snapshot.c 72.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * linux/kernel/power/snapshot.c
4
 *
5
 * This file provides system snapshot/restore functionality for swsusp.
6
 *
P
Pavel Machek 已提交
7
 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 10
 */

11
#define pr_fmt(fmt) "PM: hibernation: " fmt
J
Joe Perches 已提交
12

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
M
Mike Rapoport 已提交
24
#include <linux/memblock.h>
25
#include <linux/nmi.h>
26 27 28
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
29
#include <linux/list.h>
30
#include <linux/slab.h>
31
#include <linux/compiler.h>
32
#include <linux/ktime.h>
33
#include <linux/set_memory.h>
34

35
#include <linux/uaccess.h>
36 37 38 39 40 41 42
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

43
#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
static bool hibernate_restore_protection;
static bool hibernate_restore_protection_active;

void enable_restore_image_protection(void)
{
	hibernate_restore_protection = true;
}

static inline void hibernate_restore_protection_begin(void)
{
	hibernate_restore_protection_active = hibernate_restore_protection;
}

static inline void hibernate_restore_protection_end(void)
{
	hibernate_restore_protection_active = false;
}

static inline void hibernate_restore_protect_page(void *page_address)
{
	if (hibernate_restore_protection_active)
		set_memory_ro((unsigned long)page_address, 1);
}

static inline void hibernate_restore_unprotect_page(void *page_address)
{
	if (hibernate_restore_protection_active)
		set_memory_rw((unsigned long)page_address, 1);
}
#else
static inline void hibernate_restore_protection_begin(void) {}
static inline void hibernate_restore_protection_end(void) {}
static inline void hibernate_restore_protect_page(void *page_address) {}
static inline void hibernate_restore_unprotect_page(void *page_address) {}
78
#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
79

80 81 82 83
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

84 85 86 87 88 89 90 91 92 93 94 95
/*
 * Number of bytes to reserve for memory allocations made by device drivers
 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 * cause image creation to fail (tunable via /sys/power/reserved_size).
 */
unsigned long reserved_size;

void __init hibernate_reserved_size_init(void)
{
	reserved_size = SPARE_PAGES * PAGE_SIZE;
}

96 97
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
98 99 100
 * When it is set to N, swsusp will do its best to ensure the image
 * size will not exceed N bytes, but if that is impossible, it will
 * try to create the smallest image possible.
101
 */
102 103 104 105
unsigned long image_size;

void __init hibernate_image_size_init(void)
{
106
	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
107
}
108

109 110
/*
 * List of PBEs needed for restoring the pages that were allocated before
111 112 113 114
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
115 116
struct pbe *restore_pblist;

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
} __packed;

/*
 * List of "safe" pages (ie. pages that were not used by the image kernel
 * before hibernation) that may be used as temporary storage for image kernel
 * memory contents.
 */
static struct linked_page *safe_pages_list;

133
/* Pointer to an auxiliary buffer (1 page) */
134
static void *buffer;
135

136 137 138 139 140
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

141
static unsigned int allocated_unsafe_pages;
142

143 144 145 146 147 148 149 150 151 152 153 154 155
/**
 * get_image_page - Allocate a page for a hibernation image.
 * @gfp_mask: GFP mask for the allocation.
 * @safe_needed: Get pages that were not used before hibernation (restore only)
 *
 * During image restoration, for storing the PBE list and the image data, we can
 * only use memory pages that do not conflict with the pages used before
 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 * using allocated_unsafe_pages.
 *
 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 * swsusp_free() can release it.
 */
156
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
157 158 159 160 161
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
162
		while (res && swsusp_page_is_free(virt_to_page(res))) {
163
			/* The page is unsafe, mark it for swsusp_free() */
164
			swsusp_set_page_forbidden(virt_to_page(res));
165
			allocated_unsafe_pages++;
166 167 168
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
169 170
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
171 172 173 174
	}
	return res;
}

175 176 177 178 179 180 181 182 183 184 185 186
static void *__get_safe_page(gfp_t gfp_mask)
{
	if (safe_pages_list) {
		void *ret = safe_pages_list;

		safe_pages_list = safe_pages_list->next;
		memset(ret, 0, PAGE_SIZE);
		return ret;
	}
	return get_image_page(gfp_mask, PG_SAFE);
}

187 188
unsigned long get_safe_page(gfp_t gfp_mask)
{
189
	return (unsigned long)__get_safe_page(gfp_mask);
190 191
}

192 193
static struct page *alloc_image_page(gfp_t gfp_mask)
{
194 195 196 197
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
198 199
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
200 201
	}
	return page;
202 203
}

204 205 206 207 208 209 210 211
static void recycle_safe_page(void *page_address)
{
	struct linked_page *lp = page_address;

	lp->next = safe_pages_list;
	safe_pages_list = lp;
}

212
/**
213 214 215 216 217 218
 * free_image_page - Free a page allocated for hibernation image.
 * @addr: Address of the page to free.
 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 *
 * The page to free should have been allocated by get_image_page() (page flags
 * set by it are affected).
219 220 221
 */
static inline void free_image_page(void *addr, int clear_nosave_free)
{
222 223 224 225 226 227
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

228
	swsusp_unset_page_forbidden(page);
229
	if (clear_nosave_free)
230
		swsusp_unset_page_free(page);
231 232

	__free_page(page);
233 234
}

235 236
static inline void free_list_of_pages(struct linked_page *list,
				      int clear_page_nosave)
237 238 239 240 241 242 243 244 245
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

246 247 248 249 250 251 252 253 254 255 256 257
/*
 * struct chain_allocator is used for allocating small objects out of
 * a linked list of pages called 'the chain'.
 *
 * The chain grows each time when there is no room for a new object in
 * the current page.  The allocated objects cannot be freed individually.
 * It is only possible to free them all at once, by freeing the entire
 * chain.
 *
 * NOTE: The chain allocator may be inefficient if the allocated objects
 * are not much smaller than PAGE_SIZE.
 */
258 259 260
struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
261
					   of the current page */
262 263 264 265
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

266 267
static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
		       int safe_needed)
268 269 270 271 272 273 274 275 276 277 278 279 280 281
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

282 283
		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
					get_image_page(ca->gfp_mask, PG_ANY);
284 285 286 287 288 289 290 291 292 293 294 295 296
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
297
 * Data types related to memory bitmaps.
298
 *
299 300 301 302 303
 * Memory bitmap is a structure consiting of many linked lists of
 * objects.  The main list's elements are of type struct zone_bitmap
 * and each of them corresonds to one zone.  For each zone bitmap
 * object there is a list of objects of type struct bm_block that
 * represent each blocks of bitmap in which information is stored.
304
 *
305 306 307 308
 * struct memory_bitmap contains a pointer to the main list of zone
 * bitmap objects, a struct bm_position used for browsing the bitmap,
 * and a pointer to the list of pages used for allocating all of the
 * zone bitmap objects and bitmap block objects.
309
 *
310 311 312 313
 * NOTE: It has to be possible to lay out the bitmap in memory
 * using only allocations of order 0.  Additionally, the bitmap is
 * designed to work with arbitrary number of zones (this is over the
 * top for now, but let's avoid making unnecessary assumptions ;-).
314
 *
315 316 317 318
 * struct zone_bitmap contains a pointer to a list of bitmap block
 * objects and a pointer to the bitmap block object that has been
 * most recently used for setting bits.  Additionally, it contains the
 * PFNs that correspond to the start and end of the represented zone.
319
 *
320 321 322 323
 * struct bm_block contains a pointer to the memory page in which
 * information is stored (in the form of a block of bitmap)
 * It also contains the pfns that correspond to the start and end of
 * the represented memory area.
324
 *
325 326 327
 * The memory bitmap is organized as a radix tree to guarantee fast random
 * access to the bits. There is one radix tree for each zone (as returned
 * from create_mem_extents).
328
 *
329 330 331 332
 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 * two linked lists for the nodes of the tree, one for the inner nodes and
 * one for the leave nodes. The linked leave nodes are used for fast linear
 * access of the memory bitmap.
333
 *
334
 * The struct rtree_node represents one node of the radix tree.
335 336 337 338
 */

#define BM_END_OF_MAP	(~0UL)

W
Wu Fengguang 已提交
339
#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
340 341
#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
342

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
/*
 * struct rtree_node is a wrapper struct to link the nodes
 * of the rtree together for easy linear iteration over
 * bits and easy freeing
 */
struct rtree_node {
	struct list_head list;
	unsigned long *data;
};

/*
 * struct mem_zone_bm_rtree represents a bitmap used for one
 * populated memory zone.
 */
struct mem_zone_bm_rtree {
	struct list_head list;		/* Link Zones together         */
	struct list_head nodes;		/* Radix Tree inner nodes      */
	struct list_head leaves;	/* Radix Tree leaves           */
	unsigned long start_pfn;	/* Zone start page frame       */
	unsigned long end_pfn;		/* Zone end page frame + 1     */
	struct rtree_node *rtree;	/* Radix Tree Root             */
	int levels;			/* Number of Radix Tree Levels */
	unsigned int blocks;		/* Number of Bitmap Blocks     */
};

368 369 370
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
371 372 373 374
	struct mem_zone_bm_rtree *zone;
	struct rtree_node *node;
	unsigned long node_pfn;
	int node_bit;
375 376 377
};

struct memory_bitmap {
378
	struct list_head zones;
379
	struct linked_page *p_list;	/* list of pages used to store zone
380 381
					   bitmap objects and bitmap block
					   objects */
382 383 384 385 386
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

387 388 389 390 391 392 393 394
#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
#if BITS_PER_LONG == 32
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
#else
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
#endif
#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)

395 396
/**
 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
397
 *
398 399 400
 * This function is used to allocate inner nodes as well as the
 * leave nodes of the radix tree. It also adds the node to the
 * corresponding linked list passed in by the *list parameter.
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
 */
static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
					   struct chain_allocator *ca,
					   struct list_head *list)
{
	struct rtree_node *node;

	node = chain_alloc(ca, sizeof(struct rtree_node));
	if (!node)
		return NULL;

	node->data = get_image_page(gfp_mask, safe_needed);
	if (!node->data)
		return NULL;

	list_add_tail(&node->list, list);

	return node;
}

421 422
/**
 * add_rtree_block - Add a new leave node to the radix tree.
423
 *
424 425 426
 * The leave nodes need to be allocated in order to keep the leaves
 * linked list in order. This is guaranteed by the zone->blocks
 * counter.
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
 */
static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
			   int safe_needed, struct chain_allocator *ca)
{
	struct rtree_node *node, *block, **dst;
	unsigned int levels_needed, block_nr;
	int i;

	block_nr = zone->blocks;
	levels_needed = 0;

	/* How many levels do we need for this block nr? */
	while (block_nr) {
		levels_needed += 1;
		block_nr >>= BM_RTREE_LEVEL_SHIFT;
	}

	/* Make sure the rtree has enough levels */
	for (i = zone->levels; i < levels_needed; i++) {
		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
					&zone->nodes);
		if (!node)
			return -ENOMEM;

		node->data[0] = (unsigned long)zone->rtree;
		zone->rtree = node;
		zone->levels += 1;
	}

	/* Allocate new block */
	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
	if (!block)
		return -ENOMEM;

	/* Now walk the rtree to insert the block */
	node = zone->rtree;
	dst = &zone->rtree;
	block_nr = zone->blocks;
	for (i = zone->levels; i > 0; i--) {
		int index;

		if (!node) {
			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
						&zone->nodes);
			if (!node)
				return -ENOMEM;
			*dst = node;
		}

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		dst = (struct rtree_node **)&((*dst)->data[index]);
		node = *dst;
	}

	zone->blocks += 1;
	*dst = block;

	return 0;
}

static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free);

491 492
/**
 * create_zone_bm_rtree - Create a radix tree for one zone.
493
 *
494 495 496
 * Allocated the mem_zone_bm_rtree structure and initializes it.
 * This function also allocated and builds the radix tree for the
 * zone.
497
 */
498 499 500 501 502
static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
						      int safe_needed,
						      struct chain_allocator *ca,
						      unsigned long start,
						      unsigned long end)
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
{
	struct mem_zone_bm_rtree *zone;
	unsigned int i, nr_blocks;
	unsigned long pages;

	pages = end - start;
	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
	if (!zone)
		return NULL;

	INIT_LIST_HEAD(&zone->nodes);
	INIT_LIST_HEAD(&zone->leaves);
	zone->start_pfn = start;
	zone->end_pfn = end;
	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);

	for (i = 0; i < nr_blocks; i++) {
		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
			return NULL;
		}
	}

	return zone;
}

529 530
/**
 * free_zone_bm_rtree - Free the memory of the radix tree.
531
 *
532 533 534
 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 * structure itself is not freed here nor are the rtree_node
 * structs.
535 536 537 538 539 540 541 542 543 544 545 546 547
 */
static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		free_image_page(node->data, clear_nosave_free);

	list_for_each_entry(node, &zone->leaves, list)
		free_image_page(node->data, clear_nosave_free);
}

548 549
static void memory_bm_position_reset(struct memory_bitmap *bm)
{
550 551 552 553 554 555
	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
				  list);
	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
				  struct rtree_node, list);
	bm->cur.node_pfn = 0;
	bm->cur.node_bit = 0;
556 557 558 559
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

560 561 562 563 564 565
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

566
/**
567 568
 * free_mem_extents - Free a list of memory extents.
 * @list: List of extents to free.
569
 */
570 571 572
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
573

574 575 576 577 578 579 580
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
581 582 583 584 585
 * create_mem_extents - Create a list of memory extents.
 * @list: List to put the extents into.
 * @gfp_mask: Mask to use for memory allocations.
 *
 * The extents represent contiguous ranges of PFNs.
586 587
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
588
{
589
	struct zone *zone;
590

591
	INIT_LIST_HEAD(list);
592

593
	for_each_populated_zone(zone) {
594 595 596 597
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
598
		zone_end = zone_end_pfn(zone);
599 600 601 602

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
603

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
635
	}
636 637

	return 0;
638 639 640
}

/**
641 642
 * memory_bm_create - Allocate memory for a memory bitmap.
 */
643 644
static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
			    int safe_needed)
645 646
{
	struct chain_allocator ca;
647 648 649
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
650 651

	chain_init(&ca, gfp_mask, safe_needed);
652
	INIT_LIST_HEAD(&bm->zones);
653

654 655 656
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
657

658
	list_for_each_entry(ext, &mem_extents, hook) {
659 660 661 662
		struct mem_zone_bm_rtree *zone;

		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
					    ext->start, ext->end);
663 664
		if (!zone) {
			error = -ENOMEM;
665
			goto Error;
666
		}
667
		list_add_tail(&zone->list, &bm->zones);
668
	}
669

670 671
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
672 673 674
 Exit:
	free_mem_extents(&mem_extents);
	return error;
675

676
 Error:
677 678
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
679
	goto Exit;
680 681 682
}

/**
683 684 685
 * memory_bm_free - Free memory occupied by the memory bitmap.
 * @bm: Memory bitmap.
 */
686 687
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
688
	struct mem_zone_bm_rtree *zone;
689

690 691 692
	list_for_each_entry(zone, &bm->zones, list)
		free_zone_bm_rtree(zone, clear_nosave_free);

693
	free_list_of_pages(bm->p_list, clear_nosave_free);
694

695
	INIT_LIST_HEAD(&bm->zones);
696 697 698
}

/**
699
 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
700
 *
701 702 703 704 705
 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 *
 * Walk the radix tree to find the page containing the bit that represents @pfn
 * and return the position of the bit in @addr and @bit_nr.
706
 */
707 708
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
			      void **addr, unsigned int *bit_nr)
709 710 711 712 713
{
	struct mem_zone_bm_rtree *curr, *zone;
	struct rtree_node *node;
	int i, block_nr;

714 715 716 717 718
	zone = bm->cur.zone;

	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
		goto zone_found;

719 720 721 722 723 724 725 726 727 728 729 730 731
	zone = NULL;

	/* Find the right zone */
	list_for_each_entry(curr, &bm->zones, list) {
		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
			zone = curr;
			break;
		}
	}

	if (!zone)
		return -EFAULT;

732
zone_found:
733
	/*
734 735
	 * We have found the zone. Now walk the radix tree to find the leaf node
	 * for our PFN.
736
	 */
737 738 739 740 741 742

	/*
	 * If the zone we wish to scan is the the current zone and the
	 * pfn falls into the current node then we do not need to walk
	 * the tree.
	 */
743
	node = bm->cur.node;
744 745
	if (zone == bm->cur.zone &&
	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
746 747
		goto node_found;

748 749 750 751 752 753 754 755 756 757 758 759
	node      = zone->rtree;
	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;

	for (i = zone->levels; i > 0; i--) {
		int index;

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		BUG_ON(node->data[index] == 0);
		node = (struct rtree_node *)node->data[index];
	}

760 761 762 763 764 765
node_found:
	/* Update last position */
	bm->cur.zone = zone;
	bm->cur.node = node;
	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;

766 767 768 769 770 771 772
	/* Set return values */
	*addr = node->data;
	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;

	return 0;
}

773 774 775 776
static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
777
	int error;
778

779 780
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
781 782 783
	set_bit(bit, addr);
}

784 785 786 787 788 789 790
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
791 792 793
	if (!error)
		set_bit(bit, addr);

794 795 796
	return error;
}

797 798 799 800
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
801
	int error;
802

803 804
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
805 806 807
	clear_bit(bit, addr);
}

808 809 810 811 812 813 814 815
static void memory_bm_clear_current(struct memory_bitmap *bm)
{
	int bit;

	bit = max(bm->cur.node_bit - 1, 0);
	clear_bit(bit, bm->cur.node->data);
}

816 817 818 819
static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
820
	int error;
821

822 823
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
824
	return test_bit(bit, addr);
825 826
}

827 828 829 830
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
831

832
	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
833 834
}

835
/*
836
 * rtree_next_node - Jump to the next leaf node.
837
 *
838 839 840 841
 * Set the position to the beginning of the next node in the
 * memory bitmap. This is either the next node in the current
 * zone's radix tree or the first node in the radix tree of the
 * next zone.
842
 *
843
 * Return true if there is a next node, false otherwise.
844 845 846
 */
static bool rtree_next_node(struct memory_bitmap *bm)
{
847 848 849
	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
		bm->cur.node = list_entry(bm->cur.node->list.next,
					  struct rtree_node, list);
850 851
		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
		bm->cur.node_bit  = 0;
852
		touch_softlockup_watchdog();
853 854 855 856
		return true;
	}

	/* No more nodes, goto next zone */
857 858
	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
		bm->cur.zone = list_entry(bm->cur.zone->list.next,
859 860 861 862 863 864 865 866 867 868 869 870
				  struct mem_zone_bm_rtree, list);
		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
					  struct rtree_node, list);
		bm->cur.node_pfn = 0;
		bm->cur.node_bit = 0;
		return true;
	}

	/* No more zones */
	return false;
}

871
/**
872 873
 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 * @bm: Memory bitmap.
874
 *
875 876 877
 * Starting from the last returned position this function searches for the next
 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 * set, BM_END_OF_MAP is returned.
878
 *
879 880
 * It is required to run memory_bm_position_reset() before the first call to
 * this function for the given memory bitmap.
881
 */
882
static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
{
	unsigned long bits, pfn, pages;
	int bit;

	do {
		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
		bit	  = find_next_bit(bm->cur.node->data, bits,
					  bm->cur.node_bit);
		if (bit < bits) {
			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
			bm->cur.node_bit = bit + 1;
			return pfn;
		}
	} while (rtree_next_node(bm));

	return BM_END_OF_MAP;
}

902 903 904
/*
 * This structure represents a range of page frames the contents of which
 * should not be saved during hibernation.
905 906 907 908 909 910 911 912 913
 */
struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		recycle_safe_page(node->data);

	list_for_each_entry(node, &zone->leaves, list)
		recycle_safe_page(node->data);
}

static void memory_bm_recycle(struct memory_bitmap *bm)
{
	struct mem_zone_bm_rtree *zone;
	struct linked_page *p_list;

	list_for_each_entry(zone, &bm->zones, list)
		recycle_zone_bm_rtree(zone);

	p_list = bm->p_list;
	while (p_list) {
		struct linked_page *lp = p_list;

		p_list = lp->next;
		recycle_safe_page(lp);
	}
}

942
/**
943 944 945 946
 * register_nosave_region - Register a region of unsaveable memory.
 *
 * Register a range of page frames the contents of which should not be saved
 * during hibernation (to be used in the early initialization code).
947
 */
948 949
void __init __register_nosave_region(unsigned long start_pfn,
				     unsigned long end_pfn, int use_kmalloc)
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
965
	if (use_kmalloc) {
966
		/* During init, this shouldn't fail */
967 968
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
969
	} else {
970
		/* This allocation cannot fail */
971 972
		region = memblock_alloc(sizeof(struct nosave_region),
					SMP_CACHE_BYTES);
973 974 975
		if (!region)
			panic("%s: Failed to allocate %zu bytes\n", __func__,
			      sizeof(struct nosave_region));
976
	}
977 978 979 980
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
J
Joe Perches 已提交
981
	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
982 983
		(unsigned long long) start_pfn << PAGE_SHIFT,
		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
1037 1038 1039 1040 1041
 * mark_nosave_pages - Mark pages that should not be saved.
 * @bm: Memory bitmap.
 *
 * Set the bits in @bm that correspond to the page frames the contents of which
 * should not be saved.
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
 */
static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

J
Joe Perches 已提交
1053
		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1054 1055 1056
			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
				- 1);
1057 1058

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1059 1060 1061 1062 1063 1064 1065 1066 1067
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
1068 1069 1070 1071
	}
}

/**
1072 1073 1074 1075 1076 1077
 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
 *
 * Create bitmaps needed for marking page frames that should not be saved and
 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
 * only modified if everything goes well, because we don't want the bits to be
 * touched before both bitmaps are set up.
1078 1079 1080 1081 1082 1083
 */
int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

1084 1085 1086 1087
	if (forbidden_pages_map && free_pages_map)
		return 0;
	else
		BUG_ON(forbidden_pages_map || free_pages_map);
1088

1089
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1090 1091 1092
	if (!bm1)
		return -ENOMEM;

1093
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1094 1095 1096
	if (error)
		goto Free_first_object;

1097
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1098 1099 1100
	if (!bm2)
		goto Free_first_bitmap;

1101
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1102 1103 1104 1105 1106 1107 1108
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

J
Joe Perches 已提交
1109
	pr_debug("Basic memory bitmaps created\n");
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
1123 1124 1125 1126 1127
 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
 *
 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
 * auxiliary pointers are necessary so that the bitmaps themselves are not
 * referred to while they are being freed.
1128 1129 1130 1131 1132
 */
void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

1133 1134
	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
		return;
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

J
Joe Perches 已提交
1145
	pr_debug("Basic memory bitmaps freed\n");
1146 1147
}

1148 1149 1150 1151 1152 1153 1154 1155
void clear_free_pages(void)
{
	struct memory_bitmap *bm = free_pages_map;
	unsigned long pfn;

	if (WARN_ON(!(free_pages_map)))
		return;

1156 1157
	if (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) || want_init_on_free()) {
		memory_bm_position_reset(bm);
1158
		pfn = memory_bm_next_pfn(bm);
1159 1160 1161 1162 1163 1164 1165 1166
		while (pfn != BM_END_OF_MAP) {
			if (pfn_valid(pfn))
				clear_highpage(pfn_to_page(pfn));

			pfn = memory_bm_next_pfn(bm);
		}
		memory_bm_position_reset(bm);
		pr_info("free pages cleared after restore\n");
1167 1168 1169
	}
}

1170
/**
1171 1172 1173 1174 1175 1176
 * snapshot_additional_pages - Estimate the number of extra pages needed.
 * @zone: Memory zone to carry out the computation for.
 *
 * Estimate the number of additional pages needed for setting up a hibernation
 * image data structures for @zone (usually, the returned value is greater than
 * the exact number).
1177 1178 1179
 */
unsigned int snapshot_additional_pages(struct zone *zone)
{
1180
	unsigned int rtree, nodes;
1181

1182 1183 1184 1185 1186 1187 1188 1189
	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
			      LINKED_PAGE_DATA_SIZE);
	while (nodes > 1) {
		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
		rtree += nodes;
	}

1190
	return 2 * rtree;
1191 1192
}

1193 1194
#ifdef CONFIG_HIGHMEM
/**
1195 1196 1197
 * count_free_highmem_pages - Compute the total number of free highmem pages.
 *
 * The returned number is system-wide.
1198 1199 1200 1201 1202 1203
 */
static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

1204 1205
	for_each_populated_zone(zone)
		if (is_highmem(zone))
1206
			cnt += zone_page_state(zone, NR_FREE_PAGES);
1207 1208 1209 1210 1211

	return cnt;
}

/**
1212 1213 1214
 * saveable_highmem_page - Check if a highmem page is saveable.
 *
 * Determine whether a highmem page should be included in a hibernation image.
1215
 *
1216 1217
 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 * and it isn't part of a free chunk of pages.
1218
 */
1219
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1220 1221 1222 1223 1224 1225
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

1226 1227
	page = pfn_to_online_page(pfn);
	if (!page || page_zone(page) != zone)
1228
		return NULL;
1229 1230 1231

	BUG_ON(!PageHighMem(page));

1232 1233 1234 1235
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
		return NULL;

	if (PageReserved(page) || PageOffline(page))
1236 1237
		return NULL;

1238 1239 1240
	if (page_is_guard(page))
		return NULL;

1241 1242 1243 1244
	return page;
}

/**
1245
 * count_highmem_pages - Compute the total number of saveable highmem pages.
1246
 */
1247
static unsigned int count_highmem_pages(void)
1248 1249 1250 1251
{
	struct zone *zone;
	unsigned int n = 0;

1252
	for_each_populated_zone(zone) {
1253 1254 1255 1256 1257 1258
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
1259
		max_zone_pfn = zone_end_pfn(zone);
1260
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1261
			if (saveable_highmem_page(zone, pfn))
1262 1263 1264 1265 1266
				n++;
	}
	return n;
}
#else
1267 1268 1269 1270
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
1271 1272
#endif /* CONFIG_HIGHMEM */

1273
/**
1274 1275 1276 1277
 * saveable_page - Check if the given page is saveable.
 *
 * Determine whether a non-highmem page should be included in a hibernation
 * image.
1278
 *
1279 1280 1281
 * We should save the page if it isn't Nosave, and is not in the range
 * of pages statically defined as 'unsaveable', and it isn't part of
 * a free chunk of pages.
1282
 */
1283
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1284
{
P
Pavel Machek 已提交
1285
	struct page *page;
1286 1287

	if (!pfn_valid(pfn))
1288
		return NULL;
1289

1290 1291
	page = pfn_to_online_page(pfn);
	if (!page || page_zone(page) != zone)
1292
		return NULL;
1293

1294 1295
	BUG_ON(PageHighMem(page));

1296
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1297
		return NULL;
1298

1299 1300 1301
	if (PageOffline(page))
		return NULL;

1302 1303
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1304
		return NULL;
1305

1306 1307 1308
	if (page_is_guard(page))
		return NULL;

1309
	return page;
1310 1311
}

1312
/**
1313
 * count_data_pages - Compute the total number of saveable non-highmem pages.
1314
 */
1315
static unsigned int count_data_pages(void)
1316 1317
{
	struct zone *zone;
1318
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
1319
	unsigned int n = 0;
1320

1321
	for_each_populated_zone(zone) {
1322 1323
		if (is_highmem(zone))
			continue;
1324

1325
		mark_free_pages(zone);
1326
		max_zone_pfn = zone_end_pfn(zone);
1327
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1328
			if (saveable_page(zone, pfn))
1329
				n++;
1330
	}
1331
	return n;
1332 1333
}

1334 1335
/*
 * This is needed, because copy_page and memcpy are not usable for copying
1336 1337 1338
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
1339 1340 1341 1342 1343 1344 1345
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

1346
/**
1347 1348 1349
 * safe_copy_page - Copy a page in a safe way.
 *
 * Check if the page we are going to copy is marked as present in the kernel
1350 1351 1352
 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
 * always returns 'true'.
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}

1365
#ifdef CONFIG_HIGHMEM
1366
static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1367 1368
{
	return is_highmem(zone) ?
1369
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1370 1371
}

1372
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1373 1374 1375 1376 1377 1378 1379
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
1380 1381
		src = kmap_atomic(s_page);
		dst = kmap_atomic(d_page);
1382
		do_copy_page(dst, src);
1383 1384
		kunmap_atomic(dst);
		kunmap_atomic(src);
1385 1386
	} else {
		if (PageHighMem(d_page)) {
1387 1388
			/*
			 * The page pointed to by src may contain some kernel
1389 1390
			 * data modified by kmap_atomic()
			 */
1391
			safe_copy_page(buffer, s_page);
1392
			dst = kmap_atomic(d_page);
1393
			copy_page(dst, buffer);
1394
			kunmap_atomic(dst);
1395
		} else {
1396
			safe_copy_page(page_address(d_page), s_page);
1397 1398 1399 1400
		}
	}
}
#else
1401
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1402

1403
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1404
{
1405 1406
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1407 1408 1409
}
#endif /* CONFIG_HIGHMEM */

1410 1411
static void copy_data_pages(struct memory_bitmap *copy_bm,
			    struct memory_bitmap *orig_bm)
1412 1413
{
	struct zone *zone;
1414
	unsigned long pfn;
1415

1416
	for_each_populated_zone(zone) {
1417 1418
		unsigned long max_zone_pfn;

1419
		mark_free_pages(zone);
1420
		max_zone_pfn = zone_end_pfn(zone);
1421
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1422
			if (page_is_saveable(zone, pfn))
1423
				memory_bm_set_bit(orig_bm, pfn);
1424
	}
1425 1426
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1427
	for(;;) {
1428
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1429 1430 1431 1432
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1433 1434
}

1435 1436 1437 1438
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1439 1440 1441 1442
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
1443
static unsigned int alloc_normal, alloc_highmem;
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1458

1459
/**
1460
 * swsusp_free - Free pages allocated for hibernation image.
1461
 *
1462 1463
 * Image pages are alocated before snapshot creation, so they need to be
 * released after resume.
1464 1465 1466
 */
void swsusp_free(void)
{
1467
	unsigned long fb_pfn, fr_pfn;
1468

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	if (!forbidden_pages_map || !free_pages_map)
		goto out;

	memory_bm_position_reset(forbidden_pages_map);
	memory_bm_position_reset(free_pages_map);

loop:
	fr_pfn = memory_bm_next_pfn(free_pages_map);
	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);

	/*
	 * Find the next bit set in both bitmaps. This is guaranteed to
	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
	 */
	do {
		if (fb_pfn < fr_pfn)
			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
		if (fr_pfn < fb_pfn)
			fr_pfn = memory_bm_next_pfn(free_pages_map);
	} while (fb_pfn != fr_pfn);

	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
		struct page *page = pfn_to_page(fr_pfn);

		memory_bm_clear_current(forbidden_pages_map);
		memory_bm_clear_current(free_pages_map);
1495
		hibernate_restore_unprotect_page(page_address(page));
1496 1497
		__free_page(page);
		goto loop;
1498
	}
1499 1500

out:
1501 1502
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1503
	restore_pblist = NULL;
1504
	buffer = NULL;
1505 1506
	alloc_normal = 0;
	alloc_highmem = 0;
1507
	hibernate_restore_protection_end();
1508 1509
}

1510 1511 1512 1513
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1514
/**
1515
 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1516 1517
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1518
 *
1519 1520 1521 1522 1523 1524 1525
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1526 1527 1528 1529
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1530
			break;
1531 1532 1533 1534 1535
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1536 1537 1538 1539 1540 1541 1542
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

1543 1544
static unsigned long preallocate_image_memory(unsigned long nr_pages,
					      unsigned long avail_normal)
1545
{
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	unsigned long alloc;

	if (avail_normal <= alloc_normal)
		return 0;

	alloc = avail_normal - alloc_normal;
	if (nr_pages < alloc)
		alloc = nr_pages;

	return preallocate_image_pages(alloc, GFP_IMAGE);
1556 1557 1558 1559 1560 1561 1562 1563 1564
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
1565
 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1566
 */
1567 1568
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
1569
	return div64_u64(x * multiplier, base);
1570
}
1571

1572
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1573 1574
						  unsigned long highmem,
						  unsigned long total)
1575
{
1576 1577 1578
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1579
}
1580 1581 1582 1583 1584 1585 1586
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1587 1588
							 unsigned long highmem,
							 unsigned long total)
1589 1590 1591 1592
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1593

1594
/**
1595
 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1596
 */
1597
static unsigned long free_unnecessary_pages(void)
1598
{
1599
	unsigned long save, to_free_normal, to_free_highmem, free;
1600

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
	save = count_data_pages();
	if (alloc_normal >= save) {
		to_free_normal = alloc_normal - save;
		save = 0;
	} else {
		to_free_normal = 0;
		save -= alloc_normal;
	}
	save += count_highmem_pages();
	if (alloc_highmem >= save) {
		to_free_highmem = alloc_highmem - save;
1612 1613
	} else {
		to_free_highmem = 0;
1614 1615 1616 1617 1618
		save -= alloc_highmem;
		if (to_free_normal > save)
			to_free_normal -= save;
		else
			to_free_normal = 0;
1619
	}
1620
	free = to_free_normal + to_free_highmem;
1621 1622 1623

	memory_bm_position_reset(&copy_bm);

1624
	while (to_free_normal > 0 || to_free_highmem > 0) {
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
1644 1645

	return free;
1646 1647
}

1648
/**
1649
 * minimum_image_size - Estimate the minimum acceptable size of an image.
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1661
 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1662 1663 1664 1665 1666
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

1667
	size = global_node_page_state(NR_SLAB_RECLAIMABLE)
M
Mel Gorman 已提交
1668 1669 1670
		+ global_node_page_state(NR_ACTIVE_ANON)
		+ global_node_page_state(NR_INACTIVE_ANON)
		+ global_node_page_state(NR_ACTIVE_FILE)
1671
		+ global_node_page_state(NR_INACTIVE_FILE);
1672 1673 1674 1675

	return saveable <= size ? 0 : saveable - size;
}

1676
/**
1677
 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1678 1679 1680 1681 1682
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
1683
 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1684
 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1685 1686
 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
 * total number of available page frames and allocate at least
1687
 *
1688 1689
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1690 1691 1692 1693 1694
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1695 1696
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1697
 */
1698
int hibernate_preallocate_memory(void)
1699 1700
{
	struct zone *zone;
1701
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1702
	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1703
	ktime_t start, stop;
1704
	int error;
1705

1706
	pr_info("Preallocating image memory\n");
1707
	start = ktime_get();
1708

1709
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1710 1711
	if (error) {
		pr_err("Cannot allocate original bitmap\n");
1712
		goto err_out;
1713
	}
1714 1715

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1716 1717
	if (error) {
		pr_err("Cannot allocate copy bitmap\n");
1718
		goto err_out;
1719
	}
1720 1721 1722 1723

	alloc_normal = 0;
	alloc_highmem = 0;

1724
	/* Count the number of saveable data pages. */
1725
	save_highmem = count_highmem_pages();
1726
	saveable = count_data_pages();
1727

1728 1729 1730 1731 1732
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1733 1734
	saveable += save_highmem;
	highmem = save_highmem;
1735 1736 1737 1738 1739 1740 1741 1742
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
1743
	avail_normal = count;
1744 1745 1746
	count += highmem;
	count -= totalreserve_pages;

1747 1748 1749
	/* Add number of pages required for page keys (s390 only). */
	size += page_key_additional_pages(saveable);

1750
	/* Compute the maximum number of saveable pages to leave in memory. */
1751 1752
	max_size = (count - (size + PAGES_FOR_IO)) / 2
			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1753
	/* Compute the desired number of image pages specified by image_size. */
1754 1755 1756 1757
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
1758 1759 1760
	 * If the desired number of image pages is at least as large as the
	 * current number of saveable pages in memory, allocate page frames for
	 * the image and we're done.
1761
	 */
1762 1763
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
1764
		pages += preallocate_image_memory(saveable - pages, avail_normal);
1765
		goto out;
1766
	}
1767

1768 1769
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
1770 1771 1772 1773 1774 1775 1776 1777 1778
	/*
	 * To avoid excessive pressure on the normal zone, leave room in it to
	 * accommodate an image of the minimum size (unless it's already too
	 * small, in which case don't preallocate pages from it at all).
	 */
	if (avail_normal > pages)
		avail_normal -= pages;
	else
		avail_normal = 0;
1779 1780 1781
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1794 1795
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1796 1797
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
1798 1799 1800 1801 1802
	alloc = count - max_size;
	if (alloc > pages_highmem)
		alloc -= pages_highmem;
	else
		alloc = 0;
1803 1804 1805 1806 1807 1808
	pages = preallocate_image_memory(alloc, avail_normal);
	if (pages < alloc) {
		/* We have exhausted non-highmem pages, try highmem. */
		alloc -= pages;
		pages += pages_highmem;
		pages_highmem = preallocate_image_highmem(alloc);
1809 1810 1811
		if (pages_highmem < alloc) {
			pr_err("Image allocation is %lu pages short\n",
				alloc - pages_highmem);
1812
			goto err_out;
1813
		}
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
		pages += pages_highmem;
		/*
		 * size is the desired number of saveable pages to leave in
		 * memory, so try to preallocate (all memory - size) pages.
		 */
		alloc = (count - pages) - size;
		pages += preallocate_image_highmem(alloc);
	} else {
		/*
		 * There are approximately max_size saveable pages at this point
		 * and we want to reduce this number down to size.
		 */
		alloc = max_size - size;
		size = preallocate_highmem_fraction(alloc, highmem, count);
		pages_highmem += size;
		alloc -= size;
		size = preallocate_image_memory(alloc, avail_normal);
		pages_highmem += preallocate_image_highmem(alloc - size);
		pages += pages_highmem + size;
	}
1834

1835 1836 1837 1838 1839
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
1840
	pages -= free_unnecessary_pages();
1841 1842

 out:
1843
	stop = ktime_get();
1844
	pr_info("Allocated %lu pages for snapshot\n", pages);
1845
	swsusp_show_speed(start, stop, pages, "Allocated");
1846 1847

	return 0;
1848 1849 1850 1851

 err_out:
	swsusp_free();
	return -ENOMEM;
1852 1853
}

1854 1855
#ifdef CONFIG_HIGHMEM
/**
1856 1857 1858 1859 1860
 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
 *
 * Compute the number of non-highmem pages that will be necessary for creating
 * copies of highmem pages.
 */
1861 1862
static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1863
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1864 1865 1866 1867 1868 1869 1870 1871 1872

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
1873
static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1874
#endif /* CONFIG_HIGHMEM */
1875 1876

/**
1877
 * enough_free_mem - Check if there is enough free memory for the image.
1878
 */
1879
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1880
{
1881
	struct zone *zone;
1882
	unsigned int free = alloc_normal;
1883

1884
	for_each_populated_zone(zone)
1885
		if (!is_highmem(zone))
1886
			free += zone_page_state(zone, NR_FREE_PAGES);
1887

1888
	nr_pages += count_pages_for_highmem(nr_highmem);
J
Joe Perches 已提交
1889 1890
	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
		 nr_pages, PAGES_FOR_IO, free);
1891

1892
	return free > nr_pages + PAGES_FOR_IO;
1893 1894
}

1895 1896
#ifdef CONFIG_HIGHMEM
/**
1897 1898 1899 1900
 * get_highmem_buffer - Allocate a buffer for highmem pages.
 *
 * If there are some highmem pages in the hibernation image, we may need a
 * buffer to copy them and/or load their data.
1901 1902 1903
 */
static inline int get_highmem_buffer(int safe_needed)
{
M
Mel Gorman 已提交
1904
	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1905 1906 1907 1908
	return buffer ? 0 : -ENOMEM;
}

/**
1909 1910 1911 1912
 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
 *
 * Try to allocate as many pages as needed, but if the number of free highmem
 * pages is less than that, allocate them all.
1913
 */
1914 1915
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int nr_highmem)
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

1926
		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1927 1928 1929 1930 1931 1932 1933
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

1934 1935
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int n) { return 0; }
1936 1937 1938
#endif /* CONFIG_HIGHMEM */

/**
1939
 * swsusp_alloc - Allocate memory for hibernation image.
1940
 *
1941 1942 1943
 * We first try to allocate as many highmem pages as there are
 * saveable highmem pages in the system.  If that fails, we allocate
 * non-highmem pages for the copies of the remaining highmem ones.
1944
 *
1945 1946 1947
 * In this approach it is likely that the copies of highmem pages will
 * also be located in the high memory, because of the way in which
 * copy_data_pages() works.
1948
 */
1949
static int swsusp_alloc(struct memory_bitmap *copy_bm,
1950
			unsigned int nr_pages, unsigned int nr_highmem)
1951
{
1952
	if (nr_highmem > 0) {
1953
		if (get_highmem_buffer(PG_ANY))
1954 1955 1956 1957 1958
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1959
	}
1960 1961 1962 1963 1964
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

M
Mel Gorman 已提交
1965
			page = alloc_image_page(GFP_ATOMIC);
1966 1967 1968 1969
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
1970
	}
1971

1972
	return 0;
1973

1974
 err_out:
1975
	swsusp_free();
1976
	return -ENOMEM;
1977 1978
}

1979
asmlinkage __visible int swsusp_save(void)
1980
{
1981
	unsigned int nr_pages, nr_highmem;
1982

1983
	pr_info("Creating image:\n");
1984

1985
	drain_local_pages(NULL);
1986
	nr_pages = count_data_pages();
1987
	nr_highmem = count_highmem_pages();
J
Joe Perches 已提交
1988
	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1989

1990
	if (!enough_free_mem(nr_pages, nr_highmem)) {
J
Joe Perches 已提交
1991
		pr_err("Not enough free memory\n");
1992 1993 1994
		return -ENOMEM;
	}

1995
	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
J
Joe Perches 已提交
1996
		pr_err("Memory allocation failed\n");
1997
		return -ENOMEM;
1998
	}
1999

2000 2001
	/*
	 * During allocating of suspend pagedir, new cold pages may appear.
2002 2003
	 * Kill them.
	 */
2004
	drain_local_pages(NULL);
2005
	copy_data_pages(&copy_bm, &orig_bm);
2006 2007 2008 2009 2010 2011 2012

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

2013
	nr_pages += nr_highmem;
2014
	nr_copy_pages = nr_pages;
2015
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2016

2017
	pr_info("Image created (%d pages copied)\n", nr_pages);
2018

2019 2020
	return 0;
}
2021

2022 2023
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
2024
{
2025
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2026
	info->version_code = LINUX_VERSION_CODE;
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

2046 2047 2048 2049 2050
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

2051 2052 2053
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
2054
	info->num_physpages = get_num_physpages();
2055
	info->image_pages = nr_copy_pages;
2056
	info->pages = snapshot_get_image_size();
2057 2058
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
2059
	return init_header_complete(info);
2060 2061 2062
}

/**
2063 2064 2065 2066 2067 2068
 * pack_pfns - Prepare PFNs for saving.
 * @bm: Memory bitmap.
 * @buf: Memory buffer to store the PFNs in.
 *
 * PFNs corresponding to set bits in @bm are stored in the area of memory
 * pointed to by @buf (1 page at a time).
2069
 */
2070
static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2071 2072 2073
{
	int j;

2074
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2075 2076
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
2077
			break;
2078 2079
		/* Save page key for data page (s390 only). */
		page_key_read(buf + j);
2080 2081 2082 2083
	}
}

/**
2084 2085
 * snapshot_read_next - Get the address to read the next image page from.
 * @handle: Snapshot handle to be used for the reading.
2086
 *
2087 2088 2089
 * On the first call, @handle should point to a zeroed snapshot_handle
 * structure.  The structure gets populated then and a pointer to it should be
 * passed to this function every next time.
2090
 *
2091 2092 2093
 * On success, the function returns a positive number.  Then, the caller
 * is allowed to read up to the returned number of bytes from the memory
 * location computed by the data_of() macro.
2094
 *
2095 2096 2097
 * The function returns 0 to indicate the end of the data stream condition,
 * and negative numbers are returned on errors.  If that happens, the structure
 * pointed to by @handle is not updated and should not be used any more.
2098
 */
J
Jiri Slaby 已提交
2099
int snapshot_read_next(struct snapshot_handle *handle)
2100
{
2101
	if (handle->cur > nr_meta_pages + nr_copy_pages)
2102
		return 0;
2103

2104 2105
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
2106
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2107 2108 2109
		if (!buffer)
			return -ENOMEM;
	}
J
Jiri Slaby 已提交
2110
	if (!handle->cur) {
2111 2112 2113 2114 2115
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
2116
		handle->buffer = buffer;
2117 2118
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
J
Jiri Slaby 已提交
2119
	} else if (handle->cur <= nr_meta_pages) {
2120
		clear_page(buffer);
J
Jiri Slaby 已提交
2121 2122 2123
		pack_pfns(buffer, &orig_bm);
	} else {
		struct page *page;
2124

J
Jiri Slaby 已提交
2125 2126
		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
		if (PageHighMem(page)) {
2127 2128
			/*
			 * Highmem pages are copied to the buffer,
J
Jiri Slaby 已提交
2129 2130 2131 2132
			 * because we can't return with a kmapped
			 * highmem page (we may not be called again).
			 */
			void *kaddr;
2133

2134
			kaddr = kmap_atomic(page);
2135
			copy_page(buffer, kaddr);
2136
			kunmap_atomic(kaddr);
J
Jiri Slaby 已提交
2137 2138 2139
			handle->buffer = buffer;
		} else {
			handle->buffer = page_address(page);
2140 2141
		}
	}
J
Jiri Slaby 已提交
2142 2143
	handle->cur++;
	return PAGE_SIZE;
2144 2145
}

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
static void duplicate_memory_bitmap(struct memory_bitmap *dst,
				    struct memory_bitmap *src)
{
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
	}
}

2159
/**
2160 2161 2162 2163
 * mark_unsafe_pages - Mark pages that were used before hibernation.
 *
 * Mark the pages that cannot be used for storing the image during restoration,
 * because they conflict with the pages that had been used before hibernation.
2164
 */
2165
static void mark_unsafe_pages(struct memory_bitmap *bm)
2166
{
2167
	unsigned long pfn;
2168

2169 2170 2171 2172 2173 2174
	/* Clear the "free"/"unsafe" bit for all PFNs */
	memory_bm_position_reset(free_pages_map);
	pfn = memory_bm_next_pfn(free_pages_map);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_clear_current(free_pages_map);
		pfn = memory_bm_next_pfn(free_pages_map);
2175 2176
	}

2177 2178
	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
	duplicate_memory_bitmap(free_pages_map, bm);
2179

2180
	allocated_unsafe_pages = 0;
2181 2182
}

2183
static int check_header(struct swsusp_info *info)
2184
{
2185
	char *reason;
2186

2187
	reason = check_image_kernel(info);
2188
	if (!reason && info->num_physpages != get_num_physpages())
2189 2190
		reason = "memory size";
	if (reason) {
J
Joe Perches 已提交
2191
		pr_err("Image mismatch: %s\n", reason);
2192 2193 2194 2195 2196 2197
		return -EPERM;
	}
	return 0;
}

/**
2198
 * load header - Check the image header and copy the data from it.
2199
 */
2200
static int load_header(struct swsusp_info *info)
2201 2202 2203
{
	int error;

2204
	restore_pblist = NULL;
2205 2206 2207 2208 2209 2210 2211 2212 2213
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
2214 2215 2216 2217 2218 2219
 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
 * @bm: Memory bitmap.
 * @buf: Area of memory containing the PFNs.
 *
 * For each element of the array pointed to by @buf (1 page at a time), set the
 * corresponding bit in @bm.
2220
 */
2221
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2222 2223 2224
{
	int j;

2225 2226 2227 2228
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

2229 2230 2231
		/* Extract and buffer page key for data page (s390 only). */
		page_key_memorize(buf + j);

2232
		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2233 2234 2235
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
2236
	}
2237 2238

	return 0;
2239 2240
}

2241
#ifdef CONFIG_HIGHMEM
2242 2243
/*
 * struct highmem_pbe is used for creating the list of highmem pages that
2244 2245 2246 2247 2248 2249 2250 2251 2252
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

2253 2254
/*
 * List of highmem PBEs needed for restoring the highmem pages that were
2255 2256 2257 2258 2259 2260 2261
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
2262 2263 2264 2265
 * count_highmem_image_pages - Compute the number of highmem pages in the image.
 * @bm: Memory bitmap.
 *
 * The bits in @bm that correspond to image pages are assumed to be set.
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
 */
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
/**
 * prepare_highmem_image - Allocate memory for loading highmem data from image.
 * @bm: Pointer to an uninitialized memory bitmap structure.
 * @nr_highmem_p: Pointer to the number of highmem image pages.
 *
 * Try to allocate as many highmem pages as there are highmem image pages
 * (@nr_highmem_p points to the variable containing the number of highmem image
 * pages).  The pages that are "safe" (ie. will not be overwritten when the
 * hibernation image is restored entirely) have the corresponding bits set in
 * @bm (it must be unitialized).
 *
 * NOTE: This function should not be called if there are no highmem image pages.
 */
2300 2301
static int prepare_highmem_image(struct memory_bitmap *bm,
				 unsigned int *nr_highmem_p)
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
2322
		if (!swsusp_page_is_free(page)) {
2323 2324 2325 2326 2327
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
2328 2329
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
2330 2331 2332 2333 2334 2335
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

2336 2337
static struct page *last_highmem_page;

2338
/**
2339 2340 2341 2342
 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
 *
 * For a given highmem image page get a buffer that suspend_write_next() should
 * return to its caller to write to.
2343
 *
2344 2345 2346 2347
 * If the page is to be saved to its "original" page frame or a copy of
 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
 * the copy of the page is to be made in normal memory, so the address of
 * the copy is returned.
2348
 *
2349 2350 2351 2352 2353 2354
 * If @buffer is returned, the caller of suspend_write_next() will write
 * the page's contents to @buffer, so they will have to be copied to the
 * right location on the next call to suspend_write_next() and it is done
 * with the help of copy_last_highmem_page().  For this purpose, if
 * @buffer is returned, @last_highmem_page is set to the page to which
 * the data will have to be copied from @buffer.
2355
 */
2356 2357
static void *get_highmem_page_buffer(struct page *page,
				     struct chain_allocator *ca)
2358 2359 2360 2361
{
	struct highmem_pbe *pbe;
	void *kaddr;

2362
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2363 2364
		/*
		 * We have allocated the "original" page frame and we can
2365 2366 2367 2368 2369
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
2370 2371
	/*
	 * The "original" page frame has not been allocated and we have to
2372 2373 2374 2375 2376
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
2377
		return ERR_PTR(-ENOMEM);
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
2401 2402 2403 2404 2405
 * copy_last_highmem_page - Copy most the most recent highmem image page.
 *
 * Copy the contents of a highmem image from @buffer, where the caller of
 * snapshot_write_next() has stored them, to the right location represented by
 * @last_highmem_page .
2406 2407 2408 2409 2410 2411
 */
static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

2412
		dst = kmap_atomic(last_highmem_page);
2413
		copy_page(dst, buffer);
2414
		kunmap_atomic(dst);
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
2433
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2434

2435 2436
static inline int prepare_highmem_image(struct memory_bitmap *bm,
					unsigned int *nr_highmem_p) { return 0; }
2437

2438 2439
static inline void *get_highmem_page_buffer(struct page *page,
					    struct chain_allocator *ca)
2440
{
2441
	return ERR_PTR(-EINVAL);
2442 2443 2444 2445 2446 2447 2448
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

2449 2450
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

2451
/**
2452 2453 2454 2455 2456 2457 2458
 * prepare_image - Make room for loading hibernation image.
 * @new_bm: Unitialized memory bitmap structure.
 * @bm: Memory bitmap with unsafe pages marked.
 *
 * Use @bm to mark the pages that will be overwritten in the process of
 * restoring the system memory state from the suspend image ("unsafe" pages)
 * and allocate memory for the image.
2459
 *
2460 2461 2462 2463 2464
 * The idea is to allocate a new memory bitmap first and then allocate
 * as many pages as needed for image data, but without specifying what those
 * pages will be used for just yet.  Instead, we mark them all as allocated and
 * create a lists of "safe" pages to be used later.  On systems with high
 * memory a list of "safe" highmem pages is created too.
2465
 */
2466
static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2467
{
2468
	unsigned int nr_pages, nr_highmem;
2469
	struct linked_page *lp;
2470
	int error;
2471

2472 2473 2474 2475 2476
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2477
	mark_unsafe_pages(bm);
2478 2479 2480 2481 2482 2483 2484

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2485 2486 2487 2488 2489
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2490 2491
	/*
	 * Reserve some safe pages for potential later use.
2492 2493 2494 2495
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2496 2497
	 *
	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2498
	 */
2499
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2500 2501
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2502
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2503
		if (!lp) {
2504
			error = -ENOMEM;
2505 2506
			goto Free;
		}
2507 2508
		lp->next = safe_pages_list;
		safe_pages_list = lp;
2509
		nr_pages--;
2510
	}
2511
	/* Preallocate memory for the image */
2512
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2513 2514 2515 2516 2517 2518
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2519
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2520 2521 2522
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2523
		}
2524
		/* Mark the page as allocated */
2525 2526
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2527
		nr_pages--;
2528
	}
2529 2530
	return 0;

R
Rafael J. Wysocki 已提交
2531
 Free:
2532
	swsusp_free();
2533 2534 2535
	return error;
}

2536
/**
2537 2538 2539 2540
 * get_buffer - Get the address to store the next image data page.
 *
 * Get the address that snapshot_write_next() should return to its caller to
 * write to.
2541 2542
 */
static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2543
{
2544
	struct pbe *pbe;
2545 2546
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2547

2548 2549 2550 2551
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2552 2553 2554
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2555
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2556 2557
		/*
		 * We have allocated the "original" page frame and we can
2558
		 * use it directly to store the loaded page.
2559
		 */
2560 2561
		return page_address(page);

2562 2563
	/*
	 * The "original" page frame has not been allocated and we have to
2564
	 * use a "safe" page frame to store the loaded page.
2565
	 */
2566 2567 2568
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2569
		return ERR_PTR(-ENOMEM);
2570
	}
2571 2572
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2573 2574 2575
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2576
	return pbe->address;
2577 2578
}

2579
/**
2580 2581
 * snapshot_write_next - Get the address to store the next image page.
 * @handle: Snapshot handle structure to guide the writing.
2582
 *
2583 2584 2585
 * On the first call, @handle should point to a zeroed snapshot_handle
 * structure.  The structure gets populated then and a pointer to it should be
 * passed to this function every next time.
2586
 *
2587 2588 2589
 * On success, the function returns a positive number.  Then, the caller
 * is allowed to write up to the returned number of bytes to the memory
 * location computed by the data_of() macro.
2590
 *
2591 2592 2593
 * The function returns 0 to indicate the "end of file" condition.  Negative
 * numbers are returned on errors, in which cases the structure pointed to by
 * @handle is not updated and should not be used any more.
2594
 */
J
Jiri Slaby 已提交
2595
int snapshot_write_next(struct snapshot_handle *handle)
2596
{
2597
	static struct chain_allocator ca;
2598 2599
	int error = 0;

2600
	/* Check if we have already loaded the entire image */
J
Jiri Slaby 已提交
2601
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2602
		return 0;
2603

J
Jiri Slaby 已提交
2604 2605 2606
	handle->sync_read = 1;

	if (!handle->cur) {
2607 2608 2609 2610
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2611 2612
		if (!buffer)
			return -ENOMEM;
2613

2614
		handle->buffer = buffer;
J
Jiri Slaby 已提交
2615 2616 2617 2618
	} else if (handle->cur == 1) {
		error = load_header(buffer);
		if (error)
			return error;
2619

2620 2621
		safe_pages_list = NULL;

J
Jiri Slaby 已提交
2622 2623 2624 2625
		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
		if (error)
			return error;

2626 2627 2628 2629 2630
		/* Allocate buffer for page keys. */
		error = page_key_alloc(nr_copy_pages);
		if (error)
			return error;

2631
		hibernate_restore_protection_begin();
J
Jiri Slaby 已提交
2632 2633 2634 2635
	} else if (handle->cur <= nr_meta_pages + 1) {
		error = unpack_orig_pfns(buffer, &copy_bm);
		if (error)
			return error;
2636

J
Jiri Slaby 已提交
2637 2638
		if (handle->cur == nr_meta_pages + 1) {
			error = prepare_image(&orig_bm, &copy_bm);
2639 2640 2641
			if (error)
				return error;

J
Jiri Slaby 已提交
2642 2643 2644
			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
			memory_bm_position_reset(&orig_bm);
			restore_pblist = NULL;
2645
			handle->buffer = get_buffer(&orig_bm, &ca);
J
Jiri Slaby 已提交
2646
			handle->sync_read = 0;
2647 2648
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2649 2650
		}
	} else {
J
Jiri Slaby 已提交
2651
		copy_last_highmem_page();
2652 2653
		/* Restore page key for data page (s390 only). */
		page_key_write(handle->buffer);
2654
		hibernate_restore_protect_page(handle->buffer);
J
Jiri Slaby 已提交
2655 2656 2657 2658 2659
		handle->buffer = get_buffer(&orig_bm, &ca);
		if (IS_ERR(handle->buffer))
			return PTR_ERR(handle->buffer);
		if (handle->buffer != buffer)
			handle->sync_read = 0;
2660
	}
J
Jiri Slaby 已提交
2661 2662
	handle->cur++;
	return PAGE_SIZE;
2663 2664
}

2665
/**
2666 2667 2668 2669 2670 2671
 * snapshot_write_finalize - Complete the loading of a hibernation image.
 *
 * Must be called after the last call to snapshot_write_next() in case the last
 * page in the image happens to be a highmem page and its contents should be
 * stored in highmem.  Additionally, it recycles bitmap memory that's not
 * necessary any more.
2672 2673 2674 2675
 */
void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
2676 2677 2678
	/* Restore page key for data page (s390 only). */
	page_key_write(handle->buffer);
	page_key_free();
2679
	hibernate_restore_protect_page(handle->buffer);
2680
	/* Do that only if we have loaded the image entirely */
J
Jiri Slaby 已提交
2681
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2682
		memory_bm_recycle(&orig_bm);
2683 2684 2685 2686
		free_highmem_data();
	}
}

2687 2688
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2689
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2690 2691 2692
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2693 2694
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
2695 2696
static inline void swap_two_pages_data(struct page *p1, struct page *p2,
				       void *buf)
2697
{
2698 2699
	void *kaddr1, *kaddr2;

2700 2701
	kaddr1 = kmap_atomic(p1);
	kaddr2 = kmap_atomic(p2);
2702 2703 2704
	copy_page(buf, kaddr1);
	copy_page(kaddr1, kaddr2);
	copy_page(kaddr2, buf);
2705 2706
	kunmap_atomic(kaddr2);
	kunmap_atomic(kaddr1);
2707 2708 2709
}

/**
2710 2711 2712 2713 2714
 * restore_highmem - Put highmem image pages into their original locations.
 *
 * For each highmem page that was in use before hibernation and is included in
 * the image, and also has been allocated by the "restore" kernel, swap its
 * current contents with the previous (ie. "before hibernation") ones.
2715
 *
2716 2717
 * If the restore eventually fails, we can call this function once again and
 * restore the highmem state as seen by the restore kernel.
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
 */
int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2737
}
2738
#endif /* CONFIG_HIGHMEM */