snapshot.c 69.8 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5
 *
P
Pavel Machek 已提交
6
 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
24 25 26 27
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
28
#include <linux/list.h>
29
#include <linux/slab.h>
30
#include <linux/compiler.h>
31
#include <linux/ktime.h>
32 33 34 35 36 37 38 39 40

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

41 42 43 44
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

45 46 47 48 49 50 51 52 53 54 55 56
/*
 * Number of bytes to reserve for memory allocations made by device drivers
 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 * cause image creation to fail (tunable via /sys/power/reserved_size).
 */
unsigned long reserved_size;

void __init hibernate_reserved_size_init(void)
{
	reserved_size = SPARE_PAGES * PAGE_SIZE;
}

57 58
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
59 60 61
 * When it is set to N, swsusp will do its best to ensure the image
 * size will not exceed N bytes, but if that is impossible, it will
 * try to create the smallest image possible.
62
 */
63 64 65 66
unsigned long image_size;

void __init hibernate_image_size_init(void)
{
67
	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
68
}
69

70 71
/*
 * List of PBEs needed for restoring the pages that were allocated before
72 73 74 75
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
76 77
struct pbe *restore_pblist;

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
} __packed;

/*
 * List of "safe" pages (ie. pages that were not used by the image kernel
 * before hibernation) that may be used as temporary storage for image kernel
 * memory contents.
 */
static struct linked_page *safe_pages_list;

94
/* Pointer to an auxiliary buffer (1 page) */
95
static void *buffer;
96

97 98 99 100 101
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

102
static unsigned int allocated_unsafe_pages;
103

104 105 106 107 108 109 110 111 112 113 114 115 116
/**
 * get_image_page - Allocate a page for a hibernation image.
 * @gfp_mask: GFP mask for the allocation.
 * @safe_needed: Get pages that were not used before hibernation (restore only)
 *
 * During image restoration, for storing the PBE list and the image data, we can
 * only use memory pages that do not conflict with the pages used before
 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 * using allocated_unsafe_pages.
 *
 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 * swsusp_free() can release it.
 */
117
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
118 119 120 121 122
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
123
		while (res && swsusp_page_is_free(virt_to_page(res))) {
124
			/* The page is unsafe, mark it for swsusp_free() */
125
			swsusp_set_page_forbidden(virt_to_page(res));
126
			allocated_unsafe_pages++;
127 128 129
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
130 131
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
132 133 134 135
	}
	return res;
}

136 137 138 139 140 141 142 143 144 145 146 147
static void *__get_safe_page(gfp_t gfp_mask)
{
	if (safe_pages_list) {
		void *ret = safe_pages_list;

		safe_pages_list = safe_pages_list->next;
		memset(ret, 0, PAGE_SIZE);
		return ret;
	}
	return get_image_page(gfp_mask, PG_SAFE);
}

148 149
unsigned long get_safe_page(gfp_t gfp_mask)
{
150
	return (unsigned long)__get_safe_page(gfp_mask);
151 152
}

153 154
static struct page *alloc_image_page(gfp_t gfp_mask)
{
155 156 157 158
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
159 160
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
161 162
	}
	return page;
163 164
}

165 166 167 168 169 170 171 172
static void recycle_safe_page(void *page_address)
{
	struct linked_page *lp = page_address;

	lp->next = safe_pages_list;
	safe_pages_list = lp;
}

173
/**
174 175 176 177 178 179
 * free_image_page - Free a page allocated for hibernation image.
 * @addr: Address of the page to free.
 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 *
 * The page to free should have been allocated by get_image_page() (page flags
 * set by it are affected).
180 181 182
 */
static inline void free_image_page(void *addr, int clear_nosave_free)
{
183 184 185 186 187 188
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

189
	swsusp_unset_page_forbidden(page);
190
	if (clear_nosave_free)
191
		swsusp_unset_page_free(page);
192 193

	__free_page(page);
194 195
}

196 197
static inline void free_list_of_pages(struct linked_page *list,
				      int clear_page_nosave)
198 199 200 201 202 203 204 205 206
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

207 208 209 210 211 212 213 214 215 216 217 218
/*
 * struct chain_allocator is used for allocating small objects out of
 * a linked list of pages called 'the chain'.
 *
 * The chain grows each time when there is no room for a new object in
 * the current page.  The allocated objects cannot be freed individually.
 * It is only possible to free them all at once, by freeing the entire
 * chain.
 *
 * NOTE: The chain allocator may be inefficient if the allocated objects
 * are not much smaller than PAGE_SIZE.
 */
219 220 221
struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
222
					   of the current page */
223 224 225 226
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

227 228
static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
		       int safe_needed)
229 230 231 232 233 234 235 236 237 238 239 240 241 242
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

243 244
		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
					get_image_page(ca->gfp_mask, PG_ANY);
245 246 247 248 249 250 251 252 253 254 255 256 257
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
258
 * Data types related to memory bitmaps.
259
 *
260 261 262 263 264
 * Memory bitmap is a structure consiting of many linked lists of
 * objects.  The main list's elements are of type struct zone_bitmap
 * and each of them corresonds to one zone.  For each zone bitmap
 * object there is a list of objects of type struct bm_block that
 * represent each blocks of bitmap in which information is stored.
265
 *
266 267 268 269
 * struct memory_bitmap contains a pointer to the main list of zone
 * bitmap objects, a struct bm_position used for browsing the bitmap,
 * and a pointer to the list of pages used for allocating all of the
 * zone bitmap objects and bitmap block objects.
270
 *
271 272 273 274
 * NOTE: It has to be possible to lay out the bitmap in memory
 * using only allocations of order 0.  Additionally, the bitmap is
 * designed to work with arbitrary number of zones (this is over the
 * top for now, but let's avoid making unnecessary assumptions ;-).
275
 *
276 277 278 279
 * struct zone_bitmap contains a pointer to a list of bitmap block
 * objects and a pointer to the bitmap block object that has been
 * most recently used for setting bits.  Additionally, it contains the
 * PFNs that correspond to the start and end of the represented zone.
280
 *
281 282 283 284
 * struct bm_block contains a pointer to the memory page in which
 * information is stored (in the form of a block of bitmap)
 * It also contains the pfns that correspond to the start and end of
 * the represented memory area.
285
 *
286 287 288
 * The memory bitmap is organized as a radix tree to guarantee fast random
 * access to the bits. There is one radix tree for each zone (as returned
 * from create_mem_extents).
289
 *
290 291 292 293
 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 * two linked lists for the nodes of the tree, one for the inner nodes and
 * one for the leave nodes. The linked leave nodes are used for fast linear
 * access of the memory bitmap.
294
 *
295
 * The struct rtree_node represents one node of the radix tree.
296 297 298 299
 */

#define BM_END_OF_MAP	(~0UL)

W
Wu Fengguang 已提交
300
#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
301 302
#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
303

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
/*
 * struct rtree_node is a wrapper struct to link the nodes
 * of the rtree together for easy linear iteration over
 * bits and easy freeing
 */
struct rtree_node {
	struct list_head list;
	unsigned long *data;
};

/*
 * struct mem_zone_bm_rtree represents a bitmap used for one
 * populated memory zone.
 */
struct mem_zone_bm_rtree {
	struct list_head list;		/* Link Zones together         */
	struct list_head nodes;		/* Radix Tree inner nodes      */
	struct list_head leaves;	/* Radix Tree leaves           */
	unsigned long start_pfn;	/* Zone start page frame       */
	unsigned long end_pfn;		/* Zone end page frame + 1     */
	struct rtree_node *rtree;	/* Radix Tree Root             */
	int levels;			/* Number of Radix Tree Levels */
	unsigned int blocks;		/* Number of Bitmap Blocks     */
};

329 330 331
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
332 333 334 335
	struct mem_zone_bm_rtree *zone;
	struct rtree_node *node;
	unsigned long node_pfn;
	int node_bit;
336 337 338
};

struct memory_bitmap {
339
	struct list_head zones;
340
	struct linked_page *p_list;	/* list of pages used to store zone
341 342
					   bitmap objects and bitmap block
					   objects */
343 344 345 346 347
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

348 349 350 351 352 353 354 355
#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
#if BITS_PER_LONG == 32
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
#else
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
#endif
#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)

356 357
/**
 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
358
 *
359 360 361
 * This function is used to allocate inner nodes as well as the
 * leave nodes of the radix tree. It also adds the node to the
 * corresponding linked list passed in by the *list parameter.
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
 */
static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
					   struct chain_allocator *ca,
					   struct list_head *list)
{
	struct rtree_node *node;

	node = chain_alloc(ca, sizeof(struct rtree_node));
	if (!node)
		return NULL;

	node->data = get_image_page(gfp_mask, safe_needed);
	if (!node->data)
		return NULL;

	list_add_tail(&node->list, list);

	return node;
}

382 383
/**
 * add_rtree_block - Add a new leave node to the radix tree.
384
 *
385 386 387
 * The leave nodes need to be allocated in order to keep the leaves
 * linked list in order. This is guaranteed by the zone->blocks
 * counter.
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
 */
static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
			   int safe_needed, struct chain_allocator *ca)
{
	struct rtree_node *node, *block, **dst;
	unsigned int levels_needed, block_nr;
	int i;

	block_nr = zone->blocks;
	levels_needed = 0;

	/* How many levels do we need for this block nr? */
	while (block_nr) {
		levels_needed += 1;
		block_nr >>= BM_RTREE_LEVEL_SHIFT;
	}

	/* Make sure the rtree has enough levels */
	for (i = zone->levels; i < levels_needed; i++) {
		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
					&zone->nodes);
		if (!node)
			return -ENOMEM;

		node->data[0] = (unsigned long)zone->rtree;
		zone->rtree = node;
		zone->levels += 1;
	}

	/* Allocate new block */
	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
	if (!block)
		return -ENOMEM;

	/* Now walk the rtree to insert the block */
	node = zone->rtree;
	dst = &zone->rtree;
	block_nr = zone->blocks;
	for (i = zone->levels; i > 0; i--) {
		int index;

		if (!node) {
			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
						&zone->nodes);
			if (!node)
				return -ENOMEM;
			*dst = node;
		}

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		dst = (struct rtree_node **)&((*dst)->data[index]);
		node = *dst;
	}

	zone->blocks += 1;
	*dst = block;

	return 0;
}

static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free);

452 453
/**
 * create_zone_bm_rtree - Create a radix tree for one zone.
454
 *
455 456 457
 * Allocated the mem_zone_bm_rtree structure and initializes it.
 * This function also allocated and builds the radix tree for the
 * zone.
458
 */
459 460 461 462 463
static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
						      int safe_needed,
						      struct chain_allocator *ca,
						      unsigned long start,
						      unsigned long end)
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
{
	struct mem_zone_bm_rtree *zone;
	unsigned int i, nr_blocks;
	unsigned long pages;

	pages = end - start;
	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
	if (!zone)
		return NULL;

	INIT_LIST_HEAD(&zone->nodes);
	INIT_LIST_HEAD(&zone->leaves);
	zone->start_pfn = start;
	zone->end_pfn = end;
	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);

	for (i = 0; i < nr_blocks; i++) {
		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
			return NULL;
		}
	}

	return zone;
}

490 491
/**
 * free_zone_bm_rtree - Free the memory of the radix tree.
492
 *
493 494 495
 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 * structure itself is not freed here nor are the rtree_node
 * structs.
496 497 498 499 500 501 502 503 504 505 506 507 508
 */
static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		free_image_page(node->data, clear_nosave_free);

	list_for_each_entry(node, &zone->leaves, list)
		free_image_page(node->data, clear_nosave_free);
}

509 510
static void memory_bm_position_reset(struct memory_bitmap *bm)
{
511 512 513 514 515 516
	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
				  list);
	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
				  struct rtree_node, list);
	bm->cur.node_pfn = 0;
	bm->cur.node_bit = 0;
517 518 519 520
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

521 522 523 524 525 526
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

527
/**
528 529
 * free_mem_extents - Free a list of memory extents.
 * @list: List of extents to free.
530
 */
531 532 533
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
534

535 536 537 538 539 540 541
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
542 543 544 545 546
 * create_mem_extents - Create a list of memory extents.
 * @list: List to put the extents into.
 * @gfp_mask: Mask to use for memory allocations.
 *
 * The extents represent contiguous ranges of PFNs.
547 548
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
549
{
550
	struct zone *zone;
551

552
	INIT_LIST_HEAD(list);
553

554
	for_each_populated_zone(zone) {
555 556 557 558
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
559
		zone_end = zone_end_pfn(zone);
560 561 562 563

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
564

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
596
	}
597 598

	return 0;
599 600 601
}

/**
602 603
 * memory_bm_create - Allocate memory for a memory bitmap.
 */
604 605
static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
			    int safe_needed)
606 607
{
	struct chain_allocator ca;
608 609 610
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
611 612

	chain_init(&ca, gfp_mask, safe_needed);
613
	INIT_LIST_HEAD(&bm->zones);
614

615 616 617
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
618

619
	list_for_each_entry(ext, &mem_extents, hook) {
620 621 622 623
		struct mem_zone_bm_rtree *zone;

		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
					    ext->start, ext->end);
624 625
		if (!zone) {
			error = -ENOMEM;
626
			goto Error;
627
		}
628
		list_add_tail(&zone->list, &bm->zones);
629
	}
630

631 632
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
633 634 635
 Exit:
	free_mem_extents(&mem_extents);
	return error;
636

637
 Error:
638 639
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
640
	goto Exit;
641 642 643
}

/**
644 645 646
 * memory_bm_free - Free memory occupied by the memory bitmap.
 * @bm: Memory bitmap.
 */
647 648
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
649
	struct mem_zone_bm_rtree *zone;
650

651 652 653
	list_for_each_entry(zone, &bm->zones, list)
		free_zone_bm_rtree(zone, clear_nosave_free);

654
	free_list_of_pages(bm->p_list, clear_nosave_free);
655

656
	INIT_LIST_HEAD(&bm->zones);
657 658 659
}

/**
660
 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
661
 *
662 663 664 665 666
 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 *
 * Walk the radix tree to find the page containing the bit that represents @pfn
 * and return the position of the bit in @addr and @bit_nr.
667
 */
668 669
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
			      void **addr, unsigned int *bit_nr)
670 671 672 673 674
{
	struct mem_zone_bm_rtree *curr, *zone;
	struct rtree_node *node;
	int i, block_nr;

675 676 677 678 679
	zone = bm->cur.zone;

	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
		goto zone_found;

680 681 682 683 684 685 686 687 688 689 690 691 692
	zone = NULL;

	/* Find the right zone */
	list_for_each_entry(curr, &bm->zones, list) {
		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
			zone = curr;
			break;
		}
	}

	if (!zone)
		return -EFAULT;

693
zone_found:
694
	/*
695 696
	 * We have found the zone. Now walk the radix tree to find the leaf node
	 * for our PFN.
697
	 */
698 699 700 701
	node = bm->cur.node;
	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
		goto node_found;

702 703 704 705 706 707 708 709 710 711 712 713
	node      = zone->rtree;
	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;

	for (i = zone->levels; i > 0; i--) {
		int index;

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		BUG_ON(node->data[index] == 0);
		node = (struct rtree_node *)node->data[index];
	}

714 715 716 717 718 719
node_found:
	/* Update last position */
	bm->cur.zone = zone;
	bm->cur.node = node;
	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;

720 721 722 723 724 725 726
	/* Set return values */
	*addr = node->data;
	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;

	return 0;
}

727 728 729 730
static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
731
	int error;
732

733 734
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
735 736 737
	set_bit(bit, addr);
}

738 739 740 741 742 743 744
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
745 746 747
	if (!error)
		set_bit(bit, addr);

748 749 750
	return error;
}

751 752 753 754
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
755
	int error;
756

757 758
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
759 760 761
	clear_bit(bit, addr);
}

762 763 764 765 766 767 768 769
static void memory_bm_clear_current(struct memory_bitmap *bm)
{
	int bit;

	bit = max(bm->cur.node_bit - 1, 0);
	clear_bit(bit, bm->cur.node->data);
}

770 771 772 773
static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
774
	int error;
775

776 777
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
778
	return test_bit(bit, addr);
779 780
}

781 782 783 784
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
785

786
	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
787 788
}

789
/*
790
 * rtree_next_node - Jump to the next leaf node.
791
 *
792 793 794 795
 * Set the position to the beginning of the next node in the
 * memory bitmap. This is either the next node in the current
 * zone's radix tree or the first node in the radix tree of the
 * next zone.
796
 *
797
 * Return true if there is a next node, false otherwise.
798 799 800 801 802 803 804 805
 */
static bool rtree_next_node(struct memory_bitmap *bm)
{
	bm->cur.node = list_entry(bm->cur.node->list.next,
				  struct rtree_node, list);
	if (&bm->cur.node->list != &bm->cur.zone->leaves) {
		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
		bm->cur.node_bit  = 0;
806
		touch_softlockup_watchdog();
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
		return true;
	}

	/* No more nodes, goto next zone */
	bm->cur.zone = list_entry(bm->cur.zone->list.next,
				  struct mem_zone_bm_rtree, list);
	if (&bm->cur.zone->list != &bm->zones) {
		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
					  struct rtree_node, list);
		bm->cur.node_pfn = 0;
		bm->cur.node_bit = 0;
		return true;
	}

	/* No more zones */
	return false;
}

825
/**
826 827
 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 * @bm: Memory bitmap.
828
 *
829 830 831
 * Starting from the last returned position this function searches for the next
 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 * set, BM_END_OF_MAP is returned.
832
 *
833 834
 * It is required to run memory_bm_position_reset() before the first call to
 * this function for the given memory bitmap.
835
 */
836
static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
{
	unsigned long bits, pfn, pages;
	int bit;

	do {
		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
		bit	  = find_next_bit(bm->cur.node->data, bits,
					  bm->cur.node_bit);
		if (bit < bits) {
			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
			bm->cur.node_bit = bit + 1;
			return pfn;
		}
	} while (rtree_next_node(bm));

	return BM_END_OF_MAP;
}

856 857 858
/*
 * This structure represents a range of page frames the contents of which
 * should not be saved during hibernation.
859 860 861 862 863 864 865 866 867
 */
struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		recycle_safe_page(node->data);

	list_for_each_entry(node, &zone->leaves, list)
		recycle_safe_page(node->data);
}

static void memory_bm_recycle(struct memory_bitmap *bm)
{
	struct mem_zone_bm_rtree *zone;
	struct linked_page *p_list;

	list_for_each_entry(zone, &bm->zones, list)
		recycle_zone_bm_rtree(zone);

	p_list = bm->p_list;
	while (p_list) {
		struct linked_page *lp = p_list;

		p_list = lp->next;
		recycle_safe_page(lp);
	}
}

896
/**
897 898 899 900
 * register_nosave_region - Register a region of unsaveable memory.
 *
 * Register a range of page frames the contents of which should not be saved
 * during hibernation (to be used in the early initialization code).
901
 */
902 903
void __init __register_nosave_region(unsigned long start_pfn,
				     unsigned long end_pfn, int use_kmalloc)
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
919
	if (use_kmalloc) {
920
		/* During init, this shouldn't fail */
921 922 923 924
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
	} else
		/* This allocation cannot fail */
925
		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
926 927 928 929
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
930 931 932
	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
		(unsigned long long) start_pfn << PAGE_SHIFT,
		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
986 987 988 989 990
 * mark_nosave_pages - Mark pages that should not be saved.
 * @bm: Memory bitmap.
 *
 * Set the bits in @bm that correspond to the page frames the contents of which
 * should not be saved.
991 992 993 994 995 996 997 998 999 1000 1001
 */
static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

1002 1003 1004 1005
		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
				- 1);
1006 1007

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1008 1009 1010 1011 1012 1013 1014 1015 1016
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
1017 1018 1019 1020
	}
}

/**
1021 1022 1023 1024 1025 1026
 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
 *
 * Create bitmaps needed for marking page frames that should not be saved and
 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
 * only modified if everything goes well, because we don't want the bits to be
 * touched before both bitmaps are set up.
1027 1028 1029 1030 1031 1032
 */
int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

1033 1034 1035 1036
	if (forbidden_pages_map && free_pages_map)
		return 0;
	else
		BUG_ON(forbidden_pages_map || free_pages_map);
1037

1038
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1039 1040 1041
	if (!bm1)
		return -ENOMEM;

1042
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1043 1044 1045
	if (error)
		goto Free_first_object;

1046
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1047 1048 1049
	if (!bm2)
		goto Free_first_bitmap;

1050
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1051 1052 1053 1054 1055 1056 1057
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

R
Rafael J. Wysocki 已提交
1058
	pr_debug("PM: Basic memory bitmaps created\n");
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
1072 1073 1074 1075 1076
 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
 *
 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
 * auxiliary pointers are necessary so that the bitmaps themselves are not
 * referred to while they are being freed.
1077 1078 1079 1080 1081
 */
void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

1082 1083
	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
		return;
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

R
Rafael J. Wysocki 已提交
1094
	pr_debug("PM: Basic memory bitmaps freed\n");
1095 1096
}

1097
/**
1098 1099 1100 1101 1102 1103
 * snapshot_additional_pages - Estimate the number of extra pages needed.
 * @zone: Memory zone to carry out the computation for.
 *
 * Estimate the number of additional pages needed for setting up a hibernation
 * image data structures for @zone (usually, the returned value is greater than
 * the exact number).
1104 1105 1106
 */
unsigned int snapshot_additional_pages(struct zone *zone)
{
1107
	unsigned int rtree, nodes;
1108

1109 1110 1111 1112 1113 1114 1115 1116
	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
			      LINKED_PAGE_DATA_SIZE);
	while (nodes > 1) {
		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
		rtree += nodes;
	}

1117
	return 2 * rtree;
1118 1119
}

1120 1121
#ifdef CONFIG_HIGHMEM
/**
1122 1123 1124
 * count_free_highmem_pages - Compute the total number of free highmem pages.
 *
 * The returned number is system-wide.
1125 1126 1127 1128 1129 1130
 */
static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

1131 1132
	for_each_populated_zone(zone)
		if (is_highmem(zone))
1133
			cnt += zone_page_state(zone, NR_FREE_PAGES);
1134 1135 1136 1137 1138

	return cnt;
}

/**
1139 1140 1141
 * saveable_highmem_page - Check if a highmem page is saveable.
 *
 * Determine whether a highmem page should be included in a hibernation image.
1142
 *
1143 1144
 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 * and it isn't part of a free chunk of pages.
1145
 */
1146
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1147 1148 1149 1150 1151 1152 1153
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
1154 1155
	if (page_zone(page) != zone)
		return NULL;
1156 1157 1158

	BUG_ON(!PageHighMem(page));

1159 1160
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
1161 1162
		return NULL;

1163 1164 1165
	if (page_is_guard(page))
		return NULL;

1166 1167 1168 1169
	return page;
}

/**
1170
 * count_highmem_pages - Compute the total number of saveable highmem pages.
1171
 */
1172
static unsigned int count_highmem_pages(void)
1173 1174 1175 1176
{
	struct zone *zone;
	unsigned int n = 0;

1177
	for_each_populated_zone(zone) {
1178 1179 1180 1181 1182 1183
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
1184
		max_zone_pfn = zone_end_pfn(zone);
1185
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1186
			if (saveable_highmem_page(zone, pfn))
1187 1188 1189 1190 1191
				n++;
	}
	return n;
}
#else
1192 1193 1194 1195
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
1196 1197
#endif /* CONFIG_HIGHMEM */

1198
/**
1199 1200 1201 1202
 * saveable_page - Check if the given page is saveable.
 *
 * Determine whether a non-highmem page should be included in a hibernation
 * image.
1203
 *
1204 1205 1206
 * We should save the page if it isn't Nosave, and is not in the range
 * of pages statically defined as 'unsaveable', and it isn't part of
 * a free chunk of pages.
1207
 */
1208
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1209
{
P
Pavel Machek 已提交
1210
	struct page *page;
1211 1212

	if (!pfn_valid(pfn))
1213
		return NULL;
1214 1215

	page = pfn_to_page(pfn);
1216 1217
	if (page_zone(page) != zone)
		return NULL;
1218

1219 1220
	BUG_ON(PageHighMem(page));

1221
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1222
		return NULL;
1223

1224 1225
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1226
		return NULL;
1227

1228 1229 1230
	if (page_is_guard(page))
		return NULL;

1231
	return page;
1232 1233
}

1234
/**
1235
 * count_data_pages - Compute the total number of saveable non-highmem pages.
1236
 */
1237
static unsigned int count_data_pages(void)
1238 1239
{
	struct zone *zone;
1240
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
1241
	unsigned int n = 0;
1242

1243
	for_each_populated_zone(zone) {
1244 1245
		if (is_highmem(zone))
			continue;
1246

1247
		mark_free_pages(zone);
1248
		max_zone_pfn = zone_end_pfn(zone);
1249
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1250
			if (saveable_page(zone, pfn))
1251
				n++;
1252
	}
1253
	return n;
1254 1255
}

1256 1257
/*
 * This is needed, because copy_page and memcpy are not usable for copying
1258 1259 1260
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
1261 1262 1263 1264 1265 1266 1267
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

1268
/**
1269 1270 1271 1272 1273
 * safe_copy_page - Copy a page in a safe way.
 *
 * Check if the page we are going to copy is marked as present in the kernel
 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
 * and in that case kernel_page_present() always returns 'true').
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}

1286
#ifdef CONFIG_HIGHMEM
1287
static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1288 1289
{
	return is_highmem(zone) ?
1290
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1291 1292
}

1293
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1294 1295 1296 1297 1298 1299 1300
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
1301 1302
		src = kmap_atomic(s_page);
		dst = kmap_atomic(d_page);
1303
		do_copy_page(dst, src);
1304 1305
		kunmap_atomic(dst);
		kunmap_atomic(src);
1306 1307
	} else {
		if (PageHighMem(d_page)) {
1308 1309
			/*
			 * The page pointed to by src may contain some kernel
1310 1311
			 * data modified by kmap_atomic()
			 */
1312
			safe_copy_page(buffer, s_page);
1313
			dst = kmap_atomic(d_page);
1314
			copy_page(dst, buffer);
1315
			kunmap_atomic(dst);
1316
		} else {
1317
			safe_copy_page(page_address(d_page), s_page);
1318 1319 1320 1321
		}
	}
}
#else
1322
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1323

1324
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1325
{
1326 1327
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1328 1329 1330
}
#endif /* CONFIG_HIGHMEM */

1331 1332
static void copy_data_pages(struct memory_bitmap *copy_bm,
			    struct memory_bitmap *orig_bm)
1333 1334
{
	struct zone *zone;
1335
	unsigned long pfn;
1336

1337
	for_each_populated_zone(zone) {
1338 1339
		unsigned long max_zone_pfn;

1340
		mark_free_pages(zone);
1341
		max_zone_pfn = zone_end_pfn(zone);
1342
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1343
			if (page_is_saveable(zone, pfn))
1344
				memory_bm_set_bit(orig_bm, pfn);
1345
	}
1346 1347
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1348
	for(;;) {
1349
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1350 1351 1352 1353
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1354 1355
}

1356 1357 1358 1359
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
unsigned int alloc_normal, alloc_highmem;
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1379

1380
/**
1381
 * swsusp_free - Free pages allocated for hibernation image.
1382
 *
1383 1384
 * Image pages are alocated before snapshot creation, so they need to be
 * released after resume.
1385 1386 1387
 */
void swsusp_free(void)
{
1388
	unsigned long fb_pfn, fr_pfn;
1389

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	if (!forbidden_pages_map || !free_pages_map)
		goto out;

	memory_bm_position_reset(forbidden_pages_map);
	memory_bm_position_reset(free_pages_map);

loop:
	fr_pfn = memory_bm_next_pfn(free_pages_map);
	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);

	/*
	 * Find the next bit set in both bitmaps. This is guaranteed to
	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
	 */
	do {
		if (fb_pfn < fr_pfn)
			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
		if (fr_pfn < fb_pfn)
			fr_pfn = memory_bm_next_pfn(free_pages_map);
	} while (fb_pfn != fr_pfn);

	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
		struct page *page = pfn_to_page(fr_pfn);

		memory_bm_clear_current(forbidden_pages_map);
		memory_bm_clear_current(free_pages_map);
		__free_page(page);
		goto loop;
1418
	}
1419 1420

out:
1421 1422
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1423
	restore_pblist = NULL;
1424
	buffer = NULL;
1425 1426
	alloc_normal = 0;
	alloc_highmem = 0;
1427 1428
}

1429 1430 1431 1432
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1433
/**
1434
 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1435 1436
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1437
 *
1438 1439 1440 1441 1442 1443 1444
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1445 1446 1447 1448
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1449
			break;
1450 1451 1452 1453 1454
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1455 1456 1457 1458 1459 1460 1461
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

1462 1463
static unsigned long preallocate_image_memory(unsigned long nr_pages,
					      unsigned long avail_normal)
1464
{
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	unsigned long alloc;

	if (avail_normal <= alloc_normal)
		return 0;

	alloc = avail_normal - alloc_normal;
	if (nr_pages < alloc)
		alloc = nr_pages;

	return preallocate_image_pages(alloc, GFP_IMAGE);
1475 1476 1477 1478 1479 1480 1481 1482 1483
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
1484
 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1485
 */
1486 1487 1488 1489 1490 1491
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
	x *= multiplier;
	do_div(x, base);
	return (unsigned long)x;
}
1492

1493
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1494 1495
						  unsigned long highmem,
						  unsigned long total)
1496
{
1497 1498 1499
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1500
}
1501 1502 1503 1504 1505 1506 1507
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1508 1509
							 unsigned long highmem,
							 unsigned long total)
1510 1511 1512 1513
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1514

1515
/**
1516
 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1517
 */
1518
static unsigned long free_unnecessary_pages(void)
1519
{
1520
	unsigned long save, to_free_normal, to_free_highmem, free;
1521

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	save = count_data_pages();
	if (alloc_normal >= save) {
		to_free_normal = alloc_normal - save;
		save = 0;
	} else {
		to_free_normal = 0;
		save -= alloc_normal;
	}
	save += count_highmem_pages();
	if (alloc_highmem >= save) {
		to_free_highmem = alloc_highmem - save;
1533 1534
	} else {
		to_free_highmem = 0;
1535 1536 1537 1538 1539
		save -= alloc_highmem;
		if (to_free_normal > save)
			to_free_normal -= save;
		else
			to_free_normal = 0;
1540
	}
1541
	free = to_free_normal + to_free_highmem;
1542 1543 1544

	memory_bm_position_reset(&copy_bm);

1545
	while (to_free_normal > 0 || to_free_highmem > 0) {
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
1565 1566

	return free;
1567 1568
}

1569
/**
1570
 * minimum_image_size - Estimate the minimum acceptable size of an image.
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1582
 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
 * minus mapped file pages.
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

	size = global_page_state(NR_SLAB_RECLAIMABLE)
		+ global_page_state(NR_ACTIVE_ANON)
		+ global_page_state(NR_INACTIVE_ANON)
		+ global_page_state(NR_ACTIVE_FILE)
		+ global_page_state(NR_INACTIVE_FILE)
		- global_page_state(NR_FILE_MAPPED);

	return saveable <= size ? 0 : saveable - size;
}

1599
/**
1600
 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1601 1602 1603 1604 1605
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
1606 1607 1608 1609
 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
 * total number of available page frames and allocate at least
1610
 *
1611 1612
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1613 1614 1615 1616 1617
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1618 1619
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1620
 */
1621
int hibernate_preallocate_memory(void)
1622 1623
{
	struct zone *zone;
1624
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1625
	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1626
	ktime_t start, stop;
1627
	int error;
1628

1629
	printk(KERN_INFO "PM: Preallocating image memory... ");
1630
	start = ktime_get();
1631

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	alloc_normal = 0;
	alloc_highmem = 0;

1643
	/* Count the number of saveable data pages. */
1644
	save_highmem = count_highmem_pages();
1645
	saveable = count_data_pages();
1646

1647 1648 1649 1650 1651
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1652 1653
	saveable += save_highmem;
	highmem = save_highmem;
1654 1655 1656 1657 1658 1659 1660 1661
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
1662
	avail_normal = count;
1663 1664 1665
	count += highmem;
	count -= totalreserve_pages;

1666 1667 1668
	/* Add number of pages required for page keys (s390 only). */
	size += page_key_additional_pages(saveable);

1669
	/* Compute the maximum number of saveable pages to leave in memory. */
1670 1671
	max_size = (count - (size + PAGES_FOR_IO)) / 2
			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1672
	/* Compute the desired number of image pages specified by image_size. */
1673 1674 1675 1676
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
1677 1678 1679
	 * If the desired number of image pages is at least as large as the
	 * current number of saveable pages in memory, allocate page frames for
	 * the image and we're done.
1680
	 */
1681 1682
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
1683
		pages += preallocate_image_memory(saveable - pages, avail_normal);
1684
		goto out;
1685
	}
1686

1687 1688
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
1689 1690 1691 1692 1693 1694 1695 1696 1697
	/*
	 * To avoid excessive pressure on the normal zone, leave room in it to
	 * accommodate an image of the minimum size (unless it's already too
	 * small, in which case don't preallocate pages from it at all).
	 */
	if (avail_normal > pages)
		avail_normal -= pages;
	else
		avail_normal = 0;
1698 1699 1700
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1713 1714
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1715 1716
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
1717 1718 1719 1720 1721
	alloc = count - max_size;
	if (alloc > pages_highmem)
		alloc -= pages_highmem;
	else
		alloc = 0;
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	pages = preallocate_image_memory(alloc, avail_normal);
	if (pages < alloc) {
		/* We have exhausted non-highmem pages, try highmem. */
		alloc -= pages;
		pages += pages_highmem;
		pages_highmem = preallocate_image_highmem(alloc);
		if (pages_highmem < alloc)
			goto err_out;
		pages += pages_highmem;
		/*
		 * size is the desired number of saveable pages to leave in
		 * memory, so try to preallocate (all memory - size) pages.
		 */
		alloc = (count - pages) - size;
		pages += preallocate_image_highmem(alloc);
	} else {
		/*
		 * There are approximately max_size saveable pages at this point
		 * and we want to reduce this number down to size.
		 */
		alloc = max_size - size;
		size = preallocate_highmem_fraction(alloc, highmem, count);
		pages_highmem += size;
		alloc -= size;
		size = preallocate_image_memory(alloc, avail_normal);
		pages_highmem += preallocate_image_highmem(alloc - size);
		pages += pages_highmem + size;
	}
1750

1751 1752 1753 1754 1755
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
1756
	pages -= free_unnecessary_pages();
1757 1758

 out:
1759
	stop = ktime_get();
1760
	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1761
	swsusp_show_speed(start, stop, pages, "Allocated");
1762 1763

	return 0;
1764 1765 1766 1767 1768

 err_out:
	printk(KERN_CONT "\n");
	swsusp_free();
	return -ENOMEM;
1769 1770
}

1771 1772
#ifdef CONFIG_HIGHMEM
/**
1773 1774 1775 1776 1777
 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
 *
 * Compute the number of non-highmem pages that will be necessary for creating
 * copies of highmem pages.
 */
1778 1779
static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1780
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1781 1782 1783 1784 1785 1786 1787 1788 1789

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
1790
static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1791
#endif /* CONFIG_HIGHMEM */
1792 1793

/**
1794
 * enough_free_mem - Check if there is enough free memory for the image.
1795
 */
1796
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1797
{
1798
	struct zone *zone;
1799
	unsigned int free = alloc_normal;
1800

1801
	for_each_populated_zone(zone)
1802
		if (!is_highmem(zone))
1803
			free += zone_page_state(zone, NR_FREE_PAGES);
1804

1805
	nr_pages += count_pages_for_highmem(nr_highmem);
1806 1807
	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
		nr_pages, PAGES_FOR_IO, free);
1808

1809
	return free > nr_pages + PAGES_FOR_IO;
1810 1811
}

1812 1813
#ifdef CONFIG_HIGHMEM
/**
1814 1815 1816 1817
 * get_highmem_buffer - Allocate a buffer for highmem pages.
 *
 * If there are some highmem pages in the hibernation image, we may need a
 * buffer to copy them and/or load their data.
1818 1819 1820 1821 1822 1823 1824 1825
 */
static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
1826 1827 1828 1829
 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
 *
 * Try to allocate as many pages as needed, but if the number of free highmem
 * pages is less than that, allocate them all.
1830
 */
1831 1832
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int nr_highmem)
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

1843
		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1844 1845 1846 1847 1848 1849 1850
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

1851 1852
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int n) { return 0; }
1853 1854 1855
#endif /* CONFIG_HIGHMEM */

/**
1856
 * swsusp_alloc - Allocate memory for hibernation image.
1857
 *
1858 1859 1860
 * We first try to allocate as many highmem pages as there are
 * saveable highmem pages in the system.  If that fails, we allocate
 * non-highmem pages for the copies of the remaining highmem ones.
1861
 *
1862 1863 1864
 * In this approach it is likely that the copies of highmem pages will
 * also be located in the high memory, because of the way in which
 * copy_data_pages() works.
1865
 */
1866 1867 1868
static int swsusp_alloc(struct memory_bitmap *orig_bm,
			struct memory_bitmap *copy_bm,
			unsigned int nr_pages, unsigned int nr_highmem)
1869
{
1870
	if (nr_highmem > 0) {
1871
		if (get_highmem_buffer(PG_ANY))
1872 1873 1874 1875 1876
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1877
	}
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
1888
	}
1889

1890
	return 0;
1891

1892
 err_out:
1893
	swsusp_free();
1894
	return -ENOMEM;
1895 1896
}

1897
asmlinkage __visible int swsusp_save(void)
1898
{
1899
	unsigned int nr_pages, nr_highmem;
1900

1901
	printk(KERN_INFO "PM: Creating hibernation image:\n");
1902

1903
	drain_local_pages(NULL);
1904
	nr_pages = count_data_pages();
1905
	nr_highmem = count_highmem_pages();
R
Rafael J. Wysocki 已提交
1906
	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1907

1908
	if (!enough_free_mem(nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1909
		printk(KERN_ERR "PM: Not enough free memory\n");
1910 1911 1912
		return -ENOMEM;
	}

1913
	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1914
		printk(KERN_ERR "PM: Memory allocation failed\n");
1915
		return -ENOMEM;
1916
	}
1917

1918 1919
	/*
	 * During allocating of suspend pagedir, new cold pages may appear.
1920 1921
	 * Kill them.
	 */
1922
	drain_local_pages(NULL);
1923
	copy_data_pages(&copy_bm, &orig_bm);
1924 1925 1926 1927 1928 1929 1930

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1931
	nr_pages += nr_highmem;
1932
	nr_copy_pages = nr_pages;
1933
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1934

R
Rafael J. Wysocki 已提交
1935 1936
	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
		nr_pages);
1937

1938 1939
	return 0;
}
1940

1941 1942
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
1943
{
1944
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1945
	info->version_code = LINUX_VERSION_CODE;
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

1965 1966 1967 1968 1969
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

1970 1971 1972
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
1973
	info->num_physpages = get_num_physpages();
1974
	info->image_pages = nr_copy_pages;
1975
	info->pages = snapshot_get_image_size();
1976 1977
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
1978
	return init_header_complete(info);
1979 1980 1981
}

/**
1982 1983 1984 1985 1986 1987
 * pack_pfns - Prepare PFNs for saving.
 * @bm: Memory bitmap.
 * @buf: Memory buffer to store the PFNs in.
 *
 * PFNs corresponding to set bits in @bm are stored in the area of memory
 * pointed to by @buf (1 page at a time).
1988
 */
1989
static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1990 1991 1992
{
	int j;

1993
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1994 1995
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
1996
			break;
1997 1998
		/* Save page key for data page (s390 only). */
		page_key_read(buf + j);
1999 2000 2001 2002
	}
}

/**
2003 2004
 * snapshot_read_next - Get the address to read the next image page from.
 * @handle: Snapshot handle to be used for the reading.
2005
 *
2006 2007 2008
 * On the first call, @handle should point to a zeroed snapshot_handle
 * structure.  The structure gets populated then and a pointer to it should be
 * passed to this function every next time.
2009
 *
2010 2011 2012
 * On success, the function returns a positive number.  Then, the caller
 * is allowed to read up to the returned number of bytes from the memory
 * location computed by the data_of() macro.
2013
 *
2014 2015 2016
 * The function returns 0 to indicate the end of the data stream condition,
 * and negative numbers are returned on errors.  If that happens, the structure
 * pointed to by @handle is not updated and should not be used any more.
2017
 */
J
Jiri Slaby 已提交
2018
int snapshot_read_next(struct snapshot_handle *handle)
2019
{
2020
	if (handle->cur > nr_meta_pages + nr_copy_pages)
2021
		return 0;
2022

2023 2024
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
2025
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2026 2027 2028
		if (!buffer)
			return -ENOMEM;
	}
J
Jiri Slaby 已提交
2029
	if (!handle->cur) {
2030 2031 2032 2033 2034
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
2035
		handle->buffer = buffer;
2036 2037
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
J
Jiri Slaby 已提交
2038
	} else if (handle->cur <= nr_meta_pages) {
2039
		clear_page(buffer);
J
Jiri Slaby 已提交
2040 2041 2042
		pack_pfns(buffer, &orig_bm);
	} else {
		struct page *page;
2043

J
Jiri Slaby 已提交
2044 2045
		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
		if (PageHighMem(page)) {
2046 2047
			/*
			 * Highmem pages are copied to the buffer,
J
Jiri Slaby 已提交
2048 2049 2050 2051
			 * because we can't return with a kmapped
			 * highmem page (we may not be called again).
			 */
			void *kaddr;
2052

2053
			kaddr = kmap_atomic(page);
2054
			copy_page(buffer, kaddr);
2055
			kunmap_atomic(kaddr);
J
Jiri Slaby 已提交
2056 2057 2058
			handle->buffer = buffer;
		} else {
			handle->buffer = page_address(page);
2059 2060
		}
	}
J
Jiri Slaby 已提交
2061 2062
	handle->cur++;
	return PAGE_SIZE;
2063 2064
}

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
static void duplicate_memory_bitmap(struct memory_bitmap *dst,
				    struct memory_bitmap *src)
{
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
	}
}

2078
/**
2079 2080 2081 2082
 * mark_unsafe_pages - Mark pages that were used before hibernation.
 *
 * Mark the pages that cannot be used for storing the image during restoration,
 * because they conflict with the pages that had been used before hibernation.
2083
 */
2084
static void mark_unsafe_pages(struct memory_bitmap *bm)
2085
{
2086
	unsigned long pfn;
2087

2088 2089 2090 2091 2092 2093
	/* Clear the "free"/"unsafe" bit for all PFNs */
	memory_bm_position_reset(free_pages_map);
	pfn = memory_bm_next_pfn(free_pages_map);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_clear_current(free_pages_map);
		pfn = memory_bm_next_pfn(free_pages_map);
2094 2095
	}

2096 2097
	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
	duplicate_memory_bitmap(free_pages_map, bm);
2098

2099
	allocated_unsafe_pages = 0;
2100 2101
}

2102
static int check_header(struct swsusp_info *info)
2103
{
2104
	char *reason;
2105

2106
	reason = check_image_kernel(info);
2107
	if (!reason && info->num_physpages != get_num_physpages())
2108 2109
		reason = "memory size";
	if (reason) {
R
Rafael J. Wysocki 已提交
2110
		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2111 2112 2113 2114 2115 2116
		return -EPERM;
	}
	return 0;
}

/**
2117
 * load header - Check the image header and copy the data from it.
2118
 */
2119
static int load_header(struct swsusp_info *info)
2120 2121 2122
{
	int error;

2123
	restore_pblist = NULL;
2124 2125 2126 2127 2128 2129 2130 2131 2132
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
2133 2134 2135 2136 2137 2138
 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
 * @bm: Memory bitmap.
 * @buf: Area of memory containing the PFNs.
 *
 * For each element of the array pointed to by @buf (1 page at a time), set the
 * corresponding bit in @bm.
2139
 */
2140
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2141 2142 2143
{
	int j;

2144 2145 2146 2147
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

2148 2149 2150
		/* Extract and buffer page key for data page (s390 only). */
		page_key_memorize(buf + j);

2151
		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2152 2153 2154
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
2155
	}
2156 2157

	return 0;
2158 2159
}

2160
#ifdef CONFIG_HIGHMEM
2161 2162
/*
 * struct highmem_pbe is used for creating the list of highmem pages that
2163 2164 2165 2166 2167 2168 2169 2170 2171
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

2172 2173
/*
 * List of highmem PBEs needed for restoring the highmem pages that were
2174 2175 2176 2177 2178 2179 2180
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
2181 2182 2183 2184
 * count_highmem_image_pages - Compute the number of highmem pages in the image.
 * @bm: Memory bitmap.
 *
 * The bits in @bm that correspond to image pages are assumed to be set.
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
 */
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
/**
 * prepare_highmem_image - Allocate memory for loading highmem data from image.
 * @bm: Pointer to an uninitialized memory bitmap structure.
 * @nr_highmem_p: Pointer to the number of highmem image pages.
 *
 * Try to allocate as many highmem pages as there are highmem image pages
 * (@nr_highmem_p points to the variable containing the number of highmem image
 * pages).  The pages that are "safe" (ie. will not be overwritten when the
 * hibernation image is restored entirely) have the corresponding bits set in
 * @bm (it must be unitialized).
 *
 * NOTE: This function should not be called if there are no highmem image pages.
 */
2219 2220
static int prepare_highmem_image(struct memory_bitmap *bm,
				 unsigned int *nr_highmem_p)
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
2241
		if (!swsusp_page_is_free(page)) {
2242 2243 2244 2245 2246
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
2247 2248
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
2249 2250 2251 2252 2253 2254
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

2255 2256
static struct page *last_highmem_page;

2257
/**
2258 2259 2260 2261
 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
 *
 * For a given highmem image page get a buffer that suspend_write_next() should
 * return to its caller to write to.
2262
 *
2263 2264 2265 2266
 * If the page is to be saved to its "original" page frame or a copy of
 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
 * the copy of the page is to be made in normal memory, so the address of
 * the copy is returned.
2267
 *
2268 2269 2270 2271 2272 2273
 * If @buffer is returned, the caller of suspend_write_next() will write
 * the page's contents to @buffer, so they will have to be copied to the
 * right location on the next call to suspend_write_next() and it is done
 * with the help of copy_last_highmem_page().  For this purpose, if
 * @buffer is returned, @last_highmem_page is set to the page to which
 * the data will have to be copied from @buffer.
2274
 */
2275 2276
static void *get_highmem_page_buffer(struct page *page,
				     struct chain_allocator *ca)
2277 2278 2279 2280
{
	struct highmem_pbe *pbe;
	void *kaddr;

2281
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2282 2283
		/*
		 * We have allocated the "original" page frame and we can
2284 2285 2286 2287 2288
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
2289 2290
	/*
	 * The "original" page frame has not been allocated and we have to
2291 2292 2293 2294 2295
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
2296
		return ERR_PTR(-ENOMEM);
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
2320 2321 2322 2323 2324
 * copy_last_highmem_page - Copy most the most recent highmem image page.
 *
 * Copy the contents of a highmem image from @buffer, where the caller of
 * snapshot_write_next() has stored them, to the right location represented by
 * @last_highmem_page .
2325 2326 2327 2328 2329 2330
 */
static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

2331
		dst = kmap_atomic(last_highmem_page);
2332
		copy_page(dst, buffer);
2333
		kunmap_atomic(dst);
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
2352
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2353

2354 2355
static inline int prepare_highmem_image(struct memory_bitmap *bm,
					unsigned int *nr_highmem_p) { return 0; }
2356

2357 2358
static inline void *get_highmem_page_buffer(struct page *page,
					    struct chain_allocator *ca)
2359
{
2360
	return ERR_PTR(-EINVAL);
2361 2362 2363 2364 2365 2366 2367
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

2368 2369
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

2370
/**
2371 2372 2373 2374 2375 2376 2377
 * prepare_image - Make room for loading hibernation image.
 * @new_bm: Unitialized memory bitmap structure.
 * @bm: Memory bitmap with unsafe pages marked.
 *
 * Use @bm to mark the pages that will be overwritten in the process of
 * restoring the system memory state from the suspend image ("unsafe" pages)
 * and allocate memory for the image.
2378
 *
2379 2380 2381 2382 2383
 * The idea is to allocate a new memory bitmap first and then allocate
 * as many pages as needed for image data, but without specifying what those
 * pages will be used for just yet.  Instead, we mark them all as allocated and
 * create a lists of "safe" pages to be used later.  On systems with high
 * memory a list of "safe" highmem pages is created too.
2384
 */
2385
static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2386
{
2387
	unsigned int nr_pages, nr_highmem;
2388
	struct linked_page *lp;
2389
	int error;
2390

2391 2392 2393 2394 2395
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2396
	mark_unsafe_pages(bm);
2397 2398 2399 2400 2401 2402 2403

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2404 2405 2406 2407 2408
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2409 2410
	/*
	 * Reserve some safe pages for potential later use.
2411 2412 2413 2414
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2415 2416
	 *
	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2417
	 */
2418
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2419 2420
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2421
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2422
		if (!lp) {
2423
			error = -ENOMEM;
2424 2425
			goto Free;
		}
2426 2427
		lp->next = safe_pages_list;
		safe_pages_list = lp;
2428
		nr_pages--;
2429
	}
2430
	/* Preallocate memory for the image */
2431
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2432 2433 2434 2435 2436 2437
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2438
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2439 2440 2441
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2442
		}
2443
		/* Mark the page as allocated */
2444 2445
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2446
		nr_pages--;
2447
	}
2448 2449
	return 0;

R
Rafael J. Wysocki 已提交
2450
 Free:
2451
	swsusp_free();
2452 2453 2454
	return error;
}

2455
/**
2456 2457 2458 2459
 * get_buffer - Get the address to store the next image data page.
 *
 * Get the address that snapshot_write_next() should return to its caller to
 * write to.
2460 2461
 */
static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2462
{
2463
	struct pbe *pbe;
2464 2465
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2466

2467 2468 2469 2470
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2471 2472 2473
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2474
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2475 2476
		/*
		 * We have allocated the "original" page frame and we can
2477
		 * use it directly to store the loaded page.
2478
		 */
2479 2480
		return page_address(page);

2481 2482
	/*
	 * The "original" page frame has not been allocated and we have to
2483
	 * use a "safe" page frame to store the loaded page.
2484
	 */
2485 2486 2487
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2488
		return ERR_PTR(-ENOMEM);
2489
	}
2490 2491
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2492 2493 2494
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2495
	return pbe->address;
2496 2497
}

2498
/**
2499 2500
 * snapshot_write_next - Get the address to store the next image page.
 * @handle: Snapshot handle structure to guide the writing.
2501
 *
2502 2503 2504
 * On the first call, @handle should point to a zeroed snapshot_handle
 * structure.  The structure gets populated then and a pointer to it should be
 * passed to this function every next time.
2505
 *
2506 2507 2508
 * On success, the function returns a positive number.  Then, the caller
 * is allowed to write up to the returned number of bytes to the memory
 * location computed by the data_of() macro.
2509
 *
2510 2511 2512
 * The function returns 0 to indicate the "end of file" condition.  Negative
 * numbers are returned on errors, in which cases the structure pointed to by
 * @handle is not updated and should not be used any more.
2513
 */
J
Jiri Slaby 已提交
2514
int snapshot_write_next(struct snapshot_handle *handle)
2515
{
2516
	static struct chain_allocator ca;
2517 2518
	int error = 0;

2519
	/* Check if we have already loaded the entire image */
J
Jiri Slaby 已提交
2520
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2521
		return 0;
2522

J
Jiri Slaby 已提交
2523 2524 2525
	handle->sync_read = 1;

	if (!handle->cur) {
2526 2527 2528 2529
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2530 2531
		if (!buffer)
			return -ENOMEM;
2532

2533
		handle->buffer = buffer;
J
Jiri Slaby 已提交
2534 2535 2536 2537
	} else if (handle->cur == 1) {
		error = load_header(buffer);
		if (error)
			return error;
2538

2539 2540
		safe_pages_list = NULL;

J
Jiri Slaby 已提交
2541 2542 2543 2544
		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
		if (error)
			return error;

2545 2546 2547 2548 2549
		/* Allocate buffer for page keys. */
		error = page_key_alloc(nr_copy_pages);
		if (error)
			return error;

J
Jiri Slaby 已提交
2550 2551 2552 2553
	} else if (handle->cur <= nr_meta_pages + 1) {
		error = unpack_orig_pfns(buffer, &copy_bm);
		if (error)
			return error;
2554

J
Jiri Slaby 已提交
2555 2556
		if (handle->cur == nr_meta_pages + 1) {
			error = prepare_image(&orig_bm, &copy_bm);
2557 2558 2559
			if (error)
				return error;

J
Jiri Slaby 已提交
2560 2561 2562
			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
			memory_bm_position_reset(&orig_bm);
			restore_pblist = NULL;
2563
			handle->buffer = get_buffer(&orig_bm, &ca);
J
Jiri Slaby 已提交
2564
			handle->sync_read = 0;
2565 2566
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2567 2568
		}
	} else {
J
Jiri Slaby 已提交
2569
		copy_last_highmem_page();
2570 2571
		/* Restore page key for data page (s390 only). */
		page_key_write(handle->buffer);
J
Jiri Slaby 已提交
2572 2573 2574 2575 2576
		handle->buffer = get_buffer(&orig_bm, &ca);
		if (IS_ERR(handle->buffer))
			return PTR_ERR(handle->buffer);
		if (handle->buffer != buffer)
			handle->sync_read = 0;
2577
	}
J
Jiri Slaby 已提交
2578 2579
	handle->cur++;
	return PAGE_SIZE;
2580 2581
}

2582
/**
2583 2584 2585 2586 2587 2588
 * snapshot_write_finalize - Complete the loading of a hibernation image.
 *
 * Must be called after the last call to snapshot_write_next() in case the last
 * page in the image happens to be a highmem page and its contents should be
 * stored in highmem.  Additionally, it recycles bitmap memory that's not
 * necessary any more.
2589 2590 2591 2592
 */
void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
2593 2594 2595
	/* Restore page key for data page (s390 only). */
	page_key_write(handle->buffer);
	page_key_free();
2596
	/* Do that only if we have loaded the image entirely */
J
Jiri Slaby 已提交
2597
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2598
		memory_bm_recycle(&orig_bm);
2599 2600 2601 2602
		free_highmem_data();
	}
}

2603 2604
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2605
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2606 2607 2608
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2609 2610
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
2611 2612
static inline void swap_two_pages_data(struct page *p1, struct page *p2,
				       void *buf)
2613
{
2614 2615
	void *kaddr1, *kaddr2;

2616 2617
	kaddr1 = kmap_atomic(p1);
	kaddr2 = kmap_atomic(p2);
2618 2619 2620
	copy_page(buf, kaddr1);
	copy_page(kaddr1, kaddr2);
	copy_page(kaddr2, buf);
2621 2622
	kunmap_atomic(kaddr2);
	kunmap_atomic(kaddr1);
2623 2624 2625
}

/**
2626 2627 2628 2629 2630
 * restore_highmem - Put highmem image pages into their original locations.
 *
 * For each highmem page that was in use before hibernation and is included in
 * the image, and also has been allocated by the "restore" kernel, swap its
 * current contents with the previous (ie. "before hibernation") ones.
2631
 *
2632 2633
 * If the restore eventually fails, we can call this function once again and
 * restore the highmem state as seen by the restore kernel.
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
 */
int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2653
}
2654
#endif /* CONFIG_HIGHMEM */