snapshot.c 71.7 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5
 *
P
Pavel Machek 已提交
6
 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
24
#include <linux/bootmem.h>
25
#include <linux/nmi.h>
26 27 28
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
29
#include <linux/list.h>
30
#include <linux/slab.h>
31
#include <linux/compiler.h>
32
#include <linux/ktime.h>
33
#include <linux/set_memory.h>
34

35
#include <linux/uaccess.h>
36 37 38 39 40 41 42
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

43
#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
static bool hibernate_restore_protection;
static bool hibernate_restore_protection_active;

void enable_restore_image_protection(void)
{
	hibernate_restore_protection = true;
}

static inline void hibernate_restore_protection_begin(void)
{
	hibernate_restore_protection_active = hibernate_restore_protection;
}

static inline void hibernate_restore_protection_end(void)
{
	hibernate_restore_protection_active = false;
}

static inline void hibernate_restore_protect_page(void *page_address)
{
	if (hibernate_restore_protection_active)
		set_memory_ro((unsigned long)page_address, 1);
}

static inline void hibernate_restore_unprotect_page(void *page_address)
{
	if (hibernate_restore_protection_active)
		set_memory_rw((unsigned long)page_address, 1);
}
#else
static inline void hibernate_restore_protection_begin(void) {}
static inline void hibernate_restore_protection_end(void) {}
static inline void hibernate_restore_protect_page(void *page_address) {}
static inline void hibernate_restore_unprotect_page(void *page_address) {}
78
#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
79

80 81 82 83
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

84 85 86 87 88 89 90 91 92 93 94 95
/*
 * Number of bytes to reserve for memory allocations made by device drivers
 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 * cause image creation to fail (tunable via /sys/power/reserved_size).
 */
unsigned long reserved_size;

void __init hibernate_reserved_size_init(void)
{
	reserved_size = SPARE_PAGES * PAGE_SIZE;
}

96 97
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
98 99 100
 * When it is set to N, swsusp will do its best to ensure the image
 * size will not exceed N bytes, but if that is impossible, it will
 * try to create the smallest image possible.
101
 */
102 103 104 105
unsigned long image_size;

void __init hibernate_image_size_init(void)
{
106
	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
107
}
108

109 110
/*
 * List of PBEs needed for restoring the pages that were allocated before
111 112 113 114
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
115 116
struct pbe *restore_pblist;

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
} __packed;

/*
 * List of "safe" pages (ie. pages that were not used by the image kernel
 * before hibernation) that may be used as temporary storage for image kernel
 * memory contents.
 */
static struct linked_page *safe_pages_list;

133
/* Pointer to an auxiliary buffer (1 page) */
134
static void *buffer;
135

136 137 138 139 140
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

141
static unsigned int allocated_unsafe_pages;
142

143 144 145 146 147 148 149 150 151 152 153 154 155
/**
 * get_image_page - Allocate a page for a hibernation image.
 * @gfp_mask: GFP mask for the allocation.
 * @safe_needed: Get pages that were not used before hibernation (restore only)
 *
 * During image restoration, for storing the PBE list and the image data, we can
 * only use memory pages that do not conflict with the pages used before
 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 * using allocated_unsafe_pages.
 *
 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 * swsusp_free() can release it.
 */
156
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
157 158 159 160 161
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
162
		while (res && swsusp_page_is_free(virt_to_page(res))) {
163
			/* The page is unsafe, mark it for swsusp_free() */
164
			swsusp_set_page_forbidden(virt_to_page(res));
165
			allocated_unsafe_pages++;
166 167 168
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
169 170
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
171 172 173 174
	}
	return res;
}

175 176 177 178 179 180 181 182 183 184 185 186
static void *__get_safe_page(gfp_t gfp_mask)
{
	if (safe_pages_list) {
		void *ret = safe_pages_list;

		safe_pages_list = safe_pages_list->next;
		memset(ret, 0, PAGE_SIZE);
		return ret;
	}
	return get_image_page(gfp_mask, PG_SAFE);
}

187 188
unsigned long get_safe_page(gfp_t gfp_mask)
{
189
	return (unsigned long)__get_safe_page(gfp_mask);
190 191
}

192 193
static struct page *alloc_image_page(gfp_t gfp_mask)
{
194 195 196 197
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
198 199
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
200 201
	}
	return page;
202 203
}

204 205 206 207 208 209 210 211
static void recycle_safe_page(void *page_address)
{
	struct linked_page *lp = page_address;

	lp->next = safe_pages_list;
	safe_pages_list = lp;
}

212
/**
213 214 215 216 217 218
 * free_image_page - Free a page allocated for hibernation image.
 * @addr: Address of the page to free.
 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 *
 * The page to free should have been allocated by get_image_page() (page flags
 * set by it are affected).
219 220 221
 */
static inline void free_image_page(void *addr, int clear_nosave_free)
{
222 223 224 225 226 227
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

228
	swsusp_unset_page_forbidden(page);
229
	if (clear_nosave_free)
230
		swsusp_unset_page_free(page);
231 232

	__free_page(page);
233 234
}

235 236
static inline void free_list_of_pages(struct linked_page *list,
				      int clear_page_nosave)
237 238 239 240 241 242 243 244 245
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

246 247 248 249 250 251 252 253 254 255 256 257
/*
 * struct chain_allocator is used for allocating small objects out of
 * a linked list of pages called 'the chain'.
 *
 * The chain grows each time when there is no room for a new object in
 * the current page.  The allocated objects cannot be freed individually.
 * It is only possible to free them all at once, by freeing the entire
 * chain.
 *
 * NOTE: The chain allocator may be inefficient if the allocated objects
 * are not much smaller than PAGE_SIZE.
 */
258 259 260
struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
261
					   of the current page */
262 263 264 265
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

266 267
static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
		       int safe_needed)
268 269 270 271 272 273 274 275 276 277 278 279 280 281
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

282 283
		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
					get_image_page(ca->gfp_mask, PG_ANY);
284 285 286 287 288 289 290 291 292 293 294 295 296
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
297
 * Data types related to memory bitmaps.
298
 *
299 300 301 302 303
 * Memory bitmap is a structure consiting of many linked lists of
 * objects.  The main list's elements are of type struct zone_bitmap
 * and each of them corresonds to one zone.  For each zone bitmap
 * object there is a list of objects of type struct bm_block that
 * represent each blocks of bitmap in which information is stored.
304
 *
305 306 307 308
 * struct memory_bitmap contains a pointer to the main list of zone
 * bitmap objects, a struct bm_position used for browsing the bitmap,
 * and a pointer to the list of pages used for allocating all of the
 * zone bitmap objects and bitmap block objects.
309
 *
310 311 312 313
 * NOTE: It has to be possible to lay out the bitmap in memory
 * using only allocations of order 0.  Additionally, the bitmap is
 * designed to work with arbitrary number of zones (this is over the
 * top for now, but let's avoid making unnecessary assumptions ;-).
314
 *
315 316 317 318
 * struct zone_bitmap contains a pointer to a list of bitmap block
 * objects and a pointer to the bitmap block object that has been
 * most recently used for setting bits.  Additionally, it contains the
 * PFNs that correspond to the start and end of the represented zone.
319
 *
320 321 322 323
 * struct bm_block contains a pointer to the memory page in which
 * information is stored (in the form of a block of bitmap)
 * It also contains the pfns that correspond to the start and end of
 * the represented memory area.
324
 *
325 326 327
 * The memory bitmap is organized as a radix tree to guarantee fast random
 * access to the bits. There is one radix tree for each zone (as returned
 * from create_mem_extents).
328
 *
329 330 331 332
 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 * two linked lists for the nodes of the tree, one for the inner nodes and
 * one for the leave nodes. The linked leave nodes are used for fast linear
 * access of the memory bitmap.
333
 *
334
 * The struct rtree_node represents one node of the radix tree.
335 336 337 338
 */

#define BM_END_OF_MAP	(~0UL)

W
Wu Fengguang 已提交
339
#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
340 341
#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
342

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
/*
 * struct rtree_node is a wrapper struct to link the nodes
 * of the rtree together for easy linear iteration over
 * bits and easy freeing
 */
struct rtree_node {
	struct list_head list;
	unsigned long *data;
};

/*
 * struct mem_zone_bm_rtree represents a bitmap used for one
 * populated memory zone.
 */
struct mem_zone_bm_rtree {
	struct list_head list;		/* Link Zones together         */
	struct list_head nodes;		/* Radix Tree inner nodes      */
	struct list_head leaves;	/* Radix Tree leaves           */
	unsigned long start_pfn;	/* Zone start page frame       */
	unsigned long end_pfn;		/* Zone end page frame + 1     */
	struct rtree_node *rtree;	/* Radix Tree Root             */
	int levels;			/* Number of Radix Tree Levels */
	unsigned int blocks;		/* Number of Bitmap Blocks     */
};

368 369 370
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
371 372 373 374
	struct mem_zone_bm_rtree *zone;
	struct rtree_node *node;
	unsigned long node_pfn;
	int node_bit;
375 376 377
};

struct memory_bitmap {
378
	struct list_head zones;
379
	struct linked_page *p_list;	/* list of pages used to store zone
380 381
					   bitmap objects and bitmap block
					   objects */
382 383 384 385 386
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

387 388 389 390 391 392 393 394
#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
#if BITS_PER_LONG == 32
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
#else
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
#endif
#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)

395 396
/**
 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
397
 *
398 399 400
 * This function is used to allocate inner nodes as well as the
 * leave nodes of the radix tree. It also adds the node to the
 * corresponding linked list passed in by the *list parameter.
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
 */
static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
					   struct chain_allocator *ca,
					   struct list_head *list)
{
	struct rtree_node *node;

	node = chain_alloc(ca, sizeof(struct rtree_node));
	if (!node)
		return NULL;

	node->data = get_image_page(gfp_mask, safe_needed);
	if (!node->data)
		return NULL;

	list_add_tail(&node->list, list);

	return node;
}

421 422
/**
 * add_rtree_block - Add a new leave node to the radix tree.
423
 *
424 425 426
 * The leave nodes need to be allocated in order to keep the leaves
 * linked list in order. This is guaranteed by the zone->blocks
 * counter.
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
 */
static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
			   int safe_needed, struct chain_allocator *ca)
{
	struct rtree_node *node, *block, **dst;
	unsigned int levels_needed, block_nr;
	int i;

	block_nr = zone->blocks;
	levels_needed = 0;

	/* How many levels do we need for this block nr? */
	while (block_nr) {
		levels_needed += 1;
		block_nr >>= BM_RTREE_LEVEL_SHIFT;
	}

	/* Make sure the rtree has enough levels */
	for (i = zone->levels; i < levels_needed; i++) {
		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
					&zone->nodes);
		if (!node)
			return -ENOMEM;

		node->data[0] = (unsigned long)zone->rtree;
		zone->rtree = node;
		zone->levels += 1;
	}

	/* Allocate new block */
	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
	if (!block)
		return -ENOMEM;

	/* Now walk the rtree to insert the block */
	node = zone->rtree;
	dst = &zone->rtree;
	block_nr = zone->blocks;
	for (i = zone->levels; i > 0; i--) {
		int index;

		if (!node) {
			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
						&zone->nodes);
			if (!node)
				return -ENOMEM;
			*dst = node;
		}

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		dst = (struct rtree_node **)&((*dst)->data[index]);
		node = *dst;
	}

	zone->blocks += 1;
	*dst = block;

	return 0;
}

static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free);

491 492
/**
 * create_zone_bm_rtree - Create a radix tree for one zone.
493
 *
494 495 496
 * Allocated the mem_zone_bm_rtree structure and initializes it.
 * This function also allocated and builds the radix tree for the
 * zone.
497
 */
498 499 500 501 502
static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
						      int safe_needed,
						      struct chain_allocator *ca,
						      unsigned long start,
						      unsigned long end)
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
{
	struct mem_zone_bm_rtree *zone;
	unsigned int i, nr_blocks;
	unsigned long pages;

	pages = end - start;
	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
	if (!zone)
		return NULL;

	INIT_LIST_HEAD(&zone->nodes);
	INIT_LIST_HEAD(&zone->leaves);
	zone->start_pfn = start;
	zone->end_pfn = end;
	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);

	for (i = 0; i < nr_blocks; i++) {
		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
			return NULL;
		}
	}

	return zone;
}

529 530
/**
 * free_zone_bm_rtree - Free the memory of the radix tree.
531
 *
532 533 534
 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 * structure itself is not freed here nor are the rtree_node
 * structs.
535 536 537 538 539 540 541 542 543 544 545 546 547
 */
static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		free_image_page(node->data, clear_nosave_free);

	list_for_each_entry(node, &zone->leaves, list)
		free_image_page(node->data, clear_nosave_free);
}

548 549
static void memory_bm_position_reset(struct memory_bitmap *bm)
{
550 551 552 553 554 555
	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
				  list);
	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
				  struct rtree_node, list);
	bm->cur.node_pfn = 0;
	bm->cur.node_bit = 0;
556 557 558 559
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

560 561 562 563 564 565
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

566
/**
567 568
 * free_mem_extents - Free a list of memory extents.
 * @list: List of extents to free.
569
 */
570 571 572
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
573

574 575 576 577 578 579 580
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
581 582 583 584 585
 * create_mem_extents - Create a list of memory extents.
 * @list: List to put the extents into.
 * @gfp_mask: Mask to use for memory allocations.
 *
 * The extents represent contiguous ranges of PFNs.
586 587
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
588
{
589
	struct zone *zone;
590

591
	INIT_LIST_HEAD(list);
592

593
	for_each_populated_zone(zone) {
594 595 596 597
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
598
		zone_end = zone_end_pfn(zone);
599 600 601 602

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
603

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
635
	}
636 637

	return 0;
638 639 640
}

/**
641 642
 * memory_bm_create - Allocate memory for a memory bitmap.
 */
643 644
static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
			    int safe_needed)
645 646
{
	struct chain_allocator ca;
647 648 649
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
650 651

	chain_init(&ca, gfp_mask, safe_needed);
652
	INIT_LIST_HEAD(&bm->zones);
653

654 655 656
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
657

658
	list_for_each_entry(ext, &mem_extents, hook) {
659 660 661 662
		struct mem_zone_bm_rtree *zone;

		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
					    ext->start, ext->end);
663 664
		if (!zone) {
			error = -ENOMEM;
665
			goto Error;
666
		}
667
		list_add_tail(&zone->list, &bm->zones);
668
	}
669

670 671
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
672 673 674
 Exit:
	free_mem_extents(&mem_extents);
	return error;
675

676
 Error:
677 678
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
679
	goto Exit;
680 681 682
}

/**
683 684 685
 * memory_bm_free - Free memory occupied by the memory bitmap.
 * @bm: Memory bitmap.
 */
686 687
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
688
	struct mem_zone_bm_rtree *zone;
689

690 691 692
	list_for_each_entry(zone, &bm->zones, list)
		free_zone_bm_rtree(zone, clear_nosave_free);

693
	free_list_of_pages(bm->p_list, clear_nosave_free);
694

695
	INIT_LIST_HEAD(&bm->zones);
696 697 698
}

/**
699
 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
700
 *
701 702 703 704 705
 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 *
 * Walk the radix tree to find the page containing the bit that represents @pfn
 * and return the position of the bit in @addr and @bit_nr.
706
 */
707 708
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
			      void **addr, unsigned int *bit_nr)
709 710 711 712 713
{
	struct mem_zone_bm_rtree *curr, *zone;
	struct rtree_node *node;
	int i, block_nr;

714 715 716 717 718
	zone = bm->cur.zone;

	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
		goto zone_found;

719 720 721 722 723 724 725 726 727 728 729 730 731
	zone = NULL;

	/* Find the right zone */
	list_for_each_entry(curr, &bm->zones, list) {
		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
			zone = curr;
			break;
		}
	}

	if (!zone)
		return -EFAULT;

732
zone_found:
733
	/*
734 735
	 * We have found the zone. Now walk the radix tree to find the leaf node
	 * for our PFN.
736
	 */
737 738 739 740
	node = bm->cur.node;
	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
		goto node_found;

741 742 743 744 745 746 747 748 749 750 751 752
	node      = zone->rtree;
	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;

	for (i = zone->levels; i > 0; i--) {
		int index;

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		BUG_ON(node->data[index] == 0);
		node = (struct rtree_node *)node->data[index];
	}

753 754 755 756 757 758
node_found:
	/* Update last position */
	bm->cur.zone = zone;
	bm->cur.node = node;
	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;

759 760 761 762 763 764 765
	/* Set return values */
	*addr = node->data;
	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;

	return 0;
}

766 767 768 769
static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
770
	int error;
771

772 773
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
774 775 776
	set_bit(bit, addr);
}

777 778 779 780 781 782 783
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
784 785 786
	if (!error)
		set_bit(bit, addr);

787 788 789
	return error;
}

790 791 792 793
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
794
	int error;
795

796 797
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
798 799 800
	clear_bit(bit, addr);
}

801 802 803 804 805 806 807 808
static void memory_bm_clear_current(struct memory_bitmap *bm)
{
	int bit;

	bit = max(bm->cur.node_bit - 1, 0);
	clear_bit(bit, bm->cur.node->data);
}

809 810 811 812
static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
813
	int error;
814

815 816
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
817
	return test_bit(bit, addr);
818 819
}

820 821 822 823
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
824

825
	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
826 827
}

828
/*
829
 * rtree_next_node - Jump to the next leaf node.
830
 *
831 832 833 834
 * Set the position to the beginning of the next node in the
 * memory bitmap. This is either the next node in the current
 * zone's radix tree or the first node in the radix tree of the
 * next zone.
835
 *
836
 * Return true if there is a next node, false otherwise.
837 838 839
 */
static bool rtree_next_node(struct memory_bitmap *bm)
{
840 841 842
	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
		bm->cur.node = list_entry(bm->cur.node->list.next,
					  struct rtree_node, list);
843 844
		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
		bm->cur.node_bit  = 0;
845
		touch_softlockup_watchdog();
846 847 848 849
		return true;
	}

	/* No more nodes, goto next zone */
850 851
	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
		bm->cur.zone = list_entry(bm->cur.zone->list.next,
852 853 854 855 856 857 858 859 860 861 862 863
				  struct mem_zone_bm_rtree, list);
		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
					  struct rtree_node, list);
		bm->cur.node_pfn = 0;
		bm->cur.node_bit = 0;
		return true;
	}

	/* No more zones */
	return false;
}

864
/**
865 866
 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 * @bm: Memory bitmap.
867
 *
868 869 870
 * Starting from the last returned position this function searches for the next
 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 * set, BM_END_OF_MAP is returned.
871
 *
872 873
 * It is required to run memory_bm_position_reset() before the first call to
 * this function for the given memory bitmap.
874
 */
875
static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
{
	unsigned long bits, pfn, pages;
	int bit;

	do {
		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
		bit	  = find_next_bit(bm->cur.node->data, bits,
					  bm->cur.node_bit);
		if (bit < bits) {
			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
			bm->cur.node_bit = bit + 1;
			return pfn;
		}
	} while (rtree_next_node(bm));

	return BM_END_OF_MAP;
}

895 896 897
/*
 * This structure represents a range of page frames the contents of which
 * should not be saved during hibernation.
898 899 900 901 902 903 904 905 906
 */
struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		recycle_safe_page(node->data);

	list_for_each_entry(node, &zone->leaves, list)
		recycle_safe_page(node->data);
}

static void memory_bm_recycle(struct memory_bitmap *bm)
{
	struct mem_zone_bm_rtree *zone;
	struct linked_page *p_list;

	list_for_each_entry(zone, &bm->zones, list)
		recycle_zone_bm_rtree(zone);

	p_list = bm->p_list;
	while (p_list) {
		struct linked_page *lp = p_list;

		p_list = lp->next;
		recycle_safe_page(lp);
	}
}

935
/**
936 937 938 939
 * register_nosave_region - Register a region of unsaveable memory.
 *
 * Register a range of page frames the contents of which should not be saved
 * during hibernation (to be used in the early initialization code).
940
 */
941 942
void __init __register_nosave_region(unsigned long start_pfn,
				     unsigned long end_pfn, int use_kmalloc)
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
958
	if (use_kmalloc) {
959
		/* During init, this shouldn't fail */
960 961
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
962
	} else {
963
		/* This allocation cannot fail */
964
		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
965
	}
966 967 968 969
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
970 971 972
	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
		(unsigned long long) start_pfn << PAGE_SHIFT,
		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
1026 1027 1028 1029 1030
 * mark_nosave_pages - Mark pages that should not be saved.
 * @bm: Memory bitmap.
 *
 * Set the bits in @bm that correspond to the page frames the contents of which
 * should not be saved.
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
 */
static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

1042 1043 1044 1045
		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
				- 1);
1046 1047

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1048 1049 1050 1051 1052 1053 1054 1055 1056
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
1057 1058 1059 1060
	}
}

/**
1061 1062 1063 1064 1065 1066
 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
 *
 * Create bitmaps needed for marking page frames that should not be saved and
 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
 * only modified if everything goes well, because we don't want the bits to be
 * touched before both bitmaps are set up.
1067 1068 1069 1070 1071 1072
 */
int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

1073 1074 1075 1076
	if (forbidden_pages_map && free_pages_map)
		return 0;
	else
		BUG_ON(forbidden_pages_map || free_pages_map);
1077

1078
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1079 1080 1081
	if (!bm1)
		return -ENOMEM;

1082
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1083 1084 1085
	if (error)
		goto Free_first_object;

1086
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1087 1088 1089
	if (!bm2)
		goto Free_first_bitmap;

1090
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1091 1092 1093 1094 1095 1096 1097
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

R
Rafael J. Wysocki 已提交
1098
	pr_debug("PM: Basic memory bitmaps created\n");
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
1112 1113 1114 1115 1116
 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
 *
 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
 * auxiliary pointers are necessary so that the bitmaps themselves are not
 * referred to while they are being freed.
1117 1118 1119 1120 1121
 */
void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

1122 1123
	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
		return;
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

R
Rafael J. Wysocki 已提交
1134
	pr_debug("PM: Basic memory bitmaps freed\n");
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
void clear_free_pages(void)
{
#ifdef CONFIG_PAGE_POISONING_ZERO
	struct memory_bitmap *bm = free_pages_map;
	unsigned long pfn;

	if (WARN_ON(!(free_pages_map)))
		return;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (pfn_valid(pfn))
			clear_highpage(pfn_to_page(pfn));

		pfn = memory_bm_next_pfn(bm);
	}
	memory_bm_position_reset(bm);
	pr_info("PM: free pages cleared after restore\n");
#endif /* PAGE_POISONING_ZERO */
}

1159
/**
1160 1161 1162 1163 1164 1165
 * snapshot_additional_pages - Estimate the number of extra pages needed.
 * @zone: Memory zone to carry out the computation for.
 *
 * Estimate the number of additional pages needed for setting up a hibernation
 * image data structures for @zone (usually, the returned value is greater than
 * the exact number).
1166 1167 1168
 */
unsigned int snapshot_additional_pages(struct zone *zone)
{
1169
	unsigned int rtree, nodes;
1170

1171 1172 1173 1174 1175 1176 1177 1178
	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
			      LINKED_PAGE_DATA_SIZE);
	while (nodes > 1) {
		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
		rtree += nodes;
	}

1179
	return 2 * rtree;
1180 1181
}

1182 1183
#ifdef CONFIG_HIGHMEM
/**
1184 1185 1186
 * count_free_highmem_pages - Compute the total number of free highmem pages.
 *
 * The returned number is system-wide.
1187 1188 1189 1190 1191 1192
 */
static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

1193 1194
	for_each_populated_zone(zone)
		if (is_highmem(zone))
1195
			cnt += zone_page_state(zone, NR_FREE_PAGES);
1196 1197 1198 1199 1200

	return cnt;
}

/**
1201 1202 1203
 * saveable_highmem_page - Check if a highmem page is saveable.
 *
 * Determine whether a highmem page should be included in a hibernation image.
1204
 *
1205 1206
 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 * and it isn't part of a free chunk of pages.
1207
 */
1208
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1209 1210 1211 1212 1213 1214 1215
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
1216 1217
	if (page_zone(page) != zone)
		return NULL;
1218 1219 1220

	BUG_ON(!PageHighMem(page));

1221 1222
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
1223 1224
		return NULL;

1225 1226 1227
	if (page_is_guard(page))
		return NULL;

1228 1229 1230 1231
	return page;
}

/**
1232
 * count_highmem_pages - Compute the total number of saveable highmem pages.
1233
 */
1234
static unsigned int count_highmem_pages(void)
1235 1236 1237 1238
{
	struct zone *zone;
	unsigned int n = 0;

1239
	for_each_populated_zone(zone) {
1240 1241 1242 1243 1244 1245
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
1246
		max_zone_pfn = zone_end_pfn(zone);
1247
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1248
			if (saveable_highmem_page(zone, pfn))
1249 1250 1251 1252 1253
				n++;
	}
	return n;
}
#else
1254 1255 1256 1257
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
1258 1259
#endif /* CONFIG_HIGHMEM */

1260
/**
1261 1262 1263 1264
 * saveable_page - Check if the given page is saveable.
 *
 * Determine whether a non-highmem page should be included in a hibernation
 * image.
1265
 *
1266 1267 1268
 * We should save the page if it isn't Nosave, and is not in the range
 * of pages statically defined as 'unsaveable', and it isn't part of
 * a free chunk of pages.
1269
 */
1270
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1271
{
P
Pavel Machek 已提交
1272
	struct page *page;
1273 1274

	if (!pfn_valid(pfn))
1275
		return NULL;
1276 1277

	page = pfn_to_page(pfn);
1278 1279
	if (page_zone(page) != zone)
		return NULL;
1280

1281 1282
	BUG_ON(PageHighMem(page));

1283
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1284
		return NULL;
1285

1286 1287
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1288
		return NULL;
1289

1290 1291 1292
	if (page_is_guard(page))
		return NULL;

1293
	return page;
1294 1295
}

1296
/**
1297
 * count_data_pages - Compute the total number of saveable non-highmem pages.
1298
 */
1299
static unsigned int count_data_pages(void)
1300 1301
{
	struct zone *zone;
1302
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
1303
	unsigned int n = 0;
1304

1305
	for_each_populated_zone(zone) {
1306 1307
		if (is_highmem(zone))
			continue;
1308

1309
		mark_free_pages(zone);
1310
		max_zone_pfn = zone_end_pfn(zone);
1311
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1312
			if (saveable_page(zone, pfn))
1313
				n++;
1314
	}
1315
	return n;
1316 1317
}

1318 1319
/*
 * This is needed, because copy_page and memcpy are not usable for copying
1320 1321 1322
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
1323 1324 1325 1326 1327 1328 1329
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

1330
/**
1331 1332 1333 1334 1335
 * safe_copy_page - Copy a page in a safe way.
 *
 * Check if the page we are going to copy is marked as present in the kernel
 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
 * and in that case kernel_page_present() always returns 'true').
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}

1348
#ifdef CONFIG_HIGHMEM
1349
static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1350 1351
{
	return is_highmem(zone) ?
1352
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1353 1354
}

1355
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1356 1357 1358 1359 1360 1361 1362
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
1363 1364
		src = kmap_atomic(s_page);
		dst = kmap_atomic(d_page);
1365
		do_copy_page(dst, src);
1366 1367
		kunmap_atomic(dst);
		kunmap_atomic(src);
1368 1369
	} else {
		if (PageHighMem(d_page)) {
1370 1371
			/*
			 * The page pointed to by src may contain some kernel
1372 1373
			 * data modified by kmap_atomic()
			 */
1374
			safe_copy_page(buffer, s_page);
1375
			dst = kmap_atomic(d_page);
1376
			copy_page(dst, buffer);
1377
			kunmap_atomic(dst);
1378
		} else {
1379
			safe_copy_page(page_address(d_page), s_page);
1380 1381 1382 1383
		}
	}
}
#else
1384
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1385

1386
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1387
{
1388 1389
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1390 1391 1392
}
#endif /* CONFIG_HIGHMEM */

1393 1394
static void copy_data_pages(struct memory_bitmap *copy_bm,
			    struct memory_bitmap *orig_bm)
1395 1396
{
	struct zone *zone;
1397
	unsigned long pfn;
1398

1399
	for_each_populated_zone(zone) {
1400 1401
		unsigned long max_zone_pfn;

1402
		mark_free_pages(zone);
1403
		max_zone_pfn = zone_end_pfn(zone);
1404
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1405
			if (page_is_saveable(zone, pfn))
1406
				memory_bm_set_bit(orig_bm, pfn);
1407
	}
1408 1409
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1410
	for(;;) {
1411
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1412 1413 1414 1415
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1416 1417
}

1418 1419 1420 1421
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1422 1423 1424 1425
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
1426
static unsigned int alloc_normal, alloc_highmem;
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1441

1442
/**
1443
 * swsusp_free - Free pages allocated for hibernation image.
1444
 *
1445 1446
 * Image pages are alocated before snapshot creation, so they need to be
 * released after resume.
1447 1448 1449
 */
void swsusp_free(void)
{
1450
	unsigned long fb_pfn, fr_pfn;
1451

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	if (!forbidden_pages_map || !free_pages_map)
		goto out;

	memory_bm_position_reset(forbidden_pages_map);
	memory_bm_position_reset(free_pages_map);

loop:
	fr_pfn = memory_bm_next_pfn(free_pages_map);
	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);

	/*
	 * Find the next bit set in both bitmaps. This is guaranteed to
	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
	 */
	do {
		if (fb_pfn < fr_pfn)
			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
		if (fr_pfn < fb_pfn)
			fr_pfn = memory_bm_next_pfn(free_pages_map);
	} while (fb_pfn != fr_pfn);

	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
		struct page *page = pfn_to_page(fr_pfn);

		memory_bm_clear_current(forbidden_pages_map);
		memory_bm_clear_current(free_pages_map);
1478
		hibernate_restore_unprotect_page(page_address(page));
1479 1480
		__free_page(page);
		goto loop;
1481
	}
1482 1483

out:
1484 1485
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1486
	restore_pblist = NULL;
1487
	buffer = NULL;
1488 1489
	alloc_normal = 0;
	alloc_highmem = 0;
1490
	hibernate_restore_protection_end();
1491 1492
}

1493 1494 1495 1496
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1497
/**
1498
 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1499 1500
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1501
 *
1502 1503 1504 1505 1506 1507 1508
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1509 1510 1511 1512
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1513
			break;
1514 1515 1516 1517 1518
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1519 1520 1521 1522 1523 1524 1525
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

1526 1527
static unsigned long preallocate_image_memory(unsigned long nr_pages,
					      unsigned long avail_normal)
1528
{
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	unsigned long alloc;

	if (avail_normal <= alloc_normal)
		return 0;

	alloc = avail_normal - alloc_normal;
	if (nr_pages < alloc)
		alloc = nr_pages;

	return preallocate_image_pages(alloc, GFP_IMAGE);
1539 1540 1541 1542 1543 1544 1545 1546 1547
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
1548
 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1549
 */
1550 1551 1552 1553 1554 1555
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
	x *= multiplier;
	do_div(x, base);
	return (unsigned long)x;
}
1556

1557
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1558 1559
						  unsigned long highmem,
						  unsigned long total)
1560
{
1561 1562 1563
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1564
}
1565 1566 1567 1568 1569 1570 1571
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1572 1573
							 unsigned long highmem,
							 unsigned long total)
1574 1575 1576 1577
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1578

1579
/**
1580
 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1581
 */
1582
static unsigned long free_unnecessary_pages(void)
1583
{
1584
	unsigned long save, to_free_normal, to_free_highmem, free;
1585

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	save = count_data_pages();
	if (alloc_normal >= save) {
		to_free_normal = alloc_normal - save;
		save = 0;
	} else {
		to_free_normal = 0;
		save -= alloc_normal;
	}
	save += count_highmem_pages();
	if (alloc_highmem >= save) {
		to_free_highmem = alloc_highmem - save;
1597 1598
	} else {
		to_free_highmem = 0;
1599 1600 1601 1602 1603
		save -= alloc_highmem;
		if (to_free_normal > save)
			to_free_normal -= save;
		else
			to_free_normal = 0;
1604
	}
1605
	free = to_free_normal + to_free_highmem;
1606 1607 1608

	memory_bm_position_reset(&copy_bm);

1609
	while (to_free_normal > 0 || to_free_highmem > 0) {
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
1629 1630

	return free;
1631 1632
}

1633
/**
1634
 * minimum_image_size - Estimate the minimum acceptable size of an image.
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1646
 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1647 1648 1649 1650 1651 1652 1653
 * minus mapped file pages.
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

	size = global_page_state(NR_SLAB_RECLAIMABLE)
M
Mel Gorman 已提交
1654 1655 1656 1657 1658
		+ global_node_page_state(NR_ACTIVE_ANON)
		+ global_node_page_state(NR_INACTIVE_ANON)
		+ global_node_page_state(NR_ACTIVE_FILE)
		+ global_node_page_state(NR_INACTIVE_FILE)
		- global_node_page_state(NR_FILE_MAPPED);
1659 1660 1661 1662

	return saveable <= size ? 0 : saveable - size;
}

1663
/**
1664
 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1665 1666 1667 1668 1669
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
1670 1671 1672 1673
 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
 * total number of available page frames and allocate at least
1674
 *
1675 1676
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1677 1678 1679 1680 1681
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1682 1683
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1684
 */
1685
int hibernate_preallocate_memory(void)
1686 1687
{
	struct zone *zone;
1688
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1689
	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1690
	ktime_t start, stop;
1691
	int error;
1692

1693
	printk(KERN_INFO "PM: Preallocating image memory... ");
1694
	start = ktime_get();
1695

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	alloc_normal = 0;
	alloc_highmem = 0;

1707
	/* Count the number of saveable data pages. */
1708
	save_highmem = count_highmem_pages();
1709
	saveable = count_data_pages();
1710

1711 1712 1713 1714 1715
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1716 1717
	saveable += save_highmem;
	highmem = save_highmem;
1718 1719 1720 1721 1722 1723 1724 1725
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
1726
	avail_normal = count;
1727 1728 1729
	count += highmem;
	count -= totalreserve_pages;

1730 1731 1732
	/* Add number of pages required for page keys (s390 only). */
	size += page_key_additional_pages(saveable);

1733
	/* Compute the maximum number of saveable pages to leave in memory. */
1734 1735
	max_size = (count - (size + PAGES_FOR_IO)) / 2
			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1736
	/* Compute the desired number of image pages specified by image_size. */
1737 1738 1739 1740
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
1741 1742 1743
	 * If the desired number of image pages is at least as large as the
	 * current number of saveable pages in memory, allocate page frames for
	 * the image and we're done.
1744
	 */
1745 1746
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
1747
		pages += preallocate_image_memory(saveable - pages, avail_normal);
1748
		goto out;
1749
	}
1750

1751 1752
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
1753 1754 1755 1756 1757 1758 1759 1760 1761
	/*
	 * To avoid excessive pressure on the normal zone, leave room in it to
	 * accommodate an image of the minimum size (unless it's already too
	 * small, in which case don't preallocate pages from it at all).
	 */
	if (avail_normal > pages)
		avail_normal -= pages;
	else
		avail_normal = 0;
1762 1763 1764
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1777 1778
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1779 1780
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
1781 1782 1783 1784 1785
	alloc = count - max_size;
	if (alloc > pages_highmem)
		alloc -= pages_highmem;
	else
		alloc = 0;
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	pages = preallocate_image_memory(alloc, avail_normal);
	if (pages < alloc) {
		/* We have exhausted non-highmem pages, try highmem. */
		alloc -= pages;
		pages += pages_highmem;
		pages_highmem = preallocate_image_highmem(alloc);
		if (pages_highmem < alloc)
			goto err_out;
		pages += pages_highmem;
		/*
		 * size is the desired number of saveable pages to leave in
		 * memory, so try to preallocate (all memory - size) pages.
		 */
		alloc = (count - pages) - size;
		pages += preallocate_image_highmem(alloc);
	} else {
		/*
		 * There are approximately max_size saveable pages at this point
		 * and we want to reduce this number down to size.
		 */
		alloc = max_size - size;
		size = preallocate_highmem_fraction(alloc, highmem, count);
		pages_highmem += size;
		alloc -= size;
		size = preallocate_image_memory(alloc, avail_normal);
		pages_highmem += preallocate_image_highmem(alloc - size);
		pages += pages_highmem + size;
	}
1814

1815 1816 1817 1818 1819
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
1820
	pages -= free_unnecessary_pages();
1821 1822

 out:
1823
	stop = ktime_get();
1824
	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1825
	swsusp_show_speed(start, stop, pages, "Allocated");
1826 1827

	return 0;
1828 1829 1830 1831 1832

 err_out:
	printk(KERN_CONT "\n");
	swsusp_free();
	return -ENOMEM;
1833 1834
}

1835 1836
#ifdef CONFIG_HIGHMEM
/**
1837 1838 1839 1840 1841
 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
 *
 * Compute the number of non-highmem pages that will be necessary for creating
 * copies of highmem pages.
 */
1842 1843
static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1844
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1845 1846 1847 1848 1849 1850 1851 1852 1853

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
1854
static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1855
#endif /* CONFIG_HIGHMEM */
1856 1857

/**
1858
 * enough_free_mem - Check if there is enough free memory for the image.
1859
 */
1860
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1861
{
1862
	struct zone *zone;
1863
	unsigned int free = alloc_normal;
1864

1865
	for_each_populated_zone(zone)
1866
		if (!is_highmem(zone))
1867
			free += zone_page_state(zone, NR_FREE_PAGES);
1868

1869
	nr_pages += count_pages_for_highmem(nr_highmem);
1870 1871
	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
		nr_pages, PAGES_FOR_IO, free);
1872

1873
	return free > nr_pages + PAGES_FOR_IO;
1874 1875
}

1876 1877
#ifdef CONFIG_HIGHMEM
/**
1878 1879 1880 1881
 * get_highmem_buffer - Allocate a buffer for highmem pages.
 *
 * If there are some highmem pages in the hibernation image, we may need a
 * buffer to copy them and/or load their data.
1882 1883 1884 1885 1886 1887 1888 1889
 */
static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
1890 1891 1892 1893
 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
 *
 * Try to allocate as many pages as needed, but if the number of free highmem
 * pages is less than that, allocate them all.
1894
 */
1895 1896
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int nr_highmem)
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

1907
		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1908 1909 1910 1911 1912 1913 1914
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

1915 1916
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int n) { return 0; }
1917 1918 1919
#endif /* CONFIG_HIGHMEM */

/**
1920
 * swsusp_alloc - Allocate memory for hibernation image.
1921
 *
1922 1923 1924
 * We first try to allocate as many highmem pages as there are
 * saveable highmem pages in the system.  If that fails, we allocate
 * non-highmem pages for the copies of the remaining highmem ones.
1925
 *
1926 1927 1928
 * In this approach it is likely that the copies of highmem pages will
 * also be located in the high memory, because of the way in which
 * copy_data_pages() works.
1929
 */
1930
static int swsusp_alloc(struct memory_bitmap *copy_bm,
1931
			unsigned int nr_pages, unsigned int nr_highmem)
1932
{
1933
	if (nr_highmem > 0) {
1934
		if (get_highmem_buffer(PG_ANY))
1935 1936 1937 1938 1939
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1940
	}
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
1951
	}
1952

1953
	return 0;
1954

1955
 err_out:
1956
	swsusp_free();
1957
	return -ENOMEM;
1958 1959
}

1960
asmlinkage __visible int swsusp_save(void)
1961
{
1962
	unsigned int nr_pages, nr_highmem;
1963

1964
	printk(KERN_INFO "PM: Creating hibernation image:\n");
1965

1966
	drain_local_pages(NULL);
1967
	nr_pages = count_data_pages();
1968
	nr_highmem = count_highmem_pages();
R
Rafael J. Wysocki 已提交
1969
	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1970

1971
	if (!enough_free_mem(nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1972
		printk(KERN_ERR "PM: Not enough free memory\n");
1973 1974 1975
		return -ENOMEM;
	}

1976
	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1977
		printk(KERN_ERR "PM: Memory allocation failed\n");
1978
		return -ENOMEM;
1979
	}
1980

1981 1982
	/*
	 * During allocating of suspend pagedir, new cold pages may appear.
1983 1984
	 * Kill them.
	 */
1985
	drain_local_pages(NULL);
1986
	copy_data_pages(&copy_bm, &orig_bm);
1987 1988 1989 1990 1991 1992 1993

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1994
	nr_pages += nr_highmem;
1995
	nr_copy_pages = nr_pages;
1996
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1997

R
Rafael J. Wysocki 已提交
1998 1999
	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
		nr_pages);
2000

2001 2002
	return 0;
}
2003

2004 2005
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
2006
{
2007
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2008
	info->version_code = LINUX_VERSION_CODE;
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

2028 2029 2030 2031 2032
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

2033 2034 2035
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
2036
	info->num_physpages = get_num_physpages();
2037
	info->image_pages = nr_copy_pages;
2038
	info->pages = snapshot_get_image_size();
2039 2040
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
2041
	return init_header_complete(info);
2042 2043 2044
}

/**
2045 2046 2047 2048 2049 2050
 * pack_pfns - Prepare PFNs for saving.
 * @bm: Memory bitmap.
 * @buf: Memory buffer to store the PFNs in.
 *
 * PFNs corresponding to set bits in @bm are stored in the area of memory
 * pointed to by @buf (1 page at a time).
2051
 */
2052
static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2053 2054 2055
{
	int j;

2056
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2057 2058
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
2059
			break;
2060 2061
		/* Save page key for data page (s390 only). */
		page_key_read(buf + j);
2062 2063 2064 2065
	}
}

/**
2066 2067
 * snapshot_read_next - Get the address to read the next image page from.
 * @handle: Snapshot handle to be used for the reading.
2068
 *
2069 2070 2071
 * On the first call, @handle should point to a zeroed snapshot_handle
 * structure.  The structure gets populated then and a pointer to it should be
 * passed to this function every next time.
2072
 *
2073 2074 2075
 * On success, the function returns a positive number.  Then, the caller
 * is allowed to read up to the returned number of bytes from the memory
 * location computed by the data_of() macro.
2076
 *
2077 2078 2079
 * The function returns 0 to indicate the end of the data stream condition,
 * and negative numbers are returned on errors.  If that happens, the structure
 * pointed to by @handle is not updated and should not be used any more.
2080
 */
J
Jiri Slaby 已提交
2081
int snapshot_read_next(struct snapshot_handle *handle)
2082
{
2083
	if (handle->cur > nr_meta_pages + nr_copy_pages)
2084
		return 0;
2085

2086 2087
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
2088
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2089 2090 2091
		if (!buffer)
			return -ENOMEM;
	}
J
Jiri Slaby 已提交
2092
	if (!handle->cur) {
2093 2094 2095 2096 2097
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
2098
		handle->buffer = buffer;
2099 2100
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
J
Jiri Slaby 已提交
2101
	} else if (handle->cur <= nr_meta_pages) {
2102
		clear_page(buffer);
J
Jiri Slaby 已提交
2103 2104 2105
		pack_pfns(buffer, &orig_bm);
	} else {
		struct page *page;
2106

J
Jiri Slaby 已提交
2107 2108
		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
		if (PageHighMem(page)) {
2109 2110
			/*
			 * Highmem pages are copied to the buffer,
J
Jiri Slaby 已提交
2111 2112 2113 2114
			 * because we can't return with a kmapped
			 * highmem page (we may not be called again).
			 */
			void *kaddr;
2115

2116
			kaddr = kmap_atomic(page);
2117
			copy_page(buffer, kaddr);
2118
			kunmap_atomic(kaddr);
J
Jiri Slaby 已提交
2119 2120 2121
			handle->buffer = buffer;
		} else {
			handle->buffer = page_address(page);
2122 2123
		}
	}
J
Jiri Slaby 已提交
2124 2125
	handle->cur++;
	return PAGE_SIZE;
2126 2127
}

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
static void duplicate_memory_bitmap(struct memory_bitmap *dst,
				    struct memory_bitmap *src)
{
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
	}
}

2141
/**
2142 2143 2144 2145
 * mark_unsafe_pages - Mark pages that were used before hibernation.
 *
 * Mark the pages that cannot be used for storing the image during restoration,
 * because they conflict with the pages that had been used before hibernation.
2146
 */
2147
static void mark_unsafe_pages(struct memory_bitmap *bm)
2148
{
2149
	unsigned long pfn;
2150

2151 2152 2153 2154 2155 2156
	/* Clear the "free"/"unsafe" bit for all PFNs */
	memory_bm_position_reset(free_pages_map);
	pfn = memory_bm_next_pfn(free_pages_map);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_clear_current(free_pages_map);
		pfn = memory_bm_next_pfn(free_pages_map);
2157 2158
	}

2159 2160
	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
	duplicate_memory_bitmap(free_pages_map, bm);
2161

2162
	allocated_unsafe_pages = 0;
2163 2164
}

2165
static int check_header(struct swsusp_info *info)
2166
{
2167
	char *reason;
2168

2169
	reason = check_image_kernel(info);
2170
	if (!reason && info->num_physpages != get_num_physpages())
2171 2172
		reason = "memory size";
	if (reason) {
R
Rafael J. Wysocki 已提交
2173
		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2174 2175 2176 2177 2178 2179
		return -EPERM;
	}
	return 0;
}

/**
2180
 * load header - Check the image header and copy the data from it.
2181
 */
2182
static int load_header(struct swsusp_info *info)
2183 2184 2185
{
	int error;

2186
	restore_pblist = NULL;
2187 2188 2189 2190 2191 2192 2193 2194 2195
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
2196 2197 2198 2199 2200 2201
 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
 * @bm: Memory bitmap.
 * @buf: Area of memory containing the PFNs.
 *
 * For each element of the array pointed to by @buf (1 page at a time), set the
 * corresponding bit in @bm.
2202
 */
2203
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2204 2205 2206
{
	int j;

2207 2208 2209 2210
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

2211 2212 2213
		/* Extract and buffer page key for data page (s390 only). */
		page_key_memorize(buf + j);

2214
		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2215 2216 2217
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
2218
	}
2219 2220

	return 0;
2221 2222
}

2223
#ifdef CONFIG_HIGHMEM
2224 2225
/*
 * struct highmem_pbe is used for creating the list of highmem pages that
2226 2227 2228 2229 2230 2231 2232 2233 2234
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

2235 2236
/*
 * List of highmem PBEs needed for restoring the highmem pages that were
2237 2238 2239 2240 2241 2242 2243
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
2244 2245 2246 2247
 * count_highmem_image_pages - Compute the number of highmem pages in the image.
 * @bm: Memory bitmap.
 *
 * The bits in @bm that correspond to image pages are assumed to be set.
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
 */
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
/**
 * prepare_highmem_image - Allocate memory for loading highmem data from image.
 * @bm: Pointer to an uninitialized memory bitmap structure.
 * @nr_highmem_p: Pointer to the number of highmem image pages.
 *
 * Try to allocate as many highmem pages as there are highmem image pages
 * (@nr_highmem_p points to the variable containing the number of highmem image
 * pages).  The pages that are "safe" (ie. will not be overwritten when the
 * hibernation image is restored entirely) have the corresponding bits set in
 * @bm (it must be unitialized).
 *
 * NOTE: This function should not be called if there are no highmem image pages.
 */
2282 2283
static int prepare_highmem_image(struct memory_bitmap *bm,
				 unsigned int *nr_highmem_p)
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
2304
		if (!swsusp_page_is_free(page)) {
2305 2306 2307 2308 2309
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
2310 2311
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
2312 2313 2314 2315 2316 2317
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

2318 2319
static struct page *last_highmem_page;

2320
/**
2321 2322 2323 2324
 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
 *
 * For a given highmem image page get a buffer that suspend_write_next() should
 * return to its caller to write to.
2325
 *
2326 2327 2328 2329
 * If the page is to be saved to its "original" page frame or a copy of
 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
 * the copy of the page is to be made in normal memory, so the address of
 * the copy is returned.
2330
 *
2331 2332 2333 2334 2335 2336
 * If @buffer is returned, the caller of suspend_write_next() will write
 * the page's contents to @buffer, so they will have to be copied to the
 * right location on the next call to suspend_write_next() and it is done
 * with the help of copy_last_highmem_page().  For this purpose, if
 * @buffer is returned, @last_highmem_page is set to the page to which
 * the data will have to be copied from @buffer.
2337
 */
2338 2339
static void *get_highmem_page_buffer(struct page *page,
				     struct chain_allocator *ca)
2340 2341 2342 2343
{
	struct highmem_pbe *pbe;
	void *kaddr;

2344
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2345 2346
		/*
		 * We have allocated the "original" page frame and we can
2347 2348 2349 2350 2351
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
2352 2353
	/*
	 * The "original" page frame has not been allocated and we have to
2354 2355 2356 2357 2358
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
2359
		return ERR_PTR(-ENOMEM);
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
2383 2384 2385 2386 2387
 * copy_last_highmem_page - Copy most the most recent highmem image page.
 *
 * Copy the contents of a highmem image from @buffer, where the caller of
 * snapshot_write_next() has stored them, to the right location represented by
 * @last_highmem_page .
2388 2389 2390 2391 2392 2393
 */
static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

2394
		dst = kmap_atomic(last_highmem_page);
2395
		copy_page(dst, buffer);
2396
		kunmap_atomic(dst);
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
2415
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2416

2417 2418
static inline int prepare_highmem_image(struct memory_bitmap *bm,
					unsigned int *nr_highmem_p) { return 0; }
2419

2420 2421
static inline void *get_highmem_page_buffer(struct page *page,
					    struct chain_allocator *ca)
2422
{
2423
	return ERR_PTR(-EINVAL);
2424 2425 2426 2427 2428 2429 2430
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

2431 2432
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

2433
/**
2434 2435 2436 2437 2438 2439 2440
 * prepare_image - Make room for loading hibernation image.
 * @new_bm: Unitialized memory bitmap structure.
 * @bm: Memory bitmap with unsafe pages marked.
 *
 * Use @bm to mark the pages that will be overwritten in the process of
 * restoring the system memory state from the suspend image ("unsafe" pages)
 * and allocate memory for the image.
2441
 *
2442 2443 2444 2445 2446
 * The idea is to allocate a new memory bitmap first and then allocate
 * as many pages as needed for image data, but without specifying what those
 * pages will be used for just yet.  Instead, we mark them all as allocated and
 * create a lists of "safe" pages to be used later.  On systems with high
 * memory a list of "safe" highmem pages is created too.
2447
 */
2448
static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2449
{
2450
	unsigned int nr_pages, nr_highmem;
2451
	struct linked_page *lp;
2452
	int error;
2453

2454 2455 2456 2457 2458
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2459
	mark_unsafe_pages(bm);
2460 2461 2462 2463 2464 2465 2466

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2467 2468 2469 2470 2471
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2472 2473
	/*
	 * Reserve some safe pages for potential later use.
2474 2475 2476 2477
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2478 2479
	 *
	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2480
	 */
2481
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2482 2483
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2484
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2485
		if (!lp) {
2486
			error = -ENOMEM;
2487 2488
			goto Free;
		}
2489 2490
		lp->next = safe_pages_list;
		safe_pages_list = lp;
2491
		nr_pages--;
2492
	}
2493
	/* Preallocate memory for the image */
2494
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2495 2496 2497 2498 2499 2500
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2501
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2502 2503 2504
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2505
		}
2506
		/* Mark the page as allocated */
2507 2508
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2509
		nr_pages--;
2510
	}
2511 2512
	return 0;

R
Rafael J. Wysocki 已提交
2513
 Free:
2514
	swsusp_free();
2515 2516 2517
	return error;
}

2518
/**
2519 2520 2521 2522
 * get_buffer - Get the address to store the next image data page.
 *
 * Get the address that snapshot_write_next() should return to its caller to
 * write to.
2523 2524
 */
static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2525
{
2526
	struct pbe *pbe;
2527 2528
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2529

2530 2531 2532 2533
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2534 2535 2536
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2537
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2538 2539
		/*
		 * We have allocated the "original" page frame and we can
2540
		 * use it directly to store the loaded page.
2541
		 */
2542 2543
		return page_address(page);

2544 2545
	/*
	 * The "original" page frame has not been allocated and we have to
2546
	 * use a "safe" page frame to store the loaded page.
2547
	 */
2548 2549 2550
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2551
		return ERR_PTR(-ENOMEM);
2552
	}
2553 2554
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2555 2556 2557
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2558
	return pbe->address;
2559 2560
}

2561
/**
2562 2563
 * snapshot_write_next - Get the address to store the next image page.
 * @handle: Snapshot handle structure to guide the writing.
2564
 *
2565 2566 2567
 * On the first call, @handle should point to a zeroed snapshot_handle
 * structure.  The structure gets populated then and a pointer to it should be
 * passed to this function every next time.
2568
 *
2569 2570 2571
 * On success, the function returns a positive number.  Then, the caller
 * is allowed to write up to the returned number of bytes to the memory
 * location computed by the data_of() macro.
2572
 *
2573 2574 2575
 * The function returns 0 to indicate the "end of file" condition.  Negative
 * numbers are returned on errors, in which cases the structure pointed to by
 * @handle is not updated and should not be used any more.
2576
 */
J
Jiri Slaby 已提交
2577
int snapshot_write_next(struct snapshot_handle *handle)
2578
{
2579
	static struct chain_allocator ca;
2580 2581
	int error = 0;

2582
	/* Check if we have already loaded the entire image */
J
Jiri Slaby 已提交
2583
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2584
		return 0;
2585

J
Jiri Slaby 已提交
2586 2587 2588
	handle->sync_read = 1;

	if (!handle->cur) {
2589 2590 2591 2592
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2593 2594
		if (!buffer)
			return -ENOMEM;
2595

2596
		handle->buffer = buffer;
J
Jiri Slaby 已提交
2597 2598 2599 2600
	} else if (handle->cur == 1) {
		error = load_header(buffer);
		if (error)
			return error;
2601

2602 2603
		safe_pages_list = NULL;

J
Jiri Slaby 已提交
2604 2605 2606 2607
		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
		if (error)
			return error;

2608 2609 2610 2611 2612
		/* Allocate buffer for page keys. */
		error = page_key_alloc(nr_copy_pages);
		if (error)
			return error;

2613
		hibernate_restore_protection_begin();
J
Jiri Slaby 已提交
2614 2615 2616 2617
	} else if (handle->cur <= nr_meta_pages + 1) {
		error = unpack_orig_pfns(buffer, &copy_bm);
		if (error)
			return error;
2618

J
Jiri Slaby 已提交
2619 2620
		if (handle->cur == nr_meta_pages + 1) {
			error = prepare_image(&orig_bm, &copy_bm);
2621 2622 2623
			if (error)
				return error;

J
Jiri Slaby 已提交
2624 2625 2626
			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
			memory_bm_position_reset(&orig_bm);
			restore_pblist = NULL;
2627
			handle->buffer = get_buffer(&orig_bm, &ca);
J
Jiri Slaby 已提交
2628
			handle->sync_read = 0;
2629 2630
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2631 2632
		}
	} else {
J
Jiri Slaby 已提交
2633
		copy_last_highmem_page();
2634 2635
		/* Restore page key for data page (s390 only). */
		page_key_write(handle->buffer);
2636
		hibernate_restore_protect_page(handle->buffer);
J
Jiri Slaby 已提交
2637 2638 2639 2640 2641
		handle->buffer = get_buffer(&orig_bm, &ca);
		if (IS_ERR(handle->buffer))
			return PTR_ERR(handle->buffer);
		if (handle->buffer != buffer)
			handle->sync_read = 0;
2642
	}
J
Jiri Slaby 已提交
2643 2644
	handle->cur++;
	return PAGE_SIZE;
2645 2646
}

2647
/**
2648 2649 2650 2651 2652 2653
 * snapshot_write_finalize - Complete the loading of a hibernation image.
 *
 * Must be called after the last call to snapshot_write_next() in case the last
 * page in the image happens to be a highmem page and its contents should be
 * stored in highmem.  Additionally, it recycles bitmap memory that's not
 * necessary any more.
2654 2655 2656 2657
 */
void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
2658 2659 2660
	/* Restore page key for data page (s390 only). */
	page_key_write(handle->buffer);
	page_key_free();
2661
	hibernate_restore_protect_page(handle->buffer);
2662
	/* Do that only if we have loaded the image entirely */
J
Jiri Slaby 已提交
2663
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2664
		memory_bm_recycle(&orig_bm);
2665 2666 2667 2668
		free_highmem_data();
	}
}

2669 2670
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2671
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2672 2673 2674
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2675 2676
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
2677 2678
static inline void swap_two_pages_data(struct page *p1, struct page *p2,
				       void *buf)
2679
{
2680 2681
	void *kaddr1, *kaddr2;

2682 2683
	kaddr1 = kmap_atomic(p1);
	kaddr2 = kmap_atomic(p2);
2684 2685 2686
	copy_page(buf, kaddr1);
	copy_page(kaddr1, kaddr2);
	copy_page(kaddr2, buf);
2687 2688
	kunmap_atomic(kaddr2);
	kunmap_atomic(kaddr1);
2689 2690 2691
}

/**
2692 2693 2694 2695 2696
 * restore_highmem - Put highmem image pages into their original locations.
 *
 * For each highmem page that was in use before hibernation and is included in
 * the image, and also has been allocated by the "restore" kernel, swap its
 * current contents with the previous (ie. "before hibernation") ones.
2697
 *
2698 2699
 * If the restore eventually fails, we can call this function once again and
 * restore the highmem state as seen by the restore kernel.
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
 */
int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2719
}
2720
#endif /* CONFIG_HIGHMEM */