snapshot.c 71.6 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5
 *
P
Pavel Machek 已提交
6
 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) "PM: " fmt

15
#include <linux/version.h>
16 17 18 19 20 21 22 23 24
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
25
#include <linux/init.h>
M
Mike Rapoport 已提交
26
#include <linux/memblock.h>
27
#include <linux/nmi.h>
28 29 30
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
31
#include <linux/list.h>
32
#include <linux/slab.h>
33
#include <linux/compiler.h>
34
#include <linux/ktime.h>
35
#include <linux/set_memory.h>
36

37
#include <linux/uaccess.h>
38 39 40 41 42 43 44
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

45
#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
static bool hibernate_restore_protection;
static bool hibernate_restore_protection_active;

void enable_restore_image_protection(void)
{
	hibernate_restore_protection = true;
}

static inline void hibernate_restore_protection_begin(void)
{
	hibernate_restore_protection_active = hibernate_restore_protection;
}

static inline void hibernate_restore_protection_end(void)
{
	hibernate_restore_protection_active = false;
}

static inline void hibernate_restore_protect_page(void *page_address)
{
	if (hibernate_restore_protection_active)
		set_memory_ro((unsigned long)page_address, 1);
}

static inline void hibernate_restore_unprotect_page(void *page_address)
{
	if (hibernate_restore_protection_active)
		set_memory_rw((unsigned long)page_address, 1);
}
#else
static inline void hibernate_restore_protection_begin(void) {}
static inline void hibernate_restore_protection_end(void) {}
static inline void hibernate_restore_protect_page(void *page_address) {}
static inline void hibernate_restore_unprotect_page(void *page_address) {}
80
#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
81

82 83 84 85
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

86 87 88 89 90 91 92 93 94 95 96 97
/*
 * Number of bytes to reserve for memory allocations made by device drivers
 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 * cause image creation to fail (tunable via /sys/power/reserved_size).
 */
unsigned long reserved_size;

void __init hibernate_reserved_size_init(void)
{
	reserved_size = SPARE_PAGES * PAGE_SIZE;
}

98 99
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
100 101 102
 * When it is set to N, swsusp will do its best to ensure the image
 * size will not exceed N bytes, but if that is impossible, it will
 * try to create the smallest image possible.
103
 */
104 105 106 107
unsigned long image_size;

void __init hibernate_image_size_init(void)
{
108
	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
109
}
110

111 112
/*
 * List of PBEs needed for restoring the pages that were allocated before
113 114 115 116
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
117 118
struct pbe *restore_pblist;

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
} __packed;

/*
 * List of "safe" pages (ie. pages that were not used by the image kernel
 * before hibernation) that may be used as temporary storage for image kernel
 * memory contents.
 */
static struct linked_page *safe_pages_list;

135
/* Pointer to an auxiliary buffer (1 page) */
136
static void *buffer;
137

138 139 140 141 142
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

143
static unsigned int allocated_unsafe_pages;
144

145 146 147 148 149 150 151 152 153 154 155 156 157
/**
 * get_image_page - Allocate a page for a hibernation image.
 * @gfp_mask: GFP mask for the allocation.
 * @safe_needed: Get pages that were not used before hibernation (restore only)
 *
 * During image restoration, for storing the PBE list and the image data, we can
 * only use memory pages that do not conflict with the pages used before
 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 * using allocated_unsafe_pages.
 *
 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 * swsusp_free() can release it.
 */
158
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
159 160 161 162 163
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
164
		while (res && swsusp_page_is_free(virt_to_page(res))) {
165
			/* The page is unsafe, mark it for swsusp_free() */
166
			swsusp_set_page_forbidden(virt_to_page(res));
167
			allocated_unsafe_pages++;
168 169 170
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
171 172
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
173 174 175 176
	}
	return res;
}

177 178 179 180 181 182 183 184 185 186 187 188
static void *__get_safe_page(gfp_t gfp_mask)
{
	if (safe_pages_list) {
		void *ret = safe_pages_list;

		safe_pages_list = safe_pages_list->next;
		memset(ret, 0, PAGE_SIZE);
		return ret;
	}
	return get_image_page(gfp_mask, PG_SAFE);
}

189 190
unsigned long get_safe_page(gfp_t gfp_mask)
{
191
	return (unsigned long)__get_safe_page(gfp_mask);
192 193
}

194 195
static struct page *alloc_image_page(gfp_t gfp_mask)
{
196 197 198 199
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
200 201
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
202 203
	}
	return page;
204 205
}

206 207 208 209 210 211 212 213
static void recycle_safe_page(void *page_address)
{
	struct linked_page *lp = page_address;

	lp->next = safe_pages_list;
	safe_pages_list = lp;
}

214
/**
215 216 217 218 219 220
 * free_image_page - Free a page allocated for hibernation image.
 * @addr: Address of the page to free.
 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 *
 * The page to free should have been allocated by get_image_page() (page flags
 * set by it are affected).
221 222 223
 */
static inline void free_image_page(void *addr, int clear_nosave_free)
{
224 225 226 227 228 229
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

230
	swsusp_unset_page_forbidden(page);
231
	if (clear_nosave_free)
232
		swsusp_unset_page_free(page);
233 234

	__free_page(page);
235 236
}

237 238
static inline void free_list_of_pages(struct linked_page *list,
				      int clear_page_nosave)
239 240 241 242 243 244 245 246 247
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

248 249 250 251 252 253 254 255 256 257 258 259
/*
 * struct chain_allocator is used for allocating small objects out of
 * a linked list of pages called 'the chain'.
 *
 * The chain grows each time when there is no room for a new object in
 * the current page.  The allocated objects cannot be freed individually.
 * It is only possible to free them all at once, by freeing the entire
 * chain.
 *
 * NOTE: The chain allocator may be inefficient if the allocated objects
 * are not much smaller than PAGE_SIZE.
 */
260 261 262
struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
263
					   of the current page */
264 265 266 267
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

268 269
static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
		       int safe_needed)
270 271 272 273 274 275 276 277 278 279 280 281 282 283
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

284 285
		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
					get_image_page(ca->gfp_mask, PG_ANY);
286 287 288 289 290 291 292 293 294 295 296 297 298
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
299
 * Data types related to memory bitmaps.
300
 *
301 302 303 304 305
 * Memory bitmap is a structure consiting of many linked lists of
 * objects.  The main list's elements are of type struct zone_bitmap
 * and each of them corresonds to one zone.  For each zone bitmap
 * object there is a list of objects of type struct bm_block that
 * represent each blocks of bitmap in which information is stored.
306
 *
307 308 309 310
 * struct memory_bitmap contains a pointer to the main list of zone
 * bitmap objects, a struct bm_position used for browsing the bitmap,
 * and a pointer to the list of pages used for allocating all of the
 * zone bitmap objects and bitmap block objects.
311
 *
312 313 314 315
 * NOTE: It has to be possible to lay out the bitmap in memory
 * using only allocations of order 0.  Additionally, the bitmap is
 * designed to work with arbitrary number of zones (this is over the
 * top for now, but let's avoid making unnecessary assumptions ;-).
316
 *
317 318 319 320
 * struct zone_bitmap contains a pointer to a list of bitmap block
 * objects and a pointer to the bitmap block object that has been
 * most recently used for setting bits.  Additionally, it contains the
 * PFNs that correspond to the start and end of the represented zone.
321
 *
322 323 324 325
 * struct bm_block contains a pointer to the memory page in which
 * information is stored (in the form of a block of bitmap)
 * It also contains the pfns that correspond to the start and end of
 * the represented memory area.
326
 *
327 328 329
 * The memory bitmap is organized as a radix tree to guarantee fast random
 * access to the bits. There is one radix tree for each zone (as returned
 * from create_mem_extents).
330
 *
331 332 333 334
 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 * two linked lists for the nodes of the tree, one for the inner nodes and
 * one for the leave nodes. The linked leave nodes are used for fast linear
 * access of the memory bitmap.
335
 *
336
 * The struct rtree_node represents one node of the radix tree.
337 338 339 340
 */

#define BM_END_OF_MAP	(~0UL)

W
Wu Fengguang 已提交
341
#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
342 343
#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
344

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
/*
 * struct rtree_node is a wrapper struct to link the nodes
 * of the rtree together for easy linear iteration over
 * bits and easy freeing
 */
struct rtree_node {
	struct list_head list;
	unsigned long *data;
};

/*
 * struct mem_zone_bm_rtree represents a bitmap used for one
 * populated memory zone.
 */
struct mem_zone_bm_rtree {
	struct list_head list;		/* Link Zones together         */
	struct list_head nodes;		/* Radix Tree inner nodes      */
	struct list_head leaves;	/* Radix Tree leaves           */
	unsigned long start_pfn;	/* Zone start page frame       */
	unsigned long end_pfn;		/* Zone end page frame + 1     */
	struct rtree_node *rtree;	/* Radix Tree Root             */
	int levels;			/* Number of Radix Tree Levels */
	unsigned int blocks;		/* Number of Bitmap Blocks     */
};

370 371 372
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
373 374 375 376
	struct mem_zone_bm_rtree *zone;
	struct rtree_node *node;
	unsigned long node_pfn;
	int node_bit;
377 378 379
};

struct memory_bitmap {
380
	struct list_head zones;
381
	struct linked_page *p_list;	/* list of pages used to store zone
382 383
					   bitmap objects and bitmap block
					   objects */
384 385 386 387 388
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

389 390 391 392 393 394 395 396
#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
#if BITS_PER_LONG == 32
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
#else
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
#endif
#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)

397 398
/**
 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
399
 *
400 401 402
 * This function is used to allocate inner nodes as well as the
 * leave nodes of the radix tree. It also adds the node to the
 * corresponding linked list passed in by the *list parameter.
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
 */
static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
					   struct chain_allocator *ca,
					   struct list_head *list)
{
	struct rtree_node *node;

	node = chain_alloc(ca, sizeof(struct rtree_node));
	if (!node)
		return NULL;

	node->data = get_image_page(gfp_mask, safe_needed);
	if (!node->data)
		return NULL;

	list_add_tail(&node->list, list);

	return node;
}

423 424
/**
 * add_rtree_block - Add a new leave node to the radix tree.
425
 *
426 427 428
 * The leave nodes need to be allocated in order to keep the leaves
 * linked list in order. This is guaranteed by the zone->blocks
 * counter.
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
 */
static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
			   int safe_needed, struct chain_allocator *ca)
{
	struct rtree_node *node, *block, **dst;
	unsigned int levels_needed, block_nr;
	int i;

	block_nr = zone->blocks;
	levels_needed = 0;

	/* How many levels do we need for this block nr? */
	while (block_nr) {
		levels_needed += 1;
		block_nr >>= BM_RTREE_LEVEL_SHIFT;
	}

	/* Make sure the rtree has enough levels */
	for (i = zone->levels; i < levels_needed; i++) {
		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
					&zone->nodes);
		if (!node)
			return -ENOMEM;

		node->data[0] = (unsigned long)zone->rtree;
		zone->rtree = node;
		zone->levels += 1;
	}

	/* Allocate new block */
	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
	if (!block)
		return -ENOMEM;

	/* Now walk the rtree to insert the block */
	node = zone->rtree;
	dst = &zone->rtree;
	block_nr = zone->blocks;
	for (i = zone->levels; i > 0; i--) {
		int index;

		if (!node) {
			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
						&zone->nodes);
			if (!node)
				return -ENOMEM;
			*dst = node;
		}

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		dst = (struct rtree_node **)&((*dst)->data[index]);
		node = *dst;
	}

	zone->blocks += 1;
	*dst = block;

	return 0;
}

static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free);

493 494
/**
 * create_zone_bm_rtree - Create a radix tree for one zone.
495
 *
496 497 498
 * Allocated the mem_zone_bm_rtree structure and initializes it.
 * This function also allocated and builds the radix tree for the
 * zone.
499
 */
500 501 502 503 504
static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
						      int safe_needed,
						      struct chain_allocator *ca,
						      unsigned long start,
						      unsigned long end)
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
{
	struct mem_zone_bm_rtree *zone;
	unsigned int i, nr_blocks;
	unsigned long pages;

	pages = end - start;
	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
	if (!zone)
		return NULL;

	INIT_LIST_HEAD(&zone->nodes);
	INIT_LIST_HEAD(&zone->leaves);
	zone->start_pfn = start;
	zone->end_pfn = end;
	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);

	for (i = 0; i < nr_blocks; i++) {
		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
			return NULL;
		}
	}

	return zone;
}

531 532
/**
 * free_zone_bm_rtree - Free the memory of the radix tree.
533
 *
534 535 536
 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 * structure itself is not freed here nor are the rtree_node
 * structs.
537 538 539 540 541 542 543 544 545 546 547 548 549
 */
static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		free_image_page(node->data, clear_nosave_free);

	list_for_each_entry(node, &zone->leaves, list)
		free_image_page(node->data, clear_nosave_free);
}

550 551
static void memory_bm_position_reset(struct memory_bitmap *bm)
{
552 553 554 555 556 557
	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
				  list);
	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
				  struct rtree_node, list);
	bm->cur.node_pfn = 0;
	bm->cur.node_bit = 0;
558 559 560 561
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

562 563 564 565 566 567
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

568
/**
569 570
 * free_mem_extents - Free a list of memory extents.
 * @list: List of extents to free.
571
 */
572 573 574
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
575

576 577 578 579 580 581 582
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
583 584 585 586 587
 * create_mem_extents - Create a list of memory extents.
 * @list: List to put the extents into.
 * @gfp_mask: Mask to use for memory allocations.
 *
 * The extents represent contiguous ranges of PFNs.
588 589
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
590
{
591
	struct zone *zone;
592

593
	INIT_LIST_HEAD(list);
594

595
	for_each_populated_zone(zone) {
596 597 598 599
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
600
		zone_end = zone_end_pfn(zone);
601 602 603 604

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
605

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
637
	}
638 639

	return 0;
640 641 642
}

/**
643 644
 * memory_bm_create - Allocate memory for a memory bitmap.
 */
645 646
static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
			    int safe_needed)
647 648
{
	struct chain_allocator ca;
649 650 651
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
652 653

	chain_init(&ca, gfp_mask, safe_needed);
654
	INIT_LIST_HEAD(&bm->zones);
655

656 657 658
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
659

660
	list_for_each_entry(ext, &mem_extents, hook) {
661 662 663 664
		struct mem_zone_bm_rtree *zone;

		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
					    ext->start, ext->end);
665 666
		if (!zone) {
			error = -ENOMEM;
667
			goto Error;
668
		}
669
		list_add_tail(&zone->list, &bm->zones);
670
	}
671

672 673
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
674 675 676
 Exit:
	free_mem_extents(&mem_extents);
	return error;
677

678
 Error:
679 680
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
681
	goto Exit;
682 683 684
}

/**
685 686 687
 * memory_bm_free - Free memory occupied by the memory bitmap.
 * @bm: Memory bitmap.
 */
688 689
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
690
	struct mem_zone_bm_rtree *zone;
691

692 693 694
	list_for_each_entry(zone, &bm->zones, list)
		free_zone_bm_rtree(zone, clear_nosave_free);

695
	free_list_of_pages(bm->p_list, clear_nosave_free);
696

697
	INIT_LIST_HEAD(&bm->zones);
698 699 700
}

/**
701
 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
702
 *
703 704 705 706 707
 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 *
 * Walk the radix tree to find the page containing the bit that represents @pfn
 * and return the position of the bit in @addr and @bit_nr.
708
 */
709 710
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
			      void **addr, unsigned int *bit_nr)
711 712 713 714 715
{
	struct mem_zone_bm_rtree *curr, *zone;
	struct rtree_node *node;
	int i, block_nr;

716 717 718 719 720
	zone = bm->cur.zone;

	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
		goto zone_found;

721 722 723 724 725 726 727 728 729 730 731 732 733
	zone = NULL;

	/* Find the right zone */
	list_for_each_entry(curr, &bm->zones, list) {
		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
			zone = curr;
			break;
		}
	}

	if (!zone)
		return -EFAULT;

734
zone_found:
735
	/*
736 737
	 * We have found the zone. Now walk the radix tree to find the leaf node
	 * for our PFN.
738
	 */
739 740 741 742
	node = bm->cur.node;
	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
		goto node_found;

743 744 745 746 747 748 749 750 751 752 753 754
	node      = zone->rtree;
	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;

	for (i = zone->levels; i > 0; i--) {
		int index;

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		BUG_ON(node->data[index] == 0);
		node = (struct rtree_node *)node->data[index];
	}

755 756 757 758 759 760
node_found:
	/* Update last position */
	bm->cur.zone = zone;
	bm->cur.node = node;
	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;

761 762 763 764 765 766 767
	/* Set return values */
	*addr = node->data;
	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;

	return 0;
}

768 769 770 771
static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
772
	int error;
773

774 775
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
776 777 778
	set_bit(bit, addr);
}

779 780 781 782 783 784 785
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
786 787 788
	if (!error)
		set_bit(bit, addr);

789 790 791
	return error;
}

792 793 794 795
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
796
	int error;
797

798 799
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
800 801 802
	clear_bit(bit, addr);
}

803 804 805 806 807 808 809 810
static void memory_bm_clear_current(struct memory_bitmap *bm)
{
	int bit;

	bit = max(bm->cur.node_bit - 1, 0);
	clear_bit(bit, bm->cur.node->data);
}

811 812 813 814
static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
815
	int error;
816

817 818
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
819
	return test_bit(bit, addr);
820 821
}

822 823 824 825
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
826

827
	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
828 829
}

830
/*
831
 * rtree_next_node - Jump to the next leaf node.
832
 *
833 834 835 836
 * Set the position to the beginning of the next node in the
 * memory bitmap. This is either the next node in the current
 * zone's radix tree or the first node in the radix tree of the
 * next zone.
837
 *
838
 * Return true if there is a next node, false otherwise.
839 840 841
 */
static bool rtree_next_node(struct memory_bitmap *bm)
{
842 843 844
	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
		bm->cur.node = list_entry(bm->cur.node->list.next,
					  struct rtree_node, list);
845 846
		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
		bm->cur.node_bit  = 0;
847
		touch_softlockup_watchdog();
848 849 850 851
		return true;
	}

	/* No more nodes, goto next zone */
852 853
	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
		bm->cur.zone = list_entry(bm->cur.zone->list.next,
854 855 856 857 858 859 860 861 862 863 864 865
				  struct mem_zone_bm_rtree, list);
		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
					  struct rtree_node, list);
		bm->cur.node_pfn = 0;
		bm->cur.node_bit = 0;
		return true;
	}

	/* No more zones */
	return false;
}

866
/**
867 868
 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 * @bm: Memory bitmap.
869
 *
870 871 872
 * Starting from the last returned position this function searches for the next
 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 * set, BM_END_OF_MAP is returned.
873
 *
874 875
 * It is required to run memory_bm_position_reset() before the first call to
 * this function for the given memory bitmap.
876
 */
877
static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
{
	unsigned long bits, pfn, pages;
	int bit;

	do {
		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
		bit	  = find_next_bit(bm->cur.node->data, bits,
					  bm->cur.node_bit);
		if (bit < bits) {
			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
			bm->cur.node_bit = bit + 1;
			return pfn;
		}
	} while (rtree_next_node(bm));

	return BM_END_OF_MAP;
}

897 898 899
/*
 * This structure represents a range of page frames the contents of which
 * should not be saved during hibernation.
900 901 902 903 904 905 906 907 908
 */
struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		recycle_safe_page(node->data);

	list_for_each_entry(node, &zone->leaves, list)
		recycle_safe_page(node->data);
}

static void memory_bm_recycle(struct memory_bitmap *bm)
{
	struct mem_zone_bm_rtree *zone;
	struct linked_page *p_list;

	list_for_each_entry(zone, &bm->zones, list)
		recycle_zone_bm_rtree(zone);

	p_list = bm->p_list;
	while (p_list) {
		struct linked_page *lp = p_list;

		p_list = lp->next;
		recycle_safe_page(lp);
	}
}

937
/**
938 939 940 941
 * register_nosave_region - Register a region of unsaveable memory.
 *
 * Register a range of page frames the contents of which should not be saved
 * during hibernation (to be used in the early initialization code).
942
 */
943 944
void __init __register_nosave_region(unsigned long start_pfn,
				     unsigned long end_pfn, int use_kmalloc)
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
960
	if (use_kmalloc) {
961
		/* During init, this shouldn't fail */
962 963
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
964
	} else {
965
		/* This allocation cannot fail */
966 967
		region = memblock_alloc(sizeof(struct nosave_region),
					SMP_CACHE_BYTES);
968
	}
969 970 971 972
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
J
Joe Perches 已提交
973
	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
974 975
		(unsigned long long) start_pfn << PAGE_SHIFT,
		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
1029 1030 1031 1032 1033
 * mark_nosave_pages - Mark pages that should not be saved.
 * @bm: Memory bitmap.
 *
 * Set the bits in @bm that correspond to the page frames the contents of which
 * should not be saved.
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
 */
static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

J
Joe Perches 已提交
1045
		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1046 1047 1048
			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
				- 1);
1049 1050

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1051 1052 1053 1054 1055 1056 1057 1058 1059
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
1060 1061 1062 1063
	}
}

/**
1064 1065 1066 1067 1068 1069
 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
 *
 * Create bitmaps needed for marking page frames that should not be saved and
 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
 * only modified if everything goes well, because we don't want the bits to be
 * touched before both bitmaps are set up.
1070 1071 1072 1073 1074 1075
 */
int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

1076 1077 1078 1079
	if (forbidden_pages_map && free_pages_map)
		return 0;
	else
		BUG_ON(forbidden_pages_map || free_pages_map);
1080

1081
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1082 1083 1084
	if (!bm1)
		return -ENOMEM;

1085
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1086 1087 1088
	if (error)
		goto Free_first_object;

1089
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1090 1091 1092
	if (!bm2)
		goto Free_first_bitmap;

1093
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1094 1095 1096 1097 1098 1099 1100
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

J
Joe Perches 已提交
1101
	pr_debug("Basic memory bitmaps created\n");
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
1115 1116 1117 1118 1119
 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
 *
 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
 * auxiliary pointers are necessary so that the bitmaps themselves are not
 * referred to while they are being freed.
1120 1121 1122 1123 1124
 */
void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

1125 1126
	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
		return;
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

J
Joe Perches 已提交
1137
	pr_debug("Basic memory bitmaps freed\n");
1138 1139
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
void clear_free_pages(void)
{
#ifdef CONFIG_PAGE_POISONING_ZERO
	struct memory_bitmap *bm = free_pages_map;
	unsigned long pfn;

	if (WARN_ON(!(free_pages_map)))
		return;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (pfn_valid(pfn))
			clear_highpage(pfn_to_page(pfn));

		pfn = memory_bm_next_pfn(bm);
	}
	memory_bm_position_reset(bm);
J
Joe Perches 已提交
1158
	pr_info("free pages cleared after restore\n");
1159 1160 1161
#endif /* PAGE_POISONING_ZERO */
}

1162
/**
1163 1164 1165 1166 1167 1168
 * snapshot_additional_pages - Estimate the number of extra pages needed.
 * @zone: Memory zone to carry out the computation for.
 *
 * Estimate the number of additional pages needed for setting up a hibernation
 * image data structures for @zone (usually, the returned value is greater than
 * the exact number).
1169 1170 1171
 */
unsigned int snapshot_additional_pages(struct zone *zone)
{
1172
	unsigned int rtree, nodes;
1173

1174 1175 1176 1177 1178 1179 1180 1181
	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
			      LINKED_PAGE_DATA_SIZE);
	while (nodes > 1) {
		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
		rtree += nodes;
	}

1182
	return 2 * rtree;
1183 1184
}

1185 1186
#ifdef CONFIG_HIGHMEM
/**
1187 1188 1189
 * count_free_highmem_pages - Compute the total number of free highmem pages.
 *
 * The returned number is system-wide.
1190 1191 1192 1193 1194 1195
 */
static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

1196 1197
	for_each_populated_zone(zone)
		if (is_highmem(zone))
1198
			cnt += zone_page_state(zone, NR_FREE_PAGES);
1199 1200 1201 1202 1203

	return cnt;
}

/**
1204 1205 1206
 * saveable_highmem_page - Check if a highmem page is saveable.
 *
 * Determine whether a highmem page should be included in a hibernation image.
1207
 *
1208 1209
 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 * and it isn't part of a free chunk of pages.
1210
 */
1211
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1212 1213 1214 1215 1216 1217 1218
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
1219 1220
	if (page_zone(page) != zone)
		return NULL;
1221 1222 1223

	BUG_ON(!PageHighMem(page));

1224 1225
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
1226 1227
		return NULL;

1228 1229 1230
	if (page_is_guard(page))
		return NULL;

1231 1232 1233 1234
	return page;
}

/**
1235
 * count_highmem_pages - Compute the total number of saveable highmem pages.
1236
 */
1237
static unsigned int count_highmem_pages(void)
1238 1239 1240 1241
{
	struct zone *zone;
	unsigned int n = 0;

1242
	for_each_populated_zone(zone) {
1243 1244 1245 1246 1247 1248
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
1249
		max_zone_pfn = zone_end_pfn(zone);
1250
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1251
			if (saveable_highmem_page(zone, pfn))
1252 1253 1254 1255 1256
				n++;
	}
	return n;
}
#else
1257 1258 1259 1260
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
1261 1262
#endif /* CONFIG_HIGHMEM */

1263
/**
1264 1265 1266 1267
 * saveable_page - Check if the given page is saveable.
 *
 * Determine whether a non-highmem page should be included in a hibernation
 * image.
1268
 *
1269 1270 1271
 * We should save the page if it isn't Nosave, and is not in the range
 * of pages statically defined as 'unsaveable', and it isn't part of
 * a free chunk of pages.
1272
 */
1273
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1274
{
P
Pavel Machek 已提交
1275
	struct page *page;
1276 1277

	if (!pfn_valid(pfn))
1278
		return NULL;
1279 1280

	page = pfn_to_page(pfn);
1281 1282
	if (page_zone(page) != zone)
		return NULL;
1283

1284 1285
	BUG_ON(PageHighMem(page));

1286
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1287
		return NULL;
1288

1289 1290
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1291
		return NULL;
1292

1293 1294 1295
	if (page_is_guard(page))
		return NULL;

1296
	return page;
1297 1298
}

1299
/**
1300
 * count_data_pages - Compute the total number of saveable non-highmem pages.
1301
 */
1302
static unsigned int count_data_pages(void)
1303 1304
{
	struct zone *zone;
1305
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
1306
	unsigned int n = 0;
1307

1308
	for_each_populated_zone(zone) {
1309 1310
		if (is_highmem(zone))
			continue;
1311

1312
		mark_free_pages(zone);
1313
		max_zone_pfn = zone_end_pfn(zone);
1314
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1315
			if (saveable_page(zone, pfn))
1316
				n++;
1317
	}
1318
	return n;
1319 1320
}

1321 1322
/*
 * This is needed, because copy_page and memcpy are not usable for copying
1323 1324 1325
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
1326 1327 1328 1329 1330 1331 1332
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

1333
/**
1334 1335 1336 1337 1338
 * safe_copy_page - Copy a page in a safe way.
 *
 * Check if the page we are going to copy is marked as present in the kernel
 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
 * and in that case kernel_page_present() always returns 'true').
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}

1351
#ifdef CONFIG_HIGHMEM
1352
static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1353 1354
{
	return is_highmem(zone) ?
1355
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1356 1357
}

1358
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1359 1360 1361 1362 1363 1364 1365
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
1366 1367
		src = kmap_atomic(s_page);
		dst = kmap_atomic(d_page);
1368
		do_copy_page(dst, src);
1369 1370
		kunmap_atomic(dst);
		kunmap_atomic(src);
1371 1372
	} else {
		if (PageHighMem(d_page)) {
1373 1374
			/*
			 * The page pointed to by src may contain some kernel
1375 1376
			 * data modified by kmap_atomic()
			 */
1377
			safe_copy_page(buffer, s_page);
1378
			dst = kmap_atomic(d_page);
1379
			copy_page(dst, buffer);
1380
			kunmap_atomic(dst);
1381
		} else {
1382
			safe_copy_page(page_address(d_page), s_page);
1383 1384 1385 1386
		}
	}
}
#else
1387
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1388

1389
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1390
{
1391 1392
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1393 1394 1395
}
#endif /* CONFIG_HIGHMEM */

1396 1397
static void copy_data_pages(struct memory_bitmap *copy_bm,
			    struct memory_bitmap *orig_bm)
1398 1399
{
	struct zone *zone;
1400
	unsigned long pfn;
1401

1402
	for_each_populated_zone(zone) {
1403 1404
		unsigned long max_zone_pfn;

1405
		mark_free_pages(zone);
1406
		max_zone_pfn = zone_end_pfn(zone);
1407
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1408
			if (page_is_saveable(zone, pfn))
1409
				memory_bm_set_bit(orig_bm, pfn);
1410
	}
1411 1412
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1413
	for(;;) {
1414
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1415 1416 1417 1418
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1419 1420
}

1421 1422 1423 1424
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1425 1426 1427 1428
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
1429
static unsigned int alloc_normal, alloc_highmem;
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1444

1445
/**
1446
 * swsusp_free - Free pages allocated for hibernation image.
1447
 *
1448 1449
 * Image pages are alocated before snapshot creation, so they need to be
 * released after resume.
1450 1451 1452
 */
void swsusp_free(void)
{
1453
	unsigned long fb_pfn, fr_pfn;
1454

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	if (!forbidden_pages_map || !free_pages_map)
		goto out;

	memory_bm_position_reset(forbidden_pages_map);
	memory_bm_position_reset(free_pages_map);

loop:
	fr_pfn = memory_bm_next_pfn(free_pages_map);
	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);

	/*
	 * Find the next bit set in both bitmaps. This is guaranteed to
	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
	 */
	do {
		if (fb_pfn < fr_pfn)
			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
		if (fr_pfn < fb_pfn)
			fr_pfn = memory_bm_next_pfn(free_pages_map);
	} while (fb_pfn != fr_pfn);

	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
		struct page *page = pfn_to_page(fr_pfn);

		memory_bm_clear_current(forbidden_pages_map);
		memory_bm_clear_current(free_pages_map);
1481
		hibernate_restore_unprotect_page(page_address(page));
1482 1483
		__free_page(page);
		goto loop;
1484
	}
1485 1486

out:
1487 1488
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1489
	restore_pblist = NULL;
1490
	buffer = NULL;
1491 1492
	alloc_normal = 0;
	alloc_highmem = 0;
1493
	hibernate_restore_protection_end();
1494 1495
}

1496 1497 1498 1499
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1500
/**
1501
 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1502 1503
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1504
 *
1505 1506 1507 1508 1509 1510 1511
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1512 1513 1514 1515
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1516
			break;
1517 1518 1519 1520 1521
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1522 1523 1524 1525 1526 1527 1528
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

1529 1530
static unsigned long preallocate_image_memory(unsigned long nr_pages,
					      unsigned long avail_normal)
1531
{
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	unsigned long alloc;

	if (avail_normal <= alloc_normal)
		return 0;

	alloc = avail_normal - alloc_normal;
	if (nr_pages < alloc)
		alloc = nr_pages;

	return preallocate_image_pages(alloc, GFP_IMAGE);
1542 1543 1544 1545 1546 1547 1548 1549 1550
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
1551
 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1552
 */
1553 1554 1555 1556 1557 1558
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
	x *= multiplier;
	do_div(x, base);
	return (unsigned long)x;
}
1559

1560
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1561 1562
						  unsigned long highmem,
						  unsigned long total)
1563
{
1564 1565 1566
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1567
}
1568 1569 1570 1571 1572 1573 1574
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1575 1576
							 unsigned long highmem,
							 unsigned long total)
1577 1578 1579 1580
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1581

1582
/**
1583
 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1584
 */
1585
static unsigned long free_unnecessary_pages(void)
1586
{
1587
	unsigned long save, to_free_normal, to_free_highmem, free;
1588

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	save = count_data_pages();
	if (alloc_normal >= save) {
		to_free_normal = alloc_normal - save;
		save = 0;
	} else {
		to_free_normal = 0;
		save -= alloc_normal;
	}
	save += count_highmem_pages();
	if (alloc_highmem >= save) {
		to_free_highmem = alloc_highmem - save;
1600 1601
	} else {
		to_free_highmem = 0;
1602 1603 1604 1605 1606
		save -= alloc_highmem;
		if (to_free_normal > save)
			to_free_normal -= save;
		else
			to_free_normal = 0;
1607
	}
1608
	free = to_free_normal + to_free_highmem;
1609 1610 1611

	memory_bm_position_reset(&copy_bm);

1612
	while (to_free_normal > 0 || to_free_highmem > 0) {
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
1632 1633

	return free;
1634 1635
}

1636
/**
1637
 * minimum_image_size - Estimate the minimum acceptable size of an image.
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1649
 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1650 1651 1652 1653 1654
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

1655
	size = global_node_page_state(NR_SLAB_RECLAIMABLE)
M
Mel Gorman 已提交
1656 1657 1658
		+ global_node_page_state(NR_ACTIVE_ANON)
		+ global_node_page_state(NR_INACTIVE_ANON)
		+ global_node_page_state(NR_ACTIVE_FILE)
1659
		+ global_node_page_state(NR_INACTIVE_FILE);
1660 1661 1662 1663

	return saveable <= size ? 0 : saveable - size;
}

1664
/**
1665
 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1666 1667 1668 1669 1670
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
1671 1672 1673 1674
 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
 * total number of available page frames and allocate at least
1675
 *
1676 1677
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1678 1679 1680 1681 1682
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1683 1684
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1685
 */
1686
int hibernate_preallocate_memory(void)
1687 1688
{
	struct zone *zone;
1689
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1690
	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1691
	ktime_t start, stop;
1692
	int error;
1693

J
Joe Perches 已提交
1694
	pr_info("Preallocating image memory... ");
1695
	start = ktime_get();
1696

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	alloc_normal = 0;
	alloc_highmem = 0;

1708
	/* Count the number of saveable data pages. */
1709
	save_highmem = count_highmem_pages();
1710
	saveable = count_data_pages();
1711

1712 1713 1714 1715 1716
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1717 1718
	saveable += save_highmem;
	highmem = save_highmem;
1719 1720 1721 1722 1723 1724 1725 1726
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
1727
	avail_normal = count;
1728 1729 1730
	count += highmem;
	count -= totalreserve_pages;

1731 1732 1733
	/* Add number of pages required for page keys (s390 only). */
	size += page_key_additional_pages(saveable);

1734
	/* Compute the maximum number of saveable pages to leave in memory. */
1735 1736
	max_size = (count - (size + PAGES_FOR_IO)) / 2
			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1737
	/* Compute the desired number of image pages specified by image_size. */
1738 1739 1740 1741
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
1742 1743 1744
	 * If the desired number of image pages is at least as large as the
	 * current number of saveable pages in memory, allocate page frames for
	 * the image and we're done.
1745
	 */
1746 1747
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
1748
		pages += preallocate_image_memory(saveable - pages, avail_normal);
1749
		goto out;
1750
	}
1751

1752 1753
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
1754 1755 1756 1757 1758 1759 1760 1761 1762
	/*
	 * To avoid excessive pressure on the normal zone, leave room in it to
	 * accommodate an image of the minimum size (unless it's already too
	 * small, in which case don't preallocate pages from it at all).
	 */
	if (avail_normal > pages)
		avail_normal -= pages;
	else
		avail_normal = 0;
1763 1764 1765
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1778 1779
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1780 1781
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
1782 1783 1784 1785 1786
	alloc = count - max_size;
	if (alloc > pages_highmem)
		alloc -= pages_highmem;
	else
		alloc = 0;
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	pages = preallocate_image_memory(alloc, avail_normal);
	if (pages < alloc) {
		/* We have exhausted non-highmem pages, try highmem. */
		alloc -= pages;
		pages += pages_highmem;
		pages_highmem = preallocate_image_highmem(alloc);
		if (pages_highmem < alloc)
			goto err_out;
		pages += pages_highmem;
		/*
		 * size is the desired number of saveable pages to leave in
		 * memory, so try to preallocate (all memory - size) pages.
		 */
		alloc = (count - pages) - size;
		pages += preallocate_image_highmem(alloc);
	} else {
		/*
		 * There are approximately max_size saveable pages at this point
		 * and we want to reduce this number down to size.
		 */
		alloc = max_size - size;
		size = preallocate_highmem_fraction(alloc, highmem, count);
		pages_highmem += size;
		alloc -= size;
		size = preallocate_image_memory(alloc, avail_normal);
		pages_highmem += preallocate_image_highmem(alloc - size);
		pages += pages_highmem + size;
	}
1815

1816 1817 1818 1819 1820
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
1821
	pages -= free_unnecessary_pages();
1822 1823

 out:
1824
	stop = ktime_get();
J
Joe Perches 已提交
1825
	pr_cont("done (allocated %lu pages)\n", pages);
1826
	swsusp_show_speed(start, stop, pages, "Allocated");
1827 1828

	return 0;
1829 1830

 err_out:
J
Joe Perches 已提交
1831
	pr_cont("\n");
1832 1833
	swsusp_free();
	return -ENOMEM;
1834 1835
}

1836 1837
#ifdef CONFIG_HIGHMEM
/**
1838 1839 1840 1841 1842
 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
 *
 * Compute the number of non-highmem pages that will be necessary for creating
 * copies of highmem pages.
 */
1843 1844
static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1845
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1846 1847 1848 1849 1850 1851 1852 1853 1854

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
1855
static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1856
#endif /* CONFIG_HIGHMEM */
1857 1858

/**
1859
 * enough_free_mem - Check if there is enough free memory for the image.
1860
 */
1861
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1862
{
1863
	struct zone *zone;
1864
	unsigned int free = alloc_normal;
1865

1866
	for_each_populated_zone(zone)
1867
		if (!is_highmem(zone))
1868
			free += zone_page_state(zone, NR_FREE_PAGES);
1869

1870
	nr_pages += count_pages_for_highmem(nr_highmem);
J
Joe Perches 已提交
1871 1872
	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
		 nr_pages, PAGES_FOR_IO, free);
1873

1874
	return free > nr_pages + PAGES_FOR_IO;
1875 1876
}

1877 1878
#ifdef CONFIG_HIGHMEM
/**
1879 1880 1881 1882
 * get_highmem_buffer - Allocate a buffer for highmem pages.
 *
 * If there are some highmem pages in the hibernation image, we may need a
 * buffer to copy them and/or load their data.
1883 1884 1885
 */
static inline int get_highmem_buffer(int safe_needed)
{
M
Mel Gorman 已提交
1886
	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1887 1888 1889 1890
	return buffer ? 0 : -ENOMEM;
}

/**
1891 1892 1893 1894
 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
 *
 * Try to allocate as many pages as needed, but if the number of free highmem
 * pages is less than that, allocate them all.
1895
 */
1896 1897
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int nr_highmem)
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

1908
		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1909 1910 1911 1912 1913 1914 1915
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

1916 1917
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int n) { return 0; }
1918 1919 1920
#endif /* CONFIG_HIGHMEM */

/**
1921
 * swsusp_alloc - Allocate memory for hibernation image.
1922
 *
1923 1924 1925
 * We first try to allocate as many highmem pages as there are
 * saveable highmem pages in the system.  If that fails, we allocate
 * non-highmem pages for the copies of the remaining highmem ones.
1926
 *
1927 1928 1929
 * In this approach it is likely that the copies of highmem pages will
 * also be located in the high memory, because of the way in which
 * copy_data_pages() works.
1930
 */
1931
static int swsusp_alloc(struct memory_bitmap *copy_bm,
1932
			unsigned int nr_pages, unsigned int nr_highmem)
1933
{
1934
	if (nr_highmem > 0) {
1935
		if (get_highmem_buffer(PG_ANY))
1936 1937 1938 1939 1940
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1941
	}
1942 1943 1944 1945 1946
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

M
Mel Gorman 已提交
1947
			page = alloc_image_page(GFP_ATOMIC);
1948 1949 1950 1951
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
1952
	}
1953

1954
	return 0;
1955

1956
 err_out:
1957
	swsusp_free();
1958
	return -ENOMEM;
1959 1960
}

1961
asmlinkage __visible int swsusp_save(void)
1962
{
1963
	unsigned int nr_pages, nr_highmem;
1964

J
Joe Perches 已提交
1965
	pr_info("Creating hibernation image:\n");
1966

1967
	drain_local_pages(NULL);
1968
	nr_pages = count_data_pages();
1969
	nr_highmem = count_highmem_pages();
J
Joe Perches 已提交
1970
	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1971

1972
	if (!enough_free_mem(nr_pages, nr_highmem)) {
J
Joe Perches 已提交
1973
		pr_err("Not enough free memory\n");
1974 1975 1976
		return -ENOMEM;
	}

1977
	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
J
Joe Perches 已提交
1978
		pr_err("Memory allocation failed\n");
1979
		return -ENOMEM;
1980
	}
1981

1982 1983
	/*
	 * During allocating of suspend pagedir, new cold pages may appear.
1984 1985
	 * Kill them.
	 */
1986
	drain_local_pages(NULL);
1987
	copy_data_pages(&copy_bm, &orig_bm);
1988 1989 1990 1991 1992 1993 1994

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1995
	nr_pages += nr_highmem;
1996
	nr_copy_pages = nr_pages;
1997
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1998

J
Joe Perches 已提交
1999
	pr_info("Hibernation image created (%d pages copied)\n", nr_pages);
2000

2001 2002
	return 0;
}
2003

2004 2005
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
2006
{
2007
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2008
	info->version_code = LINUX_VERSION_CODE;
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

2028 2029 2030 2031 2032
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

2033 2034 2035
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
2036
	info->num_physpages = get_num_physpages();
2037
	info->image_pages = nr_copy_pages;
2038
	info->pages = snapshot_get_image_size();
2039 2040
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
2041
	return init_header_complete(info);
2042 2043 2044
}

/**
2045 2046 2047 2048 2049 2050
 * pack_pfns - Prepare PFNs for saving.
 * @bm: Memory bitmap.
 * @buf: Memory buffer to store the PFNs in.
 *
 * PFNs corresponding to set bits in @bm are stored in the area of memory
 * pointed to by @buf (1 page at a time).
2051
 */
2052
static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2053 2054 2055
{
	int j;

2056
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2057 2058
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
2059
			break;
2060 2061
		/* Save page key for data page (s390 only). */
		page_key_read(buf + j);
2062 2063 2064 2065
	}
}

/**
2066 2067
 * snapshot_read_next - Get the address to read the next image page from.
 * @handle: Snapshot handle to be used for the reading.
2068
 *
2069 2070 2071
 * On the first call, @handle should point to a zeroed snapshot_handle
 * structure.  The structure gets populated then and a pointer to it should be
 * passed to this function every next time.
2072
 *
2073 2074 2075
 * On success, the function returns a positive number.  Then, the caller
 * is allowed to read up to the returned number of bytes from the memory
 * location computed by the data_of() macro.
2076
 *
2077 2078 2079
 * The function returns 0 to indicate the end of the data stream condition,
 * and negative numbers are returned on errors.  If that happens, the structure
 * pointed to by @handle is not updated and should not be used any more.
2080
 */
J
Jiri Slaby 已提交
2081
int snapshot_read_next(struct snapshot_handle *handle)
2082
{
2083
	if (handle->cur > nr_meta_pages + nr_copy_pages)
2084
		return 0;
2085

2086 2087
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
2088
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2089 2090 2091
		if (!buffer)
			return -ENOMEM;
	}
J
Jiri Slaby 已提交
2092
	if (!handle->cur) {
2093 2094 2095 2096 2097
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
2098
		handle->buffer = buffer;
2099 2100
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
J
Jiri Slaby 已提交
2101
	} else if (handle->cur <= nr_meta_pages) {
2102
		clear_page(buffer);
J
Jiri Slaby 已提交
2103 2104 2105
		pack_pfns(buffer, &orig_bm);
	} else {
		struct page *page;
2106

J
Jiri Slaby 已提交
2107 2108
		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
		if (PageHighMem(page)) {
2109 2110
			/*
			 * Highmem pages are copied to the buffer,
J
Jiri Slaby 已提交
2111 2112 2113 2114
			 * because we can't return with a kmapped
			 * highmem page (we may not be called again).
			 */
			void *kaddr;
2115

2116
			kaddr = kmap_atomic(page);
2117
			copy_page(buffer, kaddr);
2118
			kunmap_atomic(kaddr);
J
Jiri Slaby 已提交
2119 2120 2121
			handle->buffer = buffer;
		} else {
			handle->buffer = page_address(page);
2122 2123
		}
	}
J
Jiri Slaby 已提交
2124 2125
	handle->cur++;
	return PAGE_SIZE;
2126 2127
}

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
static void duplicate_memory_bitmap(struct memory_bitmap *dst,
				    struct memory_bitmap *src)
{
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
	}
}

2141
/**
2142 2143 2144 2145
 * mark_unsafe_pages - Mark pages that were used before hibernation.
 *
 * Mark the pages that cannot be used for storing the image during restoration,
 * because they conflict with the pages that had been used before hibernation.
2146
 */
2147
static void mark_unsafe_pages(struct memory_bitmap *bm)
2148
{
2149
	unsigned long pfn;
2150

2151 2152 2153 2154 2155 2156
	/* Clear the "free"/"unsafe" bit for all PFNs */
	memory_bm_position_reset(free_pages_map);
	pfn = memory_bm_next_pfn(free_pages_map);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_clear_current(free_pages_map);
		pfn = memory_bm_next_pfn(free_pages_map);
2157 2158
	}

2159 2160
	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
	duplicate_memory_bitmap(free_pages_map, bm);
2161

2162
	allocated_unsafe_pages = 0;
2163 2164
}

2165
static int check_header(struct swsusp_info *info)
2166
{
2167
	char *reason;
2168

2169
	reason = check_image_kernel(info);
2170
	if (!reason && info->num_physpages != get_num_physpages())
2171 2172
		reason = "memory size";
	if (reason) {
J
Joe Perches 已提交
2173
		pr_err("Image mismatch: %s\n", reason);
2174 2175 2176 2177 2178 2179
		return -EPERM;
	}
	return 0;
}

/**
2180
 * load header - Check the image header and copy the data from it.
2181
 */
2182
static int load_header(struct swsusp_info *info)
2183 2184 2185
{
	int error;

2186
	restore_pblist = NULL;
2187 2188 2189 2190 2191 2192 2193 2194 2195
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
2196 2197 2198 2199 2200 2201
 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
 * @bm: Memory bitmap.
 * @buf: Area of memory containing the PFNs.
 *
 * For each element of the array pointed to by @buf (1 page at a time), set the
 * corresponding bit in @bm.
2202
 */
2203
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2204 2205 2206
{
	int j;

2207 2208 2209 2210
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

2211 2212 2213
		/* Extract and buffer page key for data page (s390 only). */
		page_key_memorize(buf + j);

2214
		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2215 2216 2217
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
2218
	}
2219 2220

	return 0;
2221 2222
}

2223
#ifdef CONFIG_HIGHMEM
2224 2225
/*
 * struct highmem_pbe is used for creating the list of highmem pages that
2226 2227 2228 2229 2230 2231 2232 2233 2234
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

2235 2236
/*
 * List of highmem PBEs needed for restoring the highmem pages that were
2237 2238 2239 2240 2241 2242 2243
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
2244 2245 2246 2247
 * count_highmem_image_pages - Compute the number of highmem pages in the image.
 * @bm: Memory bitmap.
 *
 * The bits in @bm that correspond to image pages are assumed to be set.
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
 */
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
/**
 * prepare_highmem_image - Allocate memory for loading highmem data from image.
 * @bm: Pointer to an uninitialized memory bitmap structure.
 * @nr_highmem_p: Pointer to the number of highmem image pages.
 *
 * Try to allocate as many highmem pages as there are highmem image pages
 * (@nr_highmem_p points to the variable containing the number of highmem image
 * pages).  The pages that are "safe" (ie. will not be overwritten when the
 * hibernation image is restored entirely) have the corresponding bits set in
 * @bm (it must be unitialized).
 *
 * NOTE: This function should not be called if there are no highmem image pages.
 */
2282 2283
static int prepare_highmem_image(struct memory_bitmap *bm,
				 unsigned int *nr_highmem_p)
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
2304
		if (!swsusp_page_is_free(page)) {
2305 2306 2307 2308 2309
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
2310 2311
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
2312 2313 2314 2315 2316 2317
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

2318 2319
static struct page *last_highmem_page;

2320
/**
2321 2322 2323 2324
 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
 *
 * For a given highmem image page get a buffer that suspend_write_next() should
 * return to its caller to write to.
2325
 *
2326 2327 2328 2329
 * If the page is to be saved to its "original" page frame or a copy of
 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
 * the copy of the page is to be made in normal memory, so the address of
 * the copy is returned.
2330
 *
2331 2332 2333 2334 2335 2336
 * If @buffer is returned, the caller of suspend_write_next() will write
 * the page's contents to @buffer, so they will have to be copied to the
 * right location on the next call to suspend_write_next() and it is done
 * with the help of copy_last_highmem_page().  For this purpose, if
 * @buffer is returned, @last_highmem_page is set to the page to which
 * the data will have to be copied from @buffer.
2337
 */
2338 2339
static void *get_highmem_page_buffer(struct page *page,
				     struct chain_allocator *ca)
2340 2341 2342 2343
{
	struct highmem_pbe *pbe;
	void *kaddr;

2344
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2345 2346
		/*
		 * We have allocated the "original" page frame and we can
2347 2348 2349 2350 2351
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
2352 2353
	/*
	 * The "original" page frame has not been allocated and we have to
2354 2355 2356 2357 2358
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
2359
		return ERR_PTR(-ENOMEM);
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
2383 2384 2385 2386 2387
 * copy_last_highmem_page - Copy most the most recent highmem image page.
 *
 * Copy the contents of a highmem image from @buffer, where the caller of
 * snapshot_write_next() has stored them, to the right location represented by
 * @last_highmem_page .
2388 2389 2390 2391 2392 2393
 */
static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

2394
		dst = kmap_atomic(last_highmem_page);
2395
		copy_page(dst, buffer);
2396
		kunmap_atomic(dst);
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
2415
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2416

2417 2418
static inline int prepare_highmem_image(struct memory_bitmap *bm,
					unsigned int *nr_highmem_p) { return 0; }
2419

2420 2421
static inline void *get_highmem_page_buffer(struct page *page,
					    struct chain_allocator *ca)
2422
{
2423
	return ERR_PTR(-EINVAL);
2424 2425 2426 2427 2428 2429 2430
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

2431 2432
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

2433
/**
2434 2435 2436 2437 2438 2439 2440
 * prepare_image - Make room for loading hibernation image.
 * @new_bm: Unitialized memory bitmap structure.
 * @bm: Memory bitmap with unsafe pages marked.
 *
 * Use @bm to mark the pages that will be overwritten in the process of
 * restoring the system memory state from the suspend image ("unsafe" pages)
 * and allocate memory for the image.
2441
 *
2442 2443 2444 2445 2446
 * The idea is to allocate a new memory bitmap first and then allocate
 * as many pages as needed for image data, but without specifying what those
 * pages will be used for just yet.  Instead, we mark them all as allocated and
 * create a lists of "safe" pages to be used later.  On systems with high
 * memory a list of "safe" highmem pages is created too.
2447
 */
2448
static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2449
{
2450
	unsigned int nr_pages, nr_highmem;
2451
	struct linked_page *lp;
2452
	int error;
2453

2454 2455 2456 2457 2458
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2459
	mark_unsafe_pages(bm);
2460 2461 2462 2463 2464 2465 2466

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2467 2468 2469 2470 2471
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2472 2473
	/*
	 * Reserve some safe pages for potential later use.
2474 2475 2476 2477
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2478 2479
	 *
	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2480
	 */
2481
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2482 2483
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2484
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2485
		if (!lp) {
2486
			error = -ENOMEM;
2487 2488
			goto Free;
		}
2489 2490
		lp->next = safe_pages_list;
		safe_pages_list = lp;
2491
		nr_pages--;
2492
	}
2493
	/* Preallocate memory for the image */
2494
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2495 2496 2497 2498 2499 2500
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2501
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2502 2503 2504
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2505
		}
2506
		/* Mark the page as allocated */
2507 2508
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2509
		nr_pages--;
2510
	}
2511 2512
	return 0;

R
Rafael J. Wysocki 已提交
2513
 Free:
2514
	swsusp_free();
2515 2516 2517
	return error;
}

2518
/**
2519 2520 2521 2522
 * get_buffer - Get the address to store the next image data page.
 *
 * Get the address that snapshot_write_next() should return to its caller to
 * write to.
2523 2524
 */
static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2525
{
2526
	struct pbe *pbe;
2527 2528
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2529

2530 2531 2532 2533
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2534 2535 2536
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2537
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2538 2539
		/*
		 * We have allocated the "original" page frame and we can
2540
		 * use it directly to store the loaded page.
2541
		 */
2542 2543
		return page_address(page);

2544 2545
	/*
	 * The "original" page frame has not been allocated and we have to
2546
	 * use a "safe" page frame to store the loaded page.
2547
	 */
2548 2549 2550
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2551
		return ERR_PTR(-ENOMEM);
2552
	}
2553 2554
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2555 2556 2557
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2558
	return pbe->address;
2559 2560
}

2561
/**
2562 2563
 * snapshot_write_next - Get the address to store the next image page.
 * @handle: Snapshot handle structure to guide the writing.
2564
 *
2565 2566 2567
 * On the first call, @handle should point to a zeroed snapshot_handle
 * structure.  The structure gets populated then and a pointer to it should be
 * passed to this function every next time.
2568
 *
2569 2570 2571
 * On success, the function returns a positive number.  Then, the caller
 * is allowed to write up to the returned number of bytes to the memory
 * location computed by the data_of() macro.
2572
 *
2573 2574 2575
 * The function returns 0 to indicate the "end of file" condition.  Negative
 * numbers are returned on errors, in which cases the structure pointed to by
 * @handle is not updated and should not be used any more.
2576
 */
J
Jiri Slaby 已提交
2577
int snapshot_write_next(struct snapshot_handle *handle)
2578
{
2579
	static struct chain_allocator ca;
2580 2581
	int error = 0;

2582
	/* Check if we have already loaded the entire image */
J
Jiri Slaby 已提交
2583
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2584
		return 0;
2585

J
Jiri Slaby 已提交
2586 2587 2588
	handle->sync_read = 1;

	if (!handle->cur) {
2589 2590 2591 2592
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2593 2594
		if (!buffer)
			return -ENOMEM;
2595

2596
		handle->buffer = buffer;
J
Jiri Slaby 已提交
2597 2598 2599 2600
	} else if (handle->cur == 1) {
		error = load_header(buffer);
		if (error)
			return error;
2601

2602 2603
		safe_pages_list = NULL;

J
Jiri Slaby 已提交
2604 2605 2606 2607
		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
		if (error)
			return error;

2608 2609 2610 2611 2612
		/* Allocate buffer for page keys. */
		error = page_key_alloc(nr_copy_pages);
		if (error)
			return error;

2613
		hibernate_restore_protection_begin();
J
Jiri Slaby 已提交
2614 2615 2616 2617
	} else if (handle->cur <= nr_meta_pages + 1) {
		error = unpack_orig_pfns(buffer, &copy_bm);
		if (error)
			return error;
2618

J
Jiri Slaby 已提交
2619 2620
		if (handle->cur == nr_meta_pages + 1) {
			error = prepare_image(&orig_bm, &copy_bm);
2621 2622 2623
			if (error)
				return error;

J
Jiri Slaby 已提交
2624 2625 2626
			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
			memory_bm_position_reset(&orig_bm);
			restore_pblist = NULL;
2627
			handle->buffer = get_buffer(&orig_bm, &ca);
J
Jiri Slaby 已提交
2628
			handle->sync_read = 0;
2629 2630
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2631 2632
		}
	} else {
J
Jiri Slaby 已提交
2633
		copy_last_highmem_page();
2634 2635
		/* Restore page key for data page (s390 only). */
		page_key_write(handle->buffer);
2636
		hibernate_restore_protect_page(handle->buffer);
J
Jiri Slaby 已提交
2637 2638 2639 2640 2641
		handle->buffer = get_buffer(&orig_bm, &ca);
		if (IS_ERR(handle->buffer))
			return PTR_ERR(handle->buffer);
		if (handle->buffer != buffer)
			handle->sync_read = 0;
2642
	}
J
Jiri Slaby 已提交
2643 2644
	handle->cur++;
	return PAGE_SIZE;
2645 2646
}

2647
/**
2648 2649 2650 2651 2652 2653
 * snapshot_write_finalize - Complete the loading of a hibernation image.
 *
 * Must be called after the last call to snapshot_write_next() in case the last
 * page in the image happens to be a highmem page and its contents should be
 * stored in highmem.  Additionally, it recycles bitmap memory that's not
 * necessary any more.
2654 2655 2656 2657
 */
void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
2658 2659 2660
	/* Restore page key for data page (s390 only). */
	page_key_write(handle->buffer);
	page_key_free();
2661
	hibernate_restore_protect_page(handle->buffer);
2662
	/* Do that only if we have loaded the image entirely */
J
Jiri Slaby 已提交
2663
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2664
		memory_bm_recycle(&orig_bm);
2665 2666 2667 2668
		free_highmem_data();
	}
}

2669 2670
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2671
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2672 2673 2674
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2675 2676
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
2677 2678
static inline void swap_two_pages_data(struct page *p1, struct page *p2,
				       void *buf)
2679
{
2680 2681
	void *kaddr1, *kaddr2;

2682 2683
	kaddr1 = kmap_atomic(p1);
	kaddr2 = kmap_atomic(p2);
2684 2685 2686
	copy_page(buf, kaddr1);
	copy_page(kaddr1, kaddr2);
	copy_page(kaddr2, buf);
2687 2688
	kunmap_atomic(kaddr2);
	kunmap_atomic(kaddr1);
2689 2690 2691
}

/**
2692 2693 2694 2695 2696
 * restore_highmem - Put highmem image pages into their original locations.
 *
 * For each highmem page that was in use before hibernation and is included in
 * the image, and also has been allocated by the "restore" kernel, swap its
 * current contents with the previous (ie. "before hibernation") ones.
2697
 *
2698 2699
 * If the restore eventually fails, we can call this function once again and
 * restore the highmem state as seen by the restore kernel.
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
 */
int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2719
}
2720
#endif /* CONFIG_HIGHMEM */