snapshot.c 71.2 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5
 *
P
Pavel Machek 已提交
6
 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
24 25 26 27
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
28
#include <linux/list.h>
29
#include <linux/slab.h>
30
#include <linux/compiler.h>
31
#include <linux/ktime.h>
32 33 34 35 36 37 38 39 40

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
#ifdef CONFIG_DEBUG_RODATA
static bool hibernate_restore_protection;
static bool hibernate_restore_protection_active;

void enable_restore_image_protection(void)
{
	hibernate_restore_protection = true;
}

static inline void hibernate_restore_protection_begin(void)
{
	hibernate_restore_protection_active = hibernate_restore_protection;
}

static inline void hibernate_restore_protection_end(void)
{
	hibernate_restore_protection_active = false;
}

static inline void hibernate_restore_protect_page(void *page_address)
{
	if (hibernate_restore_protection_active)
		set_memory_ro((unsigned long)page_address, 1);
}

static inline void hibernate_restore_unprotect_page(void *page_address)
{
	if (hibernate_restore_protection_active)
		set_memory_rw((unsigned long)page_address, 1);
}
#else
static inline void hibernate_restore_protection_begin(void) {}
static inline void hibernate_restore_protection_end(void) {}
static inline void hibernate_restore_protect_page(void *page_address) {}
static inline void hibernate_restore_unprotect_page(void *page_address) {}
#endif /* CONFIG_DEBUG_RODATA */

78 79 80 81
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

82 83 84 85 86 87 88 89 90 91 92 93
/*
 * Number of bytes to reserve for memory allocations made by device drivers
 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 * cause image creation to fail (tunable via /sys/power/reserved_size).
 */
unsigned long reserved_size;

void __init hibernate_reserved_size_init(void)
{
	reserved_size = SPARE_PAGES * PAGE_SIZE;
}

94 95
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
96 97 98
 * When it is set to N, swsusp will do its best to ensure the image
 * size will not exceed N bytes, but if that is impossible, it will
 * try to create the smallest image possible.
99
 */
100 101 102 103
unsigned long image_size;

void __init hibernate_image_size_init(void)
{
104
	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
105
}
106

107 108
/*
 * List of PBEs needed for restoring the pages that were allocated before
109 110 111 112
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
113 114
struct pbe *restore_pblist;

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
} __packed;

/*
 * List of "safe" pages (ie. pages that were not used by the image kernel
 * before hibernation) that may be used as temporary storage for image kernel
 * memory contents.
 */
static struct linked_page *safe_pages_list;

131
/* Pointer to an auxiliary buffer (1 page) */
132
static void *buffer;
133

134 135 136 137 138
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

139
static unsigned int allocated_unsafe_pages;
140

141 142 143 144 145 146 147 148 149 150 151 152 153
/**
 * get_image_page - Allocate a page for a hibernation image.
 * @gfp_mask: GFP mask for the allocation.
 * @safe_needed: Get pages that were not used before hibernation (restore only)
 *
 * During image restoration, for storing the PBE list and the image data, we can
 * only use memory pages that do not conflict with the pages used before
 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 * using allocated_unsafe_pages.
 *
 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 * swsusp_free() can release it.
 */
154
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
155 156 157 158 159
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
160
		while (res && swsusp_page_is_free(virt_to_page(res))) {
161
			/* The page is unsafe, mark it for swsusp_free() */
162
			swsusp_set_page_forbidden(virt_to_page(res));
163
			allocated_unsafe_pages++;
164 165 166
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
167 168
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
169 170 171 172
	}
	return res;
}

173 174 175 176 177 178 179 180 181 182 183 184
static void *__get_safe_page(gfp_t gfp_mask)
{
	if (safe_pages_list) {
		void *ret = safe_pages_list;

		safe_pages_list = safe_pages_list->next;
		memset(ret, 0, PAGE_SIZE);
		return ret;
	}
	return get_image_page(gfp_mask, PG_SAFE);
}

185 186
unsigned long get_safe_page(gfp_t gfp_mask)
{
187
	return (unsigned long)__get_safe_page(gfp_mask);
188 189
}

190 191
static struct page *alloc_image_page(gfp_t gfp_mask)
{
192 193 194 195
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
196 197
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
198 199
	}
	return page;
200 201
}

202 203 204 205 206 207 208 209
static void recycle_safe_page(void *page_address)
{
	struct linked_page *lp = page_address;

	lp->next = safe_pages_list;
	safe_pages_list = lp;
}

210
/**
211 212 213 214 215 216
 * free_image_page - Free a page allocated for hibernation image.
 * @addr: Address of the page to free.
 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 *
 * The page to free should have been allocated by get_image_page() (page flags
 * set by it are affected).
217 218 219
 */
static inline void free_image_page(void *addr, int clear_nosave_free)
{
220 221 222 223 224 225
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

226
	swsusp_unset_page_forbidden(page);
227
	if (clear_nosave_free)
228
		swsusp_unset_page_free(page);
229 230

	__free_page(page);
231 232
}

233 234
static inline void free_list_of_pages(struct linked_page *list,
				      int clear_page_nosave)
235 236 237 238 239 240 241 242 243
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

244 245 246 247 248 249 250 251 252 253 254 255
/*
 * struct chain_allocator is used for allocating small objects out of
 * a linked list of pages called 'the chain'.
 *
 * The chain grows each time when there is no room for a new object in
 * the current page.  The allocated objects cannot be freed individually.
 * It is only possible to free them all at once, by freeing the entire
 * chain.
 *
 * NOTE: The chain allocator may be inefficient if the allocated objects
 * are not much smaller than PAGE_SIZE.
 */
256 257 258
struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
259
					   of the current page */
260 261 262 263
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

264 265
static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
		       int safe_needed)
266 267 268 269 270 271 272 273 274 275 276 277 278 279
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

280 281
		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
					get_image_page(ca->gfp_mask, PG_ANY);
282 283 284 285 286 287 288 289 290 291 292 293 294
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
295
 * Data types related to memory bitmaps.
296
 *
297 298 299 300 301
 * Memory bitmap is a structure consiting of many linked lists of
 * objects.  The main list's elements are of type struct zone_bitmap
 * and each of them corresonds to one zone.  For each zone bitmap
 * object there is a list of objects of type struct bm_block that
 * represent each blocks of bitmap in which information is stored.
302
 *
303 304 305 306
 * struct memory_bitmap contains a pointer to the main list of zone
 * bitmap objects, a struct bm_position used for browsing the bitmap,
 * and a pointer to the list of pages used for allocating all of the
 * zone bitmap objects and bitmap block objects.
307
 *
308 309 310 311
 * NOTE: It has to be possible to lay out the bitmap in memory
 * using only allocations of order 0.  Additionally, the bitmap is
 * designed to work with arbitrary number of zones (this is over the
 * top for now, but let's avoid making unnecessary assumptions ;-).
312
 *
313 314 315 316
 * struct zone_bitmap contains a pointer to a list of bitmap block
 * objects and a pointer to the bitmap block object that has been
 * most recently used for setting bits.  Additionally, it contains the
 * PFNs that correspond to the start and end of the represented zone.
317
 *
318 319 320 321
 * struct bm_block contains a pointer to the memory page in which
 * information is stored (in the form of a block of bitmap)
 * It also contains the pfns that correspond to the start and end of
 * the represented memory area.
322
 *
323 324 325
 * The memory bitmap is organized as a radix tree to guarantee fast random
 * access to the bits. There is one radix tree for each zone (as returned
 * from create_mem_extents).
326
 *
327 328 329 330
 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 * two linked lists for the nodes of the tree, one for the inner nodes and
 * one for the leave nodes. The linked leave nodes are used for fast linear
 * access of the memory bitmap.
331
 *
332
 * The struct rtree_node represents one node of the radix tree.
333 334 335 336
 */

#define BM_END_OF_MAP	(~0UL)

W
Wu Fengguang 已提交
337
#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
338 339
#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
/*
 * struct rtree_node is a wrapper struct to link the nodes
 * of the rtree together for easy linear iteration over
 * bits and easy freeing
 */
struct rtree_node {
	struct list_head list;
	unsigned long *data;
};

/*
 * struct mem_zone_bm_rtree represents a bitmap used for one
 * populated memory zone.
 */
struct mem_zone_bm_rtree {
	struct list_head list;		/* Link Zones together         */
	struct list_head nodes;		/* Radix Tree inner nodes      */
	struct list_head leaves;	/* Radix Tree leaves           */
	unsigned long start_pfn;	/* Zone start page frame       */
	unsigned long end_pfn;		/* Zone end page frame + 1     */
	struct rtree_node *rtree;	/* Radix Tree Root             */
	int levels;			/* Number of Radix Tree Levels */
	unsigned int blocks;		/* Number of Bitmap Blocks     */
};

366 367 368
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
369 370 371 372
	struct mem_zone_bm_rtree *zone;
	struct rtree_node *node;
	unsigned long node_pfn;
	int node_bit;
373 374 375
};

struct memory_bitmap {
376
	struct list_head zones;
377
	struct linked_page *p_list;	/* list of pages used to store zone
378 379
					   bitmap objects and bitmap block
					   objects */
380 381 382 383 384
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

385 386 387 388 389 390 391 392
#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
#if BITS_PER_LONG == 32
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
#else
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
#endif
#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)

393 394
/**
 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
395
 *
396 397 398
 * This function is used to allocate inner nodes as well as the
 * leave nodes of the radix tree. It also adds the node to the
 * corresponding linked list passed in by the *list parameter.
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
 */
static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
					   struct chain_allocator *ca,
					   struct list_head *list)
{
	struct rtree_node *node;

	node = chain_alloc(ca, sizeof(struct rtree_node));
	if (!node)
		return NULL;

	node->data = get_image_page(gfp_mask, safe_needed);
	if (!node->data)
		return NULL;

	list_add_tail(&node->list, list);

	return node;
}

419 420
/**
 * add_rtree_block - Add a new leave node to the radix tree.
421
 *
422 423 424
 * The leave nodes need to be allocated in order to keep the leaves
 * linked list in order. This is guaranteed by the zone->blocks
 * counter.
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
 */
static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
			   int safe_needed, struct chain_allocator *ca)
{
	struct rtree_node *node, *block, **dst;
	unsigned int levels_needed, block_nr;
	int i;

	block_nr = zone->blocks;
	levels_needed = 0;

	/* How many levels do we need for this block nr? */
	while (block_nr) {
		levels_needed += 1;
		block_nr >>= BM_RTREE_LEVEL_SHIFT;
	}

	/* Make sure the rtree has enough levels */
	for (i = zone->levels; i < levels_needed; i++) {
		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
					&zone->nodes);
		if (!node)
			return -ENOMEM;

		node->data[0] = (unsigned long)zone->rtree;
		zone->rtree = node;
		zone->levels += 1;
	}

	/* Allocate new block */
	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
	if (!block)
		return -ENOMEM;

	/* Now walk the rtree to insert the block */
	node = zone->rtree;
	dst = &zone->rtree;
	block_nr = zone->blocks;
	for (i = zone->levels; i > 0; i--) {
		int index;

		if (!node) {
			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
						&zone->nodes);
			if (!node)
				return -ENOMEM;
			*dst = node;
		}

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		dst = (struct rtree_node **)&((*dst)->data[index]);
		node = *dst;
	}

	zone->blocks += 1;
	*dst = block;

	return 0;
}

static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free);

489 490
/**
 * create_zone_bm_rtree - Create a radix tree for one zone.
491
 *
492 493 494
 * Allocated the mem_zone_bm_rtree structure and initializes it.
 * This function also allocated and builds the radix tree for the
 * zone.
495
 */
496 497 498 499 500
static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
						      int safe_needed,
						      struct chain_allocator *ca,
						      unsigned long start,
						      unsigned long end)
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
{
	struct mem_zone_bm_rtree *zone;
	unsigned int i, nr_blocks;
	unsigned long pages;

	pages = end - start;
	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
	if (!zone)
		return NULL;

	INIT_LIST_HEAD(&zone->nodes);
	INIT_LIST_HEAD(&zone->leaves);
	zone->start_pfn = start;
	zone->end_pfn = end;
	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);

	for (i = 0; i < nr_blocks; i++) {
		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
			return NULL;
		}
	}

	return zone;
}

527 528
/**
 * free_zone_bm_rtree - Free the memory of the radix tree.
529
 *
530 531 532
 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 * structure itself is not freed here nor are the rtree_node
 * structs.
533 534 535 536 537 538 539 540 541 542 543 544 545
 */
static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		free_image_page(node->data, clear_nosave_free);

	list_for_each_entry(node, &zone->leaves, list)
		free_image_page(node->data, clear_nosave_free);
}

546 547
static void memory_bm_position_reset(struct memory_bitmap *bm)
{
548 549 550 551 552 553
	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
				  list);
	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
				  struct rtree_node, list);
	bm->cur.node_pfn = 0;
	bm->cur.node_bit = 0;
554 555 556 557
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

558 559 560 561 562 563
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

564
/**
565 566
 * free_mem_extents - Free a list of memory extents.
 * @list: List of extents to free.
567
 */
568 569 570
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
571

572 573 574 575 576 577 578
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
579 580 581 582 583
 * create_mem_extents - Create a list of memory extents.
 * @list: List to put the extents into.
 * @gfp_mask: Mask to use for memory allocations.
 *
 * The extents represent contiguous ranges of PFNs.
584 585
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
586
{
587
	struct zone *zone;
588

589
	INIT_LIST_HEAD(list);
590

591
	for_each_populated_zone(zone) {
592 593 594 595
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
596
		zone_end = zone_end_pfn(zone);
597 598 599 600

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
601

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
633
	}
634 635

	return 0;
636 637 638
}

/**
639 640
 * memory_bm_create - Allocate memory for a memory bitmap.
 */
641 642
static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
			    int safe_needed)
643 644
{
	struct chain_allocator ca;
645 646 647
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
648 649

	chain_init(&ca, gfp_mask, safe_needed);
650
	INIT_LIST_HEAD(&bm->zones);
651

652 653 654
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
655

656
	list_for_each_entry(ext, &mem_extents, hook) {
657 658 659 660
		struct mem_zone_bm_rtree *zone;

		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
					    ext->start, ext->end);
661 662
		if (!zone) {
			error = -ENOMEM;
663
			goto Error;
664
		}
665
		list_add_tail(&zone->list, &bm->zones);
666
	}
667

668 669
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
670 671 672
 Exit:
	free_mem_extents(&mem_extents);
	return error;
673

674
 Error:
675 676
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
677
	goto Exit;
678 679 680
}

/**
681 682 683
 * memory_bm_free - Free memory occupied by the memory bitmap.
 * @bm: Memory bitmap.
 */
684 685
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
686
	struct mem_zone_bm_rtree *zone;
687

688 689 690
	list_for_each_entry(zone, &bm->zones, list)
		free_zone_bm_rtree(zone, clear_nosave_free);

691
	free_list_of_pages(bm->p_list, clear_nosave_free);
692

693
	INIT_LIST_HEAD(&bm->zones);
694 695 696
}

/**
697
 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
698
 *
699 700 701 702 703
 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 *
 * Walk the radix tree to find the page containing the bit that represents @pfn
 * and return the position of the bit in @addr and @bit_nr.
704
 */
705 706
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
			      void **addr, unsigned int *bit_nr)
707 708 709 710 711
{
	struct mem_zone_bm_rtree *curr, *zone;
	struct rtree_node *node;
	int i, block_nr;

712 713 714 715 716
	zone = bm->cur.zone;

	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
		goto zone_found;

717 718 719 720 721 722 723 724 725 726 727 728 729
	zone = NULL;

	/* Find the right zone */
	list_for_each_entry(curr, &bm->zones, list) {
		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
			zone = curr;
			break;
		}
	}

	if (!zone)
		return -EFAULT;

730
zone_found:
731
	/*
732 733
	 * We have found the zone. Now walk the radix tree to find the leaf node
	 * for our PFN.
734
	 */
735 736 737 738
	node = bm->cur.node;
	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
		goto node_found;

739 740 741 742 743 744 745 746 747 748 749 750
	node      = zone->rtree;
	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;

	for (i = zone->levels; i > 0; i--) {
		int index;

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		BUG_ON(node->data[index] == 0);
		node = (struct rtree_node *)node->data[index];
	}

751 752 753 754 755 756
node_found:
	/* Update last position */
	bm->cur.zone = zone;
	bm->cur.node = node;
	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;

757 758 759 760 761 762 763
	/* Set return values */
	*addr = node->data;
	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;

	return 0;
}

764 765 766 767
static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
768
	int error;
769

770 771
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
772 773 774
	set_bit(bit, addr);
}

775 776 777 778 779 780 781
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
782 783 784
	if (!error)
		set_bit(bit, addr);

785 786 787
	return error;
}

788 789 790 791
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
792
	int error;
793

794 795
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
796 797 798
	clear_bit(bit, addr);
}

799 800 801 802 803 804 805 806
static void memory_bm_clear_current(struct memory_bitmap *bm)
{
	int bit;

	bit = max(bm->cur.node_bit - 1, 0);
	clear_bit(bit, bm->cur.node->data);
}

807 808 809 810
static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
811
	int error;
812

813 814
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
815
	return test_bit(bit, addr);
816 817
}

818 819 820 821
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
822

823
	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
824 825
}

826
/*
827
 * rtree_next_node - Jump to the next leaf node.
828
 *
829 830 831 832
 * Set the position to the beginning of the next node in the
 * memory bitmap. This is either the next node in the current
 * zone's radix tree or the first node in the radix tree of the
 * next zone.
833
 *
834
 * Return true if there is a next node, false otherwise.
835 836 837
 */
static bool rtree_next_node(struct memory_bitmap *bm)
{
838 839 840
	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
		bm->cur.node = list_entry(bm->cur.node->list.next,
					  struct rtree_node, list);
841 842
		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
		bm->cur.node_bit  = 0;
843
		touch_softlockup_watchdog();
844 845 846 847
		return true;
	}

	/* No more nodes, goto next zone */
848 849
	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
		bm->cur.zone = list_entry(bm->cur.zone->list.next,
850 851 852 853 854 855 856 857 858 859 860 861
				  struct mem_zone_bm_rtree, list);
		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
					  struct rtree_node, list);
		bm->cur.node_pfn = 0;
		bm->cur.node_bit = 0;
		return true;
	}

	/* No more zones */
	return false;
}

862
/**
863 864
 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 * @bm: Memory bitmap.
865
 *
866 867 868
 * Starting from the last returned position this function searches for the next
 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 * set, BM_END_OF_MAP is returned.
869
 *
870 871
 * It is required to run memory_bm_position_reset() before the first call to
 * this function for the given memory bitmap.
872
 */
873
static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
{
	unsigned long bits, pfn, pages;
	int bit;

	do {
		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
		bit	  = find_next_bit(bm->cur.node->data, bits,
					  bm->cur.node_bit);
		if (bit < bits) {
			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
			bm->cur.node_bit = bit + 1;
			return pfn;
		}
	} while (rtree_next_node(bm));

	return BM_END_OF_MAP;
}

893 894 895
/*
 * This structure represents a range of page frames the contents of which
 * should not be saved during hibernation.
896 897 898 899 900 901 902 903 904
 */
struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		recycle_safe_page(node->data);

	list_for_each_entry(node, &zone->leaves, list)
		recycle_safe_page(node->data);
}

static void memory_bm_recycle(struct memory_bitmap *bm)
{
	struct mem_zone_bm_rtree *zone;
	struct linked_page *p_list;

	list_for_each_entry(zone, &bm->zones, list)
		recycle_zone_bm_rtree(zone);

	p_list = bm->p_list;
	while (p_list) {
		struct linked_page *lp = p_list;

		p_list = lp->next;
		recycle_safe_page(lp);
	}
}

933
/**
934 935 936 937
 * register_nosave_region - Register a region of unsaveable memory.
 *
 * Register a range of page frames the contents of which should not be saved
 * during hibernation (to be used in the early initialization code).
938
 */
939 940
void __init __register_nosave_region(unsigned long start_pfn,
				     unsigned long end_pfn, int use_kmalloc)
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
956
	if (use_kmalloc) {
957
		/* During init, this shouldn't fail */
958 959
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
960
	} else {
961
		/* This allocation cannot fail */
962
		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
963
	}
964 965 966 967
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
968 969 970
	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
		(unsigned long long) start_pfn << PAGE_SHIFT,
		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
1024 1025 1026 1027 1028
 * mark_nosave_pages - Mark pages that should not be saved.
 * @bm: Memory bitmap.
 *
 * Set the bits in @bm that correspond to the page frames the contents of which
 * should not be saved.
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
 */
static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

1040 1041 1042 1043
		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
				- 1);
1044 1045

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1046 1047 1048 1049 1050 1051 1052 1053 1054
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
1055 1056 1057 1058
	}
}

/**
1059 1060 1061 1062 1063 1064
 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
 *
 * Create bitmaps needed for marking page frames that should not be saved and
 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
 * only modified if everything goes well, because we don't want the bits to be
 * touched before both bitmaps are set up.
1065 1066 1067 1068 1069 1070
 */
int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

1071 1072 1073 1074
	if (forbidden_pages_map && free_pages_map)
		return 0;
	else
		BUG_ON(forbidden_pages_map || free_pages_map);
1075

1076
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1077 1078 1079
	if (!bm1)
		return -ENOMEM;

1080
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1081 1082 1083
	if (error)
		goto Free_first_object;

1084
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1085 1086 1087
	if (!bm2)
		goto Free_first_bitmap;

1088
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1089 1090 1091 1092 1093 1094 1095
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

R
Rafael J. Wysocki 已提交
1096
	pr_debug("PM: Basic memory bitmaps created\n");
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
1110 1111 1112 1113 1114
 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
 *
 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
 * auxiliary pointers are necessary so that the bitmaps themselves are not
 * referred to while they are being freed.
1115 1116 1117 1118 1119
 */
void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

1120 1121
	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
		return;
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

R
Rafael J. Wysocki 已提交
1132
	pr_debug("PM: Basic memory bitmaps freed\n");
1133 1134
}

1135
/**
1136 1137 1138 1139 1140 1141
 * snapshot_additional_pages - Estimate the number of extra pages needed.
 * @zone: Memory zone to carry out the computation for.
 *
 * Estimate the number of additional pages needed for setting up a hibernation
 * image data structures for @zone (usually, the returned value is greater than
 * the exact number).
1142 1143 1144
 */
unsigned int snapshot_additional_pages(struct zone *zone)
{
1145
	unsigned int rtree, nodes;
1146

1147 1148 1149 1150 1151 1152 1153 1154
	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
			      LINKED_PAGE_DATA_SIZE);
	while (nodes > 1) {
		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
		rtree += nodes;
	}

1155
	return 2 * rtree;
1156 1157
}

1158 1159
#ifdef CONFIG_HIGHMEM
/**
1160 1161 1162
 * count_free_highmem_pages - Compute the total number of free highmem pages.
 *
 * The returned number is system-wide.
1163 1164 1165 1166 1167 1168
 */
static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

1169 1170
	for_each_populated_zone(zone)
		if (is_highmem(zone))
1171
			cnt += zone_page_state(zone, NR_FREE_PAGES);
1172 1173 1174 1175 1176

	return cnt;
}

/**
1177 1178 1179
 * saveable_highmem_page - Check if a highmem page is saveable.
 *
 * Determine whether a highmem page should be included in a hibernation image.
1180
 *
1181 1182
 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 * and it isn't part of a free chunk of pages.
1183
 */
1184
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1185 1186 1187 1188 1189 1190 1191
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
1192 1193
	if (page_zone(page) != zone)
		return NULL;
1194 1195 1196

	BUG_ON(!PageHighMem(page));

1197 1198
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
1199 1200
		return NULL;

1201 1202 1203
	if (page_is_guard(page))
		return NULL;

1204 1205 1206 1207
	return page;
}

/**
1208
 * count_highmem_pages - Compute the total number of saveable highmem pages.
1209
 */
1210
static unsigned int count_highmem_pages(void)
1211 1212 1213 1214
{
	struct zone *zone;
	unsigned int n = 0;

1215
	for_each_populated_zone(zone) {
1216 1217 1218 1219 1220 1221
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
1222
		max_zone_pfn = zone_end_pfn(zone);
1223
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1224
			if (saveable_highmem_page(zone, pfn))
1225 1226 1227 1228 1229
				n++;
	}
	return n;
}
#else
1230 1231 1232 1233
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
1234 1235
#endif /* CONFIG_HIGHMEM */

1236
/**
1237 1238 1239 1240
 * saveable_page - Check if the given page is saveable.
 *
 * Determine whether a non-highmem page should be included in a hibernation
 * image.
1241
 *
1242 1243 1244
 * We should save the page if it isn't Nosave, and is not in the range
 * of pages statically defined as 'unsaveable', and it isn't part of
 * a free chunk of pages.
1245
 */
1246
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1247
{
P
Pavel Machek 已提交
1248
	struct page *page;
1249 1250

	if (!pfn_valid(pfn))
1251
		return NULL;
1252 1253

	page = pfn_to_page(pfn);
1254 1255
	if (page_zone(page) != zone)
		return NULL;
1256

1257 1258
	BUG_ON(PageHighMem(page));

1259
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1260
		return NULL;
1261

1262 1263
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1264
		return NULL;
1265

1266 1267 1268
	if (page_is_guard(page))
		return NULL;

1269
	return page;
1270 1271
}

1272
/**
1273
 * count_data_pages - Compute the total number of saveable non-highmem pages.
1274
 */
1275
static unsigned int count_data_pages(void)
1276 1277
{
	struct zone *zone;
1278
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
1279
	unsigned int n = 0;
1280

1281
	for_each_populated_zone(zone) {
1282 1283
		if (is_highmem(zone))
			continue;
1284

1285
		mark_free_pages(zone);
1286
		max_zone_pfn = zone_end_pfn(zone);
1287
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1288
			if (saveable_page(zone, pfn))
1289
				n++;
1290
	}
1291
	return n;
1292 1293
}

1294 1295
/*
 * This is needed, because copy_page and memcpy are not usable for copying
1296 1297 1298
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
1299 1300 1301 1302 1303 1304 1305
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

1306
/**
1307 1308 1309 1310 1311
 * safe_copy_page - Copy a page in a safe way.
 *
 * Check if the page we are going to copy is marked as present in the kernel
 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
 * and in that case kernel_page_present() always returns 'true').
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}

1324
#ifdef CONFIG_HIGHMEM
1325
static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1326 1327
{
	return is_highmem(zone) ?
1328
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1329 1330
}

1331
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1332 1333 1334 1335 1336 1337 1338
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
1339 1340
		src = kmap_atomic(s_page);
		dst = kmap_atomic(d_page);
1341
		do_copy_page(dst, src);
1342 1343
		kunmap_atomic(dst);
		kunmap_atomic(src);
1344 1345
	} else {
		if (PageHighMem(d_page)) {
1346 1347
			/*
			 * The page pointed to by src may contain some kernel
1348 1349
			 * data modified by kmap_atomic()
			 */
1350
			safe_copy_page(buffer, s_page);
1351
			dst = kmap_atomic(d_page);
1352
			copy_page(dst, buffer);
1353
			kunmap_atomic(dst);
1354
		} else {
1355
			safe_copy_page(page_address(d_page), s_page);
1356 1357 1358 1359
		}
	}
}
#else
1360
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1361

1362
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1363
{
1364 1365
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1366 1367 1368
}
#endif /* CONFIG_HIGHMEM */

1369 1370
static void copy_data_pages(struct memory_bitmap *copy_bm,
			    struct memory_bitmap *orig_bm)
1371 1372
{
	struct zone *zone;
1373
	unsigned long pfn;
1374

1375
	for_each_populated_zone(zone) {
1376 1377
		unsigned long max_zone_pfn;

1378
		mark_free_pages(zone);
1379
		max_zone_pfn = zone_end_pfn(zone);
1380
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1381
			if (page_is_saveable(zone, pfn))
1382
				memory_bm_set_bit(orig_bm, pfn);
1383
	}
1384 1385
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1386
	for(;;) {
1387
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1388 1389 1390 1391
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1392 1393
}

1394 1395 1396 1397
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
unsigned int alloc_normal, alloc_highmem;
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1417

1418
/**
1419
 * swsusp_free - Free pages allocated for hibernation image.
1420
 *
1421 1422
 * Image pages are alocated before snapshot creation, so they need to be
 * released after resume.
1423 1424 1425
 */
void swsusp_free(void)
{
1426
	unsigned long fb_pfn, fr_pfn;
1427

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	if (!forbidden_pages_map || !free_pages_map)
		goto out;

	memory_bm_position_reset(forbidden_pages_map);
	memory_bm_position_reset(free_pages_map);

loop:
	fr_pfn = memory_bm_next_pfn(free_pages_map);
	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);

	/*
	 * Find the next bit set in both bitmaps. This is guaranteed to
	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
	 */
	do {
		if (fb_pfn < fr_pfn)
			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
		if (fr_pfn < fb_pfn)
			fr_pfn = memory_bm_next_pfn(free_pages_map);
	} while (fb_pfn != fr_pfn);

	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
		struct page *page = pfn_to_page(fr_pfn);

		memory_bm_clear_current(forbidden_pages_map);
		memory_bm_clear_current(free_pages_map);
1454
		hibernate_restore_unprotect_page(page_address(page));
1455 1456
		__free_page(page);
		goto loop;
1457
	}
1458 1459

out:
1460 1461
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1462
	restore_pblist = NULL;
1463
	buffer = NULL;
1464 1465
	alloc_normal = 0;
	alloc_highmem = 0;
1466
	hibernate_restore_protection_end();
1467 1468
}

1469 1470 1471 1472
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1473
/**
1474
 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1475 1476
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1477
 *
1478 1479 1480 1481 1482 1483 1484
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1485 1486 1487 1488
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1489
			break;
1490 1491 1492 1493 1494
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1495 1496 1497 1498 1499 1500 1501
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

1502 1503
static unsigned long preallocate_image_memory(unsigned long nr_pages,
					      unsigned long avail_normal)
1504
{
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	unsigned long alloc;

	if (avail_normal <= alloc_normal)
		return 0;

	alloc = avail_normal - alloc_normal;
	if (nr_pages < alloc)
		alloc = nr_pages;

	return preallocate_image_pages(alloc, GFP_IMAGE);
1515 1516 1517 1518 1519 1520 1521 1522 1523
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
1524
 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1525
 */
1526 1527 1528 1529 1530 1531
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
	x *= multiplier;
	do_div(x, base);
	return (unsigned long)x;
}
1532

1533
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1534 1535
						  unsigned long highmem,
						  unsigned long total)
1536
{
1537 1538 1539
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1540
}
1541 1542 1543 1544 1545 1546 1547
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1548 1549
							 unsigned long highmem,
							 unsigned long total)
1550 1551 1552 1553
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1554

1555
/**
1556
 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1557
 */
1558
static unsigned long free_unnecessary_pages(void)
1559
{
1560
	unsigned long save, to_free_normal, to_free_highmem, free;
1561

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	save = count_data_pages();
	if (alloc_normal >= save) {
		to_free_normal = alloc_normal - save;
		save = 0;
	} else {
		to_free_normal = 0;
		save -= alloc_normal;
	}
	save += count_highmem_pages();
	if (alloc_highmem >= save) {
		to_free_highmem = alloc_highmem - save;
1573 1574
	} else {
		to_free_highmem = 0;
1575 1576 1577 1578 1579
		save -= alloc_highmem;
		if (to_free_normal > save)
			to_free_normal -= save;
		else
			to_free_normal = 0;
1580
	}
1581
	free = to_free_normal + to_free_highmem;
1582 1583 1584

	memory_bm_position_reset(&copy_bm);

1585
	while (to_free_normal > 0 || to_free_highmem > 0) {
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
1605 1606

	return free;
1607 1608
}

1609
/**
1610
 * minimum_image_size - Estimate the minimum acceptable size of an image.
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1622
 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1623 1624 1625 1626 1627 1628 1629
 * minus mapped file pages.
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

	size = global_page_state(NR_SLAB_RECLAIMABLE)
M
Mel Gorman 已提交
1630 1631 1632 1633 1634
		+ global_node_page_state(NR_ACTIVE_ANON)
		+ global_node_page_state(NR_INACTIVE_ANON)
		+ global_node_page_state(NR_ACTIVE_FILE)
		+ global_node_page_state(NR_INACTIVE_FILE)
		- global_node_page_state(NR_FILE_MAPPED);
1635 1636 1637 1638

	return saveable <= size ? 0 : saveable - size;
}

1639
/**
1640
 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1641 1642 1643 1644 1645
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
1646 1647 1648 1649
 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
 * total number of available page frames and allocate at least
1650
 *
1651 1652
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1653 1654 1655 1656 1657
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1658 1659
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1660
 */
1661
int hibernate_preallocate_memory(void)
1662 1663
{
	struct zone *zone;
1664
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1665
	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1666
	ktime_t start, stop;
1667
	int error;
1668

1669
	printk(KERN_INFO "PM: Preallocating image memory... ");
1670
	start = ktime_get();
1671

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	alloc_normal = 0;
	alloc_highmem = 0;

1683
	/* Count the number of saveable data pages. */
1684
	save_highmem = count_highmem_pages();
1685
	saveable = count_data_pages();
1686

1687 1688 1689 1690 1691
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1692 1693
	saveable += save_highmem;
	highmem = save_highmem;
1694 1695 1696 1697 1698 1699 1700 1701
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
1702
	avail_normal = count;
1703 1704 1705
	count += highmem;
	count -= totalreserve_pages;

1706 1707 1708
	/* Add number of pages required for page keys (s390 only). */
	size += page_key_additional_pages(saveable);

1709
	/* Compute the maximum number of saveable pages to leave in memory. */
1710 1711
	max_size = (count - (size + PAGES_FOR_IO)) / 2
			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1712
	/* Compute the desired number of image pages specified by image_size. */
1713 1714 1715 1716
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
1717 1718 1719
	 * If the desired number of image pages is at least as large as the
	 * current number of saveable pages in memory, allocate page frames for
	 * the image and we're done.
1720
	 */
1721 1722
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
1723
		pages += preallocate_image_memory(saveable - pages, avail_normal);
1724
		goto out;
1725
	}
1726

1727 1728
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
1729 1730 1731 1732 1733 1734 1735 1736 1737
	/*
	 * To avoid excessive pressure on the normal zone, leave room in it to
	 * accommodate an image of the minimum size (unless it's already too
	 * small, in which case don't preallocate pages from it at all).
	 */
	if (avail_normal > pages)
		avail_normal -= pages;
	else
		avail_normal = 0;
1738 1739 1740
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1753 1754
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1755 1756
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
1757 1758 1759 1760 1761
	alloc = count - max_size;
	if (alloc > pages_highmem)
		alloc -= pages_highmem;
	else
		alloc = 0;
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	pages = preallocate_image_memory(alloc, avail_normal);
	if (pages < alloc) {
		/* We have exhausted non-highmem pages, try highmem. */
		alloc -= pages;
		pages += pages_highmem;
		pages_highmem = preallocate_image_highmem(alloc);
		if (pages_highmem < alloc)
			goto err_out;
		pages += pages_highmem;
		/*
		 * size is the desired number of saveable pages to leave in
		 * memory, so try to preallocate (all memory - size) pages.
		 */
		alloc = (count - pages) - size;
		pages += preallocate_image_highmem(alloc);
	} else {
		/*
		 * There are approximately max_size saveable pages at this point
		 * and we want to reduce this number down to size.
		 */
		alloc = max_size - size;
		size = preallocate_highmem_fraction(alloc, highmem, count);
		pages_highmem += size;
		alloc -= size;
		size = preallocate_image_memory(alloc, avail_normal);
		pages_highmem += preallocate_image_highmem(alloc - size);
		pages += pages_highmem + size;
	}
1790

1791 1792 1793 1794 1795
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
1796
	pages -= free_unnecessary_pages();
1797 1798

 out:
1799
	stop = ktime_get();
1800
	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1801
	swsusp_show_speed(start, stop, pages, "Allocated");
1802 1803

	return 0;
1804 1805 1806 1807 1808

 err_out:
	printk(KERN_CONT "\n");
	swsusp_free();
	return -ENOMEM;
1809 1810
}

1811 1812
#ifdef CONFIG_HIGHMEM
/**
1813 1814 1815 1816 1817
 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
 *
 * Compute the number of non-highmem pages that will be necessary for creating
 * copies of highmem pages.
 */
1818 1819
static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1820
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1821 1822 1823 1824 1825 1826 1827 1828 1829

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
1830
static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1831
#endif /* CONFIG_HIGHMEM */
1832 1833

/**
1834
 * enough_free_mem - Check if there is enough free memory for the image.
1835
 */
1836
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1837
{
1838
	struct zone *zone;
1839
	unsigned int free = alloc_normal;
1840

1841
	for_each_populated_zone(zone)
1842
		if (!is_highmem(zone))
1843
			free += zone_page_state(zone, NR_FREE_PAGES);
1844

1845
	nr_pages += count_pages_for_highmem(nr_highmem);
1846 1847
	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
		nr_pages, PAGES_FOR_IO, free);
1848

1849
	return free > nr_pages + PAGES_FOR_IO;
1850 1851
}

1852 1853
#ifdef CONFIG_HIGHMEM
/**
1854 1855 1856 1857
 * get_highmem_buffer - Allocate a buffer for highmem pages.
 *
 * If there are some highmem pages in the hibernation image, we may need a
 * buffer to copy them and/or load their data.
1858 1859 1860 1861 1862 1863 1864 1865
 */
static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
1866 1867 1868 1869
 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
 *
 * Try to allocate as many pages as needed, but if the number of free highmem
 * pages is less than that, allocate them all.
1870
 */
1871 1872
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int nr_highmem)
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

1883
		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1884 1885 1886 1887 1888 1889 1890
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

1891 1892
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int n) { return 0; }
1893 1894 1895
#endif /* CONFIG_HIGHMEM */

/**
1896
 * swsusp_alloc - Allocate memory for hibernation image.
1897
 *
1898 1899 1900
 * We first try to allocate as many highmem pages as there are
 * saveable highmem pages in the system.  If that fails, we allocate
 * non-highmem pages for the copies of the remaining highmem ones.
1901
 *
1902 1903 1904
 * In this approach it is likely that the copies of highmem pages will
 * also be located in the high memory, because of the way in which
 * copy_data_pages() works.
1905
 */
1906 1907 1908
static int swsusp_alloc(struct memory_bitmap *orig_bm,
			struct memory_bitmap *copy_bm,
			unsigned int nr_pages, unsigned int nr_highmem)
1909
{
1910
	if (nr_highmem > 0) {
1911
		if (get_highmem_buffer(PG_ANY))
1912 1913 1914 1915 1916
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1917
	}
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
1928
	}
1929

1930
	return 0;
1931

1932
 err_out:
1933
	swsusp_free();
1934
	return -ENOMEM;
1935 1936
}

1937
asmlinkage __visible int swsusp_save(void)
1938
{
1939
	unsigned int nr_pages, nr_highmem;
1940

1941
	printk(KERN_INFO "PM: Creating hibernation image:\n");
1942

1943
	drain_local_pages(NULL);
1944
	nr_pages = count_data_pages();
1945
	nr_highmem = count_highmem_pages();
R
Rafael J. Wysocki 已提交
1946
	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1947

1948
	if (!enough_free_mem(nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1949
		printk(KERN_ERR "PM: Not enough free memory\n");
1950 1951 1952
		return -ENOMEM;
	}

1953
	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1954
		printk(KERN_ERR "PM: Memory allocation failed\n");
1955
		return -ENOMEM;
1956
	}
1957

1958 1959
	/*
	 * During allocating of suspend pagedir, new cold pages may appear.
1960 1961
	 * Kill them.
	 */
1962
	drain_local_pages(NULL);
1963
	copy_data_pages(&copy_bm, &orig_bm);
1964 1965 1966 1967 1968 1969 1970

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1971
	nr_pages += nr_highmem;
1972
	nr_copy_pages = nr_pages;
1973
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1974

R
Rafael J. Wysocki 已提交
1975 1976
	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
		nr_pages);
1977

1978 1979
	return 0;
}
1980

1981 1982
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
1983
{
1984
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1985
	info->version_code = LINUX_VERSION_CODE;
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

2005 2006 2007 2008 2009
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

2010 2011 2012
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
2013
	info->num_physpages = get_num_physpages();
2014
	info->image_pages = nr_copy_pages;
2015
	info->pages = snapshot_get_image_size();
2016 2017
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
2018
	return init_header_complete(info);
2019 2020 2021
}

/**
2022 2023 2024 2025 2026 2027
 * pack_pfns - Prepare PFNs for saving.
 * @bm: Memory bitmap.
 * @buf: Memory buffer to store the PFNs in.
 *
 * PFNs corresponding to set bits in @bm are stored in the area of memory
 * pointed to by @buf (1 page at a time).
2028
 */
2029
static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2030 2031 2032
{
	int j;

2033
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2034 2035
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
2036
			break;
2037 2038
		/* Save page key for data page (s390 only). */
		page_key_read(buf + j);
2039 2040 2041 2042
	}
}

/**
2043 2044
 * snapshot_read_next - Get the address to read the next image page from.
 * @handle: Snapshot handle to be used for the reading.
2045
 *
2046 2047 2048
 * On the first call, @handle should point to a zeroed snapshot_handle
 * structure.  The structure gets populated then and a pointer to it should be
 * passed to this function every next time.
2049
 *
2050 2051 2052
 * On success, the function returns a positive number.  Then, the caller
 * is allowed to read up to the returned number of bytes from the memory
 * location computed by the data_of() macro.
2053
 *
2054 2055 2056
 * The function returns 0 to indicate the end of the data stream condition,
 * and negative numbers are returned on errors.  If that happens, the structure
 * pointed to by @handle is not updated and should not be used any more.
2057
 */
J
Jiri Slaby 已提交
2058
int snapshot_read_next(struct snapshot_handle *handle)
2059
{
2060
	if (handle->cur > nr_meta_pages + nr_copy_pages)
2061
		return 0;
2062

2063 2064
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
2065
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2066 2067 2068
		if (!buffer)
			return -ENOMEM;
	}
J
Jiri Slaby 已提交
2069
	if (!handle->cur) {
2070 2071 2072 2073 2074
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
2075
		handle->buffer = buffer;
2076 2077
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
J
Jiri Slaby 已提交
2078
	} else if (handle->cur <= nr_meta_pages) {
2079
		clear_page(buffer);
J
Jiri Slaby 已提交
2080 2081 2082
		pack_pfns(buffer, &orig_bm);
	} else {
		struct page *page;
2083

J
Jiri Slaby 已提交
2084 2085
		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
		if (PageHighMem(page)) {
2086 2087
			/*
			 * Highmem pages are copied to the buffer,
J
Jiri Slaby 已提交
2088 2089 2090 2091
			 * because we can't return with a kmapped
			 * highmem page (we may not be called again).
			 */
			void *kaddr;
2092

2093
			kaddr = kmap_atomic(page);
2094
			copy_page(buffer, kaddr);
2095
			kunmap_atomic(kaddr);
J
Jiri Slaby 已提交
2096 2097 2098
			handle->buffer = buffer;
		} else {
			handle->buffer = page_address(page);
2099 2100
		}
	}
J
Jiri Slaby 已提交
2101 2102
	handle->cur++;
	return PAGE_SIZE;
2103 2104
}

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
static void duplicate_memory_bitmap(struct memory_bitmap *dst,
				    struct memory_bitmap *src)
{
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
	}
}

2118
/**
2119 2120 2121 2122
 * mark_unsafe_pages - Mark pages that were used before hibernation.
 *
 * Mark the pages that cannot be used for storing the image during restoration,
 * because they conflict with the pages that had been used before hibernation.
2123
 */
2124
static void mark_unsafe_pages(struct memory_bitmap *bm)
2125
{
2126
	unsigned long pfn;
2127

2128 2129 2130 2131 2132 2133
	/* Clear the "free"/"unsafe" bit for all PFNs */
	memory_bm_position_reset(free_pages_map);
	pfn = memory_bm_next_pfn(free_pages_map);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_clear_current(free_pages_map);
		pfn = memory_bm_next_pfn(free_pages_map);
2134 2135
	}

2136 2137
	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
	duplicate_memory_bitmap(free_pages_map, bm);
2138

2139
	allocated_unsafe_pages = 0;
2140 2141
}

2142
static int check_header(struct swsusp_info *info)
2143
{
2144
	char *reason;
2145

2146
	reason = check_image_kernel(info);
2147
	if (!reason && info->num_physpages != get_num_physpages())
2148 2149
		reason = "memory size";
	if (reason) {
R
Rafael J. Wysocki 已提交
2150
		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2151 2152 2153 2154 2155 2156
		return -EPERM;
	}
	return 0;
}

/**
2157
 * load header - Check the image header and copy the data from it.
2158
 */
2159
static int load_header(struct swsusp_info *info)
2160 2161 2162
{
	int error;

2163
	restore_pblist = NULL;
2164 2165 2166 2167 2168 2169 2170 2171 2172
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
2173 2174 2175 2176 2177 2178
 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
 * @bm: Memory bitmap.
 * @buf: Area of memory containing the PFNs.
 *
 * For each element of the array pointed to by @buf (1 page at a time), set the
 * corresponding bit in @bm.
2179
 */
2180
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2181 2182 2183
{
	int j;

2184 2185 2186 2187
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

2188 2189 2190
		/* Extract and buffer page key for data page (s390 only). */
		page_key_memorize(buf + j);

2191
		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2192 2193 2194
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
2195
	}
2196 2197

	return 0;
2198 2199
}

2200
#ifdef CONFIG_HIGHMEM
2201 2202
/*
 * struct highmem_pbe is used for creating the list of highmem pages that
2203 2204 2205 2206 2207 2208 2209 2210 2211
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

2212 2213
/*
 * List of highmem PBEs needed for restoring the highmem pages that were
2214 2215 2216 2217 2218 2219 2220
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
2221 2222 2223 2224
 * count_highmem_image_pages - Compute the number of highmem pages in the image.
 * @bm: Memory bitmap.
 *
 * The bits in @bm that correspond to image pages are assumed to be set.
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
 */
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
/**
 * prepare_highmem_image - Allocate memory for loading highmem data from image.
 * @bm: Pointer to an uninitialized memory bitmap structure.
 * @nr_highmem_p: Pointer to the number of highmem image pages.
 *
 * Try to allocate as many highmem pages as there are highmem image pages
 * (@nr_highmem_p points to the variable containing the number of highmem image
 * pages).  The pages that are "safe" (ie. will not be overwritten when the
 * hibernation image is restored entirely) have the corresponding bits set in
 * @bm (it must be unitialized).
 *
 * NOTE: This function should not be called if there are no highmem image pages.
 */
2259 2260
static int prepare_highmem_image(struct memory_bitmap *bm,
				 unsigned int *nr_highmem_p)
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
2281
		if (!swsusp_page_is_free(page)) {
2282 2283 2284 2285 2286
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
2287 2288
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
2289 2290 2291 2292 2293 2294
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

2295 2296
static struct page *last_highmem_page;

2297
/**
2298 2299 2300 2301
 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
 *
 * For a given highmem image page get a buffer that suspend_write_next() should
 * return to its caller to write to.
2302
 *
2303 2304 2305 2306
 * If the page is to be saved to its "original" page frame or a copy of
 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
 * the copy of the page is to be made in normal memory, so the address of
 * the copy is returned.
2307
 *
2308 2309 2310 2311 2312 2313
 * If @buffer is returned, the caller of suspend_write_next() will write
 * the page's contents to @buffer, so they will have to be copied to the
 * right location on the next call to suspend_write_next() and it is done
 * with the help of copy_last_highmem_page().  For this purpose, if
 * @buffer is returned, @last_highmem_page is set to the page to which
 * the data will have to be copied from @buffer.
2314
 */
2315 2316
static void *get_highmem_page_buffer(struct page *page,
				     struct chain_allocator *ca)
2317 2318 2319 2320
{
	struct highmem_pbe *pbe;
	void *kaddr;

2321
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2322 2323
		/*
		 * We have allocated the "original" page frame and we can
2324 2325 2326 2327 2328
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
2329 2330
	/*
	 * The "original" page frame has not been allocated and we have to
2331 2332 2333 2334 2335
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
2336
		return ERR_PTR(-ENOMEM);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
2360 2361 2362 2363 2364
 * copy_last_highmem_page - Copy most the most recent highmem image page.
 *
 * Copy the contents of a highmem image from @buffer, where the caller of
 * snapshot_write_next() has stored them, to the right location represented by
 * @last_highmem_page .
2365 2366 2367 2368 2369 2370
 */
static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

2371
		dst = kmap_atomic(last_highmem_page);
2372
		copy_page(dst, buffer);
2373
		kunmap_atomic(dst);
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
2392
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2393

2394 2395
static inline int prepare_highmem_image(struct memory_bitmap *bm,
					unsigned int *nr_highmem_p) { return 0; }
2396

2397 2398
static inline void *get_highmem_page_buffer(struct page *page,
					    struct chain_allocator *ca)
2399
{
2400
	return ERR_PTR(-EINVAL);
2401 2402 2403 2404 2405 2406 2407
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

2408 2409
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

2410
/**
2411 2412 2413 2414 2415 2416 2417
 * prepare_image - Make room for loading hibernation image.
 * @new_bm: Unitialized memory bitmap structure.
 * @bm: Memory bitmap with unsafe pages marked.
 *
 * Use @bm to mark the pages that will be overwritten in the process of
 * restoring the system memory state from the suspend image ("unsafe" pages)
 * and allocate memory for the image.
2418
 *
2419 2420 2421 2422 2423
 * The idea is to allocate a new memory bitmap first and then allocate
 * as many pages as needed for image data, but without specifying what those
 * pages will be used for just yet.  Instead, we mark them all as allocated and
 * create a lists of "safe" pages to be used later.  On systems with high
 * memory a list of "safe" highmem pages is created too.
2424
 */
2425
static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2426
{
2427
	unsigned int nr_pages, nr_highmem;
2428
	struct linked_page *lp;
2429
	int error;
2430

2431 2432 2433 2434 2435
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2436
	mark_unsafe_pages(bm);
2437 2438 2439 2440 2441 2442 2443

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2444 2445 2446 2447 2448
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2449 2450
	/*
	 * Reserve some safe pages for potential later use.
2451 2452 2453 2454
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2455 2456
	 *
	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2457
	 */
2458
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2459 2460
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2461
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2462
		if (!lp) {
2463
			error = -ENOMEM;
2464 2465
			goto Free;
		}
2466 2467
		lp->next = safe_pages_list;
		safe_pages_list = lp;
2468
		nr_pages--;
2469
	}
2470
	/* Preallocate memory for the image */
2471
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2472 2473 2474 2475 2476 2477
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2478
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2479 2480 2481
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2482
		}
2483
		/* Mark the page as allocated */
2484 2485
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2486
		nr_pages--;
2487
	}
2488 2489
	return 0;

R
Rafael J. Wysocki 已提交
2490
 Free:
2491
	swsusp_free();
2492 2493 2494
	return error;
}

2495
/**
2496 2497 2498 2499
 * get_buffer - Get the address to store the next image data page.
 *
 * Get the address that snapshot_write_next() should return to its caller to
 * write to.
2500 2501
 */
static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2502
{
2503
	struct pbe *pbe;
2504 2505
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2506

2507 2508 2509 2510
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2511 2512 2513
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2514
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2515 2516
		/*
		 * We have allocated the "original" page frame and we can
2517
		 * use it directly to store the loaded page.
2518
		 */
2519 2520
		return page_address(page);

2521 2522
	/*
	 * The "original" page frame has not been allocated and we have to
2523
	 * use a "safe" page frame to store the loaded page.
2524
	 */
2525 2526 2527
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2528
		return ERR_PTR(-ENOMEM);
2529
	}
2530 2531
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2532 2533 2534
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2535
	return pbe->address;
2536 2537
}

2538
/**
2539 2540
 * snapshot_write_next - Get the address to store the next image page.
 * @handle: Snapshot handle structure to guide the writing.
2541
 *
2542 2543 2544
 * On the first call, @handle should point to a zeroed snapshot_handle
 * structure.  The structure gets populated then and a pointer to it should be
 * passed to this function every next time.
2545
 *
2546 2547 2548
 * On success, the function returns a positive number.  Then, the caller
 * is allowed to write up to the returned number of bytes to the memory
 * location computed by the data_of() macro.
2549
 *
2550 2551 2552
 * The function returns 0 to indicate the "end of file" condition.  Negative
 * numbers are returned on errors, in which cases the structure pointed to by
 * @handle is not updated and should not be used any more.
2553
 */
J
Jiri Slaby 已提交
2554
int snapshot_write_next(struct snapshot_handle *handle)
2555
{
2556
	static struct chain_allocator ca;
2557 2558
	int error = 0;

2559
	/* Check if we have already loaded the entire image */
J
Jiri Slaby 已提交
2560
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2561
		return 0;
2562

J
Jiri Slaby 已提交
2563 2564 2565
	handle->sync_read = 1;

	if (!handle->cur) {
2566 2567 2568 2569
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2570 2571
		if (!buffer)
			return -ENOMEM;
2572

2573
		handle->buffer = buffer;
J
Jiri Slaby 已提交
2574 2575 2576 2577
	} else if (handle->cur == 1) {
		error = load_header(buffer);
		if (error)
			return error;
2578

2579 2580
		safe_pages_list = NULL;

J
Jiri Slaby 已提交
2581 2582 2583 2584
		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
		if (error)
			return error;

2585 2586 2587 2588 2589
		/* Allocate buffer for page keys. */
		error = page_key_alloc(nr_copy_pages);
		if (error)
			return error;

2590
		hibernate_restore_protection_begin();
J
Jiri Slaby 已提交
2591 2592 2593 2594
	} else if (handle->cur <= nr_meta_pages + 1) {
		error = unpack_orig_pfns(buffer, &copy_bm);
		if (error)
			return error;
2595

J
Jiri Slaby 已提交
2596 2597
		if (handle->cur == nr_meta_pages + 1) {
			error = prepare_image(&orig_bm, &copy_bm);
2598 2599 2600
			if (error)
				return error;

J
Jiri Slaby 已提交
2601 2602 2603
			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
			memory_bm_position_reset(&orig_bm);
			restore_pblist = NULL;
2604
			handle->buffer = get_buffer(&orig_bm, &ca);
J
Jiri Slaby 已提交
2605
			handle->sync_read = 0;
2606 2607
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2608 2609
		}
	} else {
J
Jiri Slaby 已提交
2610
		copy_last_highmem_page();
2611 2612
		/* Restore page key for data page (s390 only). */
		page_key_write(handle->buffer);
2613
		hibernate_restore_protect_page(handle->buffer);
J
Jiri Slaby 已提交
2614 2615 2616 2617 2618
		handle->buffer = get_buffer(&orig_bm, &ca);
		if (IS_ERR(handle->buffer))
			return PTR_ERR(handle->buffer);
		if (handle->buffer != buffer)
			handle->sync_read = 0;
2619
	}
J
Jiri Slaby 已提交
2620 2621
	handle->cur++;
	return PAGE_SIZE;
2622 2623
}

2624
/**
2625 2626 2627 2628 2629 2630
 * snapshot_write_finalize - Complete the loading of a hibernation image.
 *
 * Must be called after the last call to snapshot_write_next() in case the last
 * page in the image happens to be a highmem page and its contents should be
 * stored in highmem.  Additionally, it recycles bitmap memory that's not
 * necessary any more.
2631 2632 2633 2634
 */
void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
2635 2636 2637
	/* Restore page key for data page (s390 only). */
	page_key_write(handle->buffer);
	page_key_free();
2638
	hibernate_restore_protect_page(handle->buffer);
2639
	/* Do that only if we have loaded the image entirely */
J
Jiri Slaby 已提交
2640
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2641
		memory_bm_recycle(&orig_bm);
2642 2643 2644 2645
		free_highmem_data();
	}
}

2646 2647
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2648
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2649 2650 2651
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2652 2653
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
2654 2655
static inline void swap_two_pages_data(struct page *p1, struct page *p2,
				       void *buf)
2656
{
2657 2658
	void *kaddr1, *kaddr2;

2659 2660
	kaddr1 = kmap_atomic(p1);
	kaddr2 = kmap_atomic(p2);
2661 2662 2663
	copy_page(buf, kaddr1);
	copy_page(kaddr1, kaddr2);
	copy_page(kaddr2, buf);
2664 2665
	kunmap_atomic(kaddr2);
	kunmap_atomic(kaddr1);
2666 2667 2668
}

/**
2669 2670 2671 2672 2673
 * restore_highmem - Put highmem image pages into their original locations.
 *
 * For each highmem page that was in use before hibernation and is included in
 * the image, and also has been allocated by the "restore" kernel, swap its
 * current contents with the previous (ie. "before hibernation") ones.
2674
 *
2675 2676
 * If the restore eventually fails, we can call this function once again and
 * restore the highmem state as seen by the restore kernel.
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
 */
int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2696
}
2697
#endif /* CONFIG_HIGHMEM */