snapshot.c 67.0 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5
 *
P
Pavel Machek 已提交
6
 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
24 25 26 27
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
28
#include <linux/list.h>
29
#include <linux/slab.h>
30
#include <linux/compiler.h>
31
#include <linux/ktime.h>
32 33 34 35 36 37 38 39 40

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

41 42 43 44
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

45 46 47 48 49 50 51 52 53 54 55 56
/*
 * Number of bytes to reserve for memory allocations made by device drivers
 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 * cause image creation to fail (tunable via /sys/power/reserved_size).
 */
unsigned long reserved_size;

void __init hibernate_reserved_size_init(void)
{
	reserved_size = SPARE_PAGES * PAGE_SIZE;
}

57 58
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
59 60 61
 * When it is set to N, swsusp will do its best to ensure the image
 * size will not exceed N bytes, but if that is impossible, it will
 * try to create the smallest image possible.
62
 */
63 64 65 66
unsigned long image_size;

void __init hibernate_image_size_init(void)
{
67
	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
68
}
69

70 71 72 73 74
/* List of PBEs needed for restoring the pages that were allocated before
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
75 76
struct pbe *restore_pblist;

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
} __packed;

/*
 * List of "safe" pages (ie. pages that were not used by the image kernel
 * before hibernation) that may be used as temporary storage for image kernel
 * memory contents.
 */
static struct linked_page *safe_pages_list;

93
/* Pointer to an auxiliary buffer (1 page) */
94
static void *buffer;
95

96 97 98
/**
 *	@safe_needed - on resume, for storing the PBE list and the image,
 *	we can only use memory pages that do not conflict with the pages
99 100
 *	used before suspend.  The unsafe pages have PageNosaveFree set
 *	and we count them using unsafe_pages.
101
 *
102 103
 *	Each allocated image page is marked as PageNosave and PageNosaveFree
 *	so that swsusp_free() can release it.
104 105
 */

106 107 108 109 110
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

111
static unsigned int allocated_unsafe_pages;
112

113
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
114 115 116 117 118
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
119
		while (res && swsusp_page_is_free(virt_to_page(res))) {
120
			/* The page is unsafe, mark it for swsusp_free() */
121
			swsusp_set_page_forbidden(virt_to_page(res));
122
			allocated_unsafe_pages++;
123 124 125
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
126 127
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
128 129 130 131
	}
	return res;
}

132 133 134 135 136 137 138 139 140 141 142 143
static void *__get_safe_page(gfp_t gfp_mask)
{
	if (safe_pages_list) {
		void *ret = safe_pages_list;

		safe_pages_list = safe_pages_list->next;
		memset(ret, 0, PAGE_SIZE);
		return ret;
	}
	return get_image_page(gfp_mask, PG_SAFE);
}

144 145
unsigned long get_safe_page(gfp_t gfp_mask)
{
146
	return (unsigned long)__get_safe_page(gfp_mask);
147 148
}

149 150
static struct page *alloc_image_page(gfp_t gfp_mask)
{
151 152 153 154
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
155 156
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
157 158
	}
	return page;
159 160 161 162
}

/**
 *	free_image_page - free page represented by @addr, allocated with
163
 *	get_image_page (page flags set by it must be cleared)
164 165 166 167
 */

static inline void free_image_page(void *addr, int clear_nosave_free)
{
168 169 170 171 172 173
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

174
	swsusp_unset_page_forbidden(page);
175
	if (clear_nosave_free)
176
		swsusp_unset_page_free(page);
177 178

	__free_page(page);
179 180
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
static inline void
free_list_of_pages(struct linked_page *list, int clear_page_nosave)
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

/**
  *	struct chain_allocator is used for allocating small objects out of
  *	a linked list of pages called 'the chain'.
  *
  *	The chain grows each time when there is no room for a new object in
  *	the current page.  The allocated objects cannot be freed individually.
  *	It is only possible to free them all at once, by freeing the entire
  *	chain.
  *
  *	NOTE: The chain allocator may be inefficient if the allocated objects
  *	are not much smaller than PAGE_SIZE.
  */

struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
					 * of the current page
					 */
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

static void
chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

230 231
		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
					get_image_page(ca->gfp_mask, PG_ANY);
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
 *	Data types related to memory bitmaps.
 *
 *	Memory bitmap is a structure consiting of many linked lists of
 *	objects.  The main list's elements are of type struct zone_bitmap
 *	and each of them corresonds to one zone.  For each zone bitmap
 *	object there is a list of objects of type struct bm_block that
251
 *	represent each blocks of bitmap in which information is stored.
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
 *
 *	struct memory_bitmap contains a pointer to the main list of zone
 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 *	and a pointer to the list of pages used for allocating all of the
 *	zone bitmap objects and bitmap block objects.
 *
 *	NOTE: It has to be possible to lay out the bitmap in memory
 *	using only allocations of order 0.  Additionally, the bitmap is
 *	designed to work with arbitrary number of zones (this is over the
 *	top for now, but let's avoid making unnecessary assumptions ;-).
 *
 *	struct zone_bitmap contains a pointer to a list of bitmap block
 *	objects and a pointer to the bitmap block object that has been
 *	most recently used for setting bits.  Additionally, it contains the
 *	pfns that correspond to the start and end of the represented zone.
 *
 *	struct bm_block contains a pointer to the memory page in which
269 270 271
 *	information is stored (in the form of a block of bitmap)
 *	It also contains the pfns that correspond to the start and end of
 *	the represented memory area.
272 273 274 275 276 277 278 279 280 281 282
 *
 *	The memory bitmap is organized as a radix tree to guarantee fast random
 *	access to the bits. There is one radix tree for each zone (as returned
 *	from create_mem_extents).
 *
 *	One radix tree is represented by one struct mem_zone_bm_rtree. There are
 *	two linked lists for the nodes of the tree, one for the inner nodes and
 *	one for the leave nodes. The linked leave nodes are used for fast linear
 *	access of the memory bitmap.
 *
 *	The struct rtree_node represents one node of the radix tree.
283 284 285 286
 */

#define BM_END_OF_MAP	(~0UL)

W
Wu Fengguang 已提交
287
#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
288 289
#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
290

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
/*
 * struct rtree_node is a wrapper struct to link the nodes
 * of the rtree together for easy linear iteration over
 * bits and easy freeing
 */
struct rtree_node {
	struct list_head list;
	unsigned long *data;
};

/*
 * struct mem_zone_bm_rtree represents a bitmap used for one
 * populated memory zone.
 */
struct mem_zone_bm_rtree {
	struct list_head list;		/* Link Zones together         */
	struct list_head nodes;		/* Radix Tree inner nodes      */
	struct list_head leaves;	/* Radix Tree leaves           */
	unsigned long start_pfn;	/* Zone start page frame       */
	unsigned long end_pfn;		/* Zone end page frame + 1     */
	struct rtree_node *rtree;	/* Radix Tree Root             */
	int levels;			/* Number of Radix Tree Levels */
	unsigned int blocks;		/* Number of Bitmap Blocks     */
};

316 317 318
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
319 320 321 322
	struct mem_zone_bm_rtree *zone;
	struct rtree_node *node;
	unsigned long node_pfn;
	int node_bit;
323 324 325
};

struct memory_bitmap {
326
	struct list_head zones;
327 328 329 330 331 332 333 334 335
	struct linked_page *p_list;	/* list of pages used to store zone
					 * bitmap objects and bitmap block
					 * objects
					 */
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
#if BITS_PER_LONG == 32
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
#else
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
#endif
#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)

/*
 *	alloc_rtree_node - Allocate a new node and add it to the radix tree.
 *
 *	This function is used to allocate inner nodes as well as the
 *	leave nodes of the radix tree. It also adds the node to the
 *	corresponding linked list passed in by the *list parameter.
 */
static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
					   struct chain_allocator *ca,
					   struct list_head *list)
{
	struct rtree_node *node;

	node = chain_alloc(ca, sizeof(struct rtree_node));
	if (!node)
		return NULL;

	node->data = get_image_page(gfp_mask, safe_needed);
	if (!node->data)
		return NULL;

	list_add_tail(&node->list, list);

	return node;
}

/*
 *	add_rtree_block - Add a new leave node to the radix tree
 *
 *	The leave nodes need to be allocated in order to keep the leaves
 *	linked list in order. This is guaranteed by the zone->blocks
 *	counter.
 */
static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
			   int safe_needed, struct chain_allocator *ca)
{
	struct rtree_node *node, *block, **dst;
	unsigned int levels_needed, block_nr;
	int i;

	block_nr = zone->blocks;
	levels_needed = 0;

	/* How many levels do we need for this block nr? */
	while (block_nr) {
		levels_needed += 1;
		block_nr >>= BM_RTREE_LEVEL_SHIFT;
	}

	/* Make sure the rtree has enough levels */
	for (i = zone->levels; i < levels_needed; i++) {
		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
					&zone->nodes);
		if (!node)
			return -ENOMEM;

		node->data[0] = (unsigned long)zone->rtree;
		zone->rtree = node;
		zone->levels += 1;
	}

	/* Allocate new block */
	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
	if (!block)
		return -ENOMEM;

	/* Now walk the rtree to insert the block */
	node = zone->rtree;
	dst = &zone->rtree;
	block_nr = zone->blocks;
	for (i = zone->levels; i > 0; i--) {
		int index;

		if (!node) {
			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
						&zone->nodes);
			if (!node)
				return -ENOMEM;
			*dst = node;
		}

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		dst = (struct rtree_node **)&((*dst)->data[index]);
		node = *dst;
	}

	zone->blocks += 1;
	*dst = block;

	return 0;
}

static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free);

/*
 *	create_zone_bm_rtree - create a radix tree for one zone
 *
 *	Allocated the mem_zone_bm_rtree structure and initializes it.
 *	This function also allocated and builds the radix tree for the
 *	zone.
 */
static struct mem_zone_bm_rtree *
create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
		     struct chain_allocator *ca,
		     unsigned long start, unsigned long end)
{
	struct mem_zone_bm_rtree *zone;
	unsigned int i, nr_blocks;
	unsigned long pages;

	pages = end - start;
	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
	if (!zone)
		return NULL;

	INIT_LIST_HEAD(&zone->nodes);
	INIT_LIST_HEAD(&zone->leaves);
	zone->start_pfn = start;
	zone->end_pfn = end;
	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);

	for (i = 0; i < nr_blocks; i++) {
		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
			return NULL;
		}
	}

	return zone;
}

/*
 *	free_zone_bm_rtree - Free the memory of the radix tree
 *
 *	Free all node pages of the radix tree. The mem_zone_bm_rtree
 *	structure itself is not freed here nor are the rtree_node
 *	structs.
 */
static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		free_image_page(node->data, clear_nosave_free);

	list_for_each_entry(node, &zone->leaves, list)
		free_image_page(node->data, clear_nosave_free);
}

496 497
static void memory_bm_position_reset(struct memory_bitmap *bm)
{
498 499 500 501 502 503
	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
				  list);
	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
				  struct rtree_node, list);
	bm->cur.node_pfn = 0;
	bm->cur.node_bit = 0;
504 505 506 507
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

508 509 510 511 512 513
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

514
/**
515 516
 *	free_mem_extents - free a list of memory extents
 *	@list - list of extents to empty
517
 */
518 519 520
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
521

522 523 524 525 526 527 528 529 530 531 532 533 534
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
 *	create_mem_extents - create a list of memory extents representing
 *	                     contiguous ranges of PFNs
 *	@list - list to put the extents into
 *	@gfp_mask - mask to use for memory allocations
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
535
{
536
	struct zone *zone;
537

538
	INIT_LIST_HEAD(list);
539

540
	for_each_populated_zone(zone) {
541 542 543 544
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
545
		zone_end = zone_end_pfn(zone);
546 547 548 549

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
582
	}
583 584

	return 0;
585 586 587 588 589 590 591 592 593
}

/**
  *	memory_bm_create - allocate memory for a memory bitmap
  */
static int
memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
{
	struct chain_allocator ca;
594 595 596
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
597 598

	chain_init(&ca, gfp_mask, safe_needed);
599
	INIT_LIST_HEAD(&bm->zones);
600

601 602 603
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
604

605
	list_for_each_entry(ext, &mem_extents, hook) {
606 607 608 609
		struct mem_zone_bm_rtree *zone;

		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
					    ext->start, ext->end);
610 611
		if (!zone) {
			error = -ENOMEM;
612
			goto Error;
613
		}
614
		list_add_tail(&zone->list, &bm->zones);
615
	}
616

617 618
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
619 620 621
 Exit:
	free_mem_extents(&mem_extents);
	return error;
622

623
 Error:
624 625
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
626
	goto Exit;
627 628 629 630 631 632 633
}

/**
  *	memory_bm_free - free memory occupied by the memory bitmap @bm
  */
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
634
	struct mem_zone_bm_rtree *zone;
635

636 637 638
	list_for_each_entry(zone, &bm->zones, list)
		free_zone_bm_rtree(zone, clear_nosave_free);

639
	free_list_of_pages(bm->p_list, clear_nosave_free);
640

641
	INIT_LIST_HEAD(&bm->zones);
642 643 644
}

/**
645 646
 *	memory_bm_find_bit - Find the bit for pfn in the memory
 *			     bitmap
647
 *
648 649 650 651
 *	Find the bit in the bitmap @bm that corresponds to given pfn.
 *	The cur.zone, cur.block and cur.node_pfn member of @bm are
 *	updated.
 *	It walks the radix tree to find the page which contains the bit for
652 653
 *	pfn and returns the bit position in **addr and *bit_nr.
 */
654 655
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
			      void **addr, unsigned int *bit_nr)
656 657 658 659 660
{
	struct mem_zone_bm_rtree *curr, *zone;
	struct rtree_node *node;
	int i, block_nr;

661 662 663 664 665
	zone = bm->cur.zone;

	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
		goto zone_found;

666 667 668 669 670 671 672 673 674 675 676 677 678
	zone = NULL;

	/* Find the right zone */
	list_for_each_entry(curr, &bm->zones, list) {
		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
			zone = curr;
			break;
		}
	}

	if (!zone)
		return -EFAULT;

679
zone_found:
680 681 682 683
	/*
	 * We have a zone. Now walk the radix tree to find the leave
	 * node for our pfn.
	 */
684 685 686 687 688

	node = bm->cur.node;
	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
		goto node_found;

689 690 691 692 693 694 695 696 697 698 699 700
	node      = zone->rtree;
	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;

	for (i = zone->levels; i > 0; i--) {
		int index;

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		BUG_ON(node->data[index] == 0);
		node = (struct rtree_node *)node->data[index];
	}

701 702 703 704 705 706
node_found:
	/* Update last position */
	bm->cur.zone = zone;
	bm->cur.node = node;
	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;

707 708 709 710 711 712 713
	/* Set return values */
	*addr = node->data;
	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;

	return 0;
}

714 715 716 717
static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
718
	int error;
719

720 721
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
722 723 724
	set_bit(bit, addr);
}

725 726 727 728 729 730 731
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
732 733 734
	if (!error)
		set_bit(bit, addr);

735 736 737
	return error;
}

738 739 740 741
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
742
	int error;
743

744 745
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
746 747 748
	clear_bit(bit, addr);
}

749 750 751 752 753 754 755 756
static void memory_bm_clear_current(struct memory_bitmap *bm)
{
	int bit;

	bit = max(bm->cur.node_bit - 1, 0);
	clear_bit(bit, bm->cur.node->data);
}

757 758 759 760
static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
761
	int error;
762

763 764
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
765
	return test_bit(bit, addr);
766 767
}

768 769 770 771
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
772

773
	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
774 775
}

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
/*
 *	rtree_next_node - Jumps to the next leave node
 *
 *	Sets the position to the beginning of the next node in the
 *	memory bitmap. This is either the next node in the current
 *	zone's radix tree or the first node in the radix tree of the
 *	next zone.
 *
 *	Returns true if there is a next node, false otherwise.
 */
static bool rtree_next_node(struct memory_bitmap *bm)
{
	bm->cur.node = list_entry(bm->cur.node->list.next,
				  struct rtree_node, list);
	if (&bm->cur.node->list != &bm->cur.zone->leaves) {
		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
		bm->cur.node_bit  = 0;
793
		touch_softlockup_watchdog();
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		return true;
	}

	/* No more nodes, goto next zone */
	bm->cur.zone = list_entry(bm->cur.zone->list.next,
				  struct mem_zone_bm_rtree, list);
	if (&bm->cur.zone->list != &bm->zones) {
		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
					  struct rtree_node, list);
		bm->cur.node_pfn = 0;
		bm->cur.node_bit = 0;
		return true;
	}

	/* No more zones */
	return false;
}

812 813
/**
 *	memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
814 815 816 817
 *
 *	Starting from the last returned position this function searches
 *	for the next set bit in the memory bitmap and returns its
 *	number. If no more bit is set BM_END_OF_MAP is returned.
818 819 820
 *
 *	It is required to run memory_bm_position_reset() before the
 *	first call to this function.
821
 */
822
static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
{
	unsigned long bits, pfn, pages;
	int bit;

	do {
		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
		bit	  = find_next_bit(bm->cur.node->data, bits,
					  bm->cur.node_bit);
		if (bit < bits) {
			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
			bm->cur.node_bit = bit + 1;
			return pfn;
		}
	} while (rtree_next_node(bm));

	return BM_END_OF_MAP;
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
/**
 *	This structure represents a range of page frames the contents of which
 *	should not be saved during the suspend.
 */

struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

/**
 *	register_nosave_region - register a range of page frames the contents
 *	of which should not be saved during the suspend (to be used in the early
 *	initialization code)
 */

void __init
862 863
__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
			 int use_kmalloc)
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
879 880 881 882 883 884
	if (use_kmalloc) {
		/* during init, this shouldn't fail */
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
	} else
		/* This allocation cannot fail */
885
		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
886 887 888 889
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
890 891 892
	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
		(unsigned long long) start_pfn << PAGE_SHIFT,
		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
 *	mark_nosave_pages - set bits corresponding to the page frames the
 *	contents of which should not be saved in a given bitmap.
 */

static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

960 961 962 963
		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
				- 1);
964 965

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
966 967 968 969 970 971 972 973 974
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	}
}

/**
 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 *	frames that should not be saved and free page frames.  The pointers
 *	forbidden_pages_map and free_pages_map are only modified if everything
 *	goes well, because we don't want the bits to be used before both bitmaps
 *	are set up.
 */

int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

991 992 993 994
	if (forbidden_pages_map && free_pages_map)
		return 0;
	else
		BUG_ON(forbidden_pages_map || free_pages_map);
995

996
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
997 998 999
	if (!bm1)
		return -ENOMEM;

1000
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1001 1002 1003
	if (error)
		goto Free_first_object;

1004
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1005 1006 1007
	if (!bm2)
		goto Free_first_bitmap;

1008
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1009 1010 1011 1012 1013 1014 1015
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

R
Rafael J. Wysocki 已提交
1016
	pr_debug("PM: Basic memory bitmaps created\n");
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
 *	so that the bitmaps themselves are not referred to while they are being
 *	freed.
 */

void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

1040 1041
	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
		return;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

R
Rafael J. Wysocki 已提交
1052
	pr_debug("PM: Basic memory bitmaps freed\n");
1053 1054
}

1055 1056 1057 1058 1059 1060 1061 1062
/**
 *	snapshot_additional_pages - estimate the number of additional pages
 *	be needed for setting up the suspend image data structures for given
 *	zone (usually the returned value is greater than the exact number)
 */

unsigned int snapshot_additional_pages(struct zone *zone)
{
1063
	unsigned int rtree, nodes;
1064

1065 1066 1067 1068 1069 1070 1071 1072
	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
			      LINKED_PAGE_DATA_SIZE);
	while (nodes > 1) {
		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
		rtree += nodes;
	}

1073
	return 2 * rtree;
1074 1075
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
#ifdef CONFIG_HIGHMEM
/**
 *	count_free_highmem_pages - compute the total number of free highmem
 *	pages, system-wide.
 */

static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

1087 1088
	for_each_populated_zone(zone)
		if (is_highmem(zone))
1089
			cnt += zone_page_state(zone, NR_FREE_PAGES);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

	return cnt;
}

/**
 *	saveable_highmem_page - Determine whether a highmem page should be
 *	included in the suspend image.
 *
 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 *	and it isn't a part of a free chunk of pages.
 */
1101
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1102 1103 1104 1105 1106 1107 1108
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
1109 1110
	if (page_zone(page) != zone)
		return NULL;
1111 1112 1113

	BUG_ON(!PageHighMem(page));

1114 1115
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
1116 1117
		return NULL;

1118 1119 1120
	if (page_is_guard(page))
		return NULL;

1121 1122 1123 1124 1125 1126 1127 1128
	return page;
}

/**
 *	count_highmem_pages - compute the total number of saveable highmem
 *	pages.
 */

1129
static unsigned int count_highmem_pages(void)
1130 1131 1132 1133
{
	struct zone *zone;
	unsigned int n = 0;

1134
	for_each_populated_zone(zone) {
1135 1136 1137 1138 1139 1140
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
1141
		max_zone_pfn = zone_end_pfn(zone);
1142
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1143
			if (saveable_highmem_page(zone, pfn))
1144 1145 1146 1147 1148
				n++;
	}
	return n;
}
#else
1149 1150 1151 1152
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
1153 1154
#endif /* CONFIG_HIGHMEM */

1155
/**
1156 1157
 *	saveable_page - Determine whether a non-highmem page should be included
 *	in the suspend image.
1158
 *
1159 1160 1161
 *	We should save the page if it isn't Nosave, and is not in the range
 *	of pages statically defined as 'unsaveable', and it isn't a part of
 *	a free chunk of pages.
1162
 */
1163
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1164
{
P
Pavel Machek 已提交
1165
	struct page *page;
1166 1167

	if (!pfn_valid(pfn))
1168
		return NULL;
1169 1170

	page = pfn_to_page(pfn);
1171 1172
	if (page_zone(page) != zone)
		return NULL;
1173

1174 1175
	BUG_ON(PageHighMem(page));

1176
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1177
		return NULL;
1178

1179 1180
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1181
		return NULL;
1182

1183 1184 1185
	if (page_is_guard(page))
		return NULL;

1186
	return page;
1187 1188
}

1189 1190 1191 1192 1193
/**
 *	count_data_pages - compute the total number of saveable non-highmem
 *	pages.
 */

1194
static unsigned int count_data_pages(void)
1195 1196
{
	struct zone *zone;
1197
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
1198
	unsigned int n = 0;
1199

1200
	for_each_populated_zone(zone) {
1201 1202
		if (is_highmem(zone))
			continue;
1203

1204
		mark_free_pages(zone);
1205
		max_zone_pfn = zone_end_pfn(zone);
1206
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1207
			if (saveable_page(zone, pfn))
1208
				n++;
1209
	}
1210
	return n;
1211 1212
}

1213 1214 1215 1216
/* This is needed, because copy_page and memcpy are not usable for copying
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
1217 1218 1219 1220 1221 1222 1223
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

/**
 *	safe_copy_page - check if the page we are going to copy is marked as
 *		present in the kernel page tables (this always is the case if
 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
 *		kernel_page_present() always returns 'true').
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}


1243 1244 1245 1246 1247
#ifdef CONFIG_HIGHMEM
static inline struct page *
page_is_saveable(struct zone *zone, unsigned long pfn)
{
	return is_highmem(zone) ?
1248
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1249 1250
}

1251
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1252 1253 1254 1255 1256 1257 1258
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
1259 1260
		src = kmap_atomic(s_page);
		dst = kmap_atomic(d_page);
1261
		do_copy_page(dst, src);
1262 1263
		kunmap_atomic(dst);
		kunmap_atomic(src);
1264 1265 1266 1267 1268
	} else {
		if (PageHighMem(d_page)) {
			/* Page pointed to by src may contain some kernel
			 * data modified by kmap_atomic()
			 */
1269
			safe_copy_page(buffer, s_page);
1270
			dst = kmap_atomic(d_page);
1271
			copy_page(dst, buffer);
1272
			kunmap_atomic(dst);
1273
		} else {
1274
			safe_copy_page(page_address(d_page), s_page);
1275 1276 1277 1278
		}
	}
}
#else
1279
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1280

1281
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1282
{
1283 1284
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1285 1286 1287
}
#endif /* CONFIG_HIGHMEM */

1288 1289
static void
copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1290 1291
{
	struct zone *zone;
1292
	unsigned long pfn;
1293

1294
	for_each_populated_zone(zone) {
1295 1296
		unsigned long max_zone_pfn;

1297
		mark_free_pages(zone);
1298
		max_zone_pfn = zone_end_pfn(zone);
1299
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1300
			if (page_is_saveable(zone, pfn))
1301
				memory_bm_set_bit(orig_bm, pfn);
1302
	}
1303 1304
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1305
	for(;;) {
1306
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1307 1308 1309 1310
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1311 1312
}

1313 1314 1315 1316
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
unsigned int alloc_normal, alloc_highmem;
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1336

1337
/**
1338
 *	swsusp_free - free pages allocated for the suspend.
1339
 *
1340 1341
 *	Suspend pages are alocated before the atomic copy is made, so we
 *	need to release them after the resume.
1342 1343 1344 1345
 */

void swsusp_free(void)
{
1346
	unsigned long fb_pfn, fr_pfn;
1347

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	if (!forbidden_pages_map || !free_pages_map)
		goto out;

	memory_bm_position_reset(forbidden_pages_map);
	memory_bm_position_reset(free_pages_map);

loop:
	fr_pfn = memory_bm_next_pfn(free_pages_map);
	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);

	/*
	 * Find the next bit set in both bitmaps. This is guaranteed to
	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
	 */
	do {
		if (fb_pfn < fr_pfn)
			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
		if (fr_pfn < fb_pfn)
			fr_pfn = memory_bm_next_pfn(free_pages_map);
	} while (fb_pfn != fr_pfn);

	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
		struct page *page = pfn_to_page(fr_pfn);

		memory_bm_clear_current(forbidden_pages_map);
		memory_bm_clear_current(free_pages_map);
		__free_page(page);
		goto loop;
1376
	}
1377 1378

out:
1379 1380
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1381
	restore_pblist = NULL;
1382
	buffer = NULL;
1383 1384
	alloc_normal = 0;
	alloc_highmem = 0;
1385 1386
}

1387 1388 1389 1390
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1391
/**
1392 1393 1394
 * preallocate_image_pages - Allocate a number of pages for hibernation image
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1395
 *
1396 1397 1398 1399 1400 1401 1402
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1403 1404 1405 1406
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1407
			break;
1408 1409 1410 1411 1412
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1413 1414 1415 1416 1417 1418 1419
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

1420 1421
static unsigned long preallocate_image_memory(unsigned long nr_pages,
					      unsigned long avail_normal)
1422
{
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	unsigned long alloc;

	if (avail_normal <= alloc_normal)
		return 0;

	alloc = avail_normal - alloc_normal;
	if (nr_pages < alloc)
		alloc = nr_pages;

	return preallocate_image_pages(alloc, GFP_IMAGE);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1443
 */
1444 1445 1446 1447 1448 1449
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
	x *= multiplier;
	do_div(x, base);
	return (unsigned long)x;
}
1450

1451 1452 1453
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
1454
{
1455 1456 1457
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1458
}
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1472

1473
/**
1474 1475
 * free_unnecessary_pages - Release preallocated pages not needed for the image
 */
1476
static unsigned long free_unnecessary_pages(void)
1477
{
1478
	unsigned long save, to_free_normal, to_free_highmem, free;
1479

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	save = count_data_pages();
	if (alloc_normal >= save) {
		to_free_normal = alloc_normal - save;
		save = 0;
	} else {
		to_free_normal = 0;
		save -= alloc_normal;
	}
	save += count_highmem_pages();
	if (alloc_highmem >= save) {
		to_free_highmem = alloc_highmem - save;
1491 1492
	} else {
		to_free_highmem = 0;
1493 1494 1495 1496 1497
		save -= alloc_highmem;
		if (to_free_normal > save)
			to_free_normal -= save;
		else
			to_free_normal = 0;
1498
	}
1499
	free = to_free_normal + to_free_highmem;
1500 1501 1502

	memory_bm_position_reset(&copy_bm);

1503
	while (to_free_normal > 0 || to_free_highmem > 0) {
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
1523 1524

	return free;
1525 1526
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
/**
 * minimum_image_size - Estimate the minimum acceptable size of an image
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1540
 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
 * minus mapped file pages.
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

	size = global_page_state(NR_SLAB_RECLAIMABLE)
		+ global_page_state(NR_ACTIVE_ANON)
		+ global_page_state(NR_INACTIVE_ANON)
		+ global_page_state(NR_ACTIVE_FILE)
		+ global_page_state(NR_INACTIVE_FILE)
		- global_page_state(NR_FILE_MAPPED);

	return saveable <= size ? 0 : saveable - size;
}

1557 1558
/**
 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1559 1560 1561 1562 1563
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
1564 1565 1566 1567
 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
 * total number of available page frames and allocate at least
1568
 *
1569 1570
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1571 1572 1573 1574 1575
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1576 1577
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1578
 */
1579
int hibernate_preallocate_memory(void)
1580 1581
{
	struct zone *zone;
1582
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1583
	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1584
	ktime_t start, stop;
1585
	int error;
1586

1587
	printk(KERN_INFO "PM: Preallocating image memory... ");
1588
	start = ktime_get();
1589

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	alloc_normal = 0;
	alloc_highmem = 0;

1601
	/* Count the number of saveable data pages. */
1602
	save_highmem = count_highmem_pages();
1603
	saveable = count_data_pages();
1604

1605 1606 1607 1608 1609
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1610 1611
	saveable += save_highmem;
	highmem = save_highmem;
1612 1613 1614 1615 1616 1617 1618 1619
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
1620
	avail_normal = count;
1621 1622 1623
	count += highmem;
	count -= totalreserve_pages;

1624 1625 1626
	/* Add number of pages required for page keys (s390 only). */
	size += page_key_additional_pages(saveable);

1627
	/* Compute the maximum number of saveable pages to leave in memory. */
1628 1629
	max_size = (count - (size + PAGES_FOR_IO)) / 2
			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1630
	/* Compute the desired number of image pages specified by image_size. */
1631 1632 1633 1634
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
1635 1636 1637
	 * If the desired number of image pages is at least as large as the
	 * current number of saveable pages in memory, allocate page frames for
	 * the image and we're done.
1638
	 */
1639 1640
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
1641
		pages += preallocate_image_memory(saveable - pages, avail_normal);
1642
		goto out;
1643
	}
1644

1645 1646
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
1647 1648 1649 1650 1651 1652 1653 1654 1655
	/*
	 * To avoid excessive pressure on the normal zone, leave room in it to
	 * accommodate an image of the minimum size (unless it's already too
	 * small, in which case don't preallocate pages from it at all).
	 */
	if (avail_normal > pages)
		avail_normal -= pages;
	else
		avail_normal = 0;
1656 1657 1658
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1671 1672
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1673 1674
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
1675 1676 1677 1678 1679
	alloc = count - max_size;
	if (alloc > pages_highmem)
		alloc -= pages_highmem;
	else
		alloc = 0;
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	pages = preallocate_image_memory(alloc, avail_normal);
	if (pages < alloc) {
		/* We have exhausted non-highmem pages, try highmem. */
		alloc -= pages;
		pages += pages_highmem;
		pages_highmem = preallocate_image_highmem(alloc);
		if (pages_highmem < alloc)
			goto err_out;
		pages += pages_highmem;
		/*
		 * size is the desired number of saveable pages to leave in
		 * memory, so try to preallocate (all memory - size) pages.
		 */
		alloc = (count - pages) - size;
		pages += preallocate_image_highmem(alloc);
	} else {
		/*
		 * There are approximately max_size saveable pages at this point
		 * and we want to reduce this number down to size.
		 */
		alloc = max_size - size;
		size = preallocate_highmem_fraction(alloc, highmem, count);
		pages_highmem += size;
		alloc -= size;
		size = preallocate_image_memory(alloc, avail_normal);
		pages_highmem += preallocate_image_highmem(alloc - size);
		pages += pages_highmem + size;
	}
1708

1709 1710 1711 1712 1713
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
1714
	pages -= free_unnecessary_pages();
1715 1716

 out:
1717
	stop = ktime_get();
1718
	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1719
	swsusp_show_speed(start, stop, pages, "Allocated");
1720 1721

	return 0;
1722 1723 1724 1725 1726

 err_out:
	printk(KERN_CONT "\n");
	swsusp_free();
	return -ENOMEM;
1727 1728
}

1729 1730 1731 1732 1733 1734 1735 1736
#ifdef CONFIG_HIGHMEM
/**
  *	count_pages_for_highmem - compute the number of non-highmem pages
  *	that will be necessary for creating copies of highmem pages.
  */

static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1737
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
static unsigned int
count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
#endif /* CONFIG_HIGHMEM */
1750 1751

/**
1752 1753
 *	enough_free_mem - Make sure we have enough free memory for the
 *	snapshot image.
1754 1755
 */

1756
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1757
{
1758
	struct zone *zone;
1759
	unsigned int free = alloc_normal;
1760

1761
	for_each_populated_zone(zone)
1762
		if (!is_highmem(zone))
1763
			free += zone_page_state(zone, NR_FREE_PAGES);
1764

1765
	nr_pages += count_pages_for_highmem(nr_highmem);
1766 1767
	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
		nr_pages, PAGES_FOR_IO, free);
1768

1769
	return free > nr_pages + PAGES_FOR_IO;
1770 1771
}

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
#ifdef CONFIG_HIGHMEM
/**
 *	get_highmem_buffer - if there are some highmem pages in the suspend
 *	image, we may need the buffer to copy them and/or load their data.
 */

static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
 *	Try to allocate as many pages as needed, but if the number of free
 *	highmem pages is lesser than that, allocate them all.
 */

static inline unsigned int
1791
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

1802
		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1803 1804 1805 1806 1807 1808 1809 1810
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

static inline unsigned int
1811
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
#endif /* CONFIG_HIGHMEM */

/**
 *	swsusp_alloc - allocate memory for the suspend image
 *
 *	We first try to allocate as many highmem pages as there are
 *	saveable highmem pages in the system.  If that fails, we allocate
 *	non-highmem pages for the copies of the remaining highmem ones.
 *
 *	In this approach it is likely that the copies of highmem pages will
 *	also be located in the high memory, because of the way in which
 *	copy_data_pages() works.
 */

1826 1827
static int
swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1828
		unsigned int nr_pages, unsigned int nr_highmem)
1829
{
1830
	if (nr_highmem > 0) {
1831
		if (get_highmem_buffer(PG_ANY))
1832 1833 1834 1835 1836
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1837
	}
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
1848
	}
1849

1850
	return 0;
1851

1852
 err_out:
1853
	swsusp_free();
1854
	return -ENOMEM;
1855 1856
}

1857
asmlinkage __visible int swsusp_save(void)
1858
{
1859
	unsigned int nr_pages, nr_highmem;
1860

1861
	printk(KERN_INFO "PM: Creating hibernation image:\n");
1862

1863
	drain_local_pages(NULL);
1864
	nr_pages = count_data_pages();
1865
	nr_highmem = count_highmem_pages();
R
Rafael J. Wysocki 已提交
1866
	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1867

1868
	if (!enough_free_mem(nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1869
		printk(KERN_ERR "PM: Not enough free memory\n");
1870 1871 1872
		return -ENOMEM;
	}

1873
	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1874
		printk(KERN_ERR "PM: Memory allocation failed\n");
1875
		return -ENOMEM;
1876
	}
1877 1878 1879 1880

	/* During allocating of suspend pagedir, new cold pages may appear.
	 * Kill them.
	 */
1881
	drain_local_pages(NULL);
1882
	copy_data_pages(&copy_bm, &orig_bm);
1883 1884 1885 1886 1887 1888 1889

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1890
	nr_pages += nr_highmem;
1891
	nr_copy_pages = nr_pages;
1892
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1893

R
Rafael J. Wysocki 已提交
1894 1895
	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
		nr_pages);
1896

1897 1898
	return 0;
}
1899

1900 1901
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
1902
{
1903
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1904
	info->version_code = LINUX_VERSION_CODE;
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

1924 1925 1926 1927 1928
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

1929 1930 1931
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
1932
	info->num_physpages = get_num_physpages();
1933
	info->image_pages = nr_copy_pages;
1934
	info->pages = snapshot_get_image_size();
1935 1936
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
1937
	return init_header_complete(info);
1938 1939 1940
}

/**
1941 1942
 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
 *	are stored in the array @buf[] (1 page at a time)
1943 1944
 */

1945
static inline void
1946
pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1947 1948 1949
{
	int j;

1950
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1951 1952
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
1953
			break;
1954 1955
		/* Save page key for data page (s390 only). */
		page_key_read(buf + j);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	}
}

/**
 *	snapshot_read_next - used for reading the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to read up to the returned number of bytes from the memory
J
Jiri Slaby 已提交
1968
 *	location computed by the data_of() macro.
1969 1970 1971 1972 1973 1974 1975
 *
 *	The function returns 0 to indicate the end of data stream condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
1976
int snapshot_read_next(struct snapshot_handle *handle)
1977
{
1978
	if (handle->cur > nr_meta_pages + nr_copy_pages)
1979
		return 0;
1980

1981 1982
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
1983
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1984 1985 1986
		if (!buffer)
			return -ENOMEM;
	}
J
Jiri Slaby 已提交
1987
	if (!handle->cur) {
1988 1989 1990 1991 1992
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
1993
		handle->buffer = buffer;
1994 1995
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
J
Jiri Slaby 已提交
1996
	} else if (handle->cur <= nr_meta_pages) {
1997
		clear_page(buffer);
J
Jiri Slaby 已提交
1998 1999 2000
		pack_pfns(buffer, &orig_bm);
	} else {
		struct page *page;
2001

J
Jiri Slaby 已提交
2002 2003 2004 2005 2006 2007 2008
		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
		if (PageHighMem(page)) {
			/* Highmem pages are copied to the buffer,
			 * because we can't return with a kmapped
			 * highmem page (we may not be called again).
			 */
			void *kaddr;
2009

2010
			kaddr = kmap_atomic(page);
2011
			copy_page(buffer, kaddr);
2012
			kunmap_atomic(kaddr);
J
Jiri Slaby 已提交
2013 2014 2015
			handle->buffer = buffer;
		} else {
			handle->buffer = page_address(page);
2016 2017
		}
	}
J
Jiri Slaby 已提交
2018 2019
	handle->cur++;
	return PAGE_SIZE;
2020 2021
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
static void duplicate_memory_bitmap(struct memory_bitmap *dst,
				    struct memory_bitmap *src)
{
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
	}
}

2035 2036 2037 2038 2039 2040
/**
 *	mark_unsafe_pages - mark the pages that cannot be used for storing
 *	the image during resume, because they conflict with the pages that
 *	had been used before suspend
 */

2041
static void mark_unsafe_pages(struct memory_bitmap *bm)
2042
{
2043
	unsigned long pfn;
2044

2045 2046 2047 2048 2049 2050
	/* Clear the "free"/"unsafe" bit for all PFNs */
	memory_bm_position_reset(free_pages_map);
	pfn = memory_bm_next_pfn(free_pages_map);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_clear_current(free_pages_map);
		pfn = memory_bm_next_pfn(free_pages_map);
2051 2052
	}

2053 2054
	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
	duplicate_memory_bitmap(free_pages_map, bm);
2055

2056
	allocated_unsafe_pages = 0;
2057 2058
}

2059
static int check_header(struct swsusp_info *info)
2060
{
2061
	char *reason;
2062

2063
	reason = check_image_kernel(info);
2064
	if (!reason && info->num_physpages != get_num_physpages())
2065 2066
		reason = "memory size";
	if (reason) {
R
Rafael J. Wysocki 已提交
2067
		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2068 2069 2070 2071 2072 2073 2074 2075 2076
		return -EPERM;
	}
	return 0;
}

/**
 *	load header - check the image header and copy data from it
 */

2077 2078
static int
load_header(struct swsusp_info *info)
2079 2080 2081
{
	int error;

2082
	restore_pblist = NULL;
2083 2084 2085 2086 2087 2088 2089 2090 2091
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
2092 2093
 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
 *	the corresponding bit in the memory bitmap @bm
2094
 */
2095
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2096 2097 2098
{
	int j;

2099 2100 2101 2102
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

2103 2104 2105
		/* Extract and buffer page key for data page (s390 only). */
		page_key_memorize(buf + j);

2106
		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2107 2108 2109
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
2110
	}
2111 2112

	return 0;
2113 2114
}

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
#ifdef CONFIG_HIGHMEM
/* struct highmem_pbe is used for creating the list of highmem pages that
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

/* List of highmem PBEs needed for restoring the highmem pages that were
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
 *	count_highmem_image_pages - compute the number of highmem pages in the
 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
 *	image pages are assumed to be set.
 */

static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

/**
 *	prepare_highmem_image - try to allocate as many highmem pages as
 *	there are highmem image pages (@nr_highmem_p points to the variable
 *	containing the number of highmem image pages).  The pages that are
 *	"safe" (ie. will not be overwritten when the suspend image is
 *	restored) have the corresponding bits set in @bm (it must be
 *	unitialized).
 *
 *	NOTE: This function should not be called if there are no highmem
 *	image pages.
 */

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

static int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
2193
		if (!swsusp_page_is_free(page)) {
2194 2195 2196 2197 2198
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
2199 2200
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

/**
 *	get_highmem_page_buffer - for given highmem image page find the buffer
 *	that suspend_write_next() should set for its caller to write to.
 *
 *	If the page is to be saved to its "original" page frame or a copy of
 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
 *	the copy of the page is to be made in normal memory, so the address of
 *	the copy is returned.
 *
 *	If @buffer is returned, the caller of suspend_write_next() will write
 *	the page's contents to @buffer, so they will have to be copied to the
 *	right location on the next call to suspend_write_next() and it is done
 *	with the help of copy_last_highmem_page().  For this purpose, if
 *	@buffer is returned, @last_highmem page is set to the page to which
 *	the data will have to be copied from @buffer.
 */

static struct page *last_highmem_page;

static void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
	struct highmem_pbe *pbe;
	void *kaddr;

2232
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
2245
		return ERR_PTR(-ENOMEM);
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
 *	copy_last_highmem_page - copy the contents of a highmem image from
 *	@buffer, where the caller of snapshot_write_next() has place them,
 *	to the right location represented by @last_highmem_page .
 */

static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

2279
		dst = kmap_atomic(last_highmem_page);
2280
		copy_page(dst, buffer);
2281
		kunmap_atomic(dst);
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
static unsigned int
count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }

static inline int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	return 0;
}

static inline void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
2312
	return ERR_PTR(-EINVAL);
2313 2314 2315 2316 2317 2318 2319
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

2320
/**
2321 2322 2323 2324
 *	prepare_image - use the memory bitmap @bm to mark the pages that will
 *	be overwritten in the process of restoring the system memory state
 *	from the suspend image ("unsafe" pages) and allocate memory for the
 *	image.
2325
 *
2326 2327 2328
 *	The idea is to allocate a new memory bitmap first and then allocate
 *	as many pages as needed for the image data, but not to assign these
 *	pages to specific tasks initially.  Instead, we just mark them as
2329 2330 2331
 *	allocated and create a lists of "safe" pages that will be used
 *	later.  On systems with high memory a list of "safe" highmem pages is
 *	also created.
2332 2333
 */

2334 2335 2336 2337
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

static int
prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2338
{
2339
	unsigned int nr_pages, nr_highmem;
2340
	struct linked_page *lp;
2341
	int error;
2342

2343 2344 2345 2346 2347
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2348
	mark_unsafe_pages(bm);
2349 2350 2351 2352 2353 2354 2355

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2356 2357 2358 2359 2360
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2361 2362 2363 2364 2365
	/* Reserve some safe pages for potential later use.
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2366 2367
	 *
	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2368
	 */
2369
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2370 2371
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2372
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2373
		if (!lp) {
2374
			error = -ENOMEM;
2375 2376
			goto Free;
		}
2377 2378
		lp->next = safe_pages_list;
		safe_pages_list = lp;
2379
		nr_pages--;
2380
	}
2381
	/* Preallocate memory for the image */
2382
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2383 2384 2385 2386 2387 2388
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2389
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2390 2391 2392
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2393
		}
2394
		/* Mark the page as allocated */
2395 2396
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2397
		nr_pages--;
2398
	}
2399 2400
	return 0;

R
Rafael J. Wysocki 已提交
2401
 Free:
2402
	swsusp_free();
2403 2404 2405
	return error;
}

2406 2407 2408 2409 2410 2411
/**
 *	get_buffer - compute the address that snapshot_write_next() should
 *	set for its caller to write to.
 */

static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2412
{
2413
	struct pbe *pbe;
2414 2415
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2416

2417 2418 2419 2420
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2421 2422 2423
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2424
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2425 2426
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
2427
		 */
2428 2429 2430 2431
		return page_address(page);

	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
2432
	 */
2433 2434 2435
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2436
		return ERR_PTR(-ENOMEM);
2437
	}
2438 2439
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2440 2441 2442
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2443
	return pbe->address;
2444 2445
}

2446 2447 2448 2449 2450 2451 2452 2453 2454
/**
 *	snapshot_write_next - used for writing the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to write up to the returned number of bytes to the memory
J
Jiri Slaby 已提交
2455
 *	location computed by the data_of() macro.
2456 2457 2458 2459 2460 2461 2462
 *
 *	The function returns 0 to indicate the "end of file" condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
2463
int snapshot_write_next(struct snapshot_handle *handle)
2464
{
2465
	static struct chain_allocator ca;
2466 2467
	int error = 0;

2468
	/* Check if we have already loaded the entire image */
J
Jiri Slaby 已提交
2469
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2470
		return 0;
2471

J
Jiri Slaby 已提交
2472 2473 2474
	handle->sync_read = 1;

	if (!handle->cur) {
2475 2476 2477 2478
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2479 2480
		if (!buffer)
			return -ENOMEM;
2481

2482
		handle->buffer = buffer;
J
Jiri Slaby 已提交
2483 2484 2485 2486
	} else if (handle->cur == 1) {
		error = load_header(buffer);
		if (error)
			return error;
2487

2488 2489
		safe_pages_list = NULL;

J
Jiri Slaby 已提交
2490 2491 2492 2493
		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
		if (error)
			return error;

2494 2495 2496 2497 2498
		/* Allocate buffer for page keys. */
		error = page_key_alloc(nr_copy_pages);
		if (error)
			return error;

J
Jiri Slaby 已提交
2499 2500 2501 2502
	} else if (handle->cur <= nr_meta_pages + 1) {
		error = unpack_orig_pfns(buffer, &copy_bm);
		if (error)
			return error;
2503

J
Jiri Slaby 已提交
2504 2505
		if (handle->cur == nr_meta_pages + 1) {
			error = prepare_image(&orig_bm, &copy_bm);
2506 2507 2508
			if (error)
				return error;

J
Jiri Slaby 已提交
2509 2510 2511
			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
			memory_bm_position_reset(&orig_bm);
			restore_pblist = NULL;
2512
			handle->buffer = get_buffer(&orig_bm, &ca);
J
Jiri Slaby 已提交
2513
			handle->sync_read = 0;
2514 2515
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2516 2517
		}
	} else {
J
Jiri Slaby 已提交
2518
		copy_last_highmem_page();
2519 2520
		/* Restore page key for data page (s390 only). */
		page_key_write(handle->buffer);
J
Jiri Slaby 已提交
2521 2522 2523 2524 2525
		handle->buffer = get_buffer(&orig_bm, &ca);
		if (IS_ERR(handle->buffer))
			return PTR_ERR(handle->buffer);
		if (handle->buffer != buffer)
			handle->sync_read = 0;
2526
	}
J
Jiri Slaby 已提交
2527 2528
	handle->cur++;
	return PAGE_SIZE;
2529 2530
}

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
/**
 *	snapshot_write_finalize - must be called after the last call to
 *	snapshot_write_next() in case the last page in the image happens
 *	to be a highmem page and its contents should be stored in the
 *	highmem.  Additionally, it releases the memory that will not be
 *	used any more.
 */

void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
2542 2543 2544
	/* Restore page key for data page (s390 only). */
	page_key_write(handle->buffer);
	page_key_free();
2545
	/* Free only if we have loaded the image entirely */
J
Jiri Slaby 已提交
2546
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2547 2548 2549 2550 2551
		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
		free_highmem_data();
	}
}

2552 2553
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2554
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2555 2556 2557
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2558 2559 2560 2561
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
static inline void
swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2562
{
2563 2564
	void *kaddr1, *kaddr2;

2565 2566
	kaddr1 = kmap_atomic(p1);
	kaddr2 = kmap_atomic(p2);
2567 2568 2569
	copy_page(buf, kaddr1);
	copy_page(kaddr1, kaddr2);
	copy_page(kaddr2, buf);
2570 2571
	kunmap_atomic(kaddr2);
	kunmap_atomic(kaddr1);
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
}

/**
 *	restore_highmem - for each highmem page that was allocated before
 *	the suspend and included in the suspend image, and also has been
 *	allocated by the "resume" kernel swap its current (ie. "before
 *	resume") contents with the previous (ie. "before suspend") one.
 *
 *	If the resume eventually fails, we can call this function once
 *	again and restore the "before resume" highmem state.
 */

int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2602
}
2603
#endif /* CONFIG_HIGHMEM */