snapshot.c 67.7 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5
 *
P
Pavel Machek 已提交
6
 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
24 25 26 27
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
28
#include <linux/list.h>
29
#include <linux/slab.h>
30
#include <linux/compiler.h>
31
#include <linux/ktime.h>
32 33 34 35 36 37 38 39 40

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

41 42 43 44
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

45 46 47 48 49 50 51 52 53 54 55 56
/*
 * Number of bytes to reserve for memory allocations made by device drivers
 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 * cause image creation to fail (tunable via /sys/power/reserved_size).
 */
unsigned long reserved_size;

void __init hibernate_reserved_size_init(void)
{
	reserved_size = SPARE_PAGES * PAGE_SIZE;
}

57 58
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
59 60 61
 * When it is set to N, swsusp will do its best to ensure the image
 * size will not exceed N bytes, but if that is impossible, it will
 * try to create the smallest image possible.
62
 */
63 64 65 66
unsigned long image_size;

void __init hibernate_image_size_init(void)
{
67
	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
68
}
69

70 71 72 73 74
/* List of PBEs needed for restoring the pages that were allocated before
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
75 76
struct pbe *restore_pblist;

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
} __packed;

/*
 * List of "safe" pages (ie. pages that were not used by the image kernel
 * before hibernation) that may be used as temporary storage for image kernel
 * memory contents.
 */
static struct linked_page *safe_pages_list;

93
/* Pointer to an auxiliary buffer (1 page) */
94
static void *buffer;
95

96 97 98
/**
 *	@safe_needed - on resume, for storing the PBE list and the image,
 *	we can only use memory pages that do not conflict with the pages
99 100
 *	used before suspend.  The unsafe pages have PageNosaveFree set
 *	and we count them using unsafe_pages.
101
 *
102 103
 *	Each allocated image page is marked as PageNosave and PageNosaveFree
 *	so that swsusp_free() can release it.
104 105
 */

106 107 108 109 110
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

111
static unsigned int allocated_unsafe_pages;
112

113
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
114 115 116 117 118
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
119
		while (res && swsusp_page_is_free(virt_to_page(res))) {
120
			/* The page is unsafe, mark it for swsusp_free() */
121
			swsusp_set_page_forbidden(virt_to_page(res));
122
			allocated_unsafe_pages++;
123 124 125
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
126 127
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
128 129 130 131
	}
	return res;
}

132 133 134 135 136 137 138 139 140 141 142 143
static void *__get_safe_page(gfp_t gfp_mask)
{
	if (safe_pages_list) {
		void *ret = safe_pages_list;

		safe_pages_list = safe_pages_list->next;
		memset(ret, 0, PAGE_SIZE);
		return ret;
	}
	return get_image_page(gfp_mask, PG_SAFE);
}

144 145
unsigned long get_safe_page(gfp_t gfp_mask)
{
146
	return (unsigned long)__get_safe_page(gfp_mask);
147 148
}

149 150
static struct page *alloc_image_page(gfp_t gfp_mask)
{
151 152 153 154
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
155 156
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
157 158
	}
	return page;
159 160
}

161 162 163 164 165 166 167 168
static void recycle_safe_page(void *page_address)
{
	struct linked_page *lp = page_address;

	lp->next = safe_pages_list;
	safe_pages_list = lp;
}

169 170
/**
 *	free_image_page - free page represented by @addr, allocated with
171
 *	get_image_page (page flags set by it must be cleared)
172 173 174 175
 */

static inline void free_image_page(void *addr, int clear_nosave_free)
{
176 177 178 179 180 181
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

182
	swsusp_unset_page_forbidden(page);
183
	if (clear_nosave_free)
184
		swsusp_unset_page_free(page);
185 186

	__free_page(page);
187 188
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
static inline void
free_list_of_pages(struct linked_page *list, int clear_page_nosave)
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

/**
  *	struct chain_allocator is used for allocating small objects out of
  *	a linked list of pages called 'the chain'.
  *
  *	The chain grows each time when there is no room for a new object in
  *	the current page.  The allocated objects cannot be freed individually.
  *	It is only possible to free them all at once, by freeing the entire
  *	chain.
  *
  *	NOTE: The chain allocator may be inefficient if the allocated objects
  *	are not much smaller than PAGE_SIZE.
  */

struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
					 * of the current page
					 */
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

static void
chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

238 239
		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
					get_image_page(ca->gfp_mask, PG_ANY);
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
 *	Data types related to memory bitmaps.
 *
 *	Memory bitmap is a structure consiting of many linked lists of
 *	objects.  The main list's elements are of type struct zone_bitmap
 *	and each of them corresonds to one zone.  For each zone bitmap
 *	object there is a list of objects of type struct bm_block that
259
 *	represent each blocks of bitmap in which information is stored.
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
 *
 *	struct memory_bitmap contains a pointer to the main list of zone
 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 *	and a pointer to the list of pages used for allocating all of the
 *	zone bitmap objects and bitmap block objects.
 *
 *	NOTE: It has to be possible to lay out the bitmap in memory
 *	using only allocations of order 0.  Additionally, the bitmap is
 *	designed to work with arbitrary number of zones (this is over the
 *	top for now, but let's avoid making unnecessary assumptions ;-).
 *
 *	struct zone_bitmap contains a pointer to a list of bitmap block
 *	objects and a pointer to the bitmap block object that has been
 *	most recently used for setting bits.  Additionally, it contains the
 *	pfns that correspond to the start and end of the represented zone.
 *
 *	struct bm_block contains a pointer to the memory page in which
277 278 279
 *	information is stored (in the form of a block of bitmap)
 *	It also contains the pfns that correspond to the start and end of
 *	the represented memory area.
280 281 282 283 284 285 286 287 288 289 290
 *
 *	The memory bitmap is organized as a radix tree to guarantee fast random
 *	access to the bits. There is one radix tree for each zone (as returned
 *	from create_mem_extents).
 *
 *	One radix tree is represented by one struct mem_zone_bm_rtree. There are
 *	two linked lists for the nodes of the tree, one for the inner nodes and
 *	one for the leave nodes. The linked leave nodes are used for fast linear
 *	access of the memory bitmap.
 *
 *	The struct rtree_node represents one node of the radix tree.
291 292 293 294
 */

#define BM_END_OF_MAP	(~0UL)

W
Wu Fengguang 已提交
295
#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
296 297
#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
298

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * struct rtree_node is a wrapper struct to link the nodes
 * of the rtree together for easy linear iteration over
 * bits and easy freeing
 */
struct rtree_node {
	struct list_head list;
	unsigned long *data;
};

/*
 * struct mem_zone_bm_rtree represents a bitmap used for one
 * populated memory zone.
 */
struct mem_zone_bm_rtree {
	struct list_head list;		/* Link Zones together         */
	struct list_head nodes;		/* Radix Tree inner nodes      */
	struct list_head leaves;	/* Radix Tree leaves           */
	unsigned long start_pfn;	/* Zone start page frame       */
	unsigned long end_pfn;		/* Zone end page frame + 1     */
	struct rtree_node *rtree;	/* Radix Tree Root             */
	int levels;			/* Number of Radix Tree Levels */
	unsigned int blocks;		/* Number of Bitmap Blocks     */
};

324 325 326
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
327 328 329 330
	struct mem_zone_bm_rtree *zone;
	struct rtree_node *node;
	unsigned long node_pfn;
	int node_bit;
331 332 333
};

struct memory_bitmap {
334
	struct list_head zones;
335 336 337 338 339 340 341 342 343
	struct linked_page *p_list;	/* list of pages used to store zone
					 * bitmap objects and bitmap block
					 * objects
					 */
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
#if BITS_PER_LONG == 32
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
#else
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
#endif
#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)

/*
 *	alloc_rtree_node - Allocate a new node and add it to the radix tree.
 *
 *	This function is used to allocate inner nodes as well as the
 *	leave nodes of the radix tree. It also adds the node to the
 *	corresponding linked list passed in by the *list parameter.
 */
static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
					   struct chain_allocator *ca,
					   struct list_head *list)
{
	struct rtree_node *node;

	node = chain_alloc(ca, sizeof(struct rtree_node));
	if (!node)
		return NULL;

	node->data = get_image_page(gfp_mask, safe_needed);
	if (!node->data)
		return NULL;

	list_add_tail(&node->list, list);

	return node;
}

/*
 *	add_rtree_block - Add a new leave node to the radix tree
 *
 *	The leave nodes need to be allocated in order to keep the leaves
 *	linked list in order. This is guaranteed by the zone->blocks
 *	counter.
 */
static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
			   int safe_needed, struct chain_allocator *ca)
{
	struct rtree_node *node, *block, **dst;
	unsigned int levels_needed, block_nr;
	int i;

	block_nr = zone->blocks;
	levels_needed = 0;

	/* How many levels do we need for this block nr? */
	while (block_nr) {
		levels_needed += 1;
		block_nr >>= BM_RTREE_LEVEL_SHIFT;
	}

	/* Make sure the rtree has enough levels */
	for (i = zone->levels; i < levels_needed; i++) {
		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
					&zone->nodes);
		if (!node)
			return -ENOMEM;

		node->data[0] = (unsigned long)zone->rtree;
		zone->rtree = node;
		zone->levels += 1;
	}

	/* Allocate new block */
	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
	if (!block)
		return -ENOMEM;

	/* Now walk the rtree to insert the block */
	node = zone->rtree;
	dst = &zone->rtree;
	block_nr = zone->blocks;
	for (i = zone->levels; i > 0; i--) {
		int index;

		if (!node) {
			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
						&zone->nodes);
			if (!node)
				return -ENOMEM;
			*dst = node;
		}

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		dst = (struct rtree_node **)&((*dst)->data[index]);
		node = *dst;
	}

	zone->blocks += 1;
	*dst = block;

	return 0;
}

static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free);

/*
 *	create_zone_bm_rtree - create a radix tree for one zone
 *
 *	Allocated the mem_zone_bm_rtree structure and initializes it.
 *	This function also allocated and builds the radix tree for the
 *	zone.
 */
static struct mem_zone_bm_rtree *
create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
		     struct chain_allocator *ca,
		     unsigned long start, unsigned long end)
{
	struct mem_zone_bm_rtree *zone;
	unsigned int i, nr_blocks;
	unsigned long pages;

	pages = end - start;
	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
	if (!zone)
		return NULL;

	INIT_LIST_HEAD(&zone->nodes);
	INIT_LIST_HEAD(&zone->leaves);
	zone->start_pfn = start;
	zone->end_pfn = end;
	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);

	for (i = 0; i < nr_blocks; i++) {
		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
			return NULL;
		}
	}

	return zone;
}

/*
 *	free_zone_bm_rtree - Free the memory of the radix tree
 *
 *	Free all node pages of the radix tree. The mem_zone_bm_rtree
 *	structure itself is not freed here nor are the rtree_node
 *	structs.
 */
static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		free_image_page(node->data, clear_nosave_free);

	list_for_each_entry(node, &zone->leaves, list)
		free_image_page(node->data, clear_nosave_free);
}

504 505
static void memory_bm_position_reset(struct memory_bitmap *bm)
{
506 507 508 509 510 511
	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
				  list);
	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
				  struct rtree_node, list);
	bm->cur.node_pfn = 0;
	bm->cur.node_bit = 0;
512 513 514 515
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

516 517 518 519 520 521
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

522
/**
523 524
 *	free_mem_extents - free a list of memory extents
 *	@list - list of extents to empty
525
 */
526 527 528
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
529

530 531 532 533 534 535 536 537 538 539 540 541 542
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
 *	create_mem_extents - create a list of memory extents representing
 *	                     contiguous ranges of PFNs
 *	@list - list to put the extents into
 *	@gfp_mask - mask to use for memory allocations
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
543
{
544
	struct zone *zone;
545

546
	INIT_LIST_HEAD(list);
547

548
	for_each_populated_zone(zone) {
549 550 551 552
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
553
		zone_end = zone_end_pfn(zone);
554 555 556 557

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
558

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
590
	}
591 592

	return 0;
593 594 595 596 597 598 599 600 601
}

/**
  *	memory_bm_create - allocate memory for a memory bitmap
  */
static int
memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
{
	struct chain_allocator ca;
602 603 604
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
605 606

	chain_init(&ca, gfp_mask, safe_needed);
607
	INIT_LIST_HEAD(&bm->zones);
608

609 610 611
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
612

613
	list_for_each_entry(ext, &mem_extents, hook) {
614 615 616 617
		struct mem_zone_bm_rtree *zone;

		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
					    ext->start, ext->end);
618 619
		if (!zone) {
			error = -ENOMEM;
620
			goto Error;
621
		}
622
		list_add_tail(&zone->list, &bm->zones);
623
	}
624

625 626
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
627 628 629
 Exit:
	free_mem_extents(&mem_extents);
	return error;
630

631
 Error:
632 633
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
634
	goto Exit;
635 636 637 638 639 640 641
}

/**
  *	memory_bm_free - free memory occupied by the memory bitmap @bm
  */
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
642
	struct mem_zone_bm_rtree *zone;
643

644 645 646
	list_for_each_entry(zone, &bm->zones, list)
		free_zone_bm_rtree(zone, clear_nosave_free);

647
	free_list_of_pages(bm->p_list, clear_nosave_free);
648

649
	INIT_LIST_HEAD(&bm->zones);
650 651 652
}

/**
653 654
 *	memory_bm_find_bit - Find the bit for pfn in the memory
 *			     bitmap
655
 *
656 657 658 659
 *	Find the bit in the bitmap @bm that corresponds to given pfn.
 *	The cur.zone, cur.block and cur.node_pfn member of @bm are
 *	updated.
 *	It walks the radix tree to find the page which contains the bit for
660 661
 *	pfn and returns the bit position in **addr and *bit_nr.
 */
662 663
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
			      void **addr, unsigned int *bit_nr)
664 665 666 667 668
{
	struct mem_zone_bm_rtree *curr, *zone;
	struct rtree_node *node;
	int i, block_nr;

669 670 671 672 673
	zone = bm->cur.zone;

	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
		goto zone_found;

674 675 676 677 678 679 680 681 682 683 684 685 686
	zone = NULL;

	/* Find the right zone */
	list_for_each_entry(curr, &bm->zones, list) {
		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
			zone = curr;
			break;
		}
	}

	if (!zone)
		return -EFAULT;

687
zone_found:
688 689 690 691
	/*
	 * We have a zone. Now walk the radix tree to find the leave
	 * node for our pfn.
	 */
692 693 694 695 696

	node = bm->cur.node;
	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
		goto node_found;

697 698 699 700 701 702 703 704 705 706 707 708
	node      = zone->rtree;
	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;

	for (i = zone->levels; i > 0; i--) {
		int index;

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		BUG_ON(node->data[index] == 0);
		node = (struct rtree_node *)node->data[index];
	}

709 710 711 712 713 714
node_found:
	/* Update last position */
	bm->cur.zone = zone;
	bm->cur.node = node;
	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;

715 716 717 718 719 720 721
	/* Set return values */
	*addr = node->data;
	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;

	return 0;
}

722 723 724 725
static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
726
	int error;
727

728 729
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
730 731 732
	set_bit(bit, addr);
}

733 734 735 736 737 738 739
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
740 741 742
	if (!error)
		set_bit(bit, addr);

743 744 745
	return error;
}

746 747 748 749
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
750
	int error;
751

752 753
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
754 755 756
	clear_bit(bit, addr);
}

757 758 759 760 761 762 763 764
static void memory_bm_clear_current(struct memory_bitmap *bm)
{
	int bit;

	bit = max(bm->cur.node_bit - 1, 0);
	clear_bit(bit, bm->cur.node->data);
}

765 766 767 768
static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
769
	int error;
770

771 772
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
773
	return test_bit(bit, addr);
774 775
}

776 777 778 779
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
780

781
	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
782 783
}

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
/*
 *	rtree_next_node - Jumps to the next leave node
 *
 *	Sets the position to the beginning of the next node in the
 *	memory bitmap. This is either the next node in the current
 *	zone's radix tree or the first node in the radix tree of the
 *	next zone.
 *
 *	Returns true if there is a next node, false otherwise.
 */
static bool rtree_next_node(struct memory_bitmap *bm)
{
	bm->cur.node = list_entry(bm->cur.node->list.next,
				  struct rtree_node, list);
	if (&bm->cur.node->list != &bm->cur.zone->leaves) {
		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
		bm->cur.node_bit  = 0;
801
		touch_softlockup_watchdog();
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
		return true;
	}

	/* No more nodes, goto next zone */
	bm->cur.zone = list_entry(bm->cur.zone->list.next,
				  struct mem_zone_bm_rtree, list);
	if (&bm->cur.zone->list != &bm->zones) {
		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
					  struct rtree_node, list);
		bm->cur.node_pfn = 0;
		bm->cur.node_bit = 0;
		return true;
	}

	/* No more zones */
	return false;
}

820 821
/**
 *	memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
822 823 824 825
 *
 *	Starting from the last returned position this function searches
 *	for the next set bit in the memory bitmap and returns its
 *	number. If no more bit is set BM_END_OF_MAP is returned.
826 827 828
 *
 *	It is required to run memory_bm_position_reset() before the
 *	first call to this function.
829
 */
830
static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
{
	unsigned long bits, pfn, pages;
	int bit;

	do {
		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
		bit	  = find_next_bit(bm->cur.node->data, bits,
					  bm->cur.node_bit);
		if (bit < bits) {
			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
			bm->cur.node_bit = bit + 1;
			return pfn;
		}
	} while (rtree_next_node(bm));

	return BM_END_OF_MAP;
}

850 851 852 853 854 855 856 857 858 859 860 861 862
/**
 *	This structure represents a range of page frames the contents of which
 *	should not be saved during the suspend.
 */

struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		recycle_safe_page(node->data);

	list_for_each_entry(node, &zone->leaves, list)
		recycle_safe_page(node->data);
}

static void memory_bm_recycle(struct memory_bitmap *bm)
{
	struct mem_zone_bm_rtree *zone;
	struct linked_page *p_list;

	list_for_each_entry(zone, &bm->zones, list)
		recycle_zone_bm_rtree(zone);

	p_list = bm->p_list;
	while (p_list) {
		struct linked_page *lp = p_list;

		p_list = lp->next;
		recycle_safe_page(lp);
	}
}

891 892 893 894 895 896 897
/**
 *	register_nosave_region - register a range of page frames the contents
 *	of which should not be saved during the suspend (to be used in the early
 *	initialization code)
 */

void __init
898 899
__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
			 int use_kmalloc)
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
915 916 917 918 919 920
	if (use_kmalloc) {
		/* during init, this shouldn't fail */
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
	} else
		/* This allocation cannot fail */
921
		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
922 923 924 925
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
926 927 928
	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
		(unsigned long long) start_pfn << PAGE_SHIFT,
		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
 *	mark_nosave_pages - set bits corresponding to the page frames the
 *	contents of which should not be saved in a given bitmap.
 */

static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

996 997 998 999
		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
				- 1);
1000 1001

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1002 1003 1004 1005 1006 1007 1008 1009 1010
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	}
}

/**
 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 *	frames that should not be saved and free page frames.  The pointers
 *	forbidden_pages_map and free_pages_map are only modified if everything
 *	goes well, because we don't want the bits to be used before both bitmaps
 *	are set up.
 */

int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

1027 1028 1029 1030
	if (forbidden_pages_map && free_pages_map)
		return 0;
	else
		BUG_ON(forbidden_pages_map || free_pages_map);
1031

1032
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1033 1034 1035
	if (!bm1)
		return -ENOMEM;

1036
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1037 1038 1039
	if (error)
		goto Free_first_object;

1040
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1041 1042 1043
	if (!bm2)
		goto Free_first_bitmap;

1044
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1045 1046 1047 1048 1049 1050 1051
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

R
Rafael J. Wysocki 已提交
1052
	pr_debug("PM: Basic memory bitmaps created\n");
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
 *	so that the bitmaps themselves are not referred to while they are being
 *	freed.
 */

void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

1076 1077
	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
		return;
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

R
Rafael J. Wysocki 已提交
1088
	pr_debug("PM: Basic memory bitmaps freed\n");
1089 1090
}

1091 1092 1093 1094 1095 1096 1097 1098
/**
 *	snapshot_additional_pages - estimate the number of additional pages
 *	be needed for setting up the suspend image data structures for given
 *	zone (usually the returned value is greater than the exact number)
 */

unsigned int snapshot_additional_pages(struct zone *zone)
{
1099
	unsigned int rtree, nodes;
1100

1101 1102 1103 1104 1105 1106 1107 1108
	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
			      LINKED_PAGE_DATA_SIZE);
	while (nodes > 1) {
		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
		rtree += nodes;
	}

1109
	return 2 * rtree;
1110 1111
}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
#ifdef CONFIG_HIGHMEM
/**
 *	count_free_highmem_pages - compute the total number of free highmem
 *	pages, system-wide.
 */

static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

1123 1124
	for_each_populated_zone(zone)
		if (is_highmem(zone))
1125
			cnt += zone_page_state(zone, NR_FREE_PAGES);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	return cnt;
}

/**
 *	saveable_highmem_page - Determine whether a highmem page should be
 *	included in the suspend image.
 *
 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 *	and it isn't a part of a free chunk of pages.
 */
1137
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1138 1139 1140 1141 1142 1143 1144
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
1145 1146
	if (page_zone(page) != zone)
		return NULL;
1147 1148 1149

	BUG_ON(!PageHighMem(page));

1150 1151
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
1152 1153
		return NULL;

1154 1155 1156
	if (page_is_guard(page))
		return NULL;

1157 1158 1159 1160 1161 1162 1163 1164
	return page;
}

/**
 *	count_highmem_pages - compute the total number of saveable highmem
 *	pages.
 */

1165
static unsigned int count_highmem_pages(void)
1166 1167 1168 1169
{
	struct zone *zone;
	unsigned int n = 0;

1170
	for_each_populated_zone(zone) {
1171 1172 1173 1174 1175 1176
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
1177
		max_zone_pfn = zone_end_pfn(zone);
1178
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1179
			if (saveable_highmem_page(zone, pfn))
1180 1181 1182 1183 1184
				n++;
	}
	return n;
}
#else
1185 1186 1187 1188
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
1189 1190
#endif /* CONFIG_HIGHMEM */

1191
/**
1192 1193
 *	saveable_page - Determine whether a non-highmem page should be included
 *	in the suspend image.
1194
 *
1195 1196 1197
 *	We should save the page if it isn't Nosave, and is not in the range
 *	of pages statically defined as 'unsaveable', and it isn't a part of
 *	a free chunk of pages.
1198
 */
1199
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1200
{
P
Pavel Machek 已提交
1201
	struct page *page;
1202 1203

	if (!pfn_valid(pfn))
1204
		return NULL;
1205 1206

	page = pfn_to_page(pfn);
1207 1208
	if (page_zone(page) != zone)
		return NULL;
1209

1210 1211
	BUG_ON(PageHighMem(page));

1212
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1213
		return NULL;
1214

1215 1216
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1217
		return NULL;
1218

1219 1220 1221
	if (page_is_guard(page))
		return NULL;

1222
	return page;
1223 1224
}

1225 1226 1227 1228 1229
/**
 *	count_data_pages - compute the total number of saveable non-highmem
 *	pages.
 */

1230
static unsigned int count_data_pages(void)
1231 1232
{
	struct zone *zone;
1233
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
1234
	unsigned int n = 0;
1235

1236
	for_each_populated_zone(zone) {
1237 1238
		if (is_highmem(zone))
			continue;
1239

1240
		mark_free_pages(zone);
1241
		max_zone_pfn = zone_end_pfn(zone);
1242
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1243
			if (saveable_page(zone, pfn))
1244
				n++;
1245
	}
1246
	return n;
1247 1248
}

1249 1250 1251 1252
/* This is needed, because copy_page and memcpy are not usable for copying
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
1253 1254 1255 1256 1257 1258 1259
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

/**
 *	safe_copy_page - check if the page we are going to copy is marked as
 *		present in the kernel page tables (this always is the case if
 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
 *		kernel_page_present() always returns 'true').
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}


1279 1280 1281 1282 1283
#ifdef CONFIG_HIGHMEM
static inline struct page *
page_is_saveable(struct zone *zone, unsigned long pfn)
{
	return is_highmem(zone) ?
1284
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1285 1286
}

1287
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1288 1289 1290 1291 1292 1293 1294
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
1295 1296
		src = kmap_atomic(s_page);
		dst = kmap_atomic(d_page);
1297
		do_copy_page(dst, src);
1298 1299
		kunmap_atomic(dst);
		kunmap_atomic(src);
1300 1301 1302 1303 1304
	} else {
		if (PageHighMem(d_page)) {
			/* Page pointed to by src may contain some kernel
			 * data modified by kmap_atomic()
			 */
1305
			safe_copy_page(buffer, s_page);
1306
			dst = kmap_atomic(d_page);
1307
			copy_page(dst, buffer);
1308
			kunmap_atomic(dst);
1309
		} else {
1310
			safe_copy_page(page_address(d_page), s_page);
1311 1312 1313 1314
		}
	}
}
#else
1315
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1316

1317
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1318
{
1319 1320
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1321 1322 1323
}
#endif /* CONFIG_HIGHMEM */

1324 1325
static void
copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1326 1327
{
	struct zone *zone;
1328
	unsigned long pfn;
1329

1330
	for_each_populated_zone(zone) {
1331 1332
		unsigned long max_zone_pfn;

1333
		mark_free_pages(zone);
1334
		max_zone_pfn = zone_end_pfn(zone);
1335
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1336
			if (page_is_saveable(zone, pfn))
1337
				memory_bm_set_bit(orig_bm, pfn);
1338
	}
1339 1340
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1341
	for(;;) {
1342
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1343 1344 1345 1346
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1347 1348
}

1349 1350 1351 1352
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
unsigned int alloc_normal, alloc_highmem;
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1372

1373
/**
1374
 *	swsusp_free - free pages allocated for the suspend.
1375
 *
1376 1377
 *	Suspend pages are alocated before the atomic copy is made, so we
 *	need to release them after the resume.
1378 1379 1380 1381
 */

void swsusp_free(void)
{
1382
	unsigned long fb_pfn, fr_pfn;
1383

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	if (!forbidden_pages_map || !free_pages_map)
		goto out;

	memory_bm_position_reset(forbidden_pages_map);
	memory_bm_position_reset(free_pages_map);

loop:
	fr_pfn = memory_bm_next_pfn(free_pages_map);
	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);

	/*
	 * Find the next bit set in both bitmaps. This is guaranteed to
	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
	 */
	do {
		if (fb_pfn < fr_pfn)
			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
		if (fr_pfn < fb_pfn)
			fr_pfn = memory_bm_next_pfn(free_pages_map);
	} while (fb_pfn != fr_pfn);

	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
		struct page *page = pfn_to_page(fr_pfn);

		memory_bm_clear_current(forbidden_pages_map);
		memory_bm_clear_current(free_pages_map);
		__free_page(page);
		goto loop;
1412
	}
1413 1414

out:
1415 1416
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1417
	restore_pblist = NULL;
1418
	buffer = NULL;
1419 1420
	alloc_normal = 0;
	alloc_highmem = 0;
1421 1422
}

1423 1424 1425 1426
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1427
/**
1428 1429 1430
 * preallocate_image_pages - Allocate a number of pages for hibernation image
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1431
 *
1432 1433 1434 1435 1436 1437 1438
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1439 1440 1441 1442
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1443
			break;
1444 1445 1446 1447 1448
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1449 1450 1451 1452 1453 1454 1455
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

1456 1457
static unsigned long preallocate_image_memory(unsigned long nr_pages,
					      unsigned long avail_normal)
1458
{
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	unsigned long alloc;

	if (avail_normal <= alloc_normal)
		return 0;

	alloc = avail_normal - alloc_normal;
	if (nr_pages < alloc)
		alloc = nr_pages;

	return preallocate_image_pages(alloc, GFP_IMAGE);
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1479
 */
1480 1481 1482 1483 1484 1485
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
	x *= multiplier;
	do_div(x, base);
	return (unsigned long)x;
}
1486

1487 1488 1489
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
1490
{
1491 1492 1493
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1494
}
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1508

1509
/**
1510 1511
 * free_unnecessary_pages - Release preallocated pages not needed for the image
 */
1512
static unsigned long free_unnecessary_pages(void)
1513
{
1514
	unsigned long save, to_free_normal, to_free_highmem, free;
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	save = count_data_pages();
	if (alloc_normal >= save) {
		to_free_normal = alloc_normal - save;
		save = 0;
	} else {
		to_free_normal = 0;
		save -= alloc_normal;
	}
	save += count_highmem_pages();
	if (alloc_highmem >= save) {
		to_free_highmem = alloc_highmem - save;
1527 1528
	} else {
		to_free_highmem = 0;
1529 1530 1531 1532 1533
		save -= alloc_highmem;
		if (to_free_normal > save)
			to_free_normal -= save;
		else
			to_free_normal = 0;
1534
	}
1535
	free = to_free_normal + to_free_highmem;
1536 1537 1538

	memory_bm_position_reset(&copy_bm);

1539
	while (to_free_normal > 0 || to_free_highmem > 0) {
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
1559 1560

	return free;
1561 1562
}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
/**
 * minimum_image_size - Estimate the minimum acceptable size of an image
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1576
 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
 * minus mapped file pages.
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

	size = global_page_state(NR_SLAB_RECLAIMABLE)
		+ global_page_state(NR_ACTIVE_ANON)
		+ global_page_state(NR_INACTIVE_ANON)
		+ global_page_state(NR_ACTIVE_FILE)
		+ global_page_state(NR_INACTIVE_FILE)
		- global_page_state(NR_FILE_MAPPED);

	return saveable <= size ? 0 : saveable - size;
}

1593 1594
/**
 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1595 1596 1597 1598 1599
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
1600 1601 1602 1603
 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
 * total number of available page frames and allocate at least
1604
 *
1605 1606
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1607 1608 1609 1610 1611
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1612 1613
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1614
 */
1615
int hibernate_preallocate_memory(void)
1616 1617
{
	struct zone *zone;
1618
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1619
	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1620
	ktime_t start, stop;
1621
	int error;
1622

1623
	printk(KERN_INFO "PM: Preallocating image memory... ");
1624
	start = ktime_get();
1625

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	alloc_normal = 0;
	alloc_highmem = 0;

1637
	/* Count the number of saveable data pages. */
1638
	save_highmem = count_highmem_pages();
1639
	saveable = count_data_pages();
1640

1641 1642 1643 1644 1645
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1646 1647
	saveable += save_highmem;
	highmem = save_highmem;
1648 1649 1650 1651 1652 1653 1654 1655
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
1656
	avail_normal = count;
1657 1658 1659
	count += highmem;
	count -= totalreserve_pages;

1660 1661 1662
	/* Add number of pages required for page keys (s390 only). */
	size += page_key_additional_pages(saveable);

1663
	/* Compute the maximum number of saveable pages to leave in memory. */
1664 1665
	max_size = (count - (size + PAGES_FOR_IO)) / 2
			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1666
	/* Compute the desired number of image pages specified by image_size. */
1667 1668 1669 1670
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
1671 1672 1673
	 * If the desired number of image pages is at least as large as the
	 * current number of saveable pages in memory, allocate page frames for
	 * the image and we're done.
1674
	 */
1675 1676
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
1677
		pages += preallocate_image_memory(saveable - pages, avail_normal);
1678
		goto out;
1679
	}
1680

1681 1682
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
1683 1684 1685 1686 1687 1688 1689 1690 1691
	/*
	 * To avoid excessive pressure on the normal zone, leave room in it to
	 * accommodate an image of the minimum size (unless it's already too
	 * small, in which case don't preallocate pages from it at all).
	 */
	if (avail_normal > pages)
		avail_normal -= pages;
	else
		avail_normal = 0;
1692 1693 1694
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1707 1708
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1709 1710
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
1711 1712 1713 1714 1715
	alloc = count - max_size;
	if (alloc > pages_highmem)
		alloc -= pages_highmem;
	else
		alloc = 0;
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	pages = preallocate_image_memory(alloc, avail_normal);
	if (pages < alloc) {
		/* We have exhausted non-highmem pages, try highmem. */
		alloc -= pages;
		pages += pages_highmem;
		pages_highmem = preallocate_image_highmem(alloc);
		if (pages_highmem < alloc)
			goto err_out;
		pages += pages_highmem;
		/*
		 * size is the desired number of saveable pages to leave in
		 * memory, so try to preallocate (all memory - size) pages.
		 */
		alloc = (count - pages) - size;
		pages += preallocate_image_highmem(alloc);
	} else {
		/*
		 * There are approximately max_size saveable pages at this point
		 * and we want to reduce this number down to size.
		 */
		alloc = max_size - size;
		size = preallocate_highmem_fraction(alloc, highmem, count);
		pages_highmem += size;
		alloc -= size;
		size = preallocate_image_memory(alloc, avail_normal);
		pages_highmem += preallocate_image_highmem(alloc - size);
		pages += pages_highmem + size;
	}
1744

1745 1746 1747 1748 1749
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
1750
	pages -= free_unnecessary_pages();
1751 1752

 out:
1753
	stop = ktime_get();
1754
	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1755
	swsusp_show_speed(start, stop, pages, "Allocated");
1756 1757

	return 0;
1758 1759 1760 1761 1762

 err_out:
	printk(KERN_CONT "\n");
	swsusp_free();
	return -ENOMEM;
1763 1764
}

1765 1766 1767 1768 1769 1770 1771 1772
#ifdef CONFIG_HIGHMEM
/**
  *	count_pages_for_highmem - compute the number of non-highmem pages
  *	that will be necessary for creating copies of highmem pages.
  */

static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1773
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
static unsigned int
count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
#endif /* CONFIG_HIGHMEM */
1786 1787

/**
1788 1789
 *	enough_free_mem - Make sure we have enough free memory for the
 *	snapshot image.
1790 1791
 */

1792
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1793
{
1794
	struct zone *zone;
1795
	unsigned int free = alloc_normal;
1796

1797
	for_each_populated_zone(zone)
1798
		if (!is_highmem(zone))
1799
			free += zone_page_state(zone, NR_FREE_PAGES);
1800

1801
	nr_pages += count_pages_for_highmem(nr_highmem);
1802 1803
	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
		nr_pages, PAGES_FOR_IO, free);
1804

1805
	return free > nr_pages + PAGES_FOR_IO;
1806 1807
}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
#ifdef CONFIG_HIGHMEM
/**
 *	get_highmem_buffer - if there are some highmem pages in the suspend
 *	image, we may need the buffer to copy them and/or load their data.
 */

static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
 *	Try to allocate as many pages as needed, but if the number of free
 *	highmem pages is lesser than that, allocate them all.
 */

static inline unsigned int
1827
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

1838
		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1839 1840 1841 1842 1843 1844 1845 1846
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

static inline unsigned int
1847
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
#endif /* CONFIG_HIGHMEM */

/**
 *	swsusp_alloc - allocate memory for the suspend image
 *
 *	We first try to allocate as many highmem pages as there are
 *	saveable highmem pages in the system.  If that fails, we allocate
 *	non-highmem pages for the copies of the remaining highmem ones.
 *
 *	In this approach it is likely that the copies of highmem pages will
 *	also be located in the high memory, because of the way in which
 *	copy_data_pages() works.
 */

1862 1863
static int
swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1864
		unsigned int nr_pages, unsigned int nr_highmem)
1865
{
1866
	if (nr_highmem > 0) {
1867
		if (get_highmem_buffer(PG_ANY))
1868 1869 1870 1871 1872
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1873
	}
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
1884
	}
1885

1886
	return 0;
1887

1888
 err_out:
1889
	swsusp_free();
1890
	return -ENOMEM;
1891 1892
}

1893
asmlinkage __visible int swsusp_save(void)
1894
{
1895
	unsigned int nr_pages, nr_highmem;
1896

1897
	printk(KERN_INFO "PM: Creating hibernation image:\n");
1898

1899
	drain_local_pages(NULL);
1900
	nr_pages = count_data_pages();
1901
	nr_highmem = count_highmem_pages();
R
Rafael J. Wysocki 已提交
1902
	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1903

1904
	if (!enough_free_mem(nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1905
		printk(KERN_ERR "PM: Not enough free memory\n");
1906 1907 1908
		return -ENOMEM;
	}

1909
	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1910
		printk(KERN_ERR "PM: Memory allocation failed\n");
1911
		return -ENOMEM;
1912
	}
1913 1914 1915 1916

	/* During allocating of suspend pagedir, new cold pages may appear.
	 * Kill them.
	 */
1917
	drain_local_pages(NULL);
1918
	copy_data_pages(&copy_bm, &orig_bm);
1919 1920 1921 1922 1923 1924 1925

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1926
	nr_pages += nr_highmem;
1927
	nr_copy_pages = nr_pages;
1928
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1929

R
Rafael J. Wysocki 已提交
1930 1931
	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
		nr_pages);
1932

1933 1934
	return 0;
}
1935

1936 1937
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
1938
{
1939
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1940
	info->version_code = LINUX_VERSION_CODE;
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

1960 1961 1962 1963 1964
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

1965 1966 1967
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
1968
	info->num_physpages = get_num_physpages();
1969
	info->image_pages = nr_copy_pages;
1970
	info->pages = snapshot_get_image_size();
1971 1972
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
1973
	return init_header_complete(info);
1974 1975 1976
}

/**
1977 1978
 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
 *	are stored in the array @buf[] (1 page at a time)
1979 1980
 */

1981
static inline void
1982
pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1983 1984 1985
{
	int j;

1986
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1987 1988
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
1989
			break;
1990 1991
		/* Save page key for data page (s390 only). */
		page_key_read(buf + j);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	}
}

/**
 *	snapshot_read_next - used for reading the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to read up to the returned number of bytes from the memory
J
Jiri Slaby 已提交
2004
 *	location computed by the data_of() macro.
2005 2006 2007 2008 2009 2010 2011
 *
 *	The function returns 0 to indicate the end of data stream condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
2012
int snapshot_read_next(struct snapshot_handle *handle)
2013
{
2014
	if (handle->cur > nr_meta_pages + nr_copy_pages)
2015
		return 0;
2016

2017 2018
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
2019
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2020 2021 2022
		if (!buffer)
			return -ENOMEM;
	}
J
Jiri Slaby 已提交
2023
	if (!handle->cur) {
2024 2025 2026 2027 2028
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
2029
		handle->buffer = buffer;
2030 2031
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
J
Jiri Slaby 已提交
2032
	} else if (handle->cur <= nr_meta_pages) {
2033
		clear_page(buffer);
J
Jiri Slaby 已提交
2034 2035 2036
		pack_pfns(buffer, &orig_bm);
	} else {
		struct page *page;
2037

J
Jiri Slaby 已提交
2038 2039 2040 2041 2042 2043 2044
		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
		if (PageHighMem(page)) {
			/* Highmem pages are copied to the buffer,
			 * because we can't return with a kmapped
			 * highmem page (we may not be called again).
			 */
			void *kaddr;
2045

2046
			kaddr = kmap_atomic(page);
2047
			copy_page(buffer, kaddr);
2048
			kunmap_atomic(kaddr);
J
Jiri Slaby 已提交
2049 2050 2051
			handle->buffer = buffer;
		} else {
			handle->buffer = page_address(page);
2052 2053
		}
	}
J
Jiri Slaby 已提交
2054 2055
	handle->cur++;
	return PAGE_SIZE;
2056 2057
}

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
static void duplicate_memory_bitmap(struct memory_bitmap *dst,
				    struct memory_bitmap *src)
{
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
	}
}

2071 2072 2073 2074 2075 2076
/**
 *	mark_unsafe_pages - mark the pages that cannot be used for storing
 *	the image during resume, because they conflict with the pages that
 *	had been used before suspend
 */

2077
static void mark_unsafe_pages(struct memory_bitmap *bm)
2078
{
2079
	unsigned long pfn;
2080

2081 2082 2083 2084 2085 2086
	/* Clear the "free"/"unsafe" bit for all PFNs */
	memory_bm_position_reset(free_pages_map);
	pfn = memory_bm_next_pfn(free_pages_map);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_clear_current(free_pages_map);
		pfn = memory_bm_next_pfn(free_pages_map);
2087 2088
	}

2089 2090
	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
	duplicate_memory_bitmap(free_pages_map, bm);
2091

2092
	allocated_unsafe_pages = 0;
2093 2094
}

2095
static int check_header(struct swsusp_info *info)
2096
{
2097
	char *reason;
2098

2099
	reason = check_image_kernel(info);
2100
	if (!reason && info->num_physpages != get_num_physpages())
2101 2102
		reason = "memory size";
	if (reason) {
R
Rafael J. Wysocki 已提交
2103
		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2104 2105 2106 2107 2108 2109 2110 2111 2112
		return -EPERM;
	}
	return 0;
}

/**
 *	load header - check the image header and copy data from it
 */

2113 2114
static int
load_header(struct swsusp_info *info)
2115 2116 2117
{
	int error;

2118
	restore_pblist = NULL;
2119 2120 2121 2122 2123 2124 2125 2126 2127
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
2128 2129
 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
 *	the corresponding bit in the memory bitmap @bm
2130
 */
2131
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2132 2133 2134
{
	int j;

2135 2136 2137 2138
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

2139 2140 2141
		/* Extract and buffer page key for data page (s390 only). */
		page_key_memorize(buf + j);

2142
		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2143 2144 2145
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
2146
	}
2147 2148

	return 0;
2149 2150
}

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
#ifdef CONFIG_HIGHMEM
/* struct highmem_pbe is used for creating the list of highmem pages that
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

/* List of highmem PBEs needed for restoring the highmem pages that were
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
 *	count_highmem_image_pages - compute the number of highmem pages in the
 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
 *	image pages are assumed to be set.
 */

static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

/**
 *	prepare_highmem_image - try to allocate as many highmem pages as
 *	there are highmem image pages (@nr_highmem_p points to the variable
 *	containing the number of highmem image pages).  The pages that are
 *	"safe" (ie. will not be overwritten when the suspend image is
 *	restored) have the corresponding bits set in @bm (it must be
 *	unitialized).
 *
 *	NOTE: This function should not be called if there are no highmem
 *	image pages.
 */

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

static int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
2229
		if (!swsusp_page_is_free(page)) {
2230 2231 2232 2233 2234
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
2235 2236
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

/**
 *	get_highmem_page_buffer - for given highmem image page find the buffer
 *	that suspend_write_next() should set for its caller to write to.
 *
 *	If the page is to be saved to its "original" page frame or a copy of
 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
 *	the copy of the page is to be made in normal memory, so the address of
 *	the copy is returned.
 *
 *	If @buffer is returned, the caller of suspend_write_next() will write
 *	the page's contents to @buffer, so they will have to be copied to the
 *	right location on the next call to suspend_write_next() and it is done
 *	with the help of copy_last_highmem_page().  For this purpose, if
 *	@buffer is returned, @last_highmem page is set to the page to which
 *	the data will have to be copied from @buffer.
 */

static struct page *last_highmem_page;

static void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
	struct highmem_pbe *pbe;
	void *kaddr;

2268
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
2281
		return ERR_PTR(-ENOMEM);
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
 *	copy_last_highmem_page - copy the contents of a highmem image from
 *	@buffer, where the caller of snapshot_write_next() has place them,
 *	to the right location represented by @last_highmem_page .
 */

static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

2315
		dst = kmap_atomic(last_highmem_page);
2316
		copy_page(dst, buffer);
2317
		kunmap_atomic(dst);
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
static unsigned int
count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }

static inline int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	return 0;
}

static inline void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
2348
	return ERR_PTR(-EINVAL);
2349 2350 2351 2352 2353 2354 2355
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

2356
/**
2357 2358 2359 2360
 *	prepare_image - use the memory bitmap @bm to mark the pages that will
 *	be overwritten in the process of restoring the system memory state
 *	from the suspend image ("unsafe" pages) and allocate memory for the
 *	image.
2361
 *
2362 2363 2364
 *	The idea is to allocate a new memory bitmap first and then allocate
 *	as many pages as needed for the image data, but not to assign these
 *	pages to specific tasks initially.  Instead, we just mark them as
2365 2366 2367
 *	allocated and create a lists of "safe" pages that will be used
 *	later.  On systems with high memory a list of "safe" highmem pages is
 *	also created.
2368 2369
 */

2370 2371 2372 2373
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

static int
prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2374
{
2375
	unsigned int nr_pages, nr_highmem;
2376
	struct linked_page *lp;
2377
	int error;
2378

2379 2380 2381 2382 2383
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2384
	mark_unsafe_pages(bm);
2385 2386 2387 2388 2389 2390 2391

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2392 2393 2394 2395 2396
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2397 2398 2399 2400 2401
	/* Reserve some safe pages for potential later use.
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2402 2403
	 *
	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2404
	 */
2405
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2406 2407
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2408
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2409
		if (!lp) {
2410
			error = -ENOMEM;
2411 2412
			goto Free;
		}
2413 2414
		lp->next = safe_pages_list;
		safe_pages_list = lp;
2415
		nr_pages--;
2416
	}
2417
	/* Preallocate memory for the image */
2418
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2419 2420 2421 2422 2423 2424
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2425
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2426 2427 2428
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2429
		}
2430
		/* Mark the page as allocated */
2431 2432
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2433
		nr_pages--;
2434
	}
2435 2436
	return 0;

R
Rafael J. Wysocki 已提交
2437
 Free:
2438
	swsusp_free();
2439 2440 2441
	return error;
}

2442 2443 2444 2445 2446 2447
/**
 *	get_buffer - compute the address that snapshot_write_next() should
 *	set for its caller to write to.
 */

static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2448
{
2449
	struct pbe *pbe;
2450 2451
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2452

2453 2454 2455 2456
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2457 2458 2459
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2460
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2461 2462
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
2463
		 */
2464 2465 2466 2467
		return page_address(page);

	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
2468
	 */
2469 2470 2471
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2472
		return ERR_PTR(-ENOMEM);
2473
	}
2474 2475
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2476 2477 2478
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2479
	return pbe->address;
2480 2481
}

2482 2483 2484 2485 2486 2487 2488 2489 2490
/**
 *	snapshot_write_next - used for writing the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to write up to the returned number of bytes to the memory
J
Jiri Slaby 已提交
2491
 *	location computed by the data_of() macro.
2492 2493 2494 2495 2496 2497 2498
 *
 *	The function returns 0 to indicate the "end of file" condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
2499
int snapshot_write_next(struct snapshot_handle *handle)
2500
{
2501
	static struct chain_allocator ca;
2502 2503
	int error = 0;

2504
	/* Check if we have already loaded the entire image */
J
Jiri Slaby 已提交
2505
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2506
		return 0;
2507

J
Jiri Slaby 已提交
2508 2509 2510
	handle->sync_read = 1;

	if (!handle->cur) {
2511 2512 2513 2514
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2515 2516
		if (!buffer)
			return -ENOMEM;
2517

2518
		handle->buffer = buffer;
J
Jiri Slaby 已提交
2519 2520 2521 2522
	} else if (handle->cur == 1) {
		error = load_header(buffer);
		if (error)
			return error;
2523

2524 2525
		safe_pages_list = NULL;

J
Jiri Slaby 已提交
2526 2527 2528 2529
		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
		if (error)
			return error;

2530 2531 2532 2533 2534
		/* Allocate buffer for page keys. */
		error = page_key_alloc(nr_copy_pages);
		if (error)
			return error;

J
Jiri Slaby 已提交
2535 2536 2537 2538
	} else if (handle->cur <= nr_meta_pages + 1) {
		error = unpack_orig_pfns(buffer, &copy_bm);
		if (error)
			return error;
2539

J
Jiri Slaby 已提交
2540 2541
		if (handle->cur == nr_meta_pages + 1) {
			error = prepare_image(&orig_bm, &copy_bm);
2542 2543 2544
			if (error)
				return error;

J
Jiri Slaby 已提交
2545 2546 2547
			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
			memory_bm_position_reset(&orig_bm);
			restore_pblist = NULL;
2548
			handle->buffer = get_buffer(&orig_bm, &ca);
J
Jiri Slaby 已提交
2549
			handle->sync_read = 0;
2550 2551
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2552 2553
		}
	} else {
J
Jiri Slaby 已提交
2554
		copy_last_highmem_page();
2555 2556
		/* Restore page key for data page (s390 only). */
		page_key_write(handle->buffer);
J
Jiri Slaby 已提交
2557 2558 2559 2560 2561
		handle->buffer = get_buffer(&orig_bm, &ca);
		if (IS_ERR(handle->buffer))
			return PTR_ERR(handle->buffer);
		if (handle->buffer != buffer)
			handle->sync_read = 0;
2562
	}
J
Jiri Slaby 已提交
2563 2564
	handle->cur++;
	return PAGE_SIZE;
2565 2566
}

2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
/**
 *	snapshot_write_finalize - must be called after the last call to
 *	snapshot_write_next() in case the last page in the image happens
 *	to be a highmem page and its contents should be stored in the
 *	highmem.  Additionally, it releases the memory that will not be
 *	used any more.
 */

void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
2578 2579 2580
	/* Restore page key for data page (s390 only). */
	page_key_write(handle->buffer);
	page_key_free();
2581
	/* Do that only if we have loaded the image entirely */
J
Jiri Slaby 已提交
2582
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2583
		memory_bm_recycle(&orig_bm);
2584 2585 2586 2587
		free_highmem_data();
	}
}

2588 2589
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2590
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2591 2592 2593
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2594 2595 2596 2597
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
static inline void
swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2598
{
2599 2600
	void *kaddr1, *kaddr2;

2601 2602
	kaddr1 = kmap_atomic(p1);
	kaddr2 = kmap_atomic(p2);
2603 2604 2605
	copy_page(buf, kaddr1);
	copy_page(kaddr1, kaddr2);
	copy_page(kaddr2, buf);
2606 2607
	kunmap_atomic(kaddr2);
	kunmap_atomic(kaddr1);
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
}

/**
 *	restore_highmem - for each highmem page that was allocated before
 *	the suspend and included in the suspend image, and also has been
 *	allocated by the "resume" kernel swap its current (ie. "before
 *	resume") contents with the previous (ie. "before suspend") one.
 *
 *	If the resume eventually fails, we can call this function once
 *	again and restore the "before resume" highmem state.
 */

int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2638
}
2639
#endif /* CONFIG_HIGHMEM */