snapshot.c 71.6 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5
 *
P
Pavel Machek 已提交
6
 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
24 25 26 27
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
28
#include <linux/list.h>
29
#include <linux/slab.h>
30
#include <linux/compiler.h>
31
#include <linux/ktime.h>
32

33
#include <linux/uaccess.h>
34 35 36 37 38 39 40
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

41
#ifdef CONFIG_STRICT_KERNEL_RWX
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
static bool hibernate_restore_protection;
static bool hibernate_restore_protection_active;

void enable_restore_image_protection(void)
{
	hibernate_restore_protection = true;
}

static inline void hibernate_restore_protection_begin(void)
{
	hibernate_restore_protection_active = hibernate_restore_protection;
}

static inline void hibernate_restore_protection_end(void)
{
	hibernate_restore_protection_active = false;
}

static inline void hibernate_restore_protect_page(void *page_address)
{
	if (hibernate_restore_protection_active)
		set_memory_ro((unsigned long)page_address, 1);
}

static inline void hibernate_restore_unprotect_page(void *page_address)
{
	if (hibernate_restore_protection_active)
		set_memory_rw((unsigned long)page_address, 1);
}
#else
static inline void hibernate_restore_protection_begin(void) {}
static inline void hibernate_restore_protection_end(void) {}
static inline void hibernate_restore_protect_page(void *page_address) {}
static inline void hibernate_restore_unprotect_page(void *page_address) {}
76
#endif /* CONFIG_STRICT_KERNEL_RWX */
77

78 79 80 81
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

82 83 84 85 86 87 88 89 90 91 92 93
/*
 * Number of bytes to reserve for memory allocations made by device drivers
 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 * cause image creation to fail (tunable via /sys/power/reserved_size).
 */
unsigned long reserved_size;

void __init hibernate_reserved_size_init(void)
{
	reserved_size = SPARE_PAGES * PAGE_SIZE;
}

94 95
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
96 97 98
 * When it is set to N, swsusp will do its best to ensure the image
 * size will not exceed N bytes, but if that is impossible, it will
 * try to create the smallest image possible.
99
 */
100 101 102 103
unsigned long image_size;

void __init hibernate_image_size_init(void)
{
104
	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
105
}
106

107 108
/*
 * List of PBEs needed for restoring the pages that were allocated before
109 110 111 112
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
113 114
struct pbe *restore_pblist;

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
} __packed;

/*
 * List of "safe" pages (ie. pages that were not used by the image kernel
 * before hibernation) that may be used as temporary storage for image kernel
 * memory contents.
 */
static struct linked_page *safe_pages_list;

131
/* Pointer to an auxiliary buffer (1 page) */
132
static void *buffer;
133

134 135 136 137 138
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

139
static unsigned int allocated_unsafe_pages;
140

141 142 143 144 145 146 147 148 149 150 151 152 153
/**
 * get_image_page - Allocate a page for a hibernation image.
 * @gfp_mask: GFP mask for the allocation.
 * @safe_needed: Get pages that were not used before hibernation (restore only)
 *
 * During image restoration, for storing the PBE list and the image data, we can
 * only use memory pages that do not conflict with the pages used before
 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 * using allocated_unsafe_pages.
 *
 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 * swsusp_free() can release it.
 */
154
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
155 156 157 158 159
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
160
		while (res && swsusp_page_is_free(virt_to_page(res))) {
161
			/* The page is unsafe, mark it for swsusp_free() */
162
			swsusp_set_page_forbidden(virt_to_page(res));
163
			allocated_unsafe_pages++;
164 165 166
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
167 168
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
169 170 171 172
	}
	return res;
}

173 174 175 176 177 178 179 180 181 182 183 184
static void *__get_safe_page(gfp_t gfp_mask)
{
	if (safe_pages_list) {
		void *ret = safe_pages_list;

		safe_pages_list = safe_pages_list->next;
		memset(ret, 0, PAGE_SIZE);
		return ret;
	}
	return get_image_page(gfp_mask, PG_SAFE);
}

185 186
unsigned long get_safe_page(gfp_t gfp_mask)
{
187
	return (unsigned long)__get_safe_page(gfp_mask);
188 189
}

190 191
static struct page *alloc_image_page(gfp_t gfp_mask)
{
192 193 194 195
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
196 197
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
198 199
	}
	return page;
200 201
}

202 203 204 205 206 207 208 209
static void recycle_safe_page(void *page_address)
{
	struct linked_page *lp = page_address;

	lp->next = safe_pages_list;
	safe_pages_list = lp;
}

210
/**
211 212 213 214 215 216
 * free_image_page - Free a page allocated for hibernation image.
 * @addr: Address of the page to free.
 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 *
 * The page to free should have been allocated by get_image_page() (page flags
 * set by it are affected).
217 218 219
 */
static inline void free_image_page(void *addr, int clear_nosave_free)
{
220 221 222 223 224 225
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

226
	swsusp_unset_page_forbidden(page);
227
	if (clear_nosave_free)
228
		swsusp_unset_page_free(page);
229 230

	__free_page(page);
231 232
}

233 234
static inline void free_list_of_pages(struct linked_page *list,
				      int clear_page_nosave)
235 236 237 238 239 240 241 242 243
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

244 245 246 247 248 249 250 251 252 253 254 255
/*
 * struct chain_allocator is used for allocating small objects out of
 * a linked list of pages called 'the chain'.
 *
 * The chain grows each time when there is no room for a new object in
 * the current page.  The allocated objects cannot be freed individually.
 * It is only possible to free them all at once, by freeing the entire
 * chain.
 *
 * NOTE: The chain allocator may be inefficient if the allocated objects
 * are not much smaller than PAGE_SIZE.
 */
256 257 258
struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
259
					   of the current page */
260 261 262 263
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

264 265
static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
		       int safe_needed)
266 267 268 269 270 271 272 273 274 275 276 277 278 279
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

280 281
		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
					get_image_page(ca->gfp_mask, PG_ANY);
282 283 284 285 286 287 288 289 290 291 292 293 294
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
295
 * Data types related to memory bitmaps.
296
 *
297 298 299 300 301
 * Memory bitmap is a structure consiting of many linked lists of
 * objects.  The main list's elements are of type struct zone_bitmap
 * and each of them corresonds to one zone.  For each zone bitmap
 * object there is a list of objects of type struct bm_block that
 * represent each blocks of bitmap in which information is stored.
302
 *
303 304 305 306
 * struct memory_bitmap contains a pointer to the main list of zone
 * bitmap objects, a struct bm_position used for browsing the bitmap,
 * and a pointer to the list of pages used for allocating all of the
 * zone bitmap objects and bitmap block objects.
307
 *
308 309 310 311
 * NOTE: It has to be possible to lay out the bitmap in memory
 * using only allocations of order 0.  Additionally, the bitmap is
 * designed to work with arbitrary number of zones (this is over the
 * top for now, but let's avoid making unnecessary assumptions ;-).
312
 *
313 314 315 316
 * struct zone_bitmap contains a pointer to a list of bitmap block
 * objects and a pointer to the bitmap block object that has been
 * most recently used for setting bits.  Additionally, it contains the
 * PFNs that correspond to the start and end of the represented zone.
317
 *
318 319 320 321
 * struct bm_block contains a pointer to the memory page in which
 * information is stored (in the form of a block of bitmap)
 * It also contains the pfns that correspond to the start and end of
 * the represented memory area.
322
 *
323 324 325
 * The memory bitmap is organized as a radix tree to guarantee fast random
 * access to the bits. There is one radix tree for each zone (as returned
 * from create_mem_extents).
326
 *
327 328 329 330
 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 * two linked lists for the nodes of the tree, one for the inner nodes and
 * one for the leave nodes. The linked leave nodes are used for fast linear
 * access of the memory bitmap.
331
 *
332
 * The struct rtree_node represents one node of the radix tree.
333 334 335 336
 */

#define BM_END_OF_MAP	(~0UL)

W
Wu Fengguang 已提交
337
#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
338 339
#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
/*
 * struct rtree_node is a wrapper struct to link the nodes
 * of the rtree together for easy linear iteration over
 * bits and easy freeing
 */
struct rtree_node {
	struct list_head list;
	unsigned long *data;
};

/*
 * struct mem_zone_bm_rtree represents a bitmap used for one
 * populated memory zone.
 */
struct mem_zone_bm_rtree {
	struct list_head list;		/* Link Zones together         */
	struct list_head nodes;		/* Radix Tree inner nodes      */
	struct list_head leaves;	/* Radix Tree leaves           */
	unsigned long start_pfn;	/* Zone start page frame       */
	unsigned long end_pfn;		/* Zone end page frame + 1     */
	struct rtree_node *rtree;	/* Radix Tree Root             */
	int levels;			/* Number of Radix Tree Levels */
	unsigned int blocks;		/* Number of Bitmap Blocks     */
};

366 367 368
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
369 370 371 372
	struct mem_zone_bm_rtree *zone;
	struct rtree_node *node;
	unsigned long node_pfn;
	int node_bit;
373 374 375
};

struct memory_bitmap {
376
	struct list_head zones;
377
	struct linked_page *p_list;	/* list of pages used to store zone
378 379
					   bitmap objects and bitmap block
					   objects */
380 381 382 383 384
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

385 386 387 388 389 390 391 392
#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
#if BITS_PER_LONG == 32
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
#else
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
#endif
#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)

393 394
/**
 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
395
 *
396 397 398
 * This function is used to allocate inner nodes as well as the
 * leave nodes of the radix tree. It also adds the node to the
 * corresponding linked list passed in by the *list parameter.
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
 */
static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
					   struct chain_allocator *ca,
					   struct list_head *list)
{
	struct rtree_node *node;

	node = chain_alloc(ca, sizeof(struct rtree_node));
	if (!node)
		return NULL;

	node->data = get_image_page(gfp_mask, safe_needed);
	if (!node->data)
		return NULL;

	list_add_tail(&node->list, list);

	return node;
}

419 420
/**
 * add_rtree_block - Add a new leave node to the radix tree.
421
 *
422 423 424
 * The leave nodes need to be allocated in order to keep the leaves
 * linked list in order. This is guaranteed by the zone->blocks
 * counter.
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
 */
static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
			   int safe_needed, struct chain_allocator *ca)
{
	struct rtree_node *node, *block, **dst;
	unsigned int levels_needed, block_nr;
	int i;

	block_nr = zone->blocks;
	levels_needed = 0;

	/* How many levels do we need for this block nr? */
	while (block_nr) {
		levels_needed += 1;
		block_nr >>= BM_RTREE_LEVEL_SHIFT;
	}

	/* Make sure the rtree has enough levels */
	for (i = zone->levels; i < levels_needed; i++) {
		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
					&zone->nodes);
		if (!node)
			return -ENOMEM;

		node->data[0] = (unsigned long)zone->rtree;
		zone->rtree = node;
		zone->levels += 1;
	}

	/* Allocate new block */
	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
	if (!block)
		return -ENOMEM;

	/* Now walk the rtree to insert the block */
	node = zone->rtree;
	dst = &zone->rtree;
	block_nr = zone->blocks;
	for (i = zone->levels; i > 0; i--) {
		int index;

		if (!node) {
			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
						&zone->nodes);
			if (!node)
				return -ENOMEM;
			*dst = node;
		}

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		dst = (struct rtree_node **)&((*dst)->data[index]);
		node = *dst;
	}

	zone->blocks += 1;
	*dst = block;

	return 0;
}

static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free);

489 490
/**
 * create_zone_bm_rtree - Create a radix tree for one zone.
491
 *
492 493 494
 * Allocated the mem_zone_bm_rtree structure and initializes it.
 * This function also allocated and builds the radix tree for the
 * zone.
495
 */
496 497 498 499 500
static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
						      int safe_needed,
						      struct chain_allocator *ca,
						      unsigned long start,
						      unsigned long end)
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
{
	struct mem_zone_bm_rtree *zone;
	unsigned int i, nr_blocks;
	unsigned long pages;

	pages = end - start;
	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
	if (!zone)
		return NULL;

	INIT_LIST_HEAD(&zone->nodes);
	INIT_LIST_HEAD(&zone->leaves);
	zone->start_pfn = start;
	zone->end_pfn = end;
	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);

	for (i = 0; i < nr_blocks; i++) {
		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
			return NULL;
		}
	}

	return zone;
}

527 528
/**
 * free_zone_bm_rtree - Free the memory of the radix tree.
529
 *
530 531 532
 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 * structure itself is not freed here nor are the rtree_node
 * structs.
533 534 535 536 537 538 539 540 541 542 543 544 545
 */
static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		free_image_page(node->data, clear_nosave_free);

	list_for_each_entry(node, &zone->leaves, list)
		free_image_page(node->data, clear_nosave_free);
}

546 547
static void memory_bm_position_reset(struct memory_bitmap *bm)
{
548 549 550 551 552 553
	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
				  list);
	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
				  struct rtree_node, list);
	bm->cur.node_pfn = 0;
	bm->cur.node_bit = 0;
554 555 556 557
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

558 559 560 561 562 563
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

564
/**
565 566
 * free_mem_extents - Free a list of memory extents.
 * @list: List of extents to free.
567
 */
568 569 570
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
571

572 573 574 575 576 577 578
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
579 580 581 582 583
 * create_mem_extents - Create a list of memory extents.
 * @list: List to put the extents into.
 * @gfp_mask: Mask to use for memory allocations.
 *
 * The extents represent contiguous ranges of PFNs.
584 585
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
586
{
587
	struct zone *zone;
588

589
	INIT_LIST_HEAD(list);
590

591
	for_each_populated_zone(zone) {
592 593 594 595
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
596
		zone_end = zone_end_pfn(zone);
597 598 599 600

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
601

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
633
	}
634 635

	return 0;
636 637 638
}

/**
639 640
 * memory_bm_create - Allocate memory for a memory bitmap.
 */
641 642
static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
			    int safe_needed)
643 644
{
	struct chain_allocator ca;
645 646 647
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
648 649

	chain_init(&ca, gfp_mask, safe_needed);
650
	INIT_LIST_HEAD(&bm->zones);
651

652 653 654
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
655

656
	list_for_each_entry(ext, &mem_extents, hook) {
657 658 659 660
		struct mem_zone_bm_rtree *zone;

		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
					    ext->start, ext->end);
661 662
		if (!zone) {
			error = -ENOMEM;
663
			goto Error;
664
		}
665
		list_add_tail(&zone->list, &bm->zones);
666
	}
667

668 669
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
670 671 672
 Exit:
	free_mem_extents(&mem_extents);
	return error;
673

674
 Error:
675 676
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
677
	goto Exit;
678 679 680
}

/**
681 682 683
 * memory_bm_free - Free memory occupied by the memory bitmap.
 * @bm: Memory bitmap.
 */
684 685
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
686
	struct mem_zone_bm_rtree *zone;
687

688 689 690
	list_for_each_entry(zone, &bm->zones, list)
		free_zone_bm_rtree(zone, clear_nosave_free);

691
	free_list_of_pages(bm->p_list, clear_nosave_free);
692

693
	INIT_LIST_HEAD(&bm->zones);
694 695 696
}

/**
697
 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
698
 *
699 700 701 702 703
 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 *
 * Walk the radix tree to find the page containing the bit that represents @pfn
 * and return the position of the bit in @addr and @bit_nr.
704
 */
705 706
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
			      void **addr, unsigned int *bit_nr)
707 708 709 710 711
{
	struct mem_zone_bm_rtree *curr, *zone;
	struct rtree_node *node;
	int i, block_nr;

712 713 714 715 716
	zone = bm->cur.zone;

	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
		goto zone_found;

717 718 719 720 721 722 723 724 725 726 727 728 729
	zone = NULL;

	/* Find the right zone */
	list_for_each_entry(curr, &bm->zones, list) {
		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
			zone = curr;
			break;
		}
	}

	if (!zone)
		return -EFAULT;

730
zone_found:
731
	/*
732 733
	 * We have found the zone. Now walk the radix tree to find the leaf node
	 * for our PFN.
734
	 */
735 736 737 738
	node = bm->cur.node;
	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
		goto node_found;

739 740 741 742 743 744 745 746 747 748 749 750
	node      = zone->rtree;
	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;

	for (i = zone->levels; i > 0; i--) {
		int index;

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		BUG_ON(node->data[index] == 0);
		node = (struct rtree_node *)node->data[index];
	}

751 752 753 754 755 756
node_found:
	/* Update last position */
	bm->cur.zone = zone;
	bm->cur.node = node;
	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;

757 758 759 760 761 762 763
	/* Set return values */
	*addr = node->data;
	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;

	return 0;
}

764 765 766 767
static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
768
	int error;
769

770 771
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
772 773 774
	set_bit(bit, addr);
}

775 776 777 778 779 780 781
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
782 783 784
	if (!error)
		set_bit(bit, addr);

785 786 787
	return error;
}

788 789 790 791
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
792
	int error;
793

794 795
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
796 797 798
	clear_bit(bit, addr);
}

799 800 801 802 803 804 805 806
static void memory_bm_clear_current(struct memory_bitmap *bm)
{
	int bit;

	bit = max(bm->cur.node_bit - 1, 0);
	clear_bit(bit, bm->cur.node->data);
}

807 808 809 810
static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
811
	int error;
812

813 814
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
815
	return test_bit(bit, addr);
816 817
}

818 819 820 821
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
822

823
	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
824 825
}

826
/*
827
 * rtree_next_node - Jump to the next leaf node.
828
 *
829 830 831 832
 * Set the position to the beginning of the next node in the
 * memory bitmap. This is either the next node in the current
 * zone's radix tree or the first node in the radix tree of the
 * next zone.
833
 *
834
 * Return true if there is a next node, false otherwise.
835 836 837
 */
static bool rtree_next_node(struct memory_bitmap *bm)
{
838 839 840
	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
		bm->cur.node = list_entry(bm->cur.node->list.next,
					  struct rtree_node, list);
841 842
		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
		bm->cur.node_bit  = 0;
843
		touch_softlockup_watchdog();
844 845 846 847
		return true;
	}

	/* No more nodes, goto next zone */
848 849
	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
		bm->cur.zone = list_entry(bm->cur.zone->list.next,
850 851 852 853 854 855 856 857 858 859 860 861
				  struct mem_zone_bm_rtree, list);
		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
					  struct rtree_node, list);
		bm->cur.node_pfn = 0;
		bm->cur.node_bit = 0;
		return true;
	}

	/* No more zones */
	return false;
}

862
/**
863 864
 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 * @bm: Memory bitmap.
865
 *
866 867 868
 * Starting from the last returned position this function searches for the next
 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 * set, BM_END_OF_MAP is returned.
869
 *
870 871
 * It is required to run memory_bm_position_reset() before the first call to
 * this function for the given memory bitmap.
872
 */
873
static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
{
	unsigned long bits, pfn, pages;
	int bit;

	do {
		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
		bit	  = find_next_bit(bm->cur.node->data, bits,
					  bm->cur.node_bit);
		if (bit < bits) {
			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
			bm->cur.node_bit = bit + 1;
			return pfn;
		}
	} while (rtree_next_node(bm));

	return BM_END_OF_MAP;
}

893 894 895
/*
 * This structure represents a range of page frames the contents of which
 * should not be saved during hibernation.
896 897 898 899 900 901 902 903 904
 */
struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		recycle_safe_page(node->data);

	list_for_each_entry(node, &zone->leaves, list)
		recycle_safe_page(node->data);
}

static void memory_bm_recycle(struct memory_bitmap *bm)
{
	struct mem_zone_bm_rtree *zone;
	struct linked_page *p_list;

	list_for_each_entry(zone, &bm->zones, list)
		recycle_zone_bm_rtree(zone);

	p_list = bm->p_list;
	while (p_list) {
		struct linked_page *lp = p_list;

		p_list = lp->next;
		recycle_safe_page(lp);
	}
}

933
/**
934 935 936 937
 * register_nosave_region - Register a region of unsaveable memory.
 *
 * Register a range of page frames the contents of which should not be saved
 * during hibernation (to be used in the early initialization code).
938
 */
939 940
void __init __register_nosave_region(unsigned long start_pfn,
				     unsigned long end_pfn, int use_kmalloc)
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
956
	if (use_kmalloc) {
957
		/* During init, this shouldn't fail */
958 959
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
960
	} else {
961
		/* This allocation cannot fail */
962
		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
963
	}
964 965 966 967
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
968 969 970
	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
		(unsigned long long) start_pfn << PAGE_SHIFT,
		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
1024 1025 1026 1027 1028
 * mark_nosave_pages - Mark pages that should not be saved.
 * @bm: Memory bitmap.
 *
 * Set the bits in @bm that correspond to the page frames the contents of which
 * should not be saved.
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
 */
static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

1040 1041 1042 1043
		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
				- 1);
1044 1045

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1046 1047 1048 1049 1050 1051 1052 1053 1054
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
1055 1056 1057 1058
	}
}

/**
1059 1060 1061 1062 1063 1064
 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
 *
 * Create bitmaps needed for marking page frames that should not be saved and
 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
 * only modified if everything goes well, because we don't want the bits to be
 * touched before both bitmaps are set up.
1065 1066 1067 1068 1069 1070
 */
int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

1071 1072 1073 1074
	if (forbidden_pages_map && free_pages_map)
		return 0;
	else
		BUG_ON(forbidden_pages_map || free_pages_map);
1075

1076
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1077 1078 1079
	if (!bm1)
		return -ENOMEM;

1080
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1081 1082 1083
	if (error)
		goto Free_first_object;

1084
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1085 1086 1087
	if (!bm2)
		goto Free_first_bitmap;

1088
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1089 1090 1091 1092 1093 1094 1095
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

R
Rafael J. Wysocki 已提交
1096
	pr_debug("PM: Basic memory bitmaps created\n");
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
1110 1111 1112 1113 1114
 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
 *
 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
 * auxiliary pointers are necessary so that the bitmaps themselves are not
 * referred to while they are being freed.
1115 1116 1117 1118 1119
 */
void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

1120 1121
	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
		return;
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

R
Rafael J. Wysocki 已提交
1132
	pr_debug("PM: Basic memory bitmaps freed\n");
1133 1134
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
void clear_free_pages(void)
{
#ifdef CONFIG_PAGE_POISONING_ZERO
	struct memory_bitmap *bm = free_pages_map;
	unsigned long pfn;

	if (WARN_ON(!(free_pages_map)))
		return;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (pfn_valid(pfn))
			clear_highpage(pfn_to_page(pfn));

		pfn = memory_bm_next_pfn(bm);
	}
	memory_bm_position_reset(bm);
	pr_info("PM: free pages cleared after restore\n");
#endif /* PAGE_POISONING_ZERO */
}

1157
/**
1158 1159 1160 1161 1162 1163
 * snapshot_additional_pages - Estimate the number of extra pages needed.
 * @zone: Memory zone to carry out the computation for.
 *
 * Estimate the number of additional pages needed for setting up a hibernation
 * image data structures for @zone (usually, the returned value is greater than
 * the exact number).
1164 1165 1166
 */
unsigned int snapshot_additional_pages(struct zone *zone)
{
1167
	unsigned int rtree, nodes;
1168

1169 1170 1171 1172 1173 1174 1175 1176
	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
			      LINKED_PAGE_DATA_SIZE);
	while (nodes > 1) {
		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
		rtree += nodes;
	}

1177
	return 2 * rtree;
1178 1179
}

1180 1181
#ifdef CONFIG_HIGHMEM
/**
1182 1183 1184
 * count_free_highmem_pages - Compute the total number of free highmem pages.
 *
 * The returned number is system-wide.
1185 1186 1187 1188 1189 1190
 */
static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

1191 1192
	for_each_populated_zone(zone)
		if (is_highmem(zone))
1193
			cnt += zone_page_state(zone, NR_FREE_PAGES);
1194 1195 1196 1197 1198

	return cnt;
}

/**
1199 1200 1201
 * saveable_highmem_page - Check if a highmem page is saveable.
 *
 * Determine whether a highmem page should be included in a hibernation image.
1202
 *
1203 1204
 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 * and it isn't part of a free chunk of pages.
1205
 */
1206
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1207 1208 1209 1210 1211 1212 1213
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
1214 1215
	if (page_zone(page) != zone)
		return NULL;
1216 1217 1218

	BUG_ON(!PageHighMem(page));

1219 1220
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
1221 1222
		return NULL;

1223 1224 1225
	if (page_is_guard(page))
		return NULL;

1226 1227 1228 1229
	return page;
}

/**
1230
 * count_highmem_pages - Compute the total number of saveable highmem pages.
1231
 */
1232
static unsigned int count_highmem_pages(void)
1233 1234 1235 1236
{
	struct zone *zone;
	unsigned int n = 0;

1237
	for_each_populated_zone(zone) {
1238 1239 1240 1241 1242 1243
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
1244
		max_zone_pfn = zone_end_pfn(zone);
1245
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1246
			if (saveable_highmem_page(zone, pfn))
1247 1248 1249 1250 1251
				n++;
	}
	return n;
}
#else
1252 1253 1254 1255
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
1256 1257
#endif /* CONFIG_HIGHMEM */

1258
/**
1259 1260 1261 1262
 * saveable_page - Check if the given page is saveable.
 *
 * Determine whether a non-highmem page should be included in a hibernation
 * image.
1263
 *
1264 1265 1266
 * We should save the page if it isn't Nosave, and is not in the range
 * of pages statically defined as 'unsaveable', and it isn't part of
 * a free chunk of pages.
1267
 */
1268
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1269
{
P
Pavel Machek 已提交
1270
	struct page *page;
1271 1272

	if (!pfn_valid(pfn))
1273
		return NULL;
1274 1275

	page = pfn_to_page(pfn);
1276 1277
	if (page_zone(page) != zone)
		return NULL;
1278

1279 1280
	BUG_ON(PageHighMem(page));

1281
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1282
		return NULL;
1283

1284 1285
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1286
		return NULL;
1287

1288 1289 1290
	if (page_is_guard(page))
		return NULL;

1291
	return page;
1292 1293
}

1294
/**
1295
 * count_data_pages - Compute the total number of saveable non-highmem pages.
1296
 */
1297
static unsigned int count_data_pages(void)
1298 1299
{
	struct zone *zone;
1300
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
1301
	unsigned int n = 0;
1302

1303
	for_each_populated_zone(zone) {
1304 1305
		if (is_highmem(zone))
			continue;
1306

1307
		mark_free_pages(zone);
1308
		max_zone_pfn = zone_end_pfn(zone);
1309
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1310
			if (saveable_page(zone, pfn))
1311
				n++;
1312
	}
1313
	return n;
1314 1315
}

1316 1317
/*
 * This is needed, because copy_page and memcpy are not usable for copying
1318 1319 1320
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
1321 1322 1323 1324 1325 1326 1327
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

1328
/**
1329 1330 1331 1332 1333
 * safe_copy_page - Copy a page in a safe way.
 *
 * Check if the page we are going to copy is marked as present in the kernel
 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
 * and in that case kernel_page_present() always returns 'true').
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}

1346
#ifdef CONFIG_HIGHMEM
1347
static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1348 1349
{
	return is_highmem(zone) ?
1350
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1351 1352
}

1353
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1354 1355 1356 1357 1358 1359 1360
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
1361 1362
		src = kmap_atomic(s_page);
		dst = kmap_atomic(d_page);
1363
		do_copy_page(dst, src);
1364 1365
		kunmap_atomic(dst);
		kunmap_atomic(src);
1366 1367
	} else {
		if (PageHighMem(d_page)) {
1368 1369
			/*
			 * The page pointed to by src may contain some kernel
1370 1371
			 * data modified by kmap_atomic()
			 */
1372
			safe_copy_page(buffer, s_page);
1373
			dst = kmap_atomic(d_page);
1374
			copy_page(dst, buffer);
1375
			kunmap_atomic(dst);
1376
		} else {
1377
			safe_copy_page(page_address(d_page), s_page);
1378 1379 1380 1381
		}
	}
}
#else
1382
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1383

1384
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1385
{
1386 1387
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1388 1389 1390
}
#endif /* CONFIG_HIGHMEM */

1391 1392
static void copy_data_pages(struct memory_bitmap *copy_bm,
			    struct memory_bitmap *orig_bm)
1393 1394
{
	struct zone *zone;
1395
	unsigned long pfn;
1396

1397
	for_each_populated_zone(zone) {
1398 1399
		unsigned long max_zone_pfn;

1400
		mark_free_pages(zone);
1401
		max_zone_pfn = zone_end_pfn(zone);
1402
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1403
			if (page_is_saveable(zone, pfn))
1404
				memory_bm_set_bit(orig_bm, pfn);
1405
	}
1406 1407
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1408
	for(;;) {
1409
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1410 1411 1412 1413
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1414 1415
}

1416 1417 1418 1419
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
unsigned int alloc_normal, alloc_highmem;
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1439

1440
/**
1441
 * swsusp_free - Free pages allocated for hibernation image.
1442
 *
1443 1444
 * Image pages are alocated before snapshot creation, so they need to be
 * released after resume.
1445 1446 1447
 */
void swsusp_free(void)
{
1448
	unsigned long fb_pfn, fr_pfn;
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	if (!forbidden_pages_map || !free_pages_map)
		goto out;

	memory_bm_position_reset(forbidden_pages_map);
	memory_bm_position_reset(free_pages_map);

loop:
	fr_pfn = memory_bm_next_pfn(free_pages_map);
	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);

	/*
	 * Find the next bit set in both bitmaps. This is guaranteed to
	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
	 */
	do {
		if (fb_pfn < fr_pfn)
			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
		if (fr_pfn < fb_pfn)
			fr_pfn = memory_bm_next_pfn(free_pages_map);
	} while (fb_pfn != fr_pfn);

	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
		struct page *page = pfn_to_page(fr_pfn);

		memory_bm_clear_current(forbidden_pages_map);
		memory_bm_clear_current(free_pages_map);
1476
		hibernate_restore_unprotect_page(page_address(page));
1477 1478
		__free_page(page);
		goto loop;
1479
	}
1480 1481

out:
1482 1483
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1484
	restore_pblist = NULL;
1485
	buffer = NULL;
1486 1487
	alloc_normal = 0;
	alloc_highmem = 0;
1488
	hibernate_restore_protection_end();
1489 1490
}

1491 1492 1493 1494
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1495
/**
1496
 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1497 1498
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1499
 *
1500 1501 1502 1503 1504 1505 1506
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1507 1508 1509 1510
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1511
			break;
1512 1513 1514 1515 1516
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1517 1518 1519 1520 1521 1522 1523
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

1524 1525
static unsigned long preallocate_image_memory(unsigned long nr_pages,
					      unsigned long avail_normal)
1526
{
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	unsigned long alloc;

	if (avail_normal <= alloc_normal)
		return 0;

	alloc = avail_normal - alloc_normal;
	if (nr_pages < alloc)
		alloc = nr_pages;

	return preallocate_image_pages(alloc, GFP_IMAGE);
1537 1538 1539 1540 1541 1542 1543 1544 1545
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
1546
 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1547
 */
1548 1549 1550 1551 1552 1553
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
	x *= multiplier;
	do_div(x, base);
	return (unsigned long)x;
}
1554

1555
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1556 1557
						  unsigned long highmem,
						  unsigned long total)
1558
{
1559 1560 1561
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1562
}
1563 1564 1565 1566 1567 1568 1569
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1570 1571
							 unsigned long highmem,
							 unsigned long total)
1572 1573 1574 1575
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1576

1577
/**
1578
 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1579
 */
1580
static unsigned long free_unnecessary_pages(void)
1581
{
1582
	unsigned long save, to_free_normal, to_free_highmem, free;
1583

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
	save = count_data_pages();
	if (alloc_normal >= save) {
		to_free_normal = alloc_normal - save;
		save = 0;
	} else {
		to_free_normal = 0;
		save -= alloc_normal;
	}
	save += count_highmem_pages();
	if (alloc_highmem >= save) {
		to_free_highmem = alloc_highmem - save;
1595 1596
	} else {
		to_free_highmem = 0;
1597 1598 1599 1600 1601
		save -= alloc_highmem;
		if (to_free_normal > save)
			to_free_normal -= save;
		else
			to_free_normal = 0;
1602
	}
1603
	free = to_free_normal + to_free_highmem;
1604 1605 1606

	memory_bm_position_reset(&copy_bm);

1607
	while (to_free_normal > 0 || to_free_highmem > 0) {
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
1627 1628

	return free;
1629 1630
}

1631
/**
1632
 * minimum_image_size - Estimate the minimum acceptable size of an image.
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1644
 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1645 1646 1647 1648 1649 1650 1651
 * minus mapped file pages.
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

	size = global_page_state(NR_SLAB_RECLAIMABLE)
M
Mel Gorman 已提交
1652 1653 1654 1655 1656
		+ global_node_page_state(NR_ACTIVE_ANON)
		+ global_node_page_state(NR_INACTIVE_ANON)
		+ global_node_page_state(NR_ACTIVE_FILE)
		+ global_node_page_state(NR_INACTIVE_FILE)
		- global_node_page_state(NR_FILE_MAPPED);
1657 1658 1659 1660

	return saveable <= size ? 0 : saveable - size;
}

1661
/**
1662
 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1663 1664 1665 1666 1667
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
1668 1669 1670 1671
 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
 * total number of available page frames and allocate at least
1672
 *
1673 1674
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1675 1676 1677 1678 1679
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1680 1681
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1682
 */
1683
int hibernate_preallocate_memory(void)
1684 1685
{
	struct zone *zone;
1686
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1687
	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1688
	ktime_t start, stop;
1689
	int error;
1690

1691
	printk(KERN_INFO "PM: Preallocating image memory... ");
1692
	start = ktime_get();
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	alloc_normal = 0;
	alloc_highmem = 0;

1705
	/* Count the number of saveable data pages. */
1706
	save_highmem = count_highmem_pages();
1707
	saveable = count_data_pages();
1708

1709 1710 1711 1712 1713
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1714 1715
	saveable += save_highmem;
	highmem = save_highmem;
1716 1717 1718 1719 1720 1721 1722 1723
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
1724
	avail_normal = count;
1725 1726 1727
	count += highmem;
	count -= totalreserve_pages;

1728 1729 1730
	/* Add number of pages required for page keys (s390 only). */
	size += page_key_additional_pages(saveable);

1731
	/* Compute the maximum number of saveable pages to leave in memory. */
1732 1733
	max_size = (count - (size + PAGES_FOR_IO)) / 2
			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1734
	/* Compute the desired number of image pages specified by image_size. */
1735 1736 1737 1738
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
1739 1740 1741
	 * If the desired number of image pages is at least as large as the
	 * current number of saveable pages in memory, allocate page frames for
	 * the image and we're done.
1742
	 */
1743 1744
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
1745
		pages += preallocate_image_memory(saveable - pages, avail_normal);
1746
		goto out;
1747
	}
1748

1749 1750
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
1751 1752 1753 1754 1755 1756 1757 1758 1759
	/*
	 * To avoid excessive pressure on the normal zone, leave room in it to
	 * accommodate an image of the minimum size (unless it's already too
	 * small, in which case don't preallocate pages from it at all).
	 */
	if (avail_normal > pages)
		avail_normal -= pages;
	else
		avail_normal = 0;
1760 1761 1762
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1775 1776
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1777 1778
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
1779 1780 1781 1782 1783
	alloc = count - max_size;
	if (alloc > pages_highmem)
		alloc -= pages_highmem;
	else
		alloc = 0;
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	pages = preallocate_image_memory(alloc, avail_normal);
	if (pages < alloc) {
		/* We have exhausted non-highmem pages, try highmem. */
		alloc -= pages;
		pages += pages_highmem;
		pages_highmem = preallocate_image_highmem(alloc);
		if (pages_highmem < alloc)
			goto err_out;
		pages += pages_highmem;
		/*
		 * size is the desired number of saveable pages to leave in
		 * memory, so try to preallocate (all memory - size) pages.
		 */
		alloc = (count - pages) - size;
		pages += preallocate_image_highmem(alloc);
	} else {
		/*
		 * There are approximately max_size saveable pages at this point
		 * and we want to reduce this number down to size.
		 */
		alloc = max_size - size;
		size = preallocate_highmem_fraction(alloc, highmem, count);
		pages_highmem += size;
		alloc -= size;
		size = preallocate_image_memory(alloc, avail_normal);
		pages_highmem += preallocate_image_highmem(alloc - size);
		pages += pages_highmem + size;
	}
1812

1813 1814 1815 1816 1817
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
1818
	pages -= free_unnecessary_pages();
1819 1820

 out:
1821
	stop = ktime_get();
1822
	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1823
	swsusp_show_speed(start, stop, pages, "Allocated");
1824 1825

	return 0;
1826 1827 1828 1829 1830

 err_out:
	printk(KERN_CONT "\n");
	swsusp_free();
	return -ENOMEM;
1831 1832
}

1833 1834
#ifdef CONFIG_HIGHMEM
/**
1835 1836 1837 1838 1839
 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
 *
 * Compute the number of non-highmem pages that will be necessary for creating
 * copies of highmem pages.
 */
1840 1841
static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1842
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1843 1844 1845 1846 1847 1848 1849 1850 1851

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
1852
static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1853
#endif /* CONFIG_HIGHMEM */
1854 1855

/**
1856
 * enough_free_mem - Check if there is enough free memory for the image.
1857
 */
1858
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1859
{
1860
	struct zone *zone;
1861
	unsigned int free = alloc_normal;
1862

1863
	for_each_populated_zone(zone)
1864
		if (!is_highmem(zone))
1865
			free += zone_page_state(zone, NR_FREE_PAGES);
1866

1867
	nr_pages += count_pages_for_highmem(nr_highmem);
1868 1869
	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
		nr_pages, PAGES_FOR_IO, free);
1870

1871
	return free > nr_pages + PAGES_FOR_IO;
1872 1873
}

1874 1875
#ifdef CONFIG_HIGHMEM
/**
1876 1877 1878 1879
 * get_highmem_buffer - Allocate a buffer for highmem pages.
 *
 * If there are some highmem pages in the hibernation image, we may need a
 * buffer to copy them and/or load their data.
1880 1881 1882 1883 1884 1885 1886 1887
 */
static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
1888 1889 1890 1891
 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
 *
 * Try to allocate as many pages as needed, but if the number of free highmem
 * pages is less than that, allocate them all.
1892
 */
1893 1894
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int nr_highmem)
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

1905
		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1906 1907 1908 1909 1910 1911 1912
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

1913 1914
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int n) { return 0; }
1915 1916 1917
#endif /* CONFIG_HIGHMEM */

/**
1918
 * swsusp_alloc - Allocate memory for hibernation image.
1919
 *
1920 1921 1922
 * We first try to allocate as many highmem pages as there are
 * saveable highmem pages in the system.  If that fails, we allocate
 * non-highmem pages for the copies of the remaining highmem ones.
1923
 *
1924 1925 1926
 * In this approach it is likely that the copies of highmem pages will
 * also be located in the high memory, because of the way in which
 * copy_data_pages() works.
1927
 */
1928 1929 1930
static int swsusp_alloc(struct memory_bitmap *orig_bm,
			struct memory_bitmap *copy_bm,
			unsigned int nr_pages, unsigned int nr_highmem)
1931
{
1932
	if (nr_highmem > 0) {
1933
		if (get_highmem_buffer(PG_ANY))
1934 1935 1936 1937 1938
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1939
	}
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
1950
	}
1951

1952
	return 0;
1953

1954
 err_out:
1955
	swsusp_free();
1956
	return -ENOMEM;
1957 1958
}

1959
asmlinkage __visible int swsusp_save(void)
1960
{
1961
	unsigned int nr_pages, nr_highmem;
1962

1963
	printk(KERN_INFO "PM: Creating hibernation image:\n");
1964

1965
	drain_local_pages(NULL);
1966
	nr_pages = count_data_pages();
1967
	nr_highmem = count_highmem_pages();
R
Rafael J. Wysocki 已提交
1968
	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1969

1970
	if (!enough_free_mem(nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1971
		printk(KERN_ERR "PM: Not enough free memory\n");
1972 1973 1974
		return -ENOMEM;
	}

1975
	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1976
		printk(KERN_ERR "PM: Memory allocation failed\n");
1977
		return -ENOMEM;
1978
	}
1979

1980 1981
	/*
	 * During allocating of suspend pagedir, new cold pages may appear.
1982 1983
	 * Kill them.
	 */
1984
	drain_local_pages(NULL);
1985
	copy_data_pages(&copy_bm, &orig_bm);
1986 1987 1988 1989 1990 1991 1992

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1993
	nr_pages += nr_highmem;
1994
	nr_copy_pages = nr_pages;
1995
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1996

R
Rafael J. Wysocki 已提交
1997 1998
	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
		nr_pages);
1999

2000 2001
	return 0;
}
2002

2003 2004
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
2005
{
2006
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2007
	info->version_code = LINUX_VERSION_CODE;
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

2027 2028 2029 2030 2031
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

2032 2033 2034
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
2035
	info->num_physpages = get_num_physpages();
2036
	info->image_pages = nr_copy_pages;
2037
	info->pages = snapshot_get_image_size();
2038 2039
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
2040
	return init_header_complete(info);
2041 2042 2043
}

/**
2044 2045 2046 2047 2048 2049
 * pack_pfns - Prepare PFNs for saving.
 * @bm: Memory bitmap.
 * @buf: Memory buffer to store the PFNs in.
 *
 * PFNs corresponding to set bits in @bm are stored in the area of memory
 * pointed to by @buf (1 page at a time).
2050
 */
2051
static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2052 2053 2054
{
	int j;

2055
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2056 2057
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
2058
			break;
2059 2060
		/* Save page key for data page (s390 only). */
		page_key_read(buf + j);
2061 2062 2063 2064
	}
}

/**
2065 2066
 * snapshot_read_next - Get the address to read the next image page from.
 * @handle: Snapshot handle to be used for the reading.
2067
 *
2068 2069 2070
 * On the first call, @handle should point to a zeroed snapshot_handle
 * structure.  The structure gets populated then and a pointer to it should be
 * passed to this function every next time.
2071
 *
2072 2073 2074
 * On success, the function returns a positive number.  Then, the caller
 * is allowed to read up to the returned number of bytes from the memory
 * location computed by the data_of() macro.
2075
 *
2076 2077 2078
 * The function returns 0 to indicate the end of the data stream condition,
 * and negative numbers are returned on errors.  If that happens, the structure
 * pointed to by @handle is not updated and should not be used any more.
2079
 */
J
Jiri Slaby 已提交
2080
int snapshot_read_next(struct snapshot_handle *handle)
2081
{
2082
	if (handle->cur > nr_meta_pages + nr_copy_pages)
2083
		return 0;
2084

2085 2086
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
2087
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2088 2089 2090
		if (!buffer)
			return -ENOMEM;
	}
J
Jiri Slaby 已提交
2091
	if (!handle->cur) {
2092 2093 2094 2095 2096
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
2097
		handle->buffer = buffer;
2098 2099
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
J
Jiri Slaby 已提交
2100
	} else if (handle->cur <= nr_meta_pages) {
2101
		clear_page(buffer);
J
Jiri Slaby 已提交
2102 2103 2104
		pack_pfns(buffer, &orig_bm);
	} else {
		struct page *page;
2105

J
Jiri Slaby 已提交
2106 2107
		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
		if (PageHighMem(page)) {
2108 2109
			/*
			 * Highmem pages are copied to the buffer,
J
Jiri Slaby 已提交
2110 2111 2112 2113
			 * because we can't return with a kmapped
			 * highmem page (we may not be called again).
			 */
			void *kaddr;
2114

2115
			kaddr = kmap_atomic(page);
2116
			copy_page(buffer, kaddr);
2117
			kunmap_atomic(kaddr);
J
Jiri Slaby 已提交
2118 2119 2120
			handle->buffer = buffer;
		} else {
			handle->buffer = page_address(page);
2121 2122
		}
	}
J
Jiri Slaby 已提交
2123 2124
	handle->cur++;
	return PAGE_SIZE;
2125 2126
}

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
static void duplicate_memory_bitmap(struct memory_bitmap *dst,
				    struct memory_bitmap *src)
{
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
	}
}

2140
/**
2141 2142 2143 2144
 * mark_unsafe_pages - Mark pages that were used before hibernation.
 *
 * Mark the pages that cannot be used for storing the image during restoration,
 * because they conflict with the pages that had been used before hibernation.
2145
 */
2146
static void mark_unsafe_pages(struct memory_bitmap *bm)
2147
{
2148
	unsigned long pfn;
2149

2150 2151 2152 2153 2154 2155
	/* Clear the "free"/"unsafe" bit for all PFNs */
	memory_bm_position_reset(free_pages_map);
	pfn = memory_bm_next_pfn(free_pages_map);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_clear_current(free_pages_map);
		pfn = memory_bm_next_pfn(free_pages_map);
2156 2157
	}

2158 2159
	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
	duplicate_memory_bitmap(free_pages_map, bm);
2160

2161
	allocated_unsafe_pages = 0;
2162 2163
}

2164
static int check_header(struct swsusp_info *info)
2165
{
2166
	char *reason;
2167

2168
	reason = check_image_kernel(info);
2169
	if (!reason && info->num_physpages != get_num_physpages())
2170 2171
		reason = "memory size";
	if (reason) {
R
Rafael J. Wysocki 已提交
2172
		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2173 2174 2175 2176 2177 2178
		return -EPERM;
	}
	return 0;
}

/**
2179
 * load header - Check the image header and copy the data from it.
2180
 */
2181
static int load_header(struct swsusp_info *info)
2182 2183 2184
{
	int error;

2185
	restore_pblist = NULL;
2186 2187 2188 2189 2190 2191 2192 2193 2194
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
2195 2196 2197 2198 2199 2200
 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
 * @bm: Memory bitmap.
 * @buf: Area of memory containing the PFNs.
 *
 * For each element of the array pointed to by @buf (1 page at a time), set the
 * corresponding bit in @bm.
2201
 */
2202
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2203 2204 2205
{
	int j;

2206 2207 2208 2209
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

2210 2211 2212
		/* Extract and buffer page key for data page (s390 only). */
		page_key_memorize(buf + j);

2213
		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2214 2215 2216
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
2217
	}
2218 2219

	return 0;
2220 2221
}

2222
#ifdef CONFIG_HIGHMEM
2223 2224
/*
 * struct highmem_pbe is used for creating the list of highmem pages that
2225 2226 2227 2228 2229 2230 2231 2232 2233
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

2234 2235
/*
 * List of highmem PBEs needed for restoring the highmem pages that were
2236 2237 2238 2239 2240 2241 2242
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
2243 2244 2245 2246
 * count_highmem_image_pages - Compute the number of highmem pages in the image.
 * @bm: Memory bitmap.
 *
 * The bits in @bm that correspond to image pages are assumed to be set.
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
 */
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
/**
 * prepare_highmem_image - Allocate memory for loading highmem data from image.
 * @bm: Pointer to an uninitialized memory bitmap structure.
 * @nr_highmem_p: Pointer to the number of highmem image pages.
 *
 * Try to allocate as many highmem pages as there are highmem image pages
 * (@nr_highmem_p points to the variable containing the number of highmem image
 * pages).  The pages that are "safe" (ie. will not be overwritten when the
 * hibernation image is restored entirely) have the corresponding bits set in
 * @bm (it must be unitialized).
 *
 * NOTE: This function should not be called if there are no highmem image pages.
 */
2281 2282
static int prepare_highmem_image(struct memory_bitmap *bm,
				 unsigned int *nr_highmem_p)
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
2303
		if (!swsusp_page_is_free(page)) {
2304 2305 2306 2307 2308
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
2309 2310
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
2311 2312 2313 2314 2315 2316
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

2317 2318
static struct page *last_highmem_page;

2319
/**
2320 2321 2322 2323
 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
 *
 * For a given highmem image page get a buffer that suspend_write_next() should
 * return to its caller to write to.
2324
 *
2325 2326 2327 2328
 * If the page is to be saved to its "original" page frame or a copy of
 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
 * the copy of the page is to be made in normal memory, so the address of
 * the copy is returned.
2329
 *
2330 2331 2332 2333 2334 2335
 * If @buffer is returned, the caller of suspend_write_next() will write
 * the page's contents to @buffer, so they will have to be copied to the
 * right location on the next call to suspend_write_next() and it is done
 * with the help of copy_last_highmem_page().  For this purpose, if
 * @buffer is returned, @last_highmem_page is set to the page to which
 * the data will have to be copied from @buffer.
2336
 */
2337 2338
static void *get_highmem_page_buffer(struct page *page,
				     struct chain_allocator *ca)
2339 2340 2341 2342
{
	struct highmem_pbe *pbe;
	void *kaddr;

2343
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2344 2345
		/*
		 * We have allocated the "original" page frame and we can
2346 2347 2348 2349 2350
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
2351 2352
	/*
	 * The "original" page frame has not been allocated and we have to
2353 2354 2355 2356 2357
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
2358
		return ERR_PTR(-ENOMEM);
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
2382 2383 2384 2385 2386
 * copy_last_highmem_page - Copy most the most recent highmem image page.
 *
 * Copy the contents of a highmem image from @buffer, where the caller of
 * snapshot_write_next() has stored them, to the right location represented by
 * @last_highmem_page .
2387 2388 2389 2390 2391 2392
 */
static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

2393
		dst = kmap_atomic(last_highmem_page);
2394
		copy_page(dst, buffer);
2395
		kunmap_atomic(dst);
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
2414
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2415

2416 2417
static inline int prepare_highmem_image(struct memory_bitmap *bm,
					unsigned int *nr_highmem_p) { return 0; }
2418

2419 2420
static inline void *get_highmem_page_buffer(struct page *page,
					    struct chain_allocator *ca)
2421
{
2422
	return ERR_PTR(-EINVAL);
2423 2424 2425 2426 2427 2428 2429
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

2430 2431
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

2432
/**
2433 2434 2435 2436 2437 2438 2439
 * prepare_image - Make room for loading hibernation image.
 * @new_bm: Unitialized memory bitmap structure.
 * @bm: Memory bitmap with unsafe pages marked.
 *
 * Use @bm to mark the pages that will be overwritten in the process of
 * restoring the system memory state from the suspend image ("unsafe" pages)
 * and allocate memory for the image.
2440
 *
2441 2442 2443 2444 2445
 * The idea is to allocate a new memory bitmap first and then allocate
 * as many pages as needed for image data, but without specifying what those
 * pages will be used for just yet.  Instead, we mark them all as allocated and
 * create a lists of "safe" pages to be used later.  On systems with high
 * memory a list of "safe" highmem pages is created too.
2446
 */
2447
static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2448
{
2449
	unsigned int nr_pages, nr_highmem;
2450
	struct linked_page *lp;
2451
	int error;
2452

2453 2454 2455 2456 2457
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2458
	mark_unsafe_pages(bm);
2459 2460 2461 2462 2463 2464 2465

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2466 2467 2468 2469 2470
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2471 2472
	/*
	 * Reserve some safe pages for potential later use.
2473 2474 2475 2476
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2477 2478
	 *
	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2479
	 */
2480
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2481 2482
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2483
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2484
		if (!lp) {
2485
			error = -ENOMEM;
2486 2487
			goto Free;
		}
2488 2489
		lp->next = safe_pages_list;
		safe_pages_list = lp;
2490
		nr_pages--;
2491
	}
2492
	/* Preallocate memory for the image */
2493
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2494 2495 2496 2497 2498 2499
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2500
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2501 2502 2503
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2504
		}
2505
		/* Mark the page as allocated */
2506 2507
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2508
		nr_pages--;
2509
	}
2510 2511
	return 0;

R
Rafael J. Wysocki 已提交
2512
 Free:
2513
	swsusp_free();
2514 2515 2516
	return error;
}

2517
/**
2518 2519 2520 2521
 * get_buffer - Get the address to store the next image data page.
 *
 * Get the address that snapshot_write_next() should return to its caller to
 * write to.
2522 2523
 */
static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2524
{
2525
	struct pbe *pbe;
2526 2527
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2528

2529 2530 2531 2532
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2533 2534 2535
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2536
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2537 2538
		/*
		 * We have allocated the "original" page frame and we can
2539
		 * use it directly to store the loaded page.
2540
		 */
2541 2542
		return page_address(page);

2543 2544
	/*
	 * The "original" page frame has not been allocated and we have to
2545
	 * use a "safe" page frame to store the loaded page.
2546
	 */
2547 2548 2549
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2550
		return ERR_PTR(-ENOMEM);
2551
	}
2552 2553
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2554 2555 2556
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2557
	return pbe->address;
2558 2559
}

2560
/**
2561 2562
 * snapshot_write_next - Get the address to store the next image page.
 * @handle: Snapshot handle structure to guide the writing.
2563
 *
2564 2565 2566
 * On the first call, @handle should point to a zeroed snapshot_handle
 * structure.  The structure gets populated then and a pointer to it should be
 * passed to this function every next time.
2567
 *
2568 2569 2570
 * On success, the function returns a positive number.  Then, the caller
 * is allowed to write up to the returned number of bytes to the memory
 * location computed by the data_of() macro.
2571
 *
2572 2573 2574
 * The function returns 0 to indicate the "end of file" condition.  Negative
 * numbers are returned on errors, in which cases the structure pointed to by
 * @handle is not updated and should not be used any more.
2575
 */
J
Jiri Slaby 已提交
2576
int snapshot_write_next(struct snapshot_handle *handle)
2577
{
2578
	static struct chain_allocator ca;
2579 2580
	int error = 0;

2581
	/* Check if we have already loaded the entire image */
J
Jiri Slaby 已提交
2582
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2583
		return 0;
2584

J
Jiri Slaby 已提交
2585 2586 2587
	handle->sync_read = 1;

	if (!handle->cur) {
2588 2589 2590 2591
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2592 2593
		if (!buffer)
			return -ENOMEM;
2594

2595
		handle->buffer = buffer;
J
Jiri Slaby 已提交
2596 2597 2598 2599
	} else if (handle->cur == 1) {
		error = load_header(buffer);
		if (error)
			return error;
2600

2601 2602
		safe_pages_list = NULL;

J
Jiri Slaby 已提交
2603 2604 2605 2606
		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
		if (error)
			return error;

2607 2608 2609 2610 2611
		/* Allocate buffer for page keys. */
		error = page_key_alloc(nr_copy_pages);
		if (error)
			return error;

2612
		hibernate_restore_protection_begin();
J
Jiri Slaby 已提交
2613 2614 2615 2616
	} else if (handle->cur <= nr_meta_pages + 1) {
		error = unpack_orig_pfns(buffer, &copy_bm);
		if (error)
			return error;
2617

J
Jiri Slaby 已提交
2618 2619
		if (handle->cur == nr_meta_pages + 1) {
			error = prepare_image(&orig_bm, &copy_bm);
2620 2621 2622
			if (error)
				return error;

J
Jiri Slaby 已提交
2623 2624 2625
			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
			memory_bm_position_reset(&orig_bm);
			restore_pblist = NULL;
2626
			handle->buffer = get_buffer(&orig_bm, &ca);
J
Jiri Slaby 已提交
2627
			handle->sync_read = 0;
2628 2629
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2630 2631
		}
	} else {
J
Jiri Slaby 已提交
2632
		copy_last_highmem_page();
2633 2634
		/* Restore page key for data page (s390 only). */
		page_key_write(handle->buffer);
2635
		hibernate_restore_protect_page(handle->buffer);
J
Jiri Slaby 已提交
2636 2637 2638 2639 2640
		handle->buffer = get_buffer(&orig_bm, &ca);
		if (IS_ERR(handle->buffer))
			return PTR_ERR(handle->buffer);
		if (handle->buffer != buffer)
			handle->sync_read = 0;
2641
	}
J
Jiri Slaby 已提交
2642 2643
	handle->cur++;
	return PAGE_SIZE;
2644 2645
}

2646
/**
2647 2648 2649 2650 2651 2652
 * snapshot_write_finalize - Complete the loading of a hibernation image.
 *
 * Must be called after the last call to snapshot_write_next() in case the last
 * page in the image happens to be a highmem page and its contents should be
 * stored in highmem.  Additionally, it recycles bitmap memory that's not
 * necessary any more.
2653 2654 2655 2656
 */
void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
2657 2658 2659
	/* Restore page key for data page (s390 only). */
	page_key_write(handle->buffer);
	page_key_free();
2660
	hibernate_restore_protect_page(handle->buffer);
2661
	/* Do that only if we have loaded the image entirely */
J
Jiri Slaby 已提交
2662
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2663
		memory_bm_recycle(&orig_bm);
2664 2665 2666 2667
		free_highmem_data();
	}
}

2668 2669
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2670
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2671 2672 2673
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2674 2675
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
2676 2677
static inline void swap_two_pages_data(struct page *p1, struct page *p2,
				       void *buf)
2678
{
2679 2680
	void *kaddr1, *kaddr2;

2681 2682
	kaddr1 = kmap_atomic(p1);
	kaddr2 = kmap_atomic(p2);
2683 2684 2685
	copy_page(buf, kaddr1);
	copy_page(kaddr1, kaddr2);
	copy_page(kaddr2, buf);
2686 2687
	kunmap_atomic(kaddr2);
	kunmap_atomic(kaddr1);
2688 2689 2690
}

/**
2691 2692 2693 2694 2695
 * restore_highmem - Put highmem image pages into their original locations.
 *
 * For each highmem page that was in use before hibernation and is included in
 * the image, and also has been allocated by the "restore" kernel, swap its
 * current contents with the previous (ie. "before hibernation") ones.
2696
 *
2697 2698
 * If the restore eventually fails, we can call this function once again and
 * restore the highmem state as seen by the restore kernel.
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
 */
int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2718
}
2719
#endif /* CONFIG_HIGHMEM */