snapshot.c 67.9 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5
 *
P
Pavel Machek 已提交
6
 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
24 25 26 27
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
28
#include <linux/list.h>
29
#include <linux/slab.h>
30
#include <linux/compiler.h>
31
#include <linux/ktime.h>
32 33 34 35 36 37 38 39 40

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

41 42 43 44
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

45 46 47 48 49 50 51 52 53 54 55 56
/*
 * Number of bytes to reserve for memory allocations made by device drivers
 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 * cause image creation to fail (tunable via /sys/power/reserved_size).
 */
unsigned long reserved_size;

void __init hibernate_reserved_size_init(void)
{
	reserved_size = SPARE_PAGES * PAGE_SIZE;
}

57 58
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
59 60 61
 * When it is set to N, swsusp will do its best to ensure the image
 * size will not exceed N bytes, but if that is impossible, it will
 * try to create the smallest image possible.
62
 */
63 64 65 66
unsigned long image_size;

void __init hibernate_image_size_init(void)
{
67
	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
68
}
69

70 71 72 73 74
/* List of PBEs needed for restoring the pages that were allocated before
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
75 76
struct pbe *restore_pblist;

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
} __packed;

/*
 * List of "safe" pages (ie. pages that were not used by the image kernel
 * before hibernation) that may be used as temporary storage for image kernel
 * memory contents.
 */
static struct linked_page *safe_pages_list;

93
/* Pointer to an auxiliary buffer (1 page) */
94
static void *buffer;
95

96 97 98
/**
 *	@safe_needed - on resume, for storing the PBE list and the image,
 *	we can only use memory pages that do not conflict with the pages
99 100
 *	used before suspend.  The unsafe pages have PageNosaveFree set
 *	and we count them using unsafe_pages.
101
 *
102 103
 *	Each allocated image page is marked as PageNosave and PageNosaveFree
 *	so that swsusp_free() can release it.
104 105
 */

106 107 108 109 110
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

111
static unsigned int allocated_unsafe_pages;
112

113
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
114 115 116 117 118
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
119
		while (res && swsusp_page_is_free(virt_to_page(res))) {
120
			/* The page is unsafe, mark it for swsusp_free() */
121
			swsusp_set_page_forbidden(virt_to_page(res));
122
			allocated_unsafe_pages++;
123 124 125
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
126 127
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
128 129 130 131
	}
	return res;
}

132 133 134 135 136 137 138 139 140 141 142 143
static void *__get_safe_page(gfp_t gfp_mask)
{
	if (safe_pages_list) {
		void *ret = safe_pages_list;

		safe_pages_list = safe_pages_list->next;
		memset(ret, 0, PAGE_SIZE);
		return ret;
	}
	return get_image_page(gfp_mask, PG_SAFE);
}

144 145
unsigned long get_safe_page(gfp_t gfp_mask)
{
146
	return (unsigned long)__get_safe_page(gfp_mask);
147 148
}

149 150
static struct page *alloc_image_page(gfp_t gfp_mask)
{
151 152 153 154
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
155 156
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
157 158
	}
	return page;
159 160
}

161 162 163 164 165 166 167 168
static void recycle_safe_page(void *page_address)
{
	struct linked_page *lp = page_address;

	lp->next = safe_pages_list;
	safe_pages_list = lp;
}

169 170
/**
 *	free_image_page - free page represented by @addr, allocated with
171
 *	get_image_page (page flags set by it must be cleared)
172 173 174 175
 */

static inline void free_image_page(void *addr, int clear_nosave_free)
{
176 177 178 179 180 181
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

182
	swsusp_unset_page_forbidden(page);
183
	if (clear_nosave_free)
184
		swsusp_unset_page_free(page);
185 186

	__free_page(page);
187 188
}

189 190
static inline void free_list_of_pages(struct linked_page *list,
				      int clear_page_nosave)
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

/**
  *	struct chain_allocator is used for allocating small objects out of
  *	a linked list of pages called 'the chain'.
  *
  *	The chain grows each time when there is no room for a new object in
  *	the current page.  The allocated objects cannot be freed individually.
  *	It is only possible to free them all at once, by freeing the entire
  *	chain.
  *
  *	NOTE: The chain allocator may be inefficient if the allocated objects
  *	are not much smaller than PAGE_SIZE.
  */

struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
					 * of the current page
					 */
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

222 223
static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
		       int safe_needed)
224 225 226 227 228 229 230 231 232 233 234 235 236 237
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

238 239
		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
					get_image_page(ca->gfp_mask, PG_ANY);
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
 *	Data types related to memory bitmaps.
 *
 *	Memory bitmap is a structure consiting of many linked lists of
 *	objects.  The main list's elements are of type struct zone_bitmap
 *	and each of them corresonds to one zone.  For each zone bitmap
 *	object there is a list of objects of type struct bm_block that
259
 *	represent each blocks of bitmap in which information is stored.
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
 *
 *	struct memory_bitmap contains a pointer to the main list of zone
 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 *	and a pointer to the list of pages used for allocating all of the
 *	zone bitmap objects and bitmap block objects.
 *
 *	NOTE: It has to be possible to lay out the bitmap in memory
 *	using only allocations of order 0.  Additionally, the bitmap is
 *	designed to work with arbitrary number of zones (this is over the
 *	top for now, but let's avoid making unnecessary assumptions ;-).
 *
 *	struct zone_bitmap contains a pointer to a list of bitmap block
 *	objects and a pointer to the bitmap block object that has been
 *	most recently used for setting bits.  Additionally, it contains the
 *	pfns that correspond to the start and end of the represented zone.
 *
 *	struct bm_block contains a pointer to the memory page in which
277 278 279
 *	information is stored (in the form of a block of bitmap)
 *	It also contains the pfns that correspond to the start and end of
 *	the represented memory area.
280 281 282 283 284 285 286 287 288 289 290
 *
 *	The memory bitmap is organized as a radix tree to guarantee fast random
 *	access to the bits. There is one radix tree for each zone (as returned
 *	from create_mem_extents).
 *
 *	One radix tree is represented by one struct mem_zone_bm_rtree. There are
 *	two linked lists for the nodes of the tree, one for the inner nodes and
 *	one for the leave nodes. The linked leave nodes are used for fast linear
 *	access of the memory bitmap.
 *
 *	The struct rtree_node represents one node of the radix tree.
291 292 293 294
 */

#define BM_END_OF_MAP	(~0UL)

W
Wu Fengguang 已提交
295
#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
296 297
#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
298

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * struct rtree_node is a wrapper struct to link the nodes
 * of the rtree together for easy linear iteration over
 * bits and easy freeing
 */
struct rtree_node {
	struct list_head list;
	unsigned long *data;
};

/*
 * struct mem_zone_bm_rtree represents a bitmap used for one
 * populated memory zone.
 */
struct mem_zone_bm_rtree {
	struct list_head list;		/* Link Zones together         */
	struct list_head nodes;		/* Radix Tree inner nodes      */
	struct list_head leaves;	/* Radix Tree leaves           */
	unsigned long start_pfn;	/* Zone start page frame       */
	unsigned long end_pfn;		/* Zone end page frame + 1     */
	struct rtree_node *rtree;	/* Radix Tree Root             */
	int levels;			/* Number of Radix Tree Levels */
	unsigned int blocks;		/* Number of Bitmap Blocks     */
};

324 325 326
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
327 328 329 330
	struct mem_zone_bm_rtree *zone;
	struct rtree_node *node;
	unsigned long node_pfn;
	int node_bit;
331 332 333
};

struct memory_bitmap {
334
	struct list_head zones;
335 336 337 338 339 340 341 342 343
	struct linked_page *p_list;	/* list of pages used to store zone
					 * bitmap objects and bitmap block
					 * objects
					 */
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
#if BITS_PER_LONG == 32
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
#else
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
#endif
#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)

/*
 *	alloc_rtree_node - Allocate a new node and add it to the radix tree.
 *
 *	This function is used to allocate inner nodes as well as the
 *	leave nodes of the radix tree. It also adds the node to the
 *	corresponding linked list passed in by the *list parameter.
 */
static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
					   struct chain_allocator *ca,
					   struct list_head *list)
{
	struct rtree_node *node;

	node = chain_alloc(ca, sizeof(struct rtree_node));
	if (!node)
		return NULL;

	node->data = get_image_page(gfp_mask, safe_needed);
	if (!node->data)
		return NULL;

	list_add_tail(&node->list, list);

	return node;
}

/*
 *	add_rtree_block - Add a new leave node to the radix tree
 *
 *	The leave nodes need to be allocated in order to keep the leaves
 *	linked list in order. This is guaranteed by the zone->blocks
 *	counter.
 */
static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
			   int safe_needed, struct chain_allocator *ca)
{
	struct rtree_node *node, *block, **dst;
	unsigned int levels_needed, block_nr;
	int i;

	block_nr = zone->blocks;
	levels_needed = 0;

	/* How many levels do we need for this block nr? */
	while (block_nr) {
		levels_needed += 1;
		block_nr >>= BM_RTREE_LEVEL_SHIFT;
	}

	/* Make sure the rtree has enough levels */
	for (i = zone->levels; i < levels_needed; i++) {
		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
					&zone->nodes);
		if (!node)
			return -ENOMEM;

		node->data[0] = (unsigned long)zone->rtree;
		zone->rtree = node;
		zone->levels += 1;
	}

	/* Allocate new block */
	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
	if (!block)
		return -ENOMEM;

	/* Now walk the rtree to insert the block */
	node = zone->rtree;
	dst = &zone->rtree;
	block_nr = zone->blocks;
	for (i = zone->levels; i > 0; i--) {
		int index;

		if (!node) {
			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
						&zone->nodes);
			if (!node)
				return -ENOMEM;
			*dst = node;
		}

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		dst = (struct rtree_node **)&((*dst)->data[index]);
		node = *dst;
	}

	zone->blocks += 1;
	*dst = block;

	return 0;
}

static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free);

/*
 *	create_zone_bm_rtree - create a radix tree for one zone
 *
 *	Allocated the mem_zone_bm_rtree structure and initializes it.
 *	This function also allocated and builds the radix tree for the
 *	zone.
 */
455 456 457 458 459
static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
						      int safe_needed,
						      struct chain_allocator *ca,
						      unsigned long start,
						      unsigned long end)
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
{
	struct mem_zone_bm_rtree *zone;
	unsigned int i, nr_blocks;
	unsigned long pages;

	pages = end - start;
	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
	if (!zone)
		return NULL;

	INIT_LIST_HEAD(&zone->nodes);
	INIT_LIST_HEAD(&zone->leaves);
	zone->start_pfn = start;
	zone->end_pfn = end;
	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);

	for (i = 0; i < nr_blocks; i++) {
		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
			return NULL;
		}
	}

	return zone;
}

/*
 *	free_zone_bm_rtree - Free the memory of the radix tree
 *
 *	Free all node pages of the radix tree. The mem_zone_bm_rtree
 *	structure itself is not freed here nor are the rtree_node
 *	structs.
 */
static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		free_image_page(node->data, clear_nosave_free);

	list_for_each_entry(node, &zone->leaves, list)
		free_image_page(node->data, clear_nosave_free);
}

505 506
static void memory_bm_position_reset(struct memory_bitmap *bm)
{
507 508 509 510 511 512
	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
				  list);
	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
				  struct rtree_node, list);
	bm->cur.node_pfn = 0;
	bm->cur.node_bit = 0;
513 514 515 516
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

517 518 519 520 521 522
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

523
/**
524 525
 *	free_mem_extents - free a list of memory extents
 *	@list - list of extents to empty
526
 */
527 528 529
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
530

531 532 533 534 535 536 537 538 539 540 541 542 543
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
 *	create_mem_extents - create a list of memory extents representing
 *	                     contiguous ranges of PFNs
 *	@list - list to put the extents into
 *	@gfp_mask - mask to use for memory allocations
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
544
{
545
	struct zone *zone;
546

547
	INIT_LIST_HEAD(list);
548

549
	for_each_populated_zone(zone) {
550 551 552 553
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
554
		zone_end = zone_end_pfn(zone);
555 556 557 558

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
559

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
591
	}
592 593

	return 0;
594 595 596 597 598
}

/**
  *	memory_bm_create - allocate memory for a memory bitmap
  */
599 600
static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
			    int safe_needed)
601 602
{
	struct chain_allocator ca;
603 604 605
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
606 607

	chain_init(&ca, gfp_mask, safe_needed);
608
	INIT_LIST_HEAD(&bm->zones);
609

610 611 612
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
613

614
	list_for_each_entry(ext, &mem_extents, hook) {
615 616 617 618
		struct mem_zone_bm_rtree *zone;

		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
					    ext->start, ext->end);
619 620
		if (!zone) {
			error = -ENOMEM;
621
			goto Error;
622
		}
623
		list_add_tail(&zone->list, &bm->zones);
624
	}
625

626 627
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
628 629 630
 Exit:
	free_mem_extents(&mem_extents);
	return error;
631

632
 Error:
633 634
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
635
	goto Exit;
636 637 638 639 640 641 642
}

/**
  *	memory_bm_free - free memory occupied by the memory bitmap @bm
  */
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
643
	struct mem_zone_bm_rtree *zone;
644

645 646 647
	list_for_each_entry(zone, &bm->zones, list)
		free_zone_bm_rtree(zone, clear_nosave_free);

648
	free_list_of_pages(bm->p_list, clear_nosave_free);
649

650
	INIT_LIST_HEAD(&bm->zones);
651 652 653
}

/**
654 655
 *	memory_bm_find_bit - Find the bit for pfn in the memory
 *			     bitmap
656
 *
657 658 659 660
 *	Find the bit in the bitmap @bm that corresponds to given pfn.
 *	The cur.zone, cur.block and cur.node_pfn member of @bm are
 *	updated.
 *	It walks the radix tree to find the page which contains the bit for
661 662
 *	pfn and returns the bit position in **addr and *bit_nr.
 */
663 664
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
			      void **addr, unsigned int *bit_nr)
665 666 667 668 669
{
	struct mem_zone_bm_rtree *curr, *zone;
	struct rtree_node *node;
	int i, block_nr;

670 671 672 673 674
	zone = bm->cur.zone;

	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
		goto zone_found;

675 676 677 678 679 680 681 682 683 684 685 686 687
	zone = NULL;

	/* Find the right zone */
	list_for_each_entry(curr, &bm->zones, list) {
		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
			zone = curr;
			break;
		}
	}

	if (!zone)
		return -EFAULT;

688
zone_found:
689 690 691 692
	/*
	 * We have a zone. Now walk the radix tree to find the leave
	 * node for our pfn.
	 */
693 694 695 696 697

	node = bm->cur.node;
	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
		goto node_found;

698 699 700 701 702 703 704 705 706 707 708 709
	node      = zone->rtree;
	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;

	for (i = zone->levels; i > 0; i--) {
		int index;

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		BUG_ON(node->data[index] == 0);
		node = (struct rtree_node *)node->data[index];
	}

710 711 712 713 714 715
node_found:
	/* Update last position */
	bm->cur.zone = zone;
	bm->cur.node = node;
	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;

716 717 718 719 720 721 722
	/* Set return values */
	*addr = node->data;
	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;

	return 0;
}

723 724 725 726
static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
727
	int error;
728

729 730
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
731 732 733
	set_bit(bit, addr);
}

734 735 736 737 738 739 740
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
741 742 743
	if (!error)
		set_bit(bit, addr);

744 745 746
	return error;
}

747 748 749 750
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
751
	int error;
752

753 754
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
755 756 757
	clear_bit(bit, addr);
}

758 759 760 761 762 763 764 765
static void memory_bm_clear_current(struct memory_bitmap *bm)
{
	int bit;

	bit = max(bm->cur.node_bit - 1, 0);
	clear_bit(bit, bm->cur.node->data);
}

766 767 768 769
static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
770
	int error;
771

772 773
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
774
	return test_bit(bit, addr);
775 776
}

777 778 779 780
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
781

782
	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
783 784
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
/*
 *	rtree_next_node - Jumps to the next leave node
 *
 *	Sets the position to the beginning of the next node in the
 *	memory bitmap. This is either the next node in the current
 *	zone's radix tree or the first node in the radix tree of the
 *	next zone.
 *
 *	Returns true if there is a next node, false otherwise.
 */
static bool rtree_next_node(struct memory_bitmap *bm)
{
	bm->cur.node = list_entry(bm->cur.node->list.next,
				  struct rtree_node, list);
	if (&bm->cur.node->list != &bm->cur.zone->leaves) {
		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
		bm->cur.node_bit  = 0;
802
		touch_softlockup_watchdog();
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
		return true;
	}

	/* No more nodes, goto next zone */
	bm->cur.zone = list_entry(bm->cur.zone->list.next,
				  struct mem_zone_bm_rtree, list);
	if (&bm->cur.zone->list != &bm->zones) {
		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
					  struct rtree_node, list);
		bm->cur.node_pfn = 0;
		bm->cur.node_bit = 0;
		return true;
	}

	/* No more zones */
	return false;
}

821 822
/**
 *	memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
823 824 825 826
 *
 *	Starting from the last returned position this function searches
 *	for the next set bit in the memory bitmap and returns its
 *	number. If no more bit is set BM_END_OF_MAP is returned.
827 828 829
 *
 *	It is required to run memory_bm_position_reset() before the
 *	first call to this function.
830
 */
831
static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
{
	unsigned long bits, pfn, pages;
	int bit;

	do {
		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
		bit	  = find_next_bit(bm->cur.node->data, bits,
					  bm->cur.node_bit);
		if (bit < bits) {
			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
			bm->cur.node_bit = bit + 1;
			return pfn;
		}
	} while (rtree_next_node(bm));

	return BM_END_OF_MAP;
}

851 852 853 854 855 856 857 858 859 860 861 862 863
/**
 *	This structure represents a range of page frames the contents of which
 *	should not be saved during the suspend.
 */

struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		recycle_safe_page(node->data);

	list_for_each_entry(node, &zone->leaves, list)
		recycle_safe_page(node->data);
}

static void memory_bm_recycle(struct memory_bitmap *bm)
{
	struct mem_zone_bm_rtree *zone;
	struct linked_page *p_list;

	list_for_each_entry(zone, &bm->zones, list)
		recycle_zone_bm_rtree(zone);

	p_list = bm->p_list;
	while (p_list) {
		struct linked_page *lp = p_list;

		p_list = lp->next;
		recycle_safe_page(lp);
	}
}

892 893 894 895 896 897
/**
 *	register_nosave_region - register a range of page frames the contents
 *	of which should not be saved during the suspend (to be used in the early
 *	initialization code)
 */

898 899
void __init __register_nosave_region(unsigned long start_pfn,
				     unsigned long end_pfn, int use_kmalloc)
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
915 916 917 918 919 920
	if (use_kmalloc) {
		/* during init, this shouldn't fail */
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
	} else
		/* This allocation cannot fail */
921
		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
922 923 924 925
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
926 927 928
	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
		(unsigned long long) start_pfn << PAGE_SHIFT,
		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
 *	mark_nosave_pages - set bits corresponding to the page frames the
 *	contents of which should not be saved in a given bitmap.
 */

static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

996 997 998 999
		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
				- 1);
1000 1001

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1002 1003 1004 1005 1006 1007 1008 1009 1010
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	}
}

/**
 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 *	frames that should not be saved and free page frames.  The pointers
 *	forbidden_pages_map and free_pages_map are only modified if everything
 *	goes well, because we don't want the bits to be used before both bitmaps
 *	are set up.
 */

int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

1027 1028 1029 1030
	if (forbidden_pages_map && free_pages_map)
		return 0;
	else
		BUG_ON(forbidden_pages_map || free_pages_map);
1031

1032
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1033 1034 1035
	if (!bm1)
		return -ENOMEM;

1036
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1037 1038 1039
	if (error)
		goto Free_first_object;

1040
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1041 1042 1043
	if (!bm2)
		goto Free_first_bitmap;

1044
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1045 1046 1047 1048 1049 1050 1051
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

R
Rafael J. Wysocki 已提交
1052
	pr_debug("PM: Basic memory bitmaps created\n");
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
 *	so that the bitmaps themselves are not referred to while they are being
 *	freed.
 */

void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

1076 1077
	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
		return;
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

R
Rafael J. Wysocki 已提交
1088
	pr_debug("PM: Basic memory bitmaps freed\n");
1089 1090
}

1091 1092 1093 1094 1095 1096 1097 1098
/**
 *	snapshot_additional_pages - estimate the number of additional pages
 *	be needed for setting up the suspend image data structures for given
 *	zone (usually the returned value is greater than the exact number)
 */

unsigned int snapshot_additional_pages(struct zone *zone)
{
1099
	unsigned int rtree, nodes;
1100

1101 1102 1103 1104 1105 1106 1107 1108
	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
			      LINKED_PAGE_DATA_SIZE);
	while (nodes > 1) {
		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
		rtree += nodes;
	}

1109
	return 2 * rtree;
1110 1111
}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
#ifdef CONFIG_HIGHMEM
/**
 *	count_free_highmem_pages - compute the total number of free highmem
 *	pages, system-wide.
 */

static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

1123 1124
	for_each_populated_zone(zone)
		if (is_highmem(zone))
1125
			cnt += zone_page_state(zone, NR_FREE_PAGES);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	return cnt;
}

/**
 *	saveable_highmem_page - Determine whether a highmem page should be
 *	included in the suspend image.
 *
 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 *	and it isn't a part of a free chunk of pages.
 */
1137
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1138 1139 1140 1141 1142 1143 1144
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
1145 1146
	if (page_zone(page) != zone)
		return NULL;
1147 1148 1149

	BUG_ON(!PageHighMem(page));

1150 1151
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
1152 1153
		return NULL;

1154 1155 1156
	if (page_is_guard(page))
		return NULL;

1157 1158 1159 1160 1161 1162 1163 1164
	return page;
}

/**
 *	count_highmem_pages - compute the total number of saveable highmem
 *	pages.
 */

1165
static unsigned int count_highmem_pages(void)
1166 1167 1168 1169
{
	struct zone *zone;
	unsigned int n = 0;

1170
	for_each_populated_zone(zone) {
1171 1172 1173 1174 1175 1176
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
1177
		max_zone_pfn = zone_end_pfn(zone);
1178
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1179
			if (saveable_highmem_page(zone, pfn))
1180 1181 1182 1183 1184
				n++;
	}
	return n;
}
#else
1185 1186 1187 1188
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
1189 1190
#endif /* CONFIG_HIGHMEM */

1191
/**
1192 1193
 *	saveable_page - Determine whether a non-highmem page should be included
 *	in the suspend image.
1194
 *
1195 1196 1197
 *	We should save the page if it isn't Nosave, and is not in the range
 *	of pages statically defined as 'unsaveable', and it isn't a part of
 *	a free chunk of pages.
1198
 */
1199
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1200
{
P
Pavel Machek 已提交
1201
	struct page *page;
1202 1203

	if (!pfn_valid(pfn))
1204
		return NULL;
1205 1206

	page = pfn_to_page(pfn);
1207 1208
	if (page_zone(page) != zone)
		return NULL;
1209

1210 1211
	BUG_ON(PageHighMem(page));

1212
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1213
		return NULL;
1214

1215 1216
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1217
		return NULL;
1218

1219 1220 1221
	if (page_is_guard(page))
		return NULL;

1222
	return page;
1223 1224
}

1225 1226 1227 1228 1229
/**
 *	count_data_pages - compute the total number of saveable non-highmem
 *	pages.
 */

1230
static unsigned int count_data_pages(void)
1231 1232
{
	struct zone *zone;
1233
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
1234
	unsigned int n = 0;
1235

1236
	for_each_populated_zone(zone) {
1237 1238
		if (is_highmem(zone))
			continue;
1239

1240
		mark_free_pages(zone);
1241
		max_zone_pfn = zone_end_pfn(zone);
1242
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1243
			if (saveable_page(zone, pfn))
1244
				n++;
1245
	}
1246
	return n;
1247 1248
}

1249 1250 1251 1252
/* This is needed, because copy_page and memcpy are not usable for copying
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
1253 1254 1255 1256 1257 1258 1259
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

/**
 *	safe_copy_page - check if the page we are going to copy is marked as
 *		present in the kernel page tables (this always is the case if
 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
 *		kernel_page_present() always returns 'true').
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}


1279
#ifdef CONFIG_HIGHMEM
1280
static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1281 1282
{
	return is_highmem(zone) ?
1283
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1284 1285
}

1286
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1287 1288 1289 1290 1291 1292 1293
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
1294 1295
		src = kmap_atomic(s_page);
		dst = kmap_atomic(d_page);
1296
		do_copy_page(dst, src);
1297 1298
		kunmap_atomic(dst);
		kunmap_atomic(src);
1299 1300 1301 1302 1303
	} else {
		if (PageHighMem(d_page)) {
			/* Page pointed to by src may contain some kernel
			 * data modified by kmap_atomic()
			 */
1304
			safe_copy_page(buffer, s_page);
1305
			dst = kmap_atomic(d_page);
1306
			copy_page(dst, buffer);
1307
			kunmap_atomic(dst);
1308
		} else {
1309
			safe_copy_page(page_address(d_page), s_page);
1310 1311 1312 1313
		}
	}
}
#else
1314
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1315

1316
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1317
{
1318 1319
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1320 1321 1322
}
#endif /* CONFIG_HIGHMEM */

1323 1324
static void copy_data_pages(struct memory_bitmap *copy_bm,
			    struct memory_bitmap *orig_bm)
1325 1326
{
	struct zone *zone;
1327
	unsigned long pfn;
1328

1329
	for_each_populated_zone(zone) {
1330 1331
		unsigned long max_zone_pfn;

1332
		mark_free_pages(zone);
1333
		max_zone_pfn = zone_end_pfn(zone);
1334
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1335
			if (page_is_saveable(zone, pfn))
1336
				memory_bm_set_bit(orig_bm, pfn);
1337
	}
1338 1339
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1340
	for(;;) {
1341
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1342 1343 1344 1345
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1346 1347
}

1348 1349 1350 1351
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
unsigned int alloc_normal, alloc_highmem;
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1371

1372
/**
1373
 *	swsusp_free - free pages allocated for the suspend.
1374
 *
1375 1376
 *	Suspend pages are alocated before the atomic copy is made, so we
 *	need to release them after the resume.
1377 1378 1379 1380
 */

void swsusp_free(void)
{
1381
	unsigned long fb_pfn, fr_pfn;
1382

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	if (!forbidden_pages_map || !free_pages_map)
		goto out;

	memory_bm_position_reset(forbidden_pages_map);
	memory_bm_position_reset(free_pages_map);

loop:
	fr_pfn = memory_bm_next_pfn(free_pages_map);
	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);

	/*
	 * Find the next bit set in both bitmaps. This is guaranteed to
	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
	 */
	do {
		if (fb_pfn < fr_pfn)
			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
		if (fr_pfn < fb_pfn)
			fr_pfn = memory_bm_next_pfn(free_pages_map);
	} while (fb_pfn != fr_pfn);

	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
		struct page *page = pfn_to_page(fr_pfn);

		memory_bm_clear_current(forbidden_pages_map);
		memory_bm_clear_current(free_pages_map);
		__free_page(page);
		goto loop;
1411
	}
1412 1413

out:
1414 1415
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1416
	restore_pblist = NULL;
1417
	buffer = NULL;
1418 1419
	alloc_normal = 0;
	alloc_highmem = 0;
1420 1421
}

1422 1423 1424 1425
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1426
/**
1427 1428 1429
 * preallocate_image_pages - Allocate a number of pages for hibernation image
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1430
 *
1431 1432 1433 1434 1435 1436 1437
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1438 1439 1440 1441
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1442
			break;
1443 1444 1445 1446 1447
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1448 1449 1450 1451 1452 1453 1454
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

1455 1456
static unsigned long preallocate_image_memory(unsigned long nr_pages,
					      unsigned long avail_normal)
1457
{
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	unsigned long alloc;

	if (avail_normal <= alloc_normal)
		return 0;

	alloc = avail_normal - alloc_normal;
	if (nr_pages < alloc)
		alloc = nr_pages;

	return preallocate_image_pages(alloc, GFP_IMAGE);
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1478
 */
1479 1480 1481 1482 1483 1484
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
	x *= multiplier;
	do_div(x, base);
	return (unsigned long)x;
}
1485

1486
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1487 1488
						  unsigned long highmem,
						  unsigned long total)
1489
{
1490 1491 1492
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1493
}
1494 1495 1496 1497 1498 1499 1500
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1501 1502
							 unsigned long highmem,
							 unsigned long total)
1503 1504 1505 1506
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1507

1508
/**
1509 1510
 * free_unnecessary_pages - Release preallocated pages not needed for the image
 */
1511
static unsigned long free_unnecessary_pages(void)
1512
{
1513
	unsigned long save, to_free_normal, to_free_highmem, free;
1514

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	save = count_data_pages();
	if (alloc_normal >= save) {
		to_free_normal = alloc_normal - save;
		save = 0;
	} else {
		to_free_normal = 0;
		save -= alloc_normal;
	}
	save += count_highmem_pages();
	if (alloc_highmem >= save) {
		to_free_highmem = alloc_highmem - save;
1526 1527
	} else {
		to_free_highmem = 0;
1528 1529 1530 1531 1532
		save -= alloc_highmem;
		if (to_free_normal > save)
			to_free_normal -= save;
		else
			to_free_normal = 0;
1533
	}
1534
	free = to_free_normal + to_free_highmem;
1535 1536 1537

	memory_bm_position_reset(&copy_bm);

1538
	while (to_free_normal > 0 || to_free_highmem > 0) {
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
1558 1559

	return free;
1560 1561
}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
/**
 * minimum_image_size - Estimate the minimum acceptable size of an image
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1575
 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
 * minus mapped file pages.
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

	size = global_page_state(NR_SLAB_RECLAIMABLE)
		+ global_page_state(NR_ACTIVE_ANON)
		+ global_page_state(NR_INACTIVE_ANON)
		+ global_page_state(NR_ACTIVE_FILE)
		+ global_page_state(NR_INACTIVE_FILE)
		- global_page_state(NR_FILE_MAPPED);

	return saveable <= size ? 0 : saveable - size;
}

1592 1593
/**
 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1594 1595 1596 1597 1598
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
1599 1600 1601 1602
 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
 * total number of available page frames and allocate at least
1603
 *
1604 1605
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1606 1607 1608 1609 1610
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1611 1612
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1613
 */
1614
int hibernate_preallocate_memory(void)
1615 1616
{
	struct zone *zone;
1617
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1618
	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1619
	ktime_t start, stop;
1620
	int error;
1621

1622
	printk(KERN_INFO "PM: Preallocating image memory... ");
1623
	start = ktime_get();
1624

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	alloc_normal = 0;
	alloc_highmem = 0;

1636
	/* Count the number of saveable data pages. */
1637
	save_highmem = count_highmem_pages();
1638
	saveable = count_data_pages();
1639

1640 1641 1642 1643 1644
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1645 1646
	saveable += save_highmem;
	highmem = save_highmem;
1647 1648 1649 1650 1651 1652 1653 1654
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
1655
	avail_normal = count;
1656 1657 1658
	count += highmem;
	count -= totalreserve_pages;

1659 1660 1661
	/* Add number of pages required for page keys (s390 only). */
	size += page_key_additional_pages(saveable);

1662
	/* Compute the maximum number of saveable pages to leave in memory. */
1663 1664
	max_size = (count - (size + PAGES_FOR_IO)) / 2
			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1665
	/* Compute the desired number of image pages specified by image_size. */
1666 1667 1668 1669
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
1670 1671 1672
	 * If the desired number of image pages is at least as large as the
	 * current number of saveable pages in memory, allocate page frames for
	 * the image and we're done.
1673
	 */
1674 1675
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
1676
		pages += preallocate_image_memory(saveable - pages, avail_normal);
1677
		goto out;
1678
	}
1679

1680 1681
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
1682 1683 1684 1685 1686 1687 1688 1689 1690
	/*
	 * To avoid excessive pressure on the normal zone, leave room in it to
	 * accommodate an image of the minimum size (unless it's already too
	 * small, in which case don't preallocate pages from it at all).
	 */
	if (avail_normal > pages)
		avail_normal -= pages;
	else
		avail_normal = 0;
1691 1692 1693
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1706 1707
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1708 1709
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
1710 1711 1712 1713 1714
	alloc = count - max_size;
	if (alloc > pages_highmem)
		alloc -= pages_highmem;
	else
		alloc = 0;
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	pages = preallocate_image_memory(alloc, avail_normal);
	if (pages < alloc) {
		/* We have exhausted non-highmem pages, try highmem. */
		alloc -= pages;
		pages += pages_highmem;
		pages_highmem = preallocate_image_highmem(alloc);
		if (pages_highmem < alloc)
			goto err_out;
		pages += pages_highmem;
		/*
		 * size is the desired number of saveable pages to leave in
		 * memory, so try to preallocate (all memory - size) pages.
		 */
		alloc = (count - pages) - size;
		pages += preallocate_image_highmem(alloc);
	} else {
		/*
		 * There are approximately max_size saveable pages at this point
		 * and we want to reduce this number down to size.
		 */
		alloc = max_size - size;
		size = preallocate_highmem_fraction(alloc, highmem, count);
		pages_highmem += size;
		alloc -= size;
		size = preallocate_image_memory(alloc, avail_normal);
		pages_highmem += preallocate_image_highmem(alloc - size);
		pages += pages_highmem + size;
	}
1743

1744 1745 1746 1747 1748
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
1749
	pages -= free_unnecessary_pages();
1750 1751

 out:
1752
	stop = ktime_get();
1753
	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1754
	swsusp_show_speed(start, stop, pages, "Allocated");
1755 1756

	return 0;
1757 1758 1759 1760 1761

 err_out:
	printk(KERN_CONT "\n");
	swsusp_free();
	return -ENOMEM;
1762 1763
}

1764 1765 1766 1767 1768 1769 1770 1771
#ifdef CONFIG_HIGHMEM
/**
  *	count_pages_for_highmem - compute the number of non-highmem pages
  *	that will be necessary for creating copies of highmem pages.
  */

static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1772
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1773 1774 1775 1776 1777 1778 1779 1780 1781

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
1782
static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1783
#endif /* CONFIG_HIGHMEM */
1784 1785

/**
1786 1787
 *	enough_free_mem - Make sure we have enough free memory for the
 *	snapshot image.
1788 1789
 */

1790
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1791
{
1792
	struct zone *zone;
1793
	unsigned int free = alloc_normal;
1794

1795
	for_each_populated_zone(zone)
1796
		if (!is_highmem(zone))
1797
			free += zone_page_state(zone, NR_FREE_PAGES);
1798

1799
	nr_pages += count_pages_for_highmem(nr_highmem);
1800 1801
	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
		nr_pages, PAGES_FOR_IO, free);
1802

1803
	return free > nr_pages + PAGES_FOR_IO;
1804 1805
}

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
#ifdef CONFIG_HIGHMEM
/**
 *	get_highmem_buffer - if there are some highmem pages in the suspend
 *	image, we may need the buffer to copy them and/or load their data.
 */

static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
 *	Try to allocate as many pages as needed, but if the number of free
 *	highmem pages is lesser than that, allocate them all.
 */

1824 1825
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int nr_highmem)
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

1836
		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1837 1838 1839 1840 1841 1842 1843
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

1844 1845
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int n) { return 0; }
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
#endif /* CONFIG_HIGHMEM */

/**
 *	swsusp_alloc - allocate memory for the suspend image
 *
 *	We first try to allocate as many highmem pages as there are
 *	saveable highmem pages in the system.  If that fails, we allocate
 *	non-highmem pages for the copies of the remaining highmem ones.
 *
 *	In this approach it is likely that the copies of highmem pages will
 *	also be located in the high memory, because of the way in which
 *	copy_data_pages() works.
 */

1860 1861 1862
static int swsusp_alloc(struct memory_bitmap *orig_bm,
			struct memory_bitmap *copy_bm,
			unsigned int nr_pages, unsigned int nr_highmem)
1863
{
1864
	if (nr_highmem > 0) {
1865
		if (get_highmem_buffer(PG_ANY))
1866 1867 1868 1869 1870
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1871
	}
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
1882
	}
1883

1884
	return 0;
1885

1886
 err_out:
1887
	swsusp_free();
1888
	return -ENOMEM;
1889 1890
}

1891
asmlinkage __visible int swsusp_save(void)
1892
{
1893
	unsigned int nr_pages, nr_highmem;
1894

1895
	printk(KERN_INFO "PM: Creating hibernation image:\n");
1896

1897
	drain_local_pages(NULL);
1898
	nr_pages = count_data_pages();
1899
	nr_highmem = count_highmem_pages();
R
Rafael J. Wysocki 已提交
1900
	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1901

1902
	if (!enough_free_mem(nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1903
		printk(KERN_ERR "PM: Not enough free memory\n");
1904 1905 1906
		return -ENOMEM;
	}

1907
	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1908
		printk(KERN_ERR "PM: Memory allocation failed\n");
1909
		return -ENOMEM;
1910
	}
1911 1912 1913 1914

	/* During allocating of suspend pagedir, new cold pages may appear.
	 * Kill them.
	 */
1915
	drain_local_pages(NULL);
1916
	copy_data_pages(&copy_bm, &orig_bm);
1917 1918 1919 1920 1921 1922 1923

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1924
	nr_pages += nr_highmem;
1925
	nr_copy_pages = nr_pages;
1926
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1927

R
Rafael J. Wysocki 已提交
1928 1929
	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
		nr_pages);
1930

1931 1932
	return 0;
}
1933

1934 1935
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
1936
{
1937
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1938
	info->version_code = LINUX_VERSION_CODE;
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

1958 1959 1960 1961 1962
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

1963 1964 1965
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
1966
	info->num_physpages = get_num_physpages();
1967
	info->image_pages = nr_copy_pages;
1968
	info->pages = snapshot_get_image_size();
1969 1970
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
1971
	return init_header_complete(info);
1972 1973 1974
}

/**
1975 1976
 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
 *	are stored in the array @buf[] (1 page at a time)
1977 1978
 */

1979
static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1980 1981 1982
{
	int j;

1983
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1984 1985
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
1986
			break;
1987 1988
		/* Save page key for data page (s390 only). */
		page_key_read(buf + j);
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
	}
}

/**
 *	snapshot_read_next - used for reading the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to read up to the returned number of bytes from the memory
J
Jiri Slaby 已提交
2001
 *	location computed by the data_of() macro.
2002 2003 2004 2005 2006 2007 2008
 *
 *	The function returns 0 to indicate the end of data stream condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
2009
int snapshot_read_next(struct snapshot_handle *handle)
2010
{
2011
	if (handle->cur > nr_meta_pages + nr_copy_pages)
2012
		return 0;
2013

2014 2015
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
2016
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2017 2018 2019
		if (!buffer)
			return -ENOMEM;
	}
J
Jiri Slaby 已提交
2020
	if (!handle->cur) {
2021 2022 2023 2024 2025
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
2026
		handle->buffer = buffer;
2027 2028
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
J
Jiri Slaby 已提交
2029
	} else if (handle->cur <= nr_meta_pages) {
2030
		clear_page(buffer);
J
Jiri Slaby 已提交
2031 2032 2033
		pack_pfns(buffer, &orig_bm);
	} else {
		struct page *page;
2034

J
Jiri Slaby 已提交
2035 2036 2037 2038 2039 2040 2041
		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
		if (PageHighMem(page)) {
			/* Highmem pages are copied to the buffer,
			 * because we can't return with a kmapped
			 * highmem page (we may not be called again).
			 */
			void *kaddr;
2042

2043
			kaddr = kmap_atomic(page);
2044
			copy_page(buffer, kaddr);
2045
			kunmap_atomic(kaddr);
J
Jiri Slaby 已提交
2046 2047 2048
			handle->buffer = buffer;
		} else {
			handle->buffer = page_address(page);
2049 2050
		}
	}
J
Jiri Slaby 已提交
2051 2052
	handle->cur++;
	return PAGE_SIZE;
2053 2054
}

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
static void duplicate_memory_bitmap(struct memory_bitmap *dst,
				    struct memory_bitmap *src)
{
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
	}
}

2068 2069 2070 2071 2072 2073
/**
 *	mark_unsafe_pages - mark the pages that cannot be used for storing
 *	the image during resume, because they conflict with the pages that
 *	had been used before suspend
 */

2074
static void mark_unsafe_pages(struct memory_bitmap *bm)
2075
{
2076
	unsigned long pfn;
2077

2078 2079 2080 2081 2082 2083
	/* Clear the "free"/"unsafe" bit for all PFNs */
	memory_bm_position_reset(free_pages_map);
	pfn = memory_bm_next_pfn(free_pages_map);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_clear_current(free_pages_map);
		pfn = memory_bm_next_pfn(free_pages_map);
2084 2085
	}

2086 2087
	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
	duplicate_memory_bitmap(free_pages_map, bm);
2088

2089
	allocated_unsafe_pages = 0;
2090 2091
}

2092
static int check_header(struct swsusp_info *info)
2093
{
2094
	char *reason;
2095

2096
	reason = check_image_kernel(info);
2097
	if (!reason && info->num_physpages != get_num_physpages())
2098 2099
		reason = "memory size";
	if (reason) {
R
Rafael J. Wysocki 已提交
2100
		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2101 2102 2103 2104 2105 2106 2107 2108 2109
		return -EPERM;
	}
	return 0;
}

/**
 *	load header - check the image header and copy data from it
 */

2110
static int load_header(struct swsusp_info *info)
2111 2112 2113
{
	int error;

2114
	restore_pblist = NULL;
2115 2116 2117 2118 2119 2120 2121 2122 2123
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
2124 2125
 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
 *	the corresponding bit in the memory bitmap @bm
2126
 */
2127
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2128 2129 2130
{
	int j;

2131 2132 2133 2134
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

2135 2136 2137
		/* Extract and buffer page key for data page (s390 only). */
		page_key_memorize(buf + j);

2138
		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2139 2140 2141
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
2142
	}
2143 2144

	return 0;
2145 2146
}

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
#ifdef CONFIG_HIGHMEM
/* struct highmem_pbe is used for creating the list of highmem pages that
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

/* List of highmem PBEs needed for restoring the highmem pages that were
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
 *	count_highmem_image_pages - compute the number of highmem pages in the
 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
 *	image pages are assumed to be set.
 */

static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

/**
 *	prepare_highmem_image - try to allocate as many highmem pages as
 *	there are highmem image pages (@nr_highmem_p points to the variable
 *	containing the number of highmem image pages).  The pages that are
 *	"safe" (ie. will not be overwritten when the suspend image is
 *	restored) have the corresponding bits set in @bm (it must be
 *	unitialized).
 *
 *	NOTE: This function should not be called if there are no highmem
 *	image pages.
 */

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

2203 2204
static int prepare_highmem_image(struct memory_bitmap *bm,
				 unsigned int *nr_highmem_p)
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
2225
		if (!swsusp_page_is_free(page)) {
2226 2227 2228 2229 2230
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
2231 2232
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

/**
 *	get_highmem_page_buffer - for given highmem image page find the buffer
 *	that suspend_write_next() should set for its caller to write to.
 *
 *	If the page is to be saved to its "original" page frame or a copy of
 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
 *	the copy of the page is to be made in normal memory, so the address of
 *	the copy is returned.
 *
 *	If @buffer is returned, the caller of suspend_write_next() will write
 *	the page's contents to @buffer, so they will have to be copied to the
 *	right location on the next call to suspend_write_next() and it is done
 *	with the help of copy_last_highmem_page().  For this purpose, if
 *	@buffer is returned, @last_highmem page is set to the page to which
 *	the data will have to be copied from @buffer.
 */

static struct page *last_highmem_page;

2258 2259
static void *get_highmem_page_buffer(struct page *page,
				     struct chain_allocator *ca)
2260 2261 2262 2263
{
	struct highmem_pbe *pbe;
	void *kaddr;

2264
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
2277
		return ERR_PTR(-ENOMEM);
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
 *	copy_last_highmem_page - copy the contents of a highmem image from
 *	@buffer, where the caller of snapshot_write_next() has place them,
 *	to the right location represented by @last_highmem_page .
 */

static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

2311
		dst = kmap_atomic(last_highmem_page);
2312
		copy_page(dst, buffer);
2313
		kunmap_atomic(dst);
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
2332
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2333

2334 2335
static inline int prepare_highmem_image(struct memory_bitmap *bm,
					unsigned int *nr_highmem_p) { return 0; }
2336

2337 2338
static inline void *get_highmem_page_buffer(struct page *page,
					    struct chain_allocator *ca)
2339
{
2340
	return ERR_PTR(-EINVAL);
2341 2342 2343 2344 2345 2346 2347
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

2348
/**
2349 2350 2351 2352
 *	prepare_image - use the memory bitmap @bm to mark the pages that will
 *	be overwritten in the process of restoring the system memory state
 *	from the suspend image ("unsafe" pages) and allocate memory for the
 *	image.
2353
 *
2354 2355 2356
 *	The idea is to allocate a new memory bitmap first and then allocate
 *	as many pages as needed for the image data, but not to assign these
 *	pages to specific tasks initially.  Instead, we just mark them as
2357 2358 2359
 *	allocated and create a lists of "safe" pages that will be used
 *	later.  On systems with high memory a list of "safe" highmem pages is
 *	also created.
2360 2361
 */

2362 2363
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

2364
static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2365
{
2366
	unsigned int nr_pages, nr_highmem;
2367
	struct linked_page *lp;
2368
	int error;
2369

2370 2371 2372 2373 2374
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2375
	mark_unsafe_pages(bm);
2376 2377 2378 2379 2380 2381 2382

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2383 2384 2385 2386 2387
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2388 2389 2390 2391 2392
	/* Reserve some safe pages for potential later use.
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2393 2394
	 *
	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2395
	 */
2396
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2397 2398
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2399
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2400
		if (!lp) {
2401
			error = -ENOMEM;
2402 2403
			goto Free;
		}
2404 2405
		lp->next = safe_pages_list;
		safe_pages_list = lp;
2406
		nr_pages--;
2407
	}
2408
	/* Preallocate memory for the image */
2409
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2410 2411 2412 2413 2414 2415
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2416
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2417 2418 2419
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2420
		}
2421
		/* Mark the page as allocated */
2422 2423
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2424
		nr_pages--;
2425
	}
2426 2427
	return 0;

R
Rafael J. Wysocki 已提交
2428
 Free:
2429
	swsusp_free();
2430 2431 2432
	return error;
}

2433 2434 2435 2436 2437 2438
/**
 *	get_buffer - compute the address that snapshot_write_next() should
 *	set for its caller to write to.
 */

static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2439
{
2440
	struct pbe *pbe;
2441 2442
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2443

2444 2445 2446 2447
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2448 2449 2450
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2451
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2452 2453
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
2454
		 */
2455 2456 2457 2458
		return page_address(page);

	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
2459
	 */
2460 2461 2462
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2463
		return ERR_PTR(-ENOMEM);
2464
	}
2465 2466
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2467 2468 2469
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2470
	return pbe->address;
2471 2472
}

2473 2474 2475 2476 2477 2478 2479 2480 2481
/**
 *	snapshot_write_next - used for writing the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to write up to the returned number of bytes to the memory
J
Jiri Slaby 已提交
2482
 *	location computed by the data_of() macro.
2483 2484 2485 2486 2487 2488 2489
 *
 *	The function returns 0 to indicate the "end of file" condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
2490
int snapshot_write_next(struct snapshot_handle *handle)
2491
{
2492
	static struct chain_allocator ca;
2493 2494
	int error = 0;

2495
	/* Check if we have already loaded the entire image */
J
Jiri Slaby 已提交
2496
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2497
		return 0;
2498

J
Jiri Slaby 已提交
2499 2500 2501
	handle->sync_read = 1;

	if (!handle->cur) {
2502 2503 2504 2505
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2506 2507
		if (!buffer)
			return -ENOMEM;
2508

2509
		handle->buffer = buffer;
J
Jiri Slaby 已提交
2510 2511 2512 2513
	} else if (handle->cur == 1) {
		error = load_header(buffer);
		if (error)
			return error;
2514

2515 2516
		safe_pages_list = NULL;

J
Jiri Slaby 已提交
2517 2518 2519 2520
		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
		if (error)
			return error;

2521 2522 2523 2524 2525
		/* Allocate buffer for page keys. */
		error = page_key_alloc(nr_copy_pages);
		if (error)
			return error;

J
Jiri Slaby 已提交
2526 2527 2528 2529
	} else if (handle->cur <= nr_meta_pages + 1) {
		error = unpack_orig_pfns(buffer, &copy_bm);
		if (error)
			return error;
2530

J
Jiri Slaby 已提交
2531 2532
		if (handle->cur == nr_meta_pages + 1) {
			error = prepare_image(&orig_bm, &copy_bm);
2533 2534 2535
			if (error)
				return error;

J
Jiri Slaby 已提交
2536 2537 2538
			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
			memory_bm_position_reset(&orig_bm);
			restore_pblist = NULL;
2539
			handle->buffer = get_buffer(&orig_bm, &ca);
J
Jiri Slaby 已提交
2540
			handle->sync_read = 0;
2541 2542
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2543 2544
		}
	} else {
J
Jiri Slaby 已提交
2545
		copy_last_highmem_page();
2546 2547
		/* Restore page key for data page (s390 only). */
		page_key_write(handle->buffer);
J
Jiri Slaby 已提交
2548 2549 2550 2551 2552
		handle->buffer = get_buffer(&orig_bm, &ca);
		if (IS_ERR(handle->buffer))
			return PTR_ERR(handle->buffer);
		if (handle->buffer != buffer)
			handle->sync_read = 0;
2553
	}
J
Jiri Slaby 已提交
2554 2555
	handle->cur++;
	return PAGE_SIZE;
2556 2557
}

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
/**
 *	snapshot_write_finalize - must be called after the last call to
 *	snapshot_write_next() in case the last page in the image happens
 *	to be a highmem page and its contents should be stored in the
 *	highmem.  Additionally, it releases the memory that will not be
 *	used any more.
 */

void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
2569 2570 2571
	/* Restore page key for data page (s390 only). */
	page_key_write(handle->buffer);
	page_key_free();
2572
	/* Do that only if we have loaded the image entirely */
J
Jiri Slaby 已提交
2573
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2574
		memory_bm_recycle(&orig_bm);
2575 2576 2577 2578
		free_highmem_data();
	}
}

2579 2580
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2581
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2582 2583 2584
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2585 2586
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
2587 2588
static inline void swap_two_pages_data(struct page *p1, struct page *p2,
				       void *buf)
2589
{
2590 2591
	void *kaddr1, *kaddr2;

2592 2593
	kaddr1 = kmap_atomic(p1);
	kaddr2 = kmap_atomic(p2);
2594 2595 2596
	copy_page(buf, kaddr1);
	copy_page(kaddr1, kaddr2);
	copy_page(kaddr2, buf);
2597 2598
	kunmap_atomic(kaddr2);
	kunmap_atomic(kaddr1);
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
}

/**
 *	restore_highmem - for each highmem page that was allocated before
 *	the suspend and included in the suspend image, and also has been
 *	allocated by the "resume" kernel swap its current (ie. "before
 *	resume") contents with the previous (ie. "before suspend") one.
 *
 *	If the resume eventually fails, we can call this function once
 *	again and restore the "before resume" highmem state.
 */

int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2629
}
2630
#endif /* CONFIG_HIGHMEM */