return 1;
	if (!STARVATION_LIMIT || !rq->expired_timestamp)
		return 0;
	if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
		return 1;
	return 0;
}
3159

L
Linus Torvalds 已提交
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3191
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3221
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3233
static void task_running_tick(struct rq *rq, struct task_struct *p)
L
Linus Torvalds 已提交
3234 3235
{
	if (p->array != rq->active) {
3236
		/* Task has expired but was not scheduled yet */
L
Linus Torvalds 已提交
3237
		set_tsk_need_resched(p);
3238
		return;
L
Linus Torvalds 已提交
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
	}
	spin_lock(&rq->lock);
	/*
	 * The task was running during this tick - update the
	 * time slice counter. Note: we do not update a thread's
	 * priority until it either goes to sleep or uses up its
	 * timeslice. This makes it possible for interactive tasks
	 * to use up their timeslices at their highest priority levels.
	 */
	if (rt_task(p)) {
		/*
		 * RR tasks need a special form of timeslice management.
		 * FIFO tasks have no timeslices.
		 */
		if ((p->policy == SCHED_RR) && !--p->time_slice) {
			p->time_slice = task_timeslice(p);
			p->first_time_slice = 0;
			set_tsk_need_resched(p);

			/* put it at the end of the queue: */
			requeue_task(p, rq->active);
		}
		goto out_unlock;
	}
	if (!--p->time_slice) {
		dequeue_task(p, rq->active);
		set_tsk_need_resched(p);
		p->prio = effective_prio(p);
		p->time_slice = task_timeslice(p);
		p->first_time_slice = 0;

		if (!rq->expired_timestamp)
			rq->expired_timestamp = jiffies;
3272
		if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
L
Linus Torvalds 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
			enqueue_task(p, rq->expired);
			if (p->static_prio < rq->best_expired_prio)
				rq->best_expired_prio = p->static_prio;
		} else
			enqueue_task(p, rq->active);
	} else {
		/*
		 * Prevent a too long timeslice allowing a task to monopolize
		 * the CPU. We do this by splitting up the timeslice into
		 * smaller pieces.
		 *
		 * Note: this does not mean the task's timeslices expire or
		 * get lost in any way, they just might be preempted by
		 * another task of equal priority. (one with higher
		 * priority would have preempted this task already.) We
		 * requeue this task to the end of the list on this priority
		 * level, which is in essence a round-robin of tasks with
		 * equal priority.
		 *
		 * This only applies to tasks in the interactive
		 * delta range with at least TIMESLICE_GRANULARITY to requeue.
		 */
		if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
			p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
			(p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
			(p->array == rq->active)) {

			requeue_task(p, rq->active);
			set_tsk_need_resched(p);
		}
	}
out_unlock:
	spin_unlock(&rq->lock);
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
}

/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	unsigned long long now = sched_clock();
	struct task_struct *p = current;
	int cpu = smp_processor_id();
3320
	int idle_at_tick = idle_cpu(cpu);
3321 3322 3323 3324
	struct rq *rq = cpu_rq(cpu);

	update_cpu_clock(p, rq, now);

3325
	if (!idle_at_tick)
3326
		task_running_tick(rq, p);
3327
#ifdef CONFIG_SMP
3328
	update_load(rq);
3329
	rq->idle_at_tick = idle_at_tick;
3330
	trigger_load_balance(cpu);
3331
#endif
L
Linus Torvalds 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3341 3342
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3343 3344 3345 3346
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3347 3348
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3349 3350 3351 3352 3353 3354 3355 3356
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3357 3358
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3359 3360 3361
	/*
	 * Is the spinlock portion underflowing?
	 */
3362 3363 3364 3365
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3366 3367 3368 3369 3370 3371
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

3372 3373 3374 3375 3376 3377
static inline int interactive_sleep(enum sleep_type sleep_type)
{
	return (sleep_type == SLEEP_INTERACTIVE ||
		sleep_type == SLEEP_INTERRUPTED);
}

L
Linus Torvalds 已提交
3378 3379 3380 3381 3382
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
3383
	struct task_struct *prev, *next;
3384
	struct prio_array *array;
L
Linus Torvalds 已提交
3385 3386 3387
	struct list_head *queue;
	unsigned long long now;
	unsigned long run_time;
3388
	int cpu, idx, new_prio;
3389
	long *switch_count;
3390
	struct rq *rq;
L
Linus Torvalds 已提交
3391 3392 3393 3394 3395 3396

	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3397 3398 3399 3400
	if (unlikely(in_atomic() && !current->exit_state)) {
		printk(KERN_ERR "BUG: scheduling while atomic: "
			"%s/0x%08x/%d\n",
			current->comm, preempt_count(), current->pid);
3401
		debug_show_held_locks(current);
3402 3403
		if (irqs_disabled())
			print_irqtrace_events(current);
3404
		dump_stack();
L
Linus Torvalds 已提交
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
	}
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

need_resched:
	preempt_disable();
	prev = current;
	release_kernel_lock(prev);
need_resched_nonpreemptible:
	rq = this_rq();

	/*
	 * The idle thread is not allowed to schedule!
	 * Remove this check after it has been exercised a bit.
	 */
	if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
		printk(KERN_ERR "bad: scheduling from the idle thread!\n");
		dump_stack();
	}

	schedstat_inc(rq, sched_cnt);
	now = sched_clock();
3426
	if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
L
Linus Torvalds 已提交
3427
		run_time = now - prev->timestamp;
3428
		if (unlikely((long long)(now - prev->timestamp) < 0))
L
Linus Torvalds 已提交
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
			run_time = 0;
	} else
		run_time = NS_MAX_SLEEP_AVG;

	/*
	 * Tasks charged proportionately less run_time at high sleep_avg to
	 * delay them losing their interactive status
	 */
	run_time /= (CURRENT_BONUS(prev) ? : 1);

	spin_lock_irq(&rq->lock);

	switch_count = &prev->nivcsw;
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		switch_count = &prev->nvcsw;
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
				unlikely(signal_pending(prev))))
			prev->state = TASK_RUNNING;
		else {
			if (prev->state == TASK_UNINTERRUPTIBLE)
				rq->nr_uninterruptible++;
			deactivate_task(prev, rq);
		}
	}

	cpu = smp_processor_id();
	if (unlikely(!rq->nr_running)) {
		idle_balance(cpu, rq);
		if (!rq->nr_running) {
			next = rq->idle;
			rq->expired_timestamp = 0;
			goto switch_tasks;
		}
	}

	array = rq->active;
	if (unlikely(!array->nr_active)) {
		/*
		 * Switch the active and expired arrays.
		 */
		schedstat_inc(rq, sched_switch);
		rq->active = rq->expired;
		rq->expired = array;
		array = rq->active;
		rq->expired_timestamp = 0;
		rq->best_expired_prio = MAX_PRIO;
	}

	idx = sched_find_first_bit(array->bitmap);
	queue = array->queue + idx;
3479
	next = list_entry(queue->next, struct task_struct, run_list);
L
Linus Torvalds 已提交
3480

3481
	if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
L
Linus Torvalds 已提交
3482
		unsigned long long delta = now - next->timestamp;
3483
		if (unlikely((long long)(now - next->timestamp) < 0))
L
Linus Torvalds 已提交
3484 3485
			delta = 0;

3486
		if (next->sleep_type == SLEEP_INTERACTIVE)
L
Linus Torvalds 已提交
3487 3488 3489
			delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;

		array = next->array;
3490 3491 3492 3493 3494 3495
		new_prio = recalc_task_prio(next, next->timestamp + delta);

		if (unlikely(next->prio != new_prio)) {
			dequeue_task(next, array);
			next->prio = new_prio;
			enqueue_task(next, array);
3496
		}
L
Linus Torvalds 已提交
3497
	}
3498
	next->sleep_type = SLEEP_NORMAL;
L
Linus Torvalds 已提交
3499 3500 3501 3502
switch_tasks:
	if (next == rq->idle)
		schedstat_inc(rq, sched_goidle);
	prefetch(next);
3503
	prefetch_stack(next);
L
Linus Torvalds 已提交
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
	clear_tsk_need_resched(prev);
	rcu_qsctr_inc(task_cpu(prev));

	update_cpu_clock(prev, rq, now);

	prev->sleep_avg -= run_time;
	if ((long)prev->sleep_avg <= 0)
		prev->sleep_avg = 0;
	prev->timestamp = prev->last_ran = now;

	sched_info_switch(prev, next);
	if (likely(prev != next)) {
3516
		next->timestamp = next->last_ran = now;
L
Linus Torvalds 已提交
3517 3518 3519 3520
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3521
		prepare_task_switch(rq, next);
L
Linus Torvalds 已提交
3522 3523
		prev = context_switch(rq, prev, next);
		barrier();
3524 3525 3526 3527 3528 3529
		/*
		 * this_rq must be evaluated again because prev may have moved
		 * CPUs since it called schedule(), thus the 'rq' on its stack
		 * frame will be invalid.
		 */
		finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
	} else
		spin_unlock_irq(&rq->lock);

	prev = current;
	if (unlikely(reacquire_kernel_lock(prev) < 0))
		goto need_resched_nonpreemptible;
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3544
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3559
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3587
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3599
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3629 3630
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3631
{
3632
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3651 3652 3653
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3654
		if (curr->func(curr, mode, sync, key) &&
3655
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3656 3657 3658 3659 3660 3661 3662 3663 3664
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3665
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3666 3667
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3668
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3687
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3699 3700
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3744

L
Linus Torvalds 已提交
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);


#define	SLEEP_ON_VAR					\
	unsigned long flags;				\
	wait_queue_t wait;				\
	init_waitqueue_entry(&wait, current);

#define SLEEP_ON_HEAD					\
	spin_lock_irqsave(&q->lock,flags);		\
	__add_wait_queue(q, &wait);			\
	spin_unlock(&q->lock);

#define	SLEEP_ON_TAIL					\
	spin_lock_irq(&q->lock);			\
	__remove_wait_queue(q, &wait);			\
	spin_unlock_irqrestore(&q->lock, flags);

void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3891 3892
long fastcall __sched
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
{
	SLEEP_ON_VAR

	current->state = TASK_INTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

void fastcall __sched sleep_on(wait_queue_head_t *q)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	schedule();
	SLEEP_ON_TAIL
}
EXPORT_SYMBOL(sleep_on);

long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
	SLEEP_ON_VAR

	current->state = TASK_UNINTERRUPTIBLE;

	SLEEP_ON_HEAD
	timeout = schedule_timeout(timeout);
	SLEEP_ON_TAIL

	return timeout;
}

EXPORT_SYMBOL(sleep_on_timeout);

3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3945
void rt_mutex_setprio(struct task_struct *p, int prio)
3946
{
3947
	struct prio_array *array;
3948
	unsigned long flags;
3949
	struct rq *rq;
3950
	int oldprio;
3951 3952 3953 3954 3955

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

3956
	oldprio = p->prio;
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
	array = p->array;
	if (array)
		dequeue_task(p, array);
	p->prio = prio;

	if (array) {
		/*
		 * If changing to an RT priority then queue it
		 * in the active array!
		 */
		if (rt_task(p))
			array = rq->active;
		enqueue_task(p, array);
		/*
		 * Reschedule if we are currently running on this runqueue and
3972 3973
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3974
		 */
3975 3976 3977 3978
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
		} else if (TASK_PREEMPTS_CURR(p, rq))
3979 3980 3981 3982 3983 3984 3985
			resched_task(rq->curr);
	}
	task_rq_unlock(rq, &flags);
}

#endif

3986
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3987
{
3988
	struct prio_array *array;
3989
	int old_prio, delta;
L
Linus Torvalds 已提交
3990
	unsigned long flags;
3991
	struct rq *rq;
L
Linus Torvalds 已提交
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
4004
	 * not SCHED_NORMAL/SCHED_BATCH:
L
Linus Torvalds 已提交
4005
	 */
4006
	if (has_rt_policy(p)) {
L
Linus Torvalds 已提交
4007 4008 4009 4010
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
	array = p->array;
4011
	if (array) {
L
Linus Torvalds 已提交
4012
		dequeue_task(p, array);
4013 4014
		dec_raw_weighted_load(rq, p);
	}
L
Linus Torvalds 已提交
4015 4016

	p->static_prio = NICE_TO_PRIO(nice);
4017
	set_load_weight(p);
4018 4019 4020
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4021 4022 4023

	if (array) {
		enqueue_task(p, array);
4024
		inc_raw_weighted_load(rq, p);
L
Linus Torvalds 已提交
4025
		/*
4026 4027
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4028
		 */
4029
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4030 4031 4032 4033 4034 4035 4036
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4037 4038 4039 4040 4041
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4042
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4043
{
4044 4045
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4046

M
Matt Mackall 已提交
4047 4048 4049 4050
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4062
	long nice, retval;
L
Linus Torvalds 已提交
4063 4064 4065 4066 4067 4068

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4069 4070
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4071 4072 4073 4074 4075 4076 4077 4078 4079
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4080 4081 4082
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4101
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4102 4103 4104 4105 4106 4107 4108 4109
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4110
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4129
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4130 4131 4132 4133 4134 4135 4136 4137
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4138
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4139 4140 4141 4142 4143 4144 4145 4146
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
static void __setscheduler(struct task_struct *p, int policy, int prio)
{
	BUG_ON(p->array);
4147

L
Linus Torvalds 已提交
4148 4149
	p->policy = policy;
	p->rt_priority = prio;
4150 4151 4152 4153 4154 4155 4156 4157
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
	/*
	 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
	 */
	if (policy == SCHED_BATCH)
		p->sleep_avg = 0;
4158
	set_load_weight(p);
L
Linus Torvalds 已提交
4159 4160 4161
}

/**
4162
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4163 4164 4165
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4166
 *
4167
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4168
 */
I
Ingo Molnar 已提交
4169 4170
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4171
{
4172
	int retval, oldprio, oldpolicy = -1;
4173
	struct prio_array *array;
L
Linus Torvalds 已提交
4174
	unsigned long flags;
4175
	struct rq *rq;
L
Linus Torvalds 已提交
4176

4177 4178
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4179 4180 4181 4182 4183
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4184 4185
			policy != SCHED_NORMAL && policy != SCHED_BATCH)
		return -EINVAL;
L
Linus Torvalds 已提交
4186 4187
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4188 4189
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
	 * SCHED_BATCH is 0.
L
Linus Torvalds 已提交
4190 4191
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4192
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4193
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4194
		return -EINVAL;
4195
	if (is_rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4196 4197
		return -EINVAL;

4198 4199 4200 4201
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
		if (is_rt_policy(policy)) {
			unsigned long rlim_rtprio;
			unsigned long flags;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4220

4221 4222 4223 4224 4225
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4226 4227 4228 4229

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4230 4231 4232 4233 4234
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4235 4236 4237 4238
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4239
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4240 4241 4242
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4243 4244
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
		goto recheck;
	}
	array = p->array;
	if (array)
		deactivate_task(p, rq);
	oldprio = p->prio;
	__setscheduler(p, policy, param->sched_priority);
	if (array) {
		__activate_task(p, rq);
		/*
		 * Reschedule if we are currently running on this runqueue and
4256 4257
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4258
		 */
4259 4260 4261 4262
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
		} else if (TASK_PREEMPTS_CURR(p, rq))
L
Linus Torvalds 已提交
4263 4264
			resched_task(rq->curr);
	}
4265 4266 4267
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4268 4269
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4270 4271 4272 4273
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4274 4275
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4276 4277 4278
{
	struct sched_param lparam;
	struct task_struct *p;
4279
	int retval;
L
Linus Torvalds 已提交
4280 4281 4282 4283 4284

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4285 4286 4287

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4288
	p = find_process_by_pid(pid);
4289 4290 4291
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4292

L
Linus Torvalds 已提交
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4305 4306 4307 4308
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4328
	struct task_struct *p;
L
Linus Torvalds 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4356
	struct task_struct *p;
L
Linus Torvalds 已提交
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4391 4392
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4393

4394
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4395 4396 4397 4398 4399
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4400
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4417 4418 4419 4420
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4421 4422 4423 4424 4425 4426
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4427
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4468
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4469 4470 4471
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4472
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4473 4474
EXPORT_SYMBOL(cpu_online_map);

4475
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4476
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4477 4478 4479 4480
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4481
	struct task_struct *p;
L
Linus Torvalds 已提交
4482 4483
	int retval;

4484
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4485 4486 4487 4488 4489 4490 4491
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4492 4493 4494 4495
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4496
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4497 4498 4499

out_unlock:
	read_unlock(&tasklist_lock);
4500
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
	if (retval)
		return retval;

	return 0;
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
4535
 * This function yields the current CPU by moving the calling thread
L
Linus Torvalds 已提交
4536 4537 4538 4539 4540
 * to the expired array. If there are no other threads running on this
 * CPU then this function will return.
 */
asmlinkage long sys_sched_yield(void)
{
4541 4542
	struct rq *rq = this_rq_lock();
	struct prio_array *array = current->array, *target = rq->expired;
L
Linus Torvalds 已提交
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554

	schedstat_inc(rq, yld_cnt);
	/*
	 * We implement yielding by moving the task into the expired
	 * queue.
	 *
	 * (special rule: RT tasks will just roundrobin in the active
	 *  array.)
	 */
	if (rt_task(current))
		target = rq->active;

4555
	if (array->nr_active == 1) {
L
Linus Torvalds 已提交
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
		schedstat_inc(rq, yld_act_empty);
		if (!rq->expired->nr_active)
			schedstat_inc(rq, yld_both_empty);
	} else if (!rq->expired->nr_active)
		schedstat_inc(rq, yld_exp_empty);

	if (array != target) {
		dequeue_task(current, array);
		enqueue_task(current, target);
	} else
		/*
		 * requeue_task is cheaper so perform that if possible.
		 */
		requeue_task(current, array);

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4576
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4577 4578 4579 4580 4581 4582 4583 4584
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4585
static void __cond_resched(void)
L
Linus Torvalds 已提交
4586
{
4587 4588 4589
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4590 4591 4592 4593 4594
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4595 4596 4597 4598 4599 4600 4601 4602 4603
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4604 4605
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4621
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4622
{
J
Jan Kara 已提交
4623 4624
	int ret = 0;

L
Linus Torvalds 已提交
4625 4626 4627
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4628
		ret = 1;
L
Linus Torvalds 已提交
4629 4630
		spin_lock(lock);
	}
4631
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4632
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4633 4634 4635
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4636
		ret = 1;
L
Linus Torvalds 已提交
4637 4638
		spin_lock(lock);
	}
J
Jan Kara 已提交
4639
	return ret;
L
Linus Torvalds 已提交
4640 4641 4642 4643 4644 4645 4646
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4647
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4648
		local_bh_enable();
L
Linus Torvalds 已提交
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4660
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4679
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4680

4681
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4682 4683 4684
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4685
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4686 4687 4688 4689 4690
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4691
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4692 4693
	long ret;

4694
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4695 4696 4697
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4698
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4719
	case SCHED_BATCH:
L
Linus Torvalds 已提交
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4743
	case SCHED_BATCH:
L
Linus Torvalds 已提交
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4760
	struct task_struct *p;
L
Linus Torvalds 已提交
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4777
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
L
Linus Torvalds 已提交
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
				0 : task_timeslice(p), &t);
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4788
static const char stat_nam[] = "RSDTtZX";
4789 4790

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4791 4792
{
	unsigned long free = 0;
4793
	unsigned state;
L
Linus Torvalds 已提交
4794 4795

	state = p->state ? __ffs(p->state) + 1 : 0;
4796 4797
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
#if (BITS_PER_LONG == 32)
	if (state == TASK_RUNNING)
		printk(" running ");
	else
		printk(" %08lX ", thread_saved_pc(p));
#else
	if (state == TASK_RUNNING)
		printk("  running task   ");
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4811
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4812 4813
		while (!*n)
			n++;
4814
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4815 4816
	}
#endif
4817
	printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4818 4819 4820 4821 4822 4823 4824 4825 4826
	if (!p->mm)
		printk(" (L-TLB)\n");
	else
		printk(" (NOTLB)\n");

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4827
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4828
{
4829
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4830 4831 4832

#if (BITS_PER_LONG == 32)
	printk("\n"
4833 4834
	       "                         free                        sibling\n");
	printk("  task             PC    stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4835 4836
#else
	printk("\n"
4837 4838
	       "                                 free                        sibling\n");
	printk("  task                 PC        stack   pid father child younger older\n");
L
Linus Torvalds 已提交
4839 4840 4841 4842 4843 4844 4845 4846
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4847
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4848
			show_task(p);
L
Linus Torvalds 已提交
4849 4850
	} while_each_thread(g, p);

4851 4852
	touch_all_softlockup_watchdogs();

L
Linus Torvalds 已提交
4853
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4854 4855 4856 4857 4858
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4859 4860
}

I
Ingo Molnar 已提交
4861 4862 4863 4864 4865
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
	/* nothing yet */
}

4866 4867 4868 4869 4870 4871 4872 4873
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4874
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4875
{
4876
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4877 4878
	unsigned long flags;

4879
	idle->timestamp = sched_clock();
L
Linus Torvalds 已提交
4880 4881
	idle->sleep_avg = 0;
	idle->array = NULL;
4882
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4883 4884 4885 4886 4887 4888
	idle->state = TASK_RUNNING;
	idle->cpus_allowed = cpumask_of_cpu(cpu);
	set_task_cpu(idle, cpu);

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4889 4890 4891
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4892 4893 4894 4895
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4896
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4897
#else
A
Al Viro 已提交
4898
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
#endif
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4915
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4937
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4938
{
4939
	struct migration_req req;
L
Linus Torvalds 已提交
4940
	unsigned long flags;
4941
	struct rq *rq;
4942
	int ret = 0;
L
Linus Torvalds 已提交
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4965

L
Linus Torvalds 已提交
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4978 4979
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4980
 */
4981
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4982
{
4983
	struct rq *rq_dest, *rq_src;
4984
	int ret = 0;
L
Linus Torvalds 已提交
4985 4986

	if (unlikely(cpu_is_offline(dest_cpu)))
4987
		return ret;
L
Linus Torvalds 已提交
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

	set_task_cpu(p, dest_cpu);
	if (p->array) {
		/*
		 * Sync timestamp with rq_dest's before activating.
		 * The same thing could be achieved by doing this step
		 * afterwards, and pretending it was a local activate.
		 * This way is cleaner and logically correct.
		 */
5008 5009
		p->timestamp = p->timestamp - rq_src->most_recent_timestamp
				+ rq_dest->most_recent_timestamp;
L
Linus Torvalds 已提交
5010
		deactivate_task(p, rq_src);
5011
		__activate_task(p, rq_dest);
L
Linus Torvalds 已提交
5012 5013 5014
		if (TASK_PREEMPTS_CURR(p, rq_dest))
			resched_task(rq_dest->curr);
	}
5015
	ret = 1;
L
Linus Torvalds 已提交
5016 5017
out:
	double_rq_unlock(rq_src, rq_dest);
5018
	return ret;
L
Linus Torvalds 已提交
5019 5020 5021 5022 5023 5024 5025
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5026
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5027 5028
{
	int cpu = (long)data;
5029
	struct rq *rq;
L
Linus Torvalds 已提交
5030 5031 5032 5033 5034 5035

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5036
		struct migration_req *req;
L
Linus Torvalds 已提交
5037 5038
		struct list_head *head;

5039
		try_to_freeze();
L
Linus Torvalds 已提交
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5061
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5062 5063
		list_del_init(head->next);

N
Nick Piggin 已提交
5064 5065 5066
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5085 5086 5087 5088
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5089
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5090
{
5091
	unsigned long flags;
L
Linus Torvalds 已提交
5092
	cpumask_t mask;
5093 5094
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5095

5096
restart:
L
Linus Torvalds 已提交
5097 5098
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5099
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5100 5101 5102 5103
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5104
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5105 5106 5107

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5108 5109 5110
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5111
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5112 5113 5114 5115 5116 5117

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5118
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5119 5120
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5121
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5122
	}
5123
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5124
		goto restart;
L
Linus Torvalds 已提交
5125 5126 5127 5128 5129 5130 5131 5132 5133
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5134
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5135
{
5136
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5150
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5151 5152 5153

	write_lock_irq(&tasklist_lock);

5154 5155
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5156 5157
			continue;

5158 5159 5160
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5161 5162 5163 5164 5165 5166

	write_unlock_irq(&tasklist_lock);
}

/* Schedules idle task to be the next runnable task on current CPU.
 * It does so by boosting its priority to highest possible and adding it to
5167
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5168 5169 5170
 */
void sched_idle_next(void)
{
5171
	int this_cpu = smp_processor_id();
5172
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5173 5174 5175 5176
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5177
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5178

5179 5180 5181
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5182 5183 5184 5185
	 */
	spin_lock_irqsave(&rq->lock, flags);

	__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5186 5187

	/* Add idle task to the _front_ of its priority queue: */
L
Linus Torvalds 已提交
5188 5189 5190 5191 5192
	__activate_idle_task(p, rq);

	spin_unlock_irqrestore(&rq->lock, flags);
}

5193 5194
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5208
/* called under rq->lock with disabled interrupts */
5209
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5210
{
5211
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5212 5213

	/* Must be exiting, otherwise would be on tasklist. */
5214
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5215 5216

	/* Cannot have done final schedule yet: would have vanished. */
5217
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5218

5219
	get_task_struct(p);
L
Linus Torvalds 已提交
5220 5221 5222 5223 5224

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5225
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5226
	 */
5227
	spin_unlock(&rq->lock);
5228
	move_task_off_dead_cpu(dead_cpu, p);
5229
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5230

5231
	put_task_struct(p);
L
Linus Torvalds 已提交
5232 5233 5234 5235 5236
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5237
	struct rq *rq = cpu_rq(dead_cpu);
5238
	unsigned int arr, i;
L
Linus Torvalds 已提交
5239 5240 5241 5242

	for (arr = 0; arr < 2; arr++) {
		for (i = 0; i < MAX_PRIO; i++) {
			struct list_head *list = &rq->arrays[arr].queue[i];
5243

L
Linus Torvalds 已提交
5244
			while (!list_empty(list))
5245 5246
				migrate_dead(dead_cpu, list_entry(list->next,
					     struct task_struct, run_list));
L
Linus Torvalds 已提交
5247 5248 5249 5250 5251 5252 5253 5254 5255
		}
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5256 5257
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5258 5259
{
	struct task_struct *p;
5260
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5261
	unsigned long flags;
5262
	struct rq *rq;
L
Linus Torvalds 已提交
5263 5264

	switch (action) {
5265 5266 5267 5268
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5269
	case CPU_UP_PREPARE:
5270
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
		p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
		if (IS_ERR(p))
			return NOTIFY_BAD;
		p->flags |= PF_NOFREEZE;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
		__setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5282

L
Linus Torvalds 已提交
5283
	case CPU_ONLINE:
5284
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5285 5286 5287
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5288

L
Linus Torvalds 已提交
5289 5290
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5291
	case CPU_UP_CANCELED_FROZEN:
5292 5293
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5294
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5295 5296
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5297 5298 5299
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5300

L
Linus Torvalds 已提交
5301
	case CPU_DEAD:
5302
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
		deactivate_task(rq->idle, rq);
		rq->idle->static_prio = MAX_PRIO;
		__setscheduler(rq->idle, SCHED_NORMAL, 0);
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5318
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5319 5320 5321
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5322 5323
			struct migration_req *req;

L
Linus Torvalds 已提交
5324
			req = list_entry(rq->migration_queue.next,
5325
					 struct migration_req, list);
L
Linus Torvalds 已提交
5326 5327 5328 5329 5330 5331
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5332 5333 5334
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5335 5336 5337 5338 5339 5340 5341
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5342
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5343 5344 5345 5346 5347 5348 5349
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5350
	int err;
5351 5352

	/* Start one for the boot CPU: */
5353 5354
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5355 5356
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5357

L
Linus Torvalds 已提交
5358 5359 5360 5361 5362
	return 0;
}
#endif

#ifdef CONFIG_SMP
5363 5364 5365 5366 5367

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5368
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5369 5370 5371 5372 5373
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5374 5375 5376 5377 5378
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5398 5399
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5400 5401 5402 5403 5404 5405
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5406 5407
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5408
		if (!cpu_isset(cpu, group->cpumask))
5409 5410
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5423
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5424
				printk("\n");
5425 5426
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5449 5450
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5451 5452 5453

		level++;
		sd = sd->parent;
5454 5455
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5456

5457 5458 5459
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5460 5461 5462 5463

	} while (sd);
}
#else
5464
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5465 5466
#endif

5467
static int sd_degenerate(struct sched_domain *sd)
5468 5469 5470 5471 5472 5473 5474 5475
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5476 5477 5478
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5492 5493
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5512 5513 5514
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5515 5516 5517 5518 5519 5520 5521
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5522 5523 5524 5525
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5526
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5527
{
5528
	struct rq *rq = cpu_rq(cpu);
5529 5530 5531 5532 5533 5534 5535
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5536
		if (sd_parent_degenerate(tmp, parent)) {
5537
			tmp->parent = parent->parent;
5538 5539 5540
			if (parent->parent)
				parent->parent->child = tmp;
		}
5541 5542
	}

5543
	if (sd && sd_degenerate(sd)) {
5544
		sd = sd->parent;
5545 5546 5547
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5548 5549 5550

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5551
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5552 5553 5554
}

/* cpus with isolated domains */
5555
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5573 5574 5575 5576
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5577 5578 5579 5580 5581
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5582
static void
5583 5584 5585
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5586 5587 5588 5589 5590 5591
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5592 5593
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5594 5595 5596 5597 5598 5599
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5600
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5601 5602

		for_each_cpu_mask(j, span) {
5603
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5618
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5619

5620
#ifdef CONFIG_NUMA
5621

5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5674 5675
	cpumask_t span, nodemask;
	int i;
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5686

5687 5688 5689 5690 5691 5692 5693 5694
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5695
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5696

5697
/*
5698
 * SMT sched-domains:
5699
 */
L
Linus Torvalds 已提交
5700 5701
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5702
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5703

5704 5705
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5706
{
5707 5708
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5709 5710 5711 5712
	return cpu;
}
#endif

5713 5714 5715
/*
 * multi-core sched-domains:
 */
5716 5717
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5718
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5719 5720 5721
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5722 5723
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5724
{
5725
	int group;
5726 5727
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5728 5729 5730 5731
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5732 5733
}
#elif defined(CONFIG_SCHED_MC)
5734 5735
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5736
{
5737 5738
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5739 5740 5741 5742
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5743
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5744
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5745

5746 5747
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5748
{
5749
	int group;
5750
#ifdef CONFIG_SCHED_MC
5751
	cpumask_t mask = cpu_coregroup_map(cpu);
5752
	cpus_and(mask, mask, *cpu_map);
5753
	group = first_cpu(mask);
5754
#elif defined(CONFIG_SCHED_SMT)
5755 5756
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5757
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5758
#else
5759
	group = cpu;
L
Linus Torvalds 已提交
5760
#endif
5761 5762 5763
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5764 5765 5766 5767
}

#ifdef CONFIG_NUMA
/*
5768 5769 5770
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5771
 */
5772
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5773
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5774

5775
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5776
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5777

5778 5779
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5780
{
5781 5782 5783 5784 5785 5786 5787 5788 5789
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5790
}
5791

5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5812
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5813 5814 5815 5816 5817
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5818 5819
#endif

5820
#ifdef CONFIG_NUMA
5821 5822 5823
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5824
	int cpu, i;
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5855 5856 5857 5858 5859
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5860

5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5887 5888
	sd->groups->__cpu_power = 0;

5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5899
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5900 5901 5902 5903 5904 5905 5906 5907
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5908
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5909 5910 5911 5912
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5913
/*
5914 5915
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
5916
 */
5917
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
5918 5919
{
	int i;
5920
	struct sched_domain *sd;
5921 5922
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
5923
	int sd_allnodes = 0;
5924 5925 5926 5927

	/*
	 * Allocate the per-node list of sched groups
	 */
5928
	sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5929
					   GFP_KERNEL);
5930 5931
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
5932
		return -ENOMEM;
5933 5934 5935
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
5936 5937

	/*
5938
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
5939
	 */
5940
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5941 5942 5943
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

5944
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
5945 5946

#ifdef CONFIG_NUMA
5947
		if (cpus_weight(*cpu_map)
5948 5949 5950 5951
				> SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
5952
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
5953
			p = sd;
5954
			sd_allnodes = 1;
5955 5956 5957
		} else
			p = NULL;

L
Linus Torvalds 已提交
5958 5959
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
5960 5961
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
5962 5963
		if (p)
			p->child = sd;
5964
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
5965 5966 5967 5968 5969 5970 5971
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
5972 5973
		if (p)
			p->child = sd;
5974
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
5975

5976 5977 5978 5979 5980 5981 5982
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
5983
		p->child = sd;
5984
		cpu_to_core_group(i, cpu_map, &sd->groups);
5985 5986
#endif

L
Linus Torvalds 已提交
5987 5988 5989 5990 5991
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
5992
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
5993
		sd->parent = p;
5994
		p->child = sd;
5995
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
5996 5997 5998 5999 6000
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6001
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6002
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6003
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6004 6005 6006
		if (i != first_cpu(this_sibling_map))
			continue;

6007
		init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
L
Linus Torvalds 已提交
6008 6009 6010
	}
#endif

6011 6012 6013 6014 6015 6016 6017
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
6018
		init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
6019 6020 6021 6022
	}
#endif


L
Linus Torvalds 已提交
6023 6024 6025 6026
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6027
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6028 6029 6030
		if (cpus_empty(nodemask))
			continue;

6031
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6032 6033 6034 6035
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6036 6037
	if (sd_allnodes)
		init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6048 6049
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6050
			continue;
6051
		}
6052 6053 6054 6055

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6056
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6057 6058 6059 6060 6061
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6062 6063 6064 6065 6066 6067
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6068
		sg->__cpu_power = 0;
6069
		sg->cpumask = nodemask;
6070
		sg->next = sg;
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6089 6090
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6091 6092 6093
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6094
				goto error;
6095
			}
6096
			sg->__cpu_power = 0;
6097
			sg->cpumask = tmp;
6098
			sg->next = prev->next;
6099 6100 6101 6102 6103
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6104 6105 6106
#endif

	/* Calculate CPU power for physical packages and nodes */
6107
#ifdef CONFIG_SCHED_SMT
6108
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6109
		sd = &per_cpu(cpu_domains, i);
6110
		init_sched_groups_power(i, sd);
6111
	}
L
Linus Torvalds 已提交
6112
#endif
6113
#ifdef CONFIG_SCHED_MC
6114
	for_each_cpu_mask(i, *cpu_map) {
6115
		sd = &per_cpu(core_domains, i);
6116
		init_sched_groups_power(i, sd);
6117 6118
	}
#endif
6119

6120
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6121
		sd = &per_cpu(phys_domains, i);
6122
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6123 6124
	}

6125
#ifdef CONFIG_NUMA
6126 6127
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6128

6129 6130
	if (sd_allnodes) {
		struct sched_group *sg;
6131

6132
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6133 6134
		init_numa_sched_groups_power(sg);
	}
6135 6136
#endif

L
Linus Torvalds 已提交
6137
	/* Attach the domains */
6138
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6139 6140 6141
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6142 6143
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6144 6145 6146 6147 6148
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6149 6150 6151

	return 0;

6152
#ifdef CONFIG_NUMA
6153 6154 6155
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6156
#endif
L
Linus Torvalds 已提交
6157
}
6158 6159 6160
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6161
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6162 6163
{
	cpumask_t cpu_default_map;
6164
	int err;
L
Linus Torvalds 已提交
6165

6166 6167 6168 6169 6170 6171 6172
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6173 6174 6175
	err = build_sched_domains(&cpu_default_map);

	return err;
6176 6177 6178
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6179
{
6180
	free_sched_groups(cpu_map);
6181
}
L
Linus Torvalds 已提交
6182

6183 6184 6185 6186
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6187
static void detach_destroy_domains(const cpumask_t *cpu_map)
6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6205
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6206 6207
{
	cpumask_t change_map;
6208
	int err = 0;
6209 6210 6211 6212 6213 6214 6215 6216

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6217 6218 6219 6220 6221
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6222 6223
}

6224 6225 6226 6227 6228
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6229
	mutex_lock(&sched_hotcpu_mutex);
6230 6231
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6232
	mutex_unlock(&sched_hotcpu_mutex);
6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6257

6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6277 6278
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6291 6292
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6293 6294 6295 6296 6297 6298 6299
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6300 6301 6302
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6303
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6304 6305 6306 6307 6308 6309 6310
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6311
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6312
	case CPU_DOWN_PREPARE:
6313
	case CPU_DOWN_PREPARE_FROZEN:
6314
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6315 6316 6317
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6318
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6319
	case CPU_DOWN_FAILED:
6320
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6321
	case CPU_ONLINE:
6322
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6323
	case CPU_DEAD:
6324
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6325 6326 6327 6328 6329 6330 6331 6332 6333
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6334
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6335 6336 6337 6338 6339 6340

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6341 6342
	cpumask_t non_isolated_cpus;

6343
	mutex_lock(&sched_hotcpu_mutex);
6344
	arch_init_sched_domains(&cpu_online_map);
6345
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6346 6347
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6348
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6349 6350
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6351 6352 6353 6354

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6366

L
Linus Torvalds 已提交
6367 6368 6369 6370 6371 6372 6373 6374
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

void __init sched_init(void)
{
	int i, j, k;
6375
	int highest_cpu = 0;
L
Linus Torvalds 已提交
6376

6377
	for_each_possible_cpu(i) {
6378 6379
		struct prio_array *array;
		struct rq *rq;
L
Linus Torvalds 已提交
6380 6381 6382

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6383
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6384
		rq->nr_running = 0;
L
Linus Torvalds 已提交
6385 6386 6387 6388 6389
		rq->active = rq->arrays;
		rq->expired = rq->arrays + 1;
		rq->best_expired_prio = MAX_PRIO;

#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6390
		rq->sd = NULL;
N
Nick Piggin 已提交
6391 6392
		for (j = 1; j < 3; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6393 6394
		rq->active_balance = 0;
		rq->push_cpu = 0;
6395
		rq->cpu = i;
L
Linus Torvalds 已提交
6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

		for (j = 0; j < 2; j++) {
			array = rq->arrays + j;
			for (k = 0; k < MAX_PRIO; k++) {
				INIT_LIST_HEAD(array->queue + k);
				__clear_bit(k, array->bitmap);
			}
			// delimiter for bitsearch
			__set_bit(MAX_PRIO, array->bitmap);
		}
6410
		highest_cpu = i;
L
Linus Torvalds 已提交
6411 6412
	}

6413
	set_load_weight(&init_task);
6414

6415
#ifdef CONFIG_SMP
6416
	nr_cpu_ids = highest_cpu + 1;
6417 6418 6419
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6420 6421 6422 6423
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6442
#ifdef in_atomic
L
Linus Torvalds 已提交
6443 6444 6445 6446 6447 6448 6449
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6450
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6451 6452 6453
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6454
		debug_show_held_locks(current);
6455 6456
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6467
	struct prio_array *array;
6468
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6469
	unsigned long flags;
6470
	struct rq *rq;
L
Linus Torvalds 已提交
6471 6472

	read_lock_irq(&tasklist_lock);
6473 6474

	do_each_thread(g, p) {
L
Linus Torvalds 已提交
6475 6476 6477
		if (!rt_task(p))
			continue;

6478 6479
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6480 6481 6482 6483 6484 6485 6486 6487 6488 6489

		array = p->array;
		if (array)
			deactivate_task(p, task_rq(p));
		__setscheduler(p, SCHED_NORMAL, 0);
		if (array) {
			__activate_task(p, task_rq(p));
			resched_task(rq->curr);
		}

6490 6491
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6492 6493
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6494 6495 6496 6497
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6516
struct task_struct *curr_task(int cpu)
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6536
void set_curr_task(int cpu, struct task_struct *p)
6537 6538 6539 6540 6541
{
	cpu_curr(cpu) = p;
}

#endif