snapshot.c 59.8 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5
 *
P
Pavel Machek 已提交
6
 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
24 25 26 27
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
28
#include <linux/list.h>
29
#include <linux/slab.h>
30 31 32 33 34 35 36 37 38

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

39 40 41 42
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

43 44 45 46 47 48 49 50 51 52 53 54
/*
 * Number of bytes to reserve for memory allocations made by device drivers
 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 * cause image creation to fail (tunable via /sys/power/reserved_size).
 */
unsigned long reserved_size;

void __init hibernate_reserved_size_init(void)
{
	reserved_size = SPARE_PAGES * PAGE_SIZE;
}

55 56
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
57 58 59
 * When it is set to N, swsusp will do its best to ensure the image
 * size will not exceed N bytes, but if that is impossible, it will
 * try to create the smallest image possible.
60
 */
61 62 63 64
unsigned long image_size;

void __init hibernate_image_size_init(void)
{
65
	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66
}
67

68 69 70 71 72
/* List of PBEs needed for restoring the pages that were allocated before
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
73 74
struct pbe *restore_pblist;

75
/* Pointer to an auxiliary buffer (1 page) */
76
static void *buffer;
77

78 79 80
/**
 *	@safe_needed - on resume, for storing the PBE list and the image,
 *	we can only use memory pages that do not conflict with the pages
81 82
 *	used before suspend.  The unsafe pages have PageNosaveFree set
 *	and we count them using unsafe_pages.
83
 *
84 85
 *	Each allocated image page is marked as PageNosave and PageNosaveFree
 *	so that swsusp_free() can release it.
86 87
 */

88 89 90 91 92
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

93
static unsigned int allocated_unsafe_pages;
94

95
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96 97 98 99 100
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
101
		while (res && swsusp_page_is_free(virt_to_page(res))) {
102
			/* The page is unsafe, mark it for swsusp_free() */
103
			swsusp_set_page_forbidden(virt_to_page(res));
104
			allocated_unsafe_pages++;
105 106 107
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
108 109
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
110 111 112 113 114 115
	}
	return res;
}

unsigned long get_safe_page(gfp_t gfp_mask)
{
116 117 118
	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
}

119 120
static struct page *alloc_image_page(gfp_t gfp_mask)
{
121 122 123 124
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
125 126
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
127 128
	}
	return page;
129 130 131 132
}

/**
 *	free_image_page - free page represented by @addr, allocated with
133
 *	get_image_page (page flags set by it must be cleared)
134 135 136 137
 */

static inline void free_image_page(void *addr, int clear_nosave_free)
{
138 139 140 141 142 143
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

144
	swsusp_unset_page_forbidden(page);
145
	if (clear_nosave_free)
146
		swsusp_unset_page_free(page);
147 148

	__free_page(page);
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
} __attribute__((packed));

static inline void
free_list_of_pages(struct linked_page *list, int clear_page_nosave)
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

/**
  *	struct chain_allocator is used for allocating small objects out of
  *	a linked list of pages called 'the chain'.
  *
  *	The chain grows each time when there is no room for a new object in
  *	the current page.  The allocated objects cannot be freed individually.
  *	It is only possible to free them all at once, by freeing the entire
  *	chain.
  *
  *	NOTE: The chain allocator may be inefficient if the allocated objects
  *	are not much smaller than PAGE_SIZE.
  */

struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
					 * of the current page
					 */
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

static void
chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

209
		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
 *	Data types related to memory bitmaps.
 *
 *	Memory bitmap is a structure consiting of many linked lists of
 *	objects.  The main list's elements are of type struct zone_bitmap
 *	and each of them corresonds to one zone.  For each zone bitmap
 *	object there is a list of objects of type struct bm_block that
229
 *	represent each blocks of bitmap in which information is stored.
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
 *
 *	struct memory_bitmap contains a pointer to the main list of zone
 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 *	and a pointer to the list of pages used for allocating all of the
 *	zone bitmap objects and bitmap block objects.
 *
 *	NOTE: It has to be possible to lay out the bitmap in memory
 *	using only allocations of order 0.  Additionally, the bitmap is
 *	designed to work with arbitrary number of zones (this is over the
 *	top for now, but let's avoid making unnecessary assumptions ;-).
 *
 *	struct zone_bitmap contains a pointer to a list of bitmap block
 *	objects and a pointer to the bitmap block object that has been
 *	most recently used for setting bits.  Additionally, it contains the
 *	pfns that correspond to the start and end of the represented zone.
 *
 *	struct bm_block contains a pointer to the memory page in which
247 248 249
 *	information is stored (in the form of a block of bitmap)
 *	It also contains the pfns that correspond to the start and end of
 *	the represented memory area.
250 251 252 253
 */

#define BM_END_OF_MAP	(~0UL)

W
Wu Fengguang 已提交
254
#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
255 256

struct bm_block {
257
	struct list_head hook;	/* hook into a list of bitmap blocks */
258 259
	unsigned long start_pfn;	/* pfn represented by the first bit */
	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
260
	unsigned long *data;	/* bitmap representing pages */
261 262
};

263 264 265 266 267
static inline unsigned long bm_block_bits(struct bm_block *bb)
{
	return bb->end_pfn - bb->start_pfn;
}

268 269 270 271 272 273 274 275
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
	struct bm_block *block;
	int bit;
};

struct memory_bitmap {
276
	struct list_head blocks;	/* list of bitmap blocks */
277 278 279 280 281 282 283 284 285 286 287
	struct linked_page *p_list;	/* list of pages used to store zone
					 * bitmap objects and bitmap block
					 * objects
					 */
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

static void memory_bm_position_reset(struct memory_bitmap *bm)
{
288
	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289
	bm->cur.bit = 0;
290 291 292 293 294 295
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

/**
 *	create_bm_block_list - create a list of block bitmap objects
W
Wu Fengguang 已提交
296
 *	@pages - number of pages to track
297 298
 *	@list - list to put the allocated blocks into
 *	@ca - chain allocator to be used for allocating memory
299
 */
300 301 302
static int create_bm_block_list(unsigned long pages,
				struct list_head *list,
				struct chain_allocator *ca)
303
{
304
	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305 306 307 308 309 310

	while (nr_blocks-- > 0) {
		struct bm_block *bb;

		bb = chain_alloc(ca, sizeof(struct bm_block));
		if (!bb)
311 312
			return -ENOMEM;
		list_add(&bb->hook, list);
313
	}
314 315

	return 0;
316 317
}

318 319 320 321 322 323
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

324
/**
325 326
 *	free_mem_extents - free a list of memory extents
 *	@list - list of extents to empty
327
 */
328 329 330
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
331

332 333 334 335 336 337 338 339 340 341 342 343 344
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
 *	create_mem_extents - create a list of memory extents representing
 *	                     contiguous ranges of PFNs
 *	@list - list to put the extents into
 *	@gfp_mask - mask to use for memory allocations
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345
{
346
	struct zone *zone;
347

348
	INIT_LIST_HEAD(list);
349

350
	for_each_populated_zone(zone) {
351 352 353 354 355 356 357 358 359
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
		zone_end = zone->zone_start_pfn + zone->spanned_pages;

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
360

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
392
	}
393 394

	return 0;
395 396 397 398 399 400 401 402 403
}

/**
  *	memory_bm_create - allocate memory for a memory bitmap
  */
static int
memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
{
	struct chain_allocator ca;
404 405 406
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
407 408

	chain_init(&ca, gfp_mask, safe_needed);
409
	INIT_LIST_HEAD(&bm->blocks);
410

411 412 413
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
414

415 416 417 418
	list_for_each_entry(ext, &mem_extents, hook) {
		struct bm_block *bb;
		unsigned long pfn = ext->start;
		unsigned long pages = ext->end - ext->start;
419

420
		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421

422 423 424
		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
		if (error)
			goto Error;
425

426 427 428 429 430 431
		list_for_each_entry_continue(bb, &bm->blocks, hook) {
			bb->data = get_image_page(gfp_mask, safe_needed);
			if (!bb->data) {
				error = -ENOMEM;
				goto Error;
			}
432 433

			bb->start_pfn = pfn;
434
			if (pages >= BM_BITS_PER_BLOCK) {
435
				pfn += BM_BITS_PER_BLOCK;
436
				pages -= BM_BITS_PER_BLOCK;
437 438
			} else {
				/* This is executed only once in the loop */
439
				pfn += pages;
440 441 442 443
			}
			bb->end_pfn = pfn;
		}
	}
444

445 446
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
447 448 449
 Exit:
	free_mem_extents(&mem_extents);
	return error;
450

451
 Error:
452 453
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
454
	goto Exit;
455 456 457 458 459 460 461
}

/**
  *	memory_bm_free - free memory occupied by the memory bitmap @bm
  */
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
462
	struct bm_block *bb;
463

464 465 466
	list_for_each_entry(bb, &bm->blocks, hook)
		if (bb->data)
			free_image_page(bb->data, clear_nosave_free);
467 468

	free_list_of_pages(bm->p_list, clear_nosave_free);
469 470

	INIT_LIST_HEAD(&bm->blocks);
471 472 473
}

/**
474
 *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475 476 477
 *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
 *	of @bm->cur_zone_bm are updated.
 */
478
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479
				void **addr, unsigned int *bit_nr)
480 481 482
{
	struct bm_block *bb;

483 484 485 486 487
	/*
	 * Check if the pfn corresponds to the current bitmap block and find
	 * the block where it fits if this is not the case.
	 */
	bb = bm->cur.block;
488
	if (pfn < bb->start_pfn)
489 490 491
		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
			if (pfn >= bb->start_pfn)
				break;
492

493 494 495 496
	if (pfn >= bb->end_pfn)
		list_for_each_entry_continue(bb, &bm->blocks, hook)
			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
				break;
497

498 499 500 501 502
	if (&bb->hook == &bm->blocks)
		return -EFAULT;

	/* The block has been found */
	bm->cur.block = bb;
503
	pfn -= bb->start_pfn;
504
	bm->cur.bit = pfn + 1;
505 506
	*bit_nr = pfn;
	*addr = bb->data;
507
	return 0;
508 509 510 511 512 513
}

static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
514
	int error;
515

516 517
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
518 519 520
	set_bit(bit, addr);
}

521 522 523 524 525 526 527 528 529 530 531 532
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	if (!error)
		set_bit(bit, addr);
	return error;
}

533 534 535 536
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
537
	int error;
538

539 540
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
541 542 543 544 545 546 547
	clear_bit(bit, addr);
}

static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
548
	int error;
549

550 551
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
552
	return test_bit(bit, addr);
553 554
}

555 556 557 558 559 560 561 562
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;

	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576
/**
 *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
 *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
 *	returned.
 *
 *	It is required to run memory_bm_position_reset() before the first call to
 *	this function.
 */

static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
{
	struct bm_block *bb;
	int bit;

577
	bb = bm->cur.block;
578
	do {
579 580 581 582 583 584 585 586 587 588
		bit = bm->cur.bit;
		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
		if (bit < bm_block_bits(bb))
			goto Return_pfn;

		bb = list_entry(bb->hook.next, struct bm_block, hook);
		bm->cur.block = bb;
		bm->cur.bit = 0;
	} while (&bb->hook != &bm->blocks);

589 590 591
	memory_bm_position_reset(bm);
	return BM_END_OF_MAP;

R
Rafael J. Wysocki 已提交
592
 Return_pfn:
593 594
	bm->cur.bit = bit + 1;
	return bb->start_pfn + bit;
595 596
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
/**
 *	This structure represents a range of page frames the contents of which
 *	should not be saved during the suspend.
 */

struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

/**
 *	register_nosave_region - register a range of page frames the contents
 *	of which should not be saved during the suspend (to be used in the early
 *	initialization code)
 */

void __init
617 618
__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
			 int use_kmalloc)
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
634 635 636 637 638 639
	if (use_kmalloc) {
		/* during init, this shouldn't fail */
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
	} else
		/* This allocation cannot fail */
640
		region = alloc_bootmem(sizeof(struct nosave_region));
641 642 643 644
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
R
Rafael J. Wysocki 已提交
645
	printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
 *	mark_nosave_pages - set bits corresponding to the page frames the
 *	contents of which should not be saved in a given bitmap.
 */

static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

R
Rafael J. Wysocki 已提交
714
		pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
715 716 717 718
				region->start_pfn << PAGE_SHIFT,
				region->end_pfn << PAGE_SHIFT);

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
719 720 721 722 723 724 725 726 727
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
	}
}

/**
 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 *	frames that should not be saved and free page frames.  The pointers
 *	forbidden_pages_map and free_pages_map are only modified if everything
 *	goes well, because we don't want the bits to be used before both bitmaps
 *	are set up.
 */

int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

	BUG_ON(forbidden_pages_map || free_pages_map);

746
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
747 748 749
	if (!bm1)
		return -ENOMEM;

750
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
751 752 753
	if (error)
		goto Free_first_object;

754
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
755 756 757
	if (!bm2)
		goto Free_first_bitmap;

758
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
759 760 761 762 763 764 765
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

R
Rafael J. Wysocki 已提交
766
	pr_debug("PM: Basic memory bitmaps created\n");
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
 *	so that the bitmaps themselves are not referred to while they are being
 *	freed.
 */

void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

	BUG_ON(!(forbidden_pages_map && free_pages_map));

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

R
Rafael J. Wysocki 已提交
801
	pr_debug("PM: Basic memory bitmaps freed\n");
802 803
}

804 805 806 807 808 809 810 811 812 813 814 815
/**
 *	snapshot_additional_pages - estimate the number of additional pages
 *	be needed for setting up the suspend image data structures for given
 *	zone (usually the returned value is greater than the exact number)
 */

unsigned int snapshot_additional_pages(struct zone *zone)
{
	unsigned int res;

	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
816
	return 2 * res;
817 818
}

819 820 821 822 823 824 825 826 827 828 829
#ifdef CONFIG_HIGHMEM
/**
 *	count_free_highmem_pages - compute the total number of free highmem
 *	pages, system-wide.
 */

static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

830 831
	for_each_populated_zone(zone)
		if (is_highmem(zone))
832
			cnt += zone_page_state(zone, NR_FREE_PAGES);
833 834 835 836 837 838 839 840 841 842 843

	return cnt;
}

/**
 *	saveable_highmem_page - Determine whether a highmem page should be
 *	included in the suspend image.
 *
 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 *	and it isn't a part of a free chunk of pages.
 */
844
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
845 846 847 848 849 850 851
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
852 853
	if (page_zone(page) != zone)
		return NULL;
854 855 856

	BUG_ON(!PageHighMem(page));

857 858
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
859 860 861 862 863 864 865 866 867 868
		return NULL;

	return page;
}

/**
 *	count_highmem_pages - compute the total number of saveable highmem
 *	pages.
 */

869
static unsigned int count_highmem_pages(void)
870 871 872 873
{
	struct zone *zone;
	unsigned int n = 0;

874
	for_each_populated_zone(zone) {
875 876 877 878 879 880 881 882
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
883
			if (saveable_highmem_page(zone, pfn))
884 885 886 887 888
				n++;
	}
	return n;
}
#else
889 890 891 892
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
893 894
#endif /* CONFIG_HIGHMEM */

895
/**
896 897
 *	saveable_page - Determine whether a non-highmem page should be included
 *	in the suspend image.
898
 *
899 900 901
 *	We should save the page if it isn't Nosave, and is not in the range
 *	of pages statically defined as 'unsaveable', and it isn't a part of
 *	a free chunk of pages.
902
 */
903
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
904
{
P
Pavel Machek 已提交
905
	struct page *page;
906 907

	if (!pfn_valid(pfn))
908
		return NULL;
909 910

	page = pfn_to_page(pfn);
911 912
	if (page_zone(page) != zone)
		return NULL;
913

914 915
	BUG_ON(PageHighMem(page));

916
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
917
		return NULL;
918

919 920
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
921
		return NULL;
922

923
	return page;
924 925
}

926 927 928 929 930
/**
 *	count_data_pages - compute the total number of saveable non-highmem
 *	pages.
 */

931
static unsigned int count_data_pages(void)
932 933
{
	struct zone *zone;
934
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
935
	unsigned int n = 0;
936

937
	for_each_populated_zone(zone) {
938 939
		if (is_highmem(zone))
			continue;
940

941
		mark_free_pages(zone);
942 943
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
944
			if (saveable_page(zone, pfn))
945
				n++;
946
	}
947
	return n;
948 949
}

950 951 952 953
/* This is needed, because copy_page and memcpy are not usable for copying
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
954 955 956 957 958 959 960
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979

/**
 *	safe_copy_page - check if the page we are going to copy is marked as
 *		present in the kernel page tables (this always is the case if
 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
 *		kernel_page_present() always returns 'true').
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}


980 981 982 983 984
#ifdef CONFIG_HIGHMEM
static inline struct page *
page_is_saveable(struct zone *zone, unsigned long pfn)
{
	return is_highmem(zone) ?
985
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
986 987
}

988
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
989 990 991 992 993 994 995 996 997 998 999
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
		src = kmap_atomic(s_page, KM_USER0);
		dst = kmap_atomic(d_page, KM_USER1);
		do_copy_page(dst, src);
		kunmap_atomic(dst, KM_USER1);
P
Peter Zijlstra 已提交
1000
		kunmap_atomic(src, KM_USER0);
1001 1002 1003 1004 1005
	} else {
		if (PageHighMem(d_page)) {
			/* Page pointed to by src may contain some kernel
			 * data modified by kmap_atomic()
			 */
1006
			safe_copy_page(buffer, s_page);
1007
			dst = kmap_atomic(d_page, KM_USER0);
1008
			copy_page(dst, buffer);
1009 1010
			kunmap_atomic(dst, KM_USER0);
		} else {
1011
			safe_copy_page(page_address(d_page), s_page);
1012 1013 1014 1015
		}
	}
}
#else
1016
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1017

1018
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1019
{
1020 1021
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1022 1023 1024
}
#endif /* CONFIG_HIGHMEM */

1025 1026
static void
copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1027 1028
{
	struct zone *zone;
1029
	unsigned long pfn;
1030

1031
	for_each_populated_zone(zone) {
1032 1033
		unsigned long max_zone_pfn;

1034
		mark_free_pages(zone);
1035
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1036
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1037
			if (page_is_saveable(zone, pfn))
1038
				memory_bm_set_bit(orig_bm, pfn);
1039
	}
1040 1041
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1042
	for(;;) {
1043
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1044 1045 1046 1047
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1048 1049
}

1050 1051 1052 1053
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
unsigned int alloc_normal, alloc_highmem;
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1073

1074
/**
1075
 *	swsusp_free - free pages allocated for the suspend.
1076
 *
1077 1078
 *	Suspend pages are alocated before the atomic copy is made, so we
 *	need to release them after the resume.
1079 1080 1081 1082 1083
 */

void swsusp_free(void)
{
	struct zone *zone;
1084
	unsigned long pfn, max_zone_pfn;
1085

1086
	for_each_populated_zone(zone) {
1087 1088 1089 1090 1091
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn)) {
				struct page *page = pfn_to_page(pfn);

1092 1093 1094 1095
				if (swsusp_page_is_forbidden(page) &&
				    swsusp_page_is_free(page)) {
					swsusp_unset_page_forbidden(page);
					swsusp_unset_page_free(page);
1096
					__free_page(page);
1097 1098 1099
				}
			}
	}
1100 1101
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1102
	restore_pblist = NULL;
1103
	buffer = NULL;
1104 1105
	alloc_normal = 0;
	alloc_highmem = 0;
1106 1107
}

1108 1109 1110 1111
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1112
/**
1113 1114 1115
 * preallocate_image_pages - Allocate a number of pages for hibernation image
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1116
 *
1117 1118 1119 1120 1121 1122 1123
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1124 1125 1126 1127
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1128
			break;
1129 1130 1131 1132 1133
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1134 1135 1136 1137 1138 1139 1140
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

1141 1142
static unsigned long preallocate_image_memory(unsigned long nr_pages,
					      unsigned long avail_normal)
1143
{
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	unsigned long alloc;

	if (avail_normal <= alloc_normal)
		return 0;

	alloc = avail_normal - alloc_normal;
	if (nr_pages < alloc)
		alloc = nr_pages;

	return preallocate_image_pages(alloc, GFP_IMAGE);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1164
 */
1165 1166 1167 1168 1169 1170
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
	x *= multiplier;
	do_div(x, base);
	return (unsigned long)x;
}
1171

1172 1173 1174
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
1175
{
1176 1177 1178
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1179
}
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1193

1194
/**
1195 1196 1197 1198
 * free_unnecessary_pages - Release preallocated pages not needed for the image
 */
static void free_unnecessary_pages(void)
{
1199
	unsigned long save, to_free_normal, to_free_highmem;
1200

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	save = count_data_pages();
	if (alloc_normal >= save) {
		to_free_normal = alloc_normal - save;
		save = 0;
	} else {
		to_free_normal = 0;
		save -= alloc_normal;
	}
	save += count_highmem_pages();
	if (alloc_highmem >= save) {
		to_free_highmem = alloc_highmem - save;
1212 1213
	} else {
		to_free_highmem = 0;
1214
		to_free_normal -= save - alloc_highmem;
1215 1216 1217 1218
	}

	memory_bm_position_reset(&copy_bm);

1219
	while (to_free_normal > 0 || to_free_highmem > 0) {
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
}

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
/**
 * minimum_image_size - Estimate the minimum acceptable size of an image
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
 * minus mapped file pages.
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

	size = global_page_state(NR_SLAB_RECLAIMABLE)
		+ global_page_state(NR_ACTIVE_ANON)
		+ global_page_state(NR_INACTIVE_ANON)
		+ global_page_state(NR_ACTIVE_FILE)
		+ global_page_state(NR_INACTIVE_FILE)
		- global_page_state(NR_FILE_MAPPED);

	return saveable <= size ? 0 : saveable - size;
}

1271 1272
/**
 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1273 1274 1275 1276 1277
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
1278 1279 1280 1281
 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
 * total number of available page frames and allocate at least
1282
 *
1283 1284
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1285 1286 1287 1288 1289
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1290 1291
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1292
 */
1293
int hibernate_preallocate_memory(void)
1294 1295
{
	struct zone *zone;
1296
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1297
	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1298
	struct timeval start, stop;
1299
	int error;
1300

1301
	printk(KERN_INFO "PM: Preallocating image memory... ");
1302 1303
	do_gettimeofday(&start);

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	alloc_normal = 0;
	alloc_highmem = 0;

1315
	/* Count the number of saveable data pages. */
1316
	save_highmem = count_highmem_pages();
1317
	saveable = count_data_pages();
1318

1319 1320 1321 1322 1323
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1324 1325
	saveable += save_highmem;
	highmem = save_highmem;
1326 1327 1328 1329 1330 1331 1332 1333
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
1334
	avail_normal = count;
1335 1336 1337 1338
	count += highmem;
	count -= totalreserve_pages;

	/* Compute the maximum number of saveable pages to leave in memory. */
1339 1340
	max_size = (count - (size + PAGES_FOR_IO)) / 2
			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1341
	/* Compute the desired number of image pages specified by image_size. */
1342 1343 1344 1345
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
1346 1347 1348
	 * If the desired number of image pages is at least as large as the
	 * current number of saveable pages in memory, allocate page frames for
	 * the image and we're done.
1349
	 */
1350 1351
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
1352
		pages += preallocate_image_memory(saveable - pages, avail_normal);
1353
		goto out;
1354
	}
1355

1356 1357
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
1358 1359 1360 1361 1362 1363 1364 1365 1366
	/*
	 * To avoid excessive pressure on the normal zone, leave room in it to
	 * accommodate an image of the minimum size (unless it's already too
	 * small, in which case don't preallocate pages from it at all).
	 */
	if (avail_normal > pages)
		avail_normal -= pages;
	else
		avail_normal = 0;
1367 1368 1369
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1382 1383
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1384 1385 1386
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
	alloc = (count - max_size) - pages_highmem;
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	pages = preallocate_image_memory(alloc, avail_normal);
	if (pages < alloc) {
		/* We have exhausted non-highmem pages, try highmem. */
		alloc -= pages;
		pages += pages_highmem;
		pages_highmem = preallocate_image_highmem(alloc);
		if (pages_highmem < alloc)
			goto err_out;
		pages += pages_highmem;
		/*
		 * size is the desired number of saveable pages to leave in
		 * memory, so try to preallocate (all memory - size) pages.
		 */
		alloc = (count - pages) - size;
		pages += preallocate_image_highmem(alloc);
	} else {
		/*
		 * There are approximately max_size saveable pages at this point
		 * and we want to reduce this number down to size.
		 */
		alloc = max_size - size;
		size = preallocate_highmem_fraction(alloc, highmem, count);
		pages_highmem += size;
		alloc -= size;
		size = preallocate_image_memory(alloc, avail_normal);
		pages_highmem += preallocate_image_highmem(alloc - size);
		pages += pages_highmem + size;
	}
1415

1416 1417 1418 1419 1420 1421
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
	free_unnecessary_pages();
1422 1423

 out:
1424
	do_gettimeofday(&stop);
1425 1426
	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
	swsusp_show_speed(&start, &stop, pages, "Allocated");
1427 1428

	return 0;
1429 1430 1431 1432 1433

 err_out:
	printk(KERN_CONT "\n");
	swsusp_free();
	return -ENOMEM;
1434 1435
}

1436 1437 1438 1439 1440 1441 1442 1443
#ifdef CONFIG_HIGHMEM
/**
  *	count_pages_for_highmem - compute the number of non-highmem pages
  *	that will be necessary for creating copies of highmem pages.
  */

static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1444
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
static unsigned int
count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
#endif /* CONFIG_HIGHMEM */
1457 1458

/**
1459 1460
 *	enough_free_mem - Make sure we have enough free memory for the
 *	snapshot image.
1461 1462
 */

1463
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1464
{
1465
	struct zone *zone;
1466
	unsigned int free = alloc_normal;
1467

1468
	for_each_populated_zone(zone)
1469
		if (!is_highmem(zone))
1470
			free += zone_page_state(zone, NR_FREE_PAGES);
1471

1472
	nr_pages += count_pages_for_highmem(nr_highmem);
1473 1474
	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
		nr_pages, PAGES_FOR_IO, free);
1475

1476
	return free > nr_pages + PAGES_FOR_IO;
1477 1478
}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
#ifdef CONFIG_HIGHMEM
/**
 *	get_highmem_buffer - if there are some highmem pages in the suspend
 *	image, we may need the buffer to copy them and/or load their data.
 */

static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
 *	Try to allocate as many pages as needed, but if the number of free
 *	highmem pages is lesser than that, allocate them all.
 */

static inline unsigned int
1498
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_image_page(__GFP_HIGHMEM);
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

static inline unsigned int
1518
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
#endif /* CONFIG_HIGHMEM */

/**
 *	swsusp_alloc - allocate memory for the suspend image
 *
 *	We first try to allocate as many highmem pages as there are
 *	saveable highmem pages in the system.  If that fails, we allocate
 *	non-highmem pages for the copies of the remaining highmem ones.
 *
 *	In this approach it is likely that the copies of highmem pages will
 *	also be located in the high memory, because of the way in which
 *	copy_data_pages() works.
 */

1533 1534
static int
swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1535
		unsigned int nr_pages, unsigned int nr_highmem)
1536
{
1537
	if (nr_highmem > 0) {
1538
		if (get_highmem_buffer(PG_ANY))
1539 1540 1541 1542 1543
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1544
	}
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
1555
	}
1556

1557
	return 0;
1558

1559
 err_out:
1560
	swsusp_free();
1561
	return -ENOMEM;
1562 1563
}

1564
asmlinkage int swsusp_save(void)
1565
{
1566
	unsigned int nr_pages, nr_highmem;
1567

1568
	printk(KERN_INFO "PM: Creating hibernation image:\n");
1569

1570
	drain_local_pages(NULL);
1571
	nr_pages = count_data_pages();
1572
	nr_highmem = count_highmem_pages();
R
Rafael J. Wysocki 已提交
1573
	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1574

1575
	if (!enough_free_mem(nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1576
		printk(KERN_ERR "PM: Not enough free memory\n");
1577 1578 1579
		return -ENOMEM;
	}

1580
	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1581
		printk(KERN_ERR "PM: Memory allocation failed\n");
1582
		return -ENOMEM;
1583
	}
1584 1585 1586 1587

	/* During allocating of suspend pagedir, new cold pages may appear.
	 * Kill them.
	 */
1588
	drain_local_pages(NULL);
1589
	copy_data_pages(&copy_bm, &orig_bm);
1590 1591 1592 1593 1594 1595 1596

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1597
	nr_pages += nr_highmem;
1598
	nr_copy_pages = nr_pages;
1599
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1600

R
Rafael J. Wysocki 已提交
1601 1602
	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
		nr_pages);
1603

1604 1605
	return 0;
}
1606

1607 1608
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
1609
{
1610
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1611
	info->version_code = LINUX_VERSION_CODE;
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

1631 1632 1633 1634 1635
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

1636 1637 1638
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
1639 1640
	info->num_physpages = num_physpages;
	info->image_pages = nr_copy_pages;
1641
	info->pages = snapshot_get_image_size();
1642 1643
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
1644
	return init_header_complete(info);
1645 1646 1647
}

/**
1648 1649
 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
 *	are stored in the array @buf[] (1 page at a time)
1650 1651
 */

1652
static inline void
1653
pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1654 1655 1656
{
	int j;

1657
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1658 1659
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
1660
			break;
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	}
}

/**
 *	snapshot_read_next - used for reading the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to read up to the returned number of bytes from the memory
J
Jiri Slaby 已提交
1673
 *	location computed by the data_of() macro.
1674 1675 1676 1677 1678 1679 1680
 *
 *	The function returns 0 to indicate the end of data stream condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
1681
int snapshot_read_next(struct snapshot_handle *handle)
1682
{
1683
	if (handle->cur > nr_meta_pages + nr_copy_pages)
1684
		return 0;
1685

1686 1687
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
1688
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1689 1690 1691
		if (!buffer)
			return -ENOMEM;
	}
J
Jiri Slaby 已提交
1692
	if (!handle->cur) {
1693 1694 1695 1696 1697
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
1698
		handle->buffer = buffer;
1699 1700
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
J
Jiri Slaby 已提交
1701
	} else if (handle->cur <= nr_meta_pages) {
1702
		clear_page(buffer);
J
Jiri Slaby 已提交
1703 1704 1705
		pack_pfns(buffer, &orig_bm);
	} else {
		struct page *page;
1706

J
Jiri Slaby 已提交
1707 1708 1709 1710 1711 1712 1713
		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
		if (PageHighMem(page)) {
			/* Highmem pages are copied to the buffer,
			 * because we can't return with a kmapped
			 * highmem page (we may not be called again).
			 */
			void *kaddr;
1714

J
Jiri Slaby 已提交
1715
			kaddr = kmap_atomic(page, KM_USER0);
1716
			copy_page(buffer, kaddr);
J
Jiri Slaby 已提交
1717 1718 1719 1720
			kunmap_atomic(kaddr, KM_USER0);
			handle->buffer = buffer;
		} else {
			handle->buffer = page_address(page);
1721 1722
		}
	}
J
Jiri Slaby 已提交
1723 1724
	handle->cur++;
	return PAGE_SIZE;
1725 1726 1727 1728 1729 1730 1731 1732
}

/**
 *	mark_unsafe_pages - mark the pages that cannot be used for storing
 *	the image during resume, because they conflict with the pages that
 *	had been used before suspend
 */

1733
static int mark_unsafe_pages(struct memory_bitmap *bm)
1734 1735
{
	struct zone *zone;
1736
	unsigned long pfn, max_zone_pfn;
1737 1738

	/* Clear page flags */
1739
	for_each_populated_zone(zone) {
1740 1741 1742
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn))
1743
				swsusp_unset_page_free(pfn_to_page(pfn));
1744 1745
	}

1746 1747 1748 1749 1750 1751
	/* Mark pages that correspond to the "original" pfns as "unsafe" */
	memory_bm_position_reset(bm);
	do {
		pfn = memory_bm_next_pfn(bm);
		if (likely(pfn != BM_END_OF_MAP)) {
			if (likely(pfn_valid(pfn)))
1752
				swsusp_set_page_free(pfn_to_page(pfn));
1753 1754 1755 1756
			else
				return -EFAULT;
		}
	} while (pfn != BM_END_OF_MAP);
1757

1758
	allocated_unsafe_pages = 0;
1759

1760 1761 1762
	return 0;
}

1763 1764
static void
duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1765
{
1766 1767 1768 1769 1770 1771 1772
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
1773 1774 1775
	}
}

1776
static int check_header(struct swsusp_info *info)
1777
{
1778
	char *reason;
1779

1780 1781
	reason = check_image_kernel(info);
	if (!reason && info->num_physpages != num_physpages)
1782 1783
		reason = "memory size";
	if (reason) {
R
Rafael J. Wysocki 已提交
1784
		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1785 1786 1787 1788 1789 1790 1791 1792 1793
		return -EPERM;
	}
	return 0;
}

/**
 *	load header - check the image header and copy data from it
 */

1794 1795
static int
load_header(struct swsusp_info *info)
1796 1797 1798
{
	int error;

1799
	restore_pblist = NULL;
1800 1801 1802 1803 1804 1805 1806 1807 1808
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
1809 1810
 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
 *	the corresponding bit in the memory bitmap @bm
1811
 */
1812
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1813 1814 1815
{
	int j;

1816 1817 1818 1819
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

1820 1821 1822 1823
		if (memory_bm_pfn_present(bm, buf[j]))
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
1824
	}
1825 1826

	return 0;
1827 1828
}

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
/* List of "safe" pages that may be used to store data loaded from the suspend
 * image
 */
static struct linked_page *safe_pages_list;

#ifdef CONFIG_HIGHMEM
/* struct highmem_pbe is used for creating the list of highmem pages that
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

/* List of highmem PBEs needed for restoring the highmem pages that were
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
 *	count_highmem_image_pages - compute the number of highmem pages in the
 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
 *	image pages are assumed to be set.
 */

static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

/**
 *	prepare_highmem_image - try to allocate as many highmem pages as
 *	there are highmem image pages (@nr_highmem_p points to the variable
 *	containing the number of highmem image pages).  The pages that are
 *	"safe" (ie. will not be overwritten when the suspend image is
 *	restored) have the corresponding bits set in @bm (it must be
 *	unitialized).
 *
 *	NOTE: This function should not be called if there are no highmem
 *	image pages.
 */

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

static int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
1912
		if (!swsusp_page_is_free(page)) {
1913 1914 1915 1916 1917
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
1918 1919
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

/**
 *	get_highmem_page_buffer - for given highmem image page find the buffer
 *	that suspend_write_next() should set for its caller to write to.
 *
 *	If the page is to be saved to its "original" page frame or a copy of
 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
 *	the copy of the page is to be made in normal memory, so the address of
 *	the copy is returned.
 *
 *	If @buffer is returned, the caller of suspend_write_next() will write
 *	the page's contents to @buffer, so they will have to be copied to the
 *	right location on the next call to suspend_write_next() and it is done
 *	with the help of copy_last_highmem_page().  For this purpose, if
 *	@buffer is returned, @last_highmem page is set to the page to which
 *	the data will have to be copied from @buffer.
 */

static struct page *last_highmem_page;

static void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
	struct highmem_pbe *pbe;
	void *kaddr;

1951
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
1964
		return ERR_PTR(-ENOMEM);
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
 *	copy_last_highmem_page - copy the contents of a highmem image from
 *	@buffer, where the caller of snapshot_write_next() has place them,
 *	to the right location represented by @last_highmem_page .
 */

static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

		dst = kmap_atomic(last_highmem_page, KM_USER0);
1999
		copy_page(dst, buffer);
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
		kunmap_atomic(dst, KM_USER0);
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
static inline int get_safe_write_buffer(void) { return 0; }

static unsigned int
count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }

static inline int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	return 0;
}

static inline void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
2033
	return ERR_PTR(-EINVAL);
2034 2035 2036 2037 2038 2039 2040
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

2041
/**
2042 2043 2044 2045
 *	prepare_image - use the memory bitmap @bm to mark the pages that will
 *	be overwritten in the process of restoring the system memory state
 *	from the suspend image ("unsafe" pages) and allocate memory for the
 *	image.
2046
 *
2047 2048 2049
 *	The idea is to allocate a new memory bitmap first and then allocate
 *	as many pages as needed for the image data, but not to assign these
 *	pages to specific tasks initially.  Instead, we just mark them as
2050 2051 2052
 *	allocated and create a lists of "safe" pages that will be used
 *	later.  On systems with high memory a list of "safe" highmem pages is
 *	also created.
2053 2054
 */

2055 2056 2057 2058
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

static int
prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2059
{
2060
	unsigned int nr_pages, nr_highmem;
2061 2062
	struct linked_page *sp_list, *lp;
	int error;
2063

2064 2065 2066 2067 2068
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	error = mark_unsafe_pages(bm);
	if (error)
		goto Free;

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2079 2080 2081 2082 2083
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2084 2085 2086 2087 2088 2089 2090 2091
	/* Reserve some safe pages for potential later use.
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
	 */
	sp_list = NULL;
	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2092
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2093 2094
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2095
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2096
		if (!lp) {
2097
			error = -ENOMEM;
2098 2099 2100 2101 2102
			goto Free;
		}
		lp->next = sp_list;
		sp_list = lp;
		nr_pages--;
2103
	}
2104 2105
	/* Preallocate memory for the image */
	safe_pages_list = NULL;
2106
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2107 2108 2109 2110 2111 2112
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2113
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2114 2115 2116
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2117
		}
2118
		/* Mark the page as allocated */
2119 2120
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2121
		nr_pages--;
2122
	}
2123 2124 2125 2126 2127
	/* Free the reserved safe pages so that chain_alloc() can use them */
	while (sp_list) {
		lp = sp_list->next;
		free_image_page(sp_list, PG_UNSAFE_CLEAR);
		sp_list = lp;
2128
	}
2129 2130
	return 0;

R
Rafael J. Wysocki 已提交
2131
 Free:
2132
	swsusp_free();
2133 2134 2135
	return error;
}

2136 2137 2138 2139 2140 2141
/**
 *	get_buffer - compute the address that snapshot_write_next() should
 *	set for its caller to write to.
 */

static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2142
{
2143
	struct pbe *pbe;
2144 2145
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2146

2147 2148 2149 2150
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2151 2152 2153
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2154
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2155 2156
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
2157
		 */
2158 2159 2160 2161
		return page_address(page);

	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
2162
	 */
2163 2164 2165
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2166
		return ERR_PTR(-ENOMEM);
2167
	}
2168 2169
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2170 2171 2172
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2173
	return pbe->address;
2174 2175
}

2176 2177 2178 2179 2180 2181 2182 2183 2184
/**
 *	snapshot_write_next - used for writing the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to write up to the returned number of bytes to the memory
J
Jiri Slaby 已提交
2185
 *	location computed by the data_of() macro.
2186 2187 2188 2189 2190 2191 2192
 *
 *	The function returns 0 to indicate the "end of file" condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
2193
int snapshot_write_next(struct snapshot_handle *handle)
2194
{
2195
	static struct chain_allocator ca;
2196 2197
	int error = 0;

2198
	/* Check if we have already loaded the entire image */
J
Jiri Slaby 已提交
2199
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2200
		return 0;
2201

J
Jiri Slaby 已提交
2202 2203 2204
	handle->sync_read = 1;

	if (!handle->cur) {
2205 2206 2207 2208
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2209 2210
		if (!buffer)
			return -ENOMEM;
2211

2212
		handle->buffer = buffer;
J
Jiri Slaby 已提交
2213 2214 2215 2216
	} else if (handle->cur == 1) {
		error = load_header(buffer);
		if (error)
			return error;
2217

J
Jiri Slaby 已提交
2218 2219 2220 2221 2222 2223 2224 2225
		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
		if (error)
			return error;

	} else if (handle->cur <= nr_meta_pages + 1) {
		error = unpack_orig_pfns(buffer, &copy_bm);
		if (error)
			return error;
2226

J
Jiri Slaby 已提交
2227 2228
		if (handle->cur == nr_meta_pages + 1) {
			error = prepare_image(&orig_bm, &copy_bm);
2229 2230 2231
			if (error)
				return error;

J
Jiri Slaby 已提交
2232 2233 2234
			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
			memory_bm_position_reset(&orig_bm);
			restore_pblist = NULL;
2235
			handle->buffer = get_buffer(&orig_bm, &ca);
J
Jiri Slaby 已提交
2236
			handle->sync_read = 0;
2237 2238
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2239 2240
		}
	} else {
J
Jiri Slaby 已提交
2241 2242 2243 2244 2245 2246
		copy_last_highmem_page();
		handle->buffer = get_buffer(&orig_bm, &ca);
		if (IS_ERR(handle->buffer))
			return PTR_ERR(handle->buffer);
		if (handle->buffer != buffer)
			handle->sync_read = 0;
2247
	}
J
Jiri Slaby 已提交
2248 2249
	handle->cur++;
	return PAGE_SIZE;
2250 2251
}

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
/**
 *	snapshot_write_finalize - must be called after the last call to
 *	snapshot_write_next() in case the last page in the image happens
 *	to be a highmem page and its contents should be stored in the
 *	highmem.  Additionally, it releases the memory that will not be
 *	used any more.
 */

void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
	/* Free only if we have loaded the image entirely */
J
Jiri Slaby 已提交
2264
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2265 2266 2267 2268 2269
		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
		free_highmem_data();
	}
}

2270 2271
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2272
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2273 2274 2275
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2276 2277 2278 2279
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
static inline void
swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2280
{
2281 2282 2283 2284
	void *kaddr1, *kaddr2;

	kaddr1 = kmap_atomic(p1, KM_USER0);
	kaddr2 = kmap_atomic(p2, KM_USER1);
2285 2286 2287
	copy_page(buf, kaddr1);
	copy_page(kaddr1, kaddr2);
	copy_page(kaddr2, buf);
2288
	kunmap_atomic(kaddr2, KM_USER1);
P
Peter Zijlstra 已提交
2289
	kunmap_atomic(kaddr1, KM_USER0);
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
}

/**
 *	restore_highmem - for each highmem page that was allocated before
 *	the suspend and included in the suspend image, and also has been
 *	allocated by the "resume" kernel swap its current (ie. "before
 *	resume") contents with the previous (ie. "before suspend") one.
 *
 *	If the resume eventually fails, we can call this function once
 *	again and restore the "before resume" highmem state.
 */

int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2320
}
2321
#endif /* CONFIG_HIGHMEM */