snapshot.c 71.8 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5
 *
P
Pavel Machek 已提交
6
 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
24
#include <linux/bootmem.h>
25
#include <linux/nmi.h>
26 27 28
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
29
#include <linux/list.h>
30
#include <linux/slab.h>
31
#include <linux/compiler.h>
32
#include <linux/ktime.h>
33

34
#include <linux/uaccess.h>
35 36 37 38
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>
39
#ifdef CONFIG_ARCH_HAS_SET_MEMORY
40 41
#include <asm/set_memory.h>
#endif
42 43 44

#include "power.h"

45
#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
static bool hibernate_restore_protection;
static bool hibernate_restore_protection_active;

void enable_restore_image_protection(void)
{
	hibernate_restore_protection = true;
}

static inline void hibernate_restore_protection_begin(void)
{
	hibernate_restore_protection_active = hibernate_restore_protection;
}

static inline void hibernate_restore_protection_end(void)
{
	hibernate_restore_protection_active = false;
}

static inline void hibernate_restore_protect_page(void *page_address)
{
	if (hibernate_restore_protection_active)
		set_memory_ro((unsigned long)page_address, 1);
}

static inline void hibernate_restore_unprotect_page(void *page_address)
{
	if (hibernate_restore_protection_active)
		set_memory_rw((unsigned long)page_address, 1);
}
#else
static inline void hibernate_restore_protection_begin(void) {}
static inline void hibernate_restore_protection_end(void) {}
static inline void hibernate_restore_protect_page(void *page_address) {}
static inline void hibernate_restore_unprotect_page(void *page_address) {}
80
#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
81

82 83 84 85
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

86 87 88 89 90 91 92 93 94 95 96 97
/*
 * Number of bytes to reserve for memory allocations made by device drivers
 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 * cause image creation to fail (tunable via /sys/power/reserved_size).
 */
unsigned long reserved_size;

void __init hibernate_reserved_size_init(void)
{
	reserved_size = SPARE_PAGES * PAGE_SIZE;
}

98 99
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
100 101 102
 * When it is set to N, swsusp will do its best to ensure the image
 * size will not exceed N bytes, but if that is impossible, it will
 * try to create the smallest image possible.
103
 */
104 105 106 107
unsigned long image_size;

void __init hibernate_image_size_init(void)
{
108
	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
109
}
110

111 112
/*
 * List of PBEs needed for restoring the pages that were allocated before
113 114 115 116
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
117 118
struct pbe *restore_pblist;

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
} __packed;

/*
 * List of "safe" pages (ie. pages that were not used by the image kernel
 * before hibernation) that may be used as temporary storage for image kernel
 * memory contents.
 */
static struct linked_page *safe_pages_list;

135
/* Pointer to an auxiliary buffer (1 page) */
136
static void *buffer;
137

138 139 140 141 142
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

143
static unsigned int allocated_unsafe_pages;
144

145 146 147 148 149 150 151 152 153 154 155 156 157
/**
 * get_image_page - Allocate a page for a hibernation image.
 * @gfp_mask: GFP mask for the allocation.
 * @safe_needed: Get pages that were not used before hibernation (restore only)
 *
 * During image restoration, for storing the PBE list and the image data, we can
 * only use memory pages that do not conflict with the pages used before
 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 * using allocated_unsafe_pages.
 *
 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 * swsusp_free() can release it.
 */
158
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
159 160 161 162 163
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
164
		while (res && swsusp_page_is_free(virt_to_page(res))) {
165
			/* The page is unsafe, mark it for swsusp_free() */
166
			swsusp_set_page_forbidden(virt_to_page(res));
167
			allocated_unsafe_pages++;
168 169 170
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
171 172
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
173 174 175 176
	}
	return res;
}

177 178 179 180 181 182 183 184 185 186 187 188
static void *__get_safe_page(gfp_t gfp_mask)
{
	if (safe_pages_list) {
		void *ret = safe_pages_list;

		safe_pages_list = safe_pages_list->next;
		memset(ret, 0, PAGE_SIZE);
		return ret;
	}
	return get_image_page(gfp_mask, PG_SAFE);
}

189 190
unsigned long get_safe_page(gfp_t gfp_mask)
{
191
	return (unsigned long)__get_safe_page(gfp_mask);
192 193
}

194 195
static struct page *alloc_image_page(gfp_t gfp_mask)
{
196 197 198 199
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
200 201
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
202 203
	}
	return page;
204 205
}

206 207 208 209 210 211 212 213
static void recycle_safe_page(void *page_address)
{
	struct linked_page *lp = page_address;

	lp->next = safe_pages_list;
	safe_pages_list = lp;
}

214
/**
215 216 217 218 219 220
 * free_image_page - Free a page allocated for hibernation image.
 * @addr: Address of the page to free.
 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 *
 * The page to free should have been allocated by get_image_page() (page flags
 * set by it are affected).
221 222 223
 */
static inline void free_image_page(void *addr, int clear_nosave_free)
{
224 225 226 227 228 229
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

230
	swsusp_unset_page_forbidden(page);
231
	if (clear_nosave_free)
232
		swsusp_unset_page_free(page);
233 234

	__free_page(page);
235 236
}

237 238
static inline void free_list_of_pages(struct linked_page *list,
				      int clear_page_nosave)
239 240 241 242 243 244 245 246 247
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

248 249 250 251 252 253 254 255 256 257 258 259
/*
 * struct chain_allocator is used for allocating small objects out of
 * a linked list of pages called 'the chain'.
 *
 * The chain grows each time when there is no room for a new object in
 * the current page.  The allocated objects cannot be freed individually.
 * It is only possible to free them all at once, by freeing the entire
 * chain.
 *
 * NOTE: The chain allocator may be inefficient if the allocated objects
 * are not much smaller than PAGE_SIZE.
 */
260 261 262
struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
263
					   of the current page */
264 265 266 267
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

268 269
static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
		       int safe_needed)
270 271 272 273 274 275 276 277 278 279 280 281 282 283
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

284 285
		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
					get_image_page(ca->gfp_mask, PG_ANY);
286 287 288 289 290 291 292 293 294 295 296 297 298
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
299
 * Data types related to memory bitmaps.
300
 *
301 302 303 304 305
 * Memory bitmap is a structure consiting of many linked lists of
 * objects.  The main list's elements are of type struct zone_bitmap
 * and each of them corresonds to one zone.  For each zone bitmap
 * object there is a list of objects of type struct bm_block that
 * represent each blocks of bitmap in which information is stored.
306
 *
307 308 309 310
 * struct memory_bitmap contains a pointer to the main list of zone
 * bitmap objects, a struct bm_position used for browsing the bitmap,
 * and a pointer to the list of pages used for allocating all of the
 * zone bitmap objects and bitmap block objects.
311
 *
312 313 314 315
 * NOTE: It has to be possible to lay out the bitmap in memory
 * using only allocations of order 0.  Additionally, the bitmap is
 * designed to work with arbitrary number of zones (this is over the
 * top for now, but let's avoid making unnecessary assumptions ;-).
316
 *
317 318 319 320
 * struct zone_bitmap contains a pointer to a list of bitmap block
 * objects and a pointer to the bitmap block object that has been
 * most recently used for setting bits.  Additionally, it contains the
 * PFNs that correspond to the start and end of the represented zone.
321
 *
322 323 324 325
 * struct bm_block contains a pointer to the memory page in which
 * information is stored (in the form of a block of bitmap)
 * It also contains the pfns that correspond to the start and end of
 * the represented memory area.
326
 *
327 328 329
 * The memory bitmap is organized as a radix tree to guarantee fast random
 * access to the bits. There is one radix tree for each zone (as returned
 * from create_mem_extents).
330
 *
331 332 333 334
 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 * two linked lists for the nodes of the tree, one for the inner nodes and
 * one for the leave nodes. The linked leave nodes are used for fast linear
 * access of the memory bitmap.
335
 *
336
 * The struct rtree_node represents one node of the radix tree.
337 338 339 340
 */

#define BM_END_OF_MAP	(~0UL)

W
Wu Fengguang 已提交
341
#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
342 343
#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
344

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
/*
 * struct rtree_node is a wrapper struct to link the nodes
 * of the rtree together for easy linear iteration over
 * bits and easy freeing
 */
struct rtree_node {
	struct list_head list;
	unsigned long *data;
};

/*
 * struct mem_zone_bm_rtree represents a bitmap used for one
 * populated memory zone.
 */
struct mem_zone_bm_rtree {
	struct list_head list;		/* Link Zones together         */
	struct list_head nodes;		/* Radix Tree inner nodes      */
	struct list_head leaves;	/* Radix Tree leaves           */
	unsigned long start_pfn;	/* Zone start page frame       */
	unsigned long end_pfn;		/* Zone end page frame + 1     */
	struct rtree_node *rtree;	/* Radix Tree Root             */
	int levels;			/* Number of Radix Tree Levels */
	unsigned int blocks;		/* Number of Bitmap Blocks     */
};

370 371 372
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
373 374 375 376
	struct mem_zone_bm_rtree *zone;
	struct rtree_node *node;
	unsigned long node_pfn;
	int node_bit;
377 378 379
};

struct memory_bitmap {
380
	struct list_head zones;
381
	struct linked_page *p_list;	/* list of pages used to store zone
382 383
					   bitmap objects and bitmap block
					   objects */
384 385 386 387 388
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

389 390 391 392 393 394 395 396
#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
#if BITS_PER_LONG == 32
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
#else
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
#endif
#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)

397 398
/**
 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
399
 *
400 401 402
 * This function is used to allocate inner nodes as well as the
 * leave nodes of the radix tree. It also adds the node to the
 * corresponding linked list passed in by the *list parameter.
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
 */
static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
					   struct chain_allocator *ca,
					   struct list_head *list)
{
	struct rtree_node *node;

	node = chain_alloc(ca, sizeof(struct rtree_node));
	if (!node)
		return NULL;

	node->data = get_image_page(gfp_mask, safe_needed);
	if (!node->data)
		return NULL;

	list_add_tail(&node->list, list);

	return node;
}

423 424
/**
 * add_rtree_block - Add a new leave node to the radix tree.
425
 *
426 427 428
 * The leave nodes need to be allocated in order to keep the leaves
 * linked list in order. This is guaranteed by the zone->blocks
 * counter.
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
 */
static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
			   int safe_needed, struct chain_allocator *ca)
{
	struct rtree_node *node, *block, **dst;
	unsigned int levels_needed, block_nr;
	int i;

	block_nr = zone->blocks;
	levels_needed = 0;

	/* How many levels do we need for this block nr? */
	while (block_nr) {
		levels_needed += 1;
		block_nr >>= BM_RTREE_LEVEL_SHIFT;
	}

	/* Make sure the rtree has enough levels */
	for (i = zone->levels; i < levels_needed; i++) {
		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
					&zone->nodes);
		if (!node)
			return -ENOMEM;

		node->data[0] = (unsigned long)zone->rtree;
		zone->rtree = node;
		zone->levels += 1;
	}

	/* Allocate new block */
	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
	if (!block)
		return -ENOMEM;

	/* Now walk the rtree to insert the block */
	node = zone->rtree;
	dst = &zone->rtree;
	block_nr = zone->blocks;
	for (i = zone->levels; i > 0; i--) {
		int index;

		if (!node) {
			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
						&zone->nodes);
			if (!node)
				return -ENOMEM;
			*dst = node;
		}

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		dst = (struct rtree_node **)&((*dst)->data[index]);
		node = *dst;
	}

	zone->blocks += 1;
	*dst = block;

	return 0;
}

static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free);

493 494
/**
 * create_zone_bm_rtree - Create a radix tree for one zone.
495
 *
496 497 498
 * Allocated the mem_zone_bm_rtree structure and initializes it.
 * This function also allocated and builds the radix tree for the
 * zone.
499
 */
500 501 502 503 504
static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
						      int safe_needed,
						      struct chain_allocator *ca,
						      unsigned long start,
						      unsigned long end)
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
{
	struct mem_zone_bm_rtree *zone;
	unsigned int i, nr_blocks;
	unsigned long pages;

	pages = end - start;
	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
	if (!zone)
		return NULL;

	INIT_LIST_HEAD(&zone->nodes);
	INIT_LIST_HEAD(&zone->leaves);
	zone->start_pfn = start;
	zone->end_pfn = end;
	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);

	for (i = 0; i < nr_blocks; i++) {
		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
			return NULL;
		}
	}

	return zone;
}

531 532
/**
 * free_zone_bm_rtree - Free the memory of the radix tree.
533
 *
534 535 536
 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 * structure itself is not freed here nor are the rtree_node
 * structs.
537 538 539 540 541 542 543 544 545 546 547 548 549
 */
static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		free_image_page(node->data, clear_nosave_free);

	list_for_each_entry(node, &zone->leaves, list)
		free_image_page(node->data, clear_nosave_free);
}

550 551
static void memory_bm_position_reset(struct memory_bitmap *bm)
{
552 553 554 555 556 557
	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
				  list);
	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
				  struct rtree_node, list);
	bm->cur.node_pfn = 0;
	bm->cur.node_bit = 0;
558 559 560 561
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

562 563 564 565 566 567
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

568
/**
569 570
 * free_mem_extents - Free a list of memory extents.
 * @list: List of extents to free.
571
 */
572 573 574
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
575

576 577 578 579 580 581 582
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
583 584 585 586 587
 * create_mem_extents - Create a list of memory extents.
 * @list: List to put the extents into.
 * @gfp_mask: Mask to use for memory allocations.
 *
 * The extents represent contiguous ranges of PFNs.
588 589
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
590
{
591
	struct zone *zone;
592

593
	INIT_LIST_HEAD(list);
594

595
	for_each_populated_zone(zone) {
596 597 598 599
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
600
		zone_end = zone_end_pfn(zone);
601 602 603 604

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
605

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
637
	}
638 639

	return 0;
640 641 642
}

/**
643 644
 * memory_bm_create - Allocate memory for a memory bitmap.
 */
645 646
static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
			    int safe_needed)
647 648
{
	struct chain_allocator ca;
649 650 651
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
652 653

	chain_init(&ca, gfp_mask, safe_needed);
654
	INIT_LIST_HEAD(&bm->zones);
655

656 657 658
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
659

660
	list_for_each_entry(ext, &mem_extents, hook) {
661 662 663 664
		struct mem_zone_bm_rtree *zone;

		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
					    ext->start, ext->end);
665 666
		if (!zone) {
			error = -ENOMEM;
667
			goto Error;
668
		}
669
		list_add_tail(&zone->list, &bm->zones);
670
	}
671

672 673
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
674 675 676
 Exit:
	free_mem_extents(&mem_extents);
	return error;
677

678
 Error:
679 680
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
681
	goto Exit;
682 683 684
}

/**
685 686 687
 * memory_bm_free - Free memory occupied by the memory bitmap.
 * @bm: Memory bitmap.
 */
688 689
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
690
	struct mem_zone_bm_rtree *zone;
691

692 693 694
	list_for_each_entry(zone, &bm->zones, list)
		free_zone_bm_rtree(zone, clear_nosave_free);

695
	free_list_of_pages(bm->p_list, clear_nosave_free);
696

697
	INIT_LIST_HEAD(&bm->zones);
698 699 700
}

/**
701
 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
702
 *
703 704 705 706 707
 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 *
 * Walk the radix tree to find the page containing the bit that represents @pfn
 * and return the position of the bit in @addr and @bit_nr.
708
 */
709 710
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
			      void **addr, unsigned int *bit_nr)
711 712 713 714 715
{
	struct mem_zone_bm_rtree *curr, *zone;
	struct rtree_node *node;
	int i, block_nr;

716 717 718 719 720
	zone = bm->cur.zone;

	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
		goto zone_found;

721 722 723 724 725 726 727 728 729 730 731 732 733
	zone = NULL;

	/* Find the right zone */
	list_for_each_entry(curr, &bm->zones, list) {
		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
			zone = curr;
			break;
		}
	}

	if (!zone)
		return -EFAULT;

734
zone_found:
735
	/*
736 737
	 * We have found the zone. Now walk the radix tree to find the leaf node
	 * for our PFN.
738
	 */
739 740 741 742
	node = bm->cur.node;
	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
		goto node_found;

743 744 745 746 747 748 749 750 751 752 753 754
	node      = zone->rtree;
	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;

	for (i = zone->levels; i > 0; i--) {
		int index;

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		BUG_ON(node->data[index] == 0);
		node = (struct rtree_node *)node->data[index];
	}

755 756 757 758 759 760
node_found:
	/* Update last position */
	bm->cur.zone = zone;
	bm->cur.node = node;
	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;

761 762 763 764 765 766 767
	/* Set return values */
	*addr = node->data;
	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;

	return 0;
}

768 769 770 771
static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
772
	int error;
773

774 775
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
776 777 778
	set_bit(bit, addr);
}

779 780 781 782 783 784 785
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
786 787 788
	if (!error)
		set_bit(bit, addr);

789 790 791
	return error;
}

792 793 794 795
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
796
	int error;
797

798 799
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
800 801 802
	clear_bit(bit, addr);
}

803 804 805 806 807 808 809 810
static void memory_bm_clear_current(struct memory_bitmap *bm)
{
	int bit;

	bit = max(bm->cur.node_bit - 1, 0);
	clear_bit(bit, bm->cur.node->data);
}

811 812 813 814
static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
815
	int error;
816

817 818
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
819
	return test_bit(bit, addr);
820 821
}

822 823 824 825
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
826

827
	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
828 829
}

830
/*
831
 * rtree_next_node - Jump to the next leaf node.
832
 *
833 834 835 836
 * Set the position to the beginning of the next node in the
 * memory bitmap. This is either the next node in the current
 * zone's radix tree or the first node in the radix tree of the
 * next zone.
837
 *
838
 * Return true if there is a next node, false otherwise.
839 840 841
 */
static bool rtree_next_node(struct memory_bitmap *bm)
{
842 843 844
	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
		bm->cur.node = list_entry(bm->cur.node->list.next,
					  struct rtree_node, list);
845 846
		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
		bm->cur.node_bit  = 0;
847
		touch_softlockup_watchdog();
848 849 850 851
		return true;
	}

	/* No more nodes, goto next zone */
852 853
	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
		bm->cur.zone = list_entry(bm->cur.zone->list.next,
854 855 856 857 858 859 860 861 862 863 864 865
				  struct mem_zone_bm_rtree, list);
		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
					  struct rtree_node, list);
		bm->cur.node_pfn = 0;
		bm->cur.node_bit = 0;
		return true;
	}

	/* No more zones */
	return false;
}

866
/**
867 868
 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 * @bm: Memory bitmap.
869
 *
870 871 872
 * Starting from the last returned position this function searches for the next
 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 * set, BM_END_OF_MAP is returned.
873
 *
874 875
 * It is required to run memory_bm_position_reset() before the first call to
 * this function for the given memory bitmap.
876
 */
877
static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
{
	unsigned long bits, pfn, pages;
	int bit;

	do {
		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
		bit	  = find_next_bit(bm->cur.node->data, bits,
					  bm->cur.node_bit);
		if (bit < bits) {
			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
			bm->cur.node_bit = bit + 1;
			return pfn;
		}
	} while (rtree_next_node(bm));

	return BM_END_OF_MAP;
}

897 898 899
/*
 * This structure represents a range of page frames the contents of which
 * should not be saved during hibernation.
900 901 902 903 904 905 906 907 908
 */
struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		recycle_safe_page(node->data);

	list_for_each_entry(node, &zone->leaves, list)
		recycle_safe_page(node->data);
}

static void memory_bm_recycle(struct memory_bitmap *bm)
{
	struct mem_zone_bm_rtree *zone;
	struct linked_page *p_list;

	list_for_each_entry(zone, &bm->zones, list)
		recycle_zone_bm_rtree(zone);

	p_list = bm->p_list;
	while (p_list) {
		struct linked_page *lp = p_list;

		p_list = lp->next;
		recycle_safe_page(lp);
	}
}

937
/**
938 939 940 941
 * register_nosave_region - Register a region of unsaveable memory.
 *
 * Register a range of page frames the contents of which should not be saved
 * during hibernation (to be used in the early initialization code).
942
 */
943 944
void __init __register_nosave_region(unsigned long start_pfn,
				     unsigned long end_pfn, int use_kmalloc)
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
960
	if (use_kmalloc) {
961
		/* During init, this shouldn't fail */
962 963
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
964
	} else {
965
		/* This allocation cannot fail */
966
		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
967
	}
968 969 970 971
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
972 973 974
	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
		(unsigned long long) start_pfn << PAGE_SHIFT,
		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
1028 1029 1030 1031 1032
 * mark_nosave_pages - Mark pages that should not be saved.
 * @bm: Memory bitmap.
 *
 * Set the bits in @bm that correspond to the page frames the contents of which
 * should not be saved.
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
 */
static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

1044 1045 1046 1047
		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
				- 1);
1048 1049

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1050 1051 1052 1053 1054 1055 1056 1057 1058
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
1059 1060 1061 1062
	}
}

/**
1063 1064 1065 1066 1067 1068
 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
 *
 * Create bitmaps needed for marking page frames that should not be saved and
 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
 * only modified if everything goes well, because we don't want the bits to be
 * touched before both bitmaps are set up.
1069 1070 1071 1072 1073 1074
 */
int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

1075 1076 1077 1078
	if (forbidden_pages_map && free_pages_map)
		return 0;
	else
		BUG_ON(forbidden_pages_map || free_pages_map);
1079

1080
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1081 1082 1083
	if (!bm1)
		return -ENOMEM;

1084
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1085 1086 1087
	if (error)
		goto Free_first_object;

1088
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1089 1090 1091
	if (!bm2)
		goto Free_first_bitmap;

1092
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1093 1094 1095 1096 1097 1098 1099
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

R
Rafael J. Wysocki 已提交
1100
	pr_debug("PM: Basic memory bitmaps created\n");
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
1114 1115 1116 1117 1118
 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
 *
 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
 * auxiliary pointers are necessary so that the bitmaps themselves are not
 * referred to while they are being freed.
1119 1120 1121 1122 1123
 */
void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

1124 1125
	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
		return;
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

R
Rafael J. Wysocki 已提交
1136
	pr_debug("PM: Basic memory bitmaps freed\n");
1137 1138
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
void clear_free_pages(void)
{
#ifdef CONFIG_PAGE_POISONING_ZERO
	struct memory_bitmap *bm = free_pages_map;
	unsigned long pfn;

	if (WARN_ON(!(free_pages_map)))
		return;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (pfn_valid(pfn))
			clear_highpage(pfn_to_page(pfn));

		pfn = memory_bm_next_pfn(bm);
	}
	memory_bm_position_reset(bm);
	pr_info("PM: free pages cleared after restore\n");
#endif /* PAGE_POISONING_ZERO */
}

1161
/**
1162 1163 1164 1165 1166 1167
 * snapshot_additional_pages - Estimate the number of extra pages needed.
 * @zone: Memory zone to carry out the computation for.
 *
 * Estimate the number of additional pages needed for setting up a hibernation
 * image data structures for @zone (usually, the returned value is greater than
 * the exact number).
1168 1169 1170
 */
unsigned int snapshot_additional_pages(struct zone *zone)
{
1171
	unsigned int rtree, nodes;
1172

1173 1174 1175 1176 1177 1178 1179 1180
	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
			      LINKED_PAGE_DATA_SIZE);
	while (nodes > 1) {
		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
		rtree += nodes;
	}

1181
	return 2 * rtree;
1182 1183
}

1184 1185
#ifdef CONFIG_HIGHMEM
/**
1186 1187 1188
 * count_free_highmem_pages - Compute the total number of free highmem pages.
 *
 * The returned number is system-wide.
1189 1190 1191 1192 1193 1194
 */
static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

1195 1196
	for_each_populated_zone(zone)
		if (is_highmem(zone))
1197
			cnt += zone_page_state(zone, NR_FREE_PAGES);
1198 1199 1200 1201 1202

	return cnt;
}

/**
1203 1204 1205
 * saveable_highmem_page - Check if a highmem page is saveable.
 *
 * Determine whether a highmem page should be included in a hibernation image.
1206
 *
1207 1208
 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 * and it isn't part of a free chunk of pages.
1209
 */
1210
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1211 1212 1213 1214 1215 1216 1217
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
1218 1219
	if (page_zone(page) != zone)
		return NULL;
1220 1221 1222

	BUG_ON(!PageHighMem(page));

1223 1224
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
1225 1226
		return NULL;

1227 1228 1229
	if (page_is_guard(page))
		return NULL;

1230 1231 1232 1233
	return page;
}

/**
1234
 * count_highmem_pages - Compute the total number of saveable highmem pages.
1235
 */
1236
static unsigned int count_highmem_pages(void)
1237 1238 1239 1240
{
	struct zone *zone;
	unsigned int n = 0;

1241
	for_each_populated_zone(zone) {
1242 1243 1244 1245 1246 1247
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
1248
		max_zone_pfn = zone_end_pfn(zone);
1249
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1250
			if (saveable_highmem_page(zone, pfn))
1251 1252 1253 1254 1255
				n++;
	}
	return n;
}
#else
1256 1257 1258 1259
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
1260 1261
#endif /* CONFIG_HIGHMEM */

1262
/**
1263 1264 1265 1266
 * saveable_page - Check if the given page is saveable.
 *
 * Determine whether a non-highmem page should be included in a hibernation
 * image.
1267
 *
1268 1269 1270
 * We should save the page if it isn't Nosave, and is not in the range
 * of pages statically defined as 'unsaveable', and it isn't part of
 * a free chunk of pages.
1271
 */
1272
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1273
{
P
Pavel Machek 已提交
1274
	struct page *page;
1275 1276

	if (!pfn_valid(pfn))
1277
		return NULL;
1278 1279

	page = pfn_to_page(pfn);
1280 1281
	if (page_zone(page) != zone)
		return NULL;
1282

1283 1284
	BUG_ON(PageHighMem(page));

1285
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1286
		return NULL;
1287

1288 1289
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1290
		return NULL;
1291

1292 1293 1294
	if (page_is_guard(page))
		return NULL;

1295
	return page;
1296 1297
}

1298
/**
1299
 * count_data_pages - Compute the total number of saveable non-highmem pages.
1300
 */
1301
static unsigned int count_data_pages(void)
1302 1303
{
	struct zone *zone;
1304
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
1305
	unsigned int n = 0;
1306

1307
	for_each_populated_zone(zone) {
1308 1309
		if (is_highmem(zone))
			continue;
1310

1311
		mark_free_pages(zone);
1312
		max_zone_pfn = zone_end_pfn(zone);
1313
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1314
			if (saveable_page(zone, pfn))
1315
				n++;
1316
	}
1317
	return n;
1318 1319
}

1320 1321
/*
 * This is needed, because copy_page and memcpy are not usable for copying
1322 1323 1324
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
1325 1326 1327 1328 1329 1330 1331
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

1332
/**
1333 1334 1335 1336 1337
 * safe_copy_page - Copy a page in a safe way.
 *
 * Check if the page we are going to copy is marked as present in the kernel
 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
 * and in that case kernel_page_present() always returns 'true').
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}

1350
#ifdef CONFIG_HIGHMEM
1351
static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1352 1353
{
	return is_highmem(zone) ?
1354
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1355 1356
}

1357
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1358 1359 1360 1361 1362 1363 1364
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
1365 1366
		src = kmap_atomic(s_page);
		dst = kmap_atomic(d_page);
1367
		do_copy_page(dst, src);
1368 1369
		kunmap_atomic(dst);
		kunmap_atomic(src);
1370 1371
	} else {
		if (PageHighMem(d_page)) {
1372 1373
			/*
			 * The page pointed to by src may contain some kernel
1374 1375
			 * data modified by kmap_atomic()
			 */
1376
			safe_copy_page(buffer, s_page);
1377
			dst = kmap_atomic(d_page);
1378
			copy_page(dst, buffer);
1379
			kunmap_atomic(dst);
1380
		} else {
1381
			safe_copy_page(page_address(d_page), s_page);
1382 1383 1384 1385
		}
	}
}
#else
1386
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1387

1388
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1389
{
1390 1391
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1392 1393 1394
}
#endif /* CONFIG_HIGHMEM */

1395 1396
static void copy_data_pages(struct memory_bitmap *copy_bm,
			    struct memory_bitmap *orig_bm)
1397 1398
{
	struct zone *zone;
1399
	unsigned long pfn;
1400

1401
	for_each_populated_zone(zone) {
1402 1403
		unsigned long max_zone_pfn;

1404
		mark_free_pages(zone);
1405
		max_zone_pfn = zone_end_pfn(zone);
1406
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1407
			if (page_is_saveable(zone, pfn))
1408
				memory_bm_set_bit(orig_bm, pfn);
1409
	}
1410 1411
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1412
	for(;;) {
1413
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1414 1415 1416 1417
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1418 1419
}

1420 1421 1422 1423
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1424 1425 1426 1427
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
1428
static unsigned int alloc_normal, alloc_highmem;
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1443

1444
/**
1445
 * swsusp_free - Free pages allocated for hibernation image.
1446
 *
1447 1448
 * Image pages are alocated before snapshot creation, so they need to be
 * released after resume.
1449 1450 1451
 */
void swsusp_free(void)
{
1452
	unsigned long fb_pfn, fr_pfn;
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	if (!forbidden_pages_map || !free_pages_map)
		goto out;

	memory_bm_position_reset(forbidden_pages_map);
	memory_bm_position_reset(free_pages_map);

loop:
	fr_pfn = memory_bm_next_pfn(free_pages_map);
	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);

	/*
	 * Find the next bit set in both bitmaps. This is guaranteed to
	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
	 */
	do {
		if (fb_pfn < fr_pfn)
			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
		if (fr_pfn < fb_pfn)
			fr_pfn = memory_bm_next_pfn(free_pages_map);
	} while (fb_pfn != fr_pfn);

	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
		struct page *page = pfn_to_page(fr_pfn);

		memory_bm_clear_current(forbidden_pages_map);
		memory_bm_clear_current(free_pages_map);
1480
		hibernate_restore_unprotect_page(page_address(page));
1481 1482
		__free_page(page);
		goto loop;
1483
	}
1484 1485

out:
1486 1487
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1488
	restore_pblist = NULL;
1489
	buffer = NULL;
1490 1491
	alloc_normal = 0;
	alloc_highmem = 0;
1492
	hibernate_restore_protection_end();
1493 1494
}

1495 1496 1497 1498
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1499
/**
1500
 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1501 1502
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1503
 *
1504 1505 1506 1507 1508 1509 1510
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1511 1512 1513 1514
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1515
			break;
1516 1517 1518 1519 1520
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1521 1522 1523 1524 1525 1526 1527
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

1528 1529
static unsigned long preallocate_image_memory(unsigned long nr_pages,
					      unsigned long avail_normal)
1530
{
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	unsigned long alloc;

	if (avail_normal <= alloc_normal)
		return 0;

	alloc = avail_normal - alloc_normal;
	if (nr_pages < alloc)
		alloc = nr_pages;

	return preallocate_image_pages(alloc, GFP_IMAGE);
1541 1542 1543 1544 1545 1546 1547 1548 1549
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
1550
 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1551
 */
1552 1553 1554 1555 1556 1557
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
	x *= multiplier;
	do_div(x, base);
	return (unsigned long)x;
}
1558

1559
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1560 1561
						  unsigned long highmem,
						  unsigned long total)
1562
{
1563 1564 1565
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1566
}
1567 1568 1569 1570 1571 1572 1573
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1574 1575
							 unsigned long highmem,
							 unsigned long total)
1576 1577 1578 1579
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1580

1581
/**
1582
 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1583
 */
1584
static unsigned long free_unnecessary_pages(void)
1585
{
1586
	unsigned long save, to_free_normal, to_free_highmem, free;
1587

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	save = count_data_pages();
	if (alloc_normal >= save) {
		to_free_normal = alloc_normal - save;
		save = 0;
	} else {
		to_free_normal = 0;
		save -= alloc_normal;
	}
	save += count_highmem_pages();
	if (alloc_highmem >= save) {
		to_free_highmem = alloc_highmem - save;
1599 1600
	} else {
		to_free_highmem = 0;
1601 1602 1603 1604 1605
		save -= alloc_highmem;
		if (to_free_normal > save)
			to_free_normal -= save;
		else
			to_free_normal = 0;
1606
	}
1607
	free = to_free_normal + to_free_highmem;
1608 1609 1610

	memory_bm_position_reset(&copy_bm);

1611
	while (to_free_normal > 0 || to_free_highmem > 0) {
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
1631 1632

	return free;
1633 1634
}

1635
/**
1636
 * minimum_image_size - Estimate the minimum acceptable size of an image.
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1648
 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1649 1650 1651 1652 1653 1654 1655
 * minus mapped file pages.
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

	size = global_page_state(NR_SLAB_RECLAIMABLE)
M
Mel Gorman 已提交
1656 1657 1658 1659 1660
		+ global_node_page_state(NR_ACTIVE_ANON)
		+ global_node_page_state(NR_INACTIVE_ANON)
		+ global_node_page_state(NR_ACTIVE_FILE)
		+ global_node_page_state(NR_INACTIVE_FILE)
		- global_node_page_state(NR_FILE_MAPPED);
1661 1662 1663 1664

	return saveable <= size ? 0 : saveable - size;
}

1665
/**
1666
 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1667 1668 1669 1670 1671
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
1672 1673 1674 1675
 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
 * total number of available page frames and allocate at least
1676
 *
1677 1678
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1679 1680 1681 1682 1683
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1684 1685
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1686
 */
1687
int hibernate_preallocate_memory(void)
1688 1689
{
	struct zone *zone;
1690
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1691
	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1692
	ktime_t start, stop;
1693
	int error;
1694

1695
	printk(KERN_INFO "PM: Preallocating image memory... ");
1696
	start = ktime_get();
1697

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	alloc_normal = 0;
	alloc_highmem = 0;

1709
	/* Count the number of saveable data pages. */
1710
	save_highmem = count_highmem_pages();
1711
	saveable = count_data_pages();
1712

1713 1714 1715 1716 1717
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1718 1719
	saveable += save_highmem;
	highmem = save_highmem;
1720 1721 1722 1723 1724 1725 1726 1727
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
1728
	avail_normal = count;
1729 1730 1731
	count += highmem;
	count -= totalreserve_pages;

1732 1733 1734
	/* Add number of pages required for page keys (s390 only). */
	size += page_key_additional_pages(saveable);

1735
	/* Compute the maximum number of saveable pages to leave in memory. */
1736 1737
	max_size = (count - (size + PAGES_FOR_IO)) / 2
			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1738
	/* Compute the desired number of image pages specified by image_size. */
1739 1740 1741 1742
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
1743 1744 1745
	 * If the desired number of image pages is at least as large as the
	 * current number of saveable pages in memory, allocate page frames for
	 * the image and we're done.
1746
	 */
1747 1748
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
1749
		pages += preallocate_image_memory(saveable - pages, avail_normal);
1750
		goto out;
1751
	}
1752

1753 1754
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
1755 1756 1757 1758 1759 1760 1761 1762 1763
	/*
	 * To avoid excessive pressure on the normal zone, leave room in it to
	 * accommodate an image of the minimum size (unless it's already too
	 * small, in which case don't preallocate pages from it at all).
	 */
	if (avail_normal > pages)
		avail_normal -= pages;
	else
		avail_normal = 0;
1764 1765 1766
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1779 1780
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1781 1782
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
1783 1784 1785 1786 1787
	alloc = count - max_size;
	if (alloc > pages_highmem)
		alloc -= pages_highmem;
	else
		alloc = 0;
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	pages = preallocate_image_memory(alloc, avail_normal);
	if (pages < alloc) {
		/* We have exhausted non-highmem pages, try highmem. */
		alloc -= pages;
		pages += pages_highmem;
		pages_highmem = preallocate_image_highmem(alloc);
		if (pages_highmem < alloc)
			goto err_out;
		pages += pages_highmem;
		/*
		 * size is the desired number of saveable pages to leave in
		 * memory, so try to preallocate (all memory - size) pages.
		 */
		alloc = (count - pages) - size;
		pages += preallocate_image_highmem(alloc);
	} else {
		/*
		 * There are approximately max_size saveable pages at this point
		 * and we want to reduce this number down to size.
		 */
		alloc = max_size - size;
		size = preallocate_highmem_fraction(alloc, highmem, count);
		pages_highmem += size;
		alloc -= size;
		size = preallocate_image_memory(alloc, avail_normal);
		pages_highmem += preallocate_image_highmem(alloc - size);
		pages += pages_highmem + size;
	}
1816

1817 1818 1819 1820 1821
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
1822
	pages -= free_unnecessary_pages();
1823 1824

 out:
1825
	stop = ktime_get();
1826
	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1827
	swsusp_show_speed(start, stop, pages, "Allocated");
1828 1829

	return 0;
1830 1831 1832 1833 1834

 err_out:
	printk(KERN_CONT "\n");
	swsusp_free();
	return -ENOMEM;
1835 1836
}

1837 1838
#ifdef CONFIG_HIGHMEM
/**
1839 1840 1841 1842 1843
 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
 *
 * Compute the number of non-highmem pages that will be necessary for creating
 * copies of highmem pages.
 */
1844 1845
static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1846
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1847 1848 1849 1850 1851 1852 1853 1854 1855

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
1856
static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1857
#endif /* CONFIG_HIGHMEM */
1858 1859

/**
1860
 * enough_free_mem - Check if there is enough free memory for the image.
1861
 */
1862
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1863
{
1864
	struct zone *zone;
1865
	unsigned int free = alloc_normal;
1866

1867
	for_each_populated_zone(zone)
1868
		if (!is_highmem(zone))
1869
			free += zone_page_state(zone, NR_FREE_PAGES);
1870

1871
	nr_pages += count_pages_for_highmem(nr_highmem);
1872 1873
	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
		nr_pages, PAGES_FOR_IO, free);
1874

1875
	return free > nr_pages + PAGES_FOR_IO;
1876 1877
}

1878 1879
#ifdef CONFIG_HIGHMEM
/**
1880 1881 1882 1883
 * get_highmem_buffer - Allocate a buffer for highmem pages.
 *
 * If there are some highmem pages in the hibernation image, we may need a
 * buffer to copy them and/or load their data.
1884 1885 1886 1887 1888 1889 1890 1891
 */
static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
1892 1893 1894 1895
 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
 *
 * Try to allocate as many pages as needed, but if the number of free highmem
 * pages is less than that, allocate them all.
1896
 */
1897 1898
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int nr_highmem)
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

1909
		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1910 1911 1912 1913 1914 1915 1916
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

1917 1918
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int n) { return 0; }
1919 1920 1921
#endif /* CONFIG_HIGHMEM */

/**
1922
 * swsusp_alloc - Allocate memory for hibernation image.
1923
 *
1924 1925 1926
 * We first try to allocate as many highmem pages as there are
 * saveable highmem pages in the system.  If that fails, we allocate
 * non-highmem pages for the copies of the remaining highmem ones.
1927
 *
1928 1929 1930
 * In this approach it is likely that the copies of highmem pages will
 * also be located in the high memory, because of the way in which
 * copy_data_pages() works.
1931
 */
1932
static int swsusp_alloc(struct memory_bitmap *copy_bm,
1933
			unsigned int nr_pages, unsigned int nr_highmem)
1934
{
1935
	if (nr_highmem > 0) {
1936
		if (get_highmem_buffer(PG_ANY))
1937 1938 1939 1940 1941
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1942
	}
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
1953
	}
1954

1955
	return 0;
1956

1957
 err_out:
1958
	swsusp_free();
1959
	return -ENOMEM;
1960 1961
}

1962
asmlinkage __visible int swsusp_save(void)
1963
{
1964
	unsigned int nr_pages, nr_highmem;
1965

1966
	printk(KERN_INFO "PM: Creating hibernation image:\n");
1967

1968
	drain_local_pages(NULL);
1969
	nr_pages = count_data_pages();
1970
	nr_highmem = count_highmem_pages();
R
Rafael J. Wysocki 已提交
1971
	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1972

1973
	if (!enough_free_mem(nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1974
		printk(KERN_ERR "PM: Not enough free memory\n");
1975 1976 1977
		return -ENOMEM;
	}

1978
	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1979
		printk(KERN_ERR "PM: Memory allocation failed\n");
1980
		return -ENOMEM;
1981
	}
1982

1983 1984
	/*
	 * During allocating of suspend pagedir, new cold pages may appear.
1985 1986
	 * Kill them.
	 */
1987
	drain_local_pages(NULL);
1988
	copy_data_pages(&copy_bm, &orig_bm);
1989 1990 1991 1992 1993 1994 1995

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1996
	nr_pages += nr_highmem;
1997
	nr_copy_pages = nr_pages;
1998
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1999

R
Rafael J. Wysocki 已提交
2000 2001
	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
		nr_pages);
2002

2003 2004
	return 0;
}
2005

2006 2007
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
2008
{
2009
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2010
	info->version_code = LINUX_VERSION_CODE;
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

2030 2031 2032 2033 2034
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

2035 2036 2037
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
2038
	info->num_physpages = get_num_physpages();
2039
	info->image_pages = nr_copy_pages;
2040
	info->pages = snapshot_get_image_size();
2041 2042
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
2043
	return init_header_complete(info);
2044 2045 2046
}

/**
2047 2048 2049 2050 2051 2052
 * pack_pfns - Prepare PFNs for saving.
 * @bm: Memory bitmap.
 * @buf: Memory buffer to store the PFNs in.
 *
 * PFNs corresponding to set bits in @bm are stored in the area of memory
 * pointed to by @buf (1 page at a time).
2053
 */
2054
static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2055 2056 2057
{
	int j;

2058
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2059 2060
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
2061
			break;
2062 2063
		/* Save page key for data page (s390 only). */
		page_key_read(buf + j);
2064 2065 2066 2067
	}
}

/**
2068 2069
 * snapshot_read_next - Get the address to read the next image page from.
 * @handle: Snapshot handle to be used for the reading.
2070
 *
2071 2072 2073
 * On the first call, @handle should point to a zeroed snapshot_handle
 * structure.  The structure gets populated then and a pointer to it should be
 * passed to this function every next time.
2074
 *
2075 2076 2077
 * On success, the function returns a positive number.  Then, the caller
 * is allowed to read up to the returned number of bytes from the memory
 * location computed by the data_of() macro.
2078
 *
2079 2080 2081
 * The function returns 0 to indicate the end of the data stream condition,
 * and negative numbers are returned on errors.  If that happens, the structure
 * pointed to by @handle is not updated and should not be used any more.
2082
 */
J
Jiri Slaby 已提交
2083
int snapshot_read_next(struct snapshot_handle *handle)
2084
{
2085
	if (handle->cur > nr_meta_pages + nr_copy_pages)
2086
		return 0;
2087

2088 2089
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
2090
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2091 2092 2093
		if (!buffer)
			return -ENOMEM;
	}
J
Jiri Slaby 已提交
2094
	if (!handle->cur) {
2095 2096 2097 2098 2099
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
2100
		handle->buffer = buffer;
2101 2102
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
J
Jiri Slaby 已提交
2103
	} else if (handle->cur <= nr_meta_pages) {
2104
		clear_page(buffer);
J
Jiri Slaby 已提交
2105 2106 2107
		pack_pfns(buffer, &orig_bm);
	} else {
		struct page *page;
2108

J
Jiri Slaby 已提交
2109 2110
		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
		if (PageHighMem(page)) {
2111 2112
			/*
			 * Highmem pages are copied to the buffer,
J
Jiri Slaby 已提交
2113 2114 2115 2116
			 * because we can't return with a kmapped
			 * highmem page (we may not be called again).
			 */
			void *kaddr;
2117

2118
			kaddr = kmap_atomic(page);
2119
			copy_page(buffer, kaddr);
2120
			kunmap_atomic(kaddr);
J
Jiri Slaby 已提交
2121 2122 2123
			handle->buffer = buffer;
		} else {
			handle->buffer = page_address(page);
2124 2125
		}
	}
J
Jiri Slaby 已提交
2126 2127
	handle->cur++;
	return PAGE_SIZE;
2128 2129
}

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
static void duplicate_memory_bitmap(struct memory_bitmap *dst,
				    struct memory_bitmap *src)
{
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
	}
}

2143
/**
2144 2145 2146 2147
 * mark_unsafe_pages - Mark pages that were used before hibernation.
 *
 * Mark the pages that cannot be used for storing the image during restoration,
 * because they conflict with the pages that had been used before hibernation.
2148
 */
2149
static void mark_unsafe_pages(struct memory_bitmap *bm)
2150
{
2151
	unsigned long pfn;
2152

2153 2154 2155 2156 2157 2158
	/* Clear the "free"/"unsafe" bit for all PFNs */
	memory_bm_position_reset(free_pages_map);
	pfn = memory_bm_next_pfn(free_pages_map);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_clear_current(free_pages_map);
		pfn = memory_bm_next_pfn(free_pages_map);
2159 2160
	}

2161 2162
	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
	duplicate_memory_bitmap(free_pages_map, bm);
2163

2164
	allocated_unsafe_pages = 0;
2165 2166
}

2167
static int check_header(struct swsusp_info *info)
2168
{
2169
	char *reason;
2170

2171
	reason = check_image_kernel(info);
2172
	if (!reason && info->num_physpages != get_num_physpages())
2173 2174
		reason = "memory size";
	if (reason) {
R
Rafael J. Wysocki 已提交
2175
		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2176 2177 2178 2179 2180 2181
		return -EPERM;
	}
	return 0;
}

/**
2182
 * load header - Check the image header and copy the data from it.
2183
 */
2184
static int load_header(struct swsusp_info *info)
2185 2186 2187
{
	int error;

2188
	restore_pblist = NULL;
2189 2190 2191 2192 2193 2194 2195 2196 2197
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
2198 2199 2200 2201 2202 2203
 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
 * @bm: Memory bitmap.
 * @buf: Area of memory containing the PFNs.
 *
 * For each element of the array pointed to by @buf (1 page at a time), set the
 * corresponding bit in @bm.
2204
 */
2205
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2206 2207 2208
{
	int j;

2209 2210 2211 2212
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

2213 2214 2215
		/* Extract and buffer page key for data page (s390 only). */
		page_key_memorize(buf + j);

2216
		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2217 2218 2219
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
2220
	}
2221 2222

	return 0;
2223 2224
}

2225
#ifdef CONFIG_HIGHMEM
2226 2227
/*
 * struct highmem_pbe is used for creating the list of highmem pages that
2228 2229 2230 2231 2232 2233 2234 2235 2236
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

2237 2238
/*
 * List of highmem PBEs needed for restoring the highmem pages that were
2239 2240 2241 2242 2243 2244 2245
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
2246 2247 2248 2249
 * count_highmem_image_pages - Compute the number of highmem pages in the image.
 * @bm: Memory bitmap.
 *
 * The bits in @bm that correspond to image pages are assumed to be set.
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
 */
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
/**
 * prepare_highmem_image - Allocate memory for loading highmem data from image.
 * @bm: Pointer to an uninitialized memory bitmap structure.
 * @nr_highmem_p: Pointer to the number of highmem image pages.
 *
 * Try to allocate as many highmem pages as there are highmem image pages
 * (@nr_highmem_p points to the variable containing the number of highmem image
 * pages).  The pages that are "safe" (ie. will not be overwritten when the
 * hibernation image is restored entirely) have the corresponding bits set in
 * @bm (it must be unitialized).
 *
 * NOTE: This function should not be called if there are no highmem image pages.
 */
2284 2285
static int prepare_highmem_image(struct memory_bitmap *bm,
				 unsigned int *nr_highmem_p)
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
2306
		if (!swsusp_page_is_free(page)) {
2307 2308 2309 2310 2311
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
2312 2313
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
2314 2315 2316 2317 2318 2319
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

2320 2321
static struct page *last_highmem_page;

2322
/**
2323 2324 2325 2326
 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
 *
 * For a given highmem image page get a buffer that suspend_write_next() should
 * return to its caller to write to.
2327
 *
2328 2329 2330 2331
 * If the page is to be saved to its "original" page frame or a copy of
 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
 * the copy of the page is to be made in normal memory, so the address of
 * the copy is returned.
2332
 *
2333 2334 2335 2336 2337 2338
 * If @buffer is returned, the caller of suspend_write_next() will write
 * the page's contents to @buffer, so they will have to be copied to the
 * right location on the next call to suspend_write_next() and it is done
 * with the help of copy_last_highmem_page().  For this purpose, if
 * @buffer is returned, @last_highmem_page is set to the page to which
 * the data will have to be copied from @buffer.
2339
 */
2340 2341
static void *get_highmem_page_buffer(struct page *page,
				     struct chain_allocator *ca)
2342 2343 2344 2345
{
	struct highmem_pbe *pbe;
	void *kaddr;

2346
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2347 2348
		/*
		 * We have allocated the "original" page frame and we can
2349 2350 2351 2352 2353
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
2354 2355
	/*
	 * The "original" page frame has not been allocated and we have to
2356 2357 2358 2359 2360
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
2361
		return ERR_PTR(-ENOMEM);
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
2385 2386 2387 2388 2389
 * copy_last_highmem_page - Copy most the most recent highmem image page.
 *
 * Copy the contents of a highmem image from @buffer, where the caller of
 * snapshot_write_next() has stored them, to the right location represented by
 * @last_highmem_page .
2390 2391 2392 2393 2394 2395
 */
static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

2396
		dst = kmap_atomic(last_highmem_page);
2397
		copy_page(dst, buffer);
2398
		kunmap_atomic(dst);
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
2417
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2418

2419 2420
static inline int prepare_highmem_image(struct memory_bitmap *bm,
					unsigned int *nr_highmem_p) { return 0; }
2421

2422 2423
static inline void *get_highmem_page_buffer(struct page *page,
					    struct chain_allocator *ca)
2424
{
2425
	return ERR_PTR(-EINVAL);
2426 2427 2428 2429 2430 2431 2432
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

2433 2434
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

2435
/**
2436 2437 2438 2439 2440 2441 2442
 * prepare_image - Make room for loading hibernation image.
 * @new_bm: Unitialized memory bitmap structure.
 * @bm: Memory bitmap with unsafe pages marked.
 *
 * Use @bm to mark the pages that will be overwritten in the process of
 * restoring the system memory state from the suspend image ("unsafe" pages)
 * and allocate memory for the image.
2443
 *
2444 2445 2446 2447 2448
 * The idea is to allocate a new memory bitmap first and then allocate
 * as many pages as needed for image data, but without specifying what those
 * pages will be used for just yet.  Instead, we mark them all as allocated and
 * create a lists of "safe" pages to be used later.  On systems with high
 * memory a list of "safe" highmem pages is created too.
2449
 */
2450
static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2451
{
2452
	unsigned int nr_pages, nr_highmem;
2453
	struct linked_page *lp;
2454
	int error;
2455

2456 2457 2458 2459 2460
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2461
	mark_unsafe_pages(bm);
2462 2463 2464 2465 2466 2467 2468

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2469 2470 2471 2472 2473
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2474 2475
	/*
	 * Reserve some safe pages for potential later use.
2476 2477 2478 2479
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2480 2481
	 *
	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2482
	 */
2483
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2484 2485
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2486
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2487
		if (!lp) {
2488
			error = -ENOMEM;
2489 2490
			goto Free;
		}
2491 2492
		lp->next = safe_pages_list;
		safe_pages_list = lp;
2493
		nr_pages--;
2494
	}
2495
	/* Preallocate memory for the image */
2496
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2497 2498 2499 2500 2501 2502
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2503
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2504 2505 2506
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2507
		}
2508
		/* Mark the page as allocated */
2509 2510
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2511
		nr_pages--;
2512
	}
2513 2514
	return 0;

R
Rafael J. Wysocki 已提交
2515
 Free:
2516
	swsusp_free();
2517 2518 2519
	return error;
}

2520
/**
2521 2522 2523 2524
 * get_buffer - Get the address to store the next image data page.
 *
 * Get the address that snapshot_write_next() should return to its caller to
 * write to.
2525 2526
 */
static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2527
{
2528
	struct pbe *pbe;
2529 2530
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2531

2532 2533 2534 2535
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2536 2537 2538
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2539
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2540 2541
		/*
		 * We have allocated the "original" page frame and we can
2542
		 * use it directly to store the loaded page.
2543
		 */
2544 2545
		return page_address(page);

2546 2547
	/*
	 * The "original" page frame has not been allocated and we have to
2548
	 * use a "safe" page frame to store the loaded page.
2549
	 */
2550 2551 2552
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2553
		return ERR_PTR(-ENOMEM);
2554
	}
2555 2556
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2557 2558 2559
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2560
	return pbe->address;
2561 2562
}

2563
/**
2564 2565
 * snapshot_write_next - Get the address to store the next image page.
 * @handle: Snapshot handle structure to guide the writing.
2566
 *
2567 2568 2569
 * On the first call, @handle should point to a zeroed snapshot_handle
 * structure.  The structure gets populated then and a pointer to it should be
 * passed to this function every next time.
2570
 *
2571 2572 2573
 * On success, the function returns a positive number.  Then, the caller
 * is allowed to write up to the returned number of bytes to the memory
 * location computed by the data_of() macro.
2574
 *
2575 2576 2577
 * The function returns 0 to indicate the "end of file" condition.  Negative
 * numbers are returned on errors, in which cases the structure pointed to by
 * @handle is not updated and should not be used any more.
2578
 */
J
Jiri Slaby 已提交
2579
int snapshot_write_next(struct snapshot_handle *handle)
2580
{
2581
	static struct chain_allocator ca;
2582 2583
	int error = 0;

2584
	/* Check if we have already loaded the entire image */
J
Jiri Slaby 已提交
2585
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2586
		return 0;
2587

J
Jiri Slaby 已提交
2588 2589 2590
	handle->sync_read = 1;

	if (!handle->cur) {
2591 2592 2593 2594
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2595 2596
		if (!buffer)
			return -ENOMEM;
2597

2598
		handle->buffer = buffer;
J
Jiri Slaby 已提交
2599 2600 2601 2602
	} else if (handle->cur == 1) {
		error = load_header(buffer);
		if (error)
			return error;
2603

2604 2605
		safe_pages_list = NULL;

J
Jiri Slaby 已提交
2606 2607 2608 2609
		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
		if (error)
			return error;

2610 2611 2612 2613 2614
		/* Allocate buffer for page keys. */
		error = page_key_alloc(nr_copy_pages);
		if (error)
			return error;

2615
		hibernate_restore_protection_begin();
J
Jiri Slaby 已提交
2616 2617 2618 2619
	} else if (handle->cur <= nr_meta_pages + 1) {
		error = unpack_orig_pfns(buffer, &copy_bm);
		if (error)
			return error;
2620

J
Jiri Slaby 已提交
2621 2622
		if (handle->cur == nr_meta_pages + 1) {
			error = prepare_image(&orig_bm, &copy_bm);
2623 2624 2625
			if (error)
				return error;

J
Jiri Slaby 已提交
2626 2627 2628
			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
			memory_bm_position_reset(&orig_bm);
			restore_pblist = NULL;
2629
			handle->buffer = get_buffer(&orig_bm, &ca);
J
Jiri Slaby 已提交
2630
			handle->sync_read = 0;
2631 2632
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2633 2634
		}
	} else {
J
Jiri Slaby 已提交
2635
		copy_last_highmem_page();
2636 2637
		/* Restore page key for data page (s390 only). */
		page_key_write(handle->buffer);
2638
		hibernate_restore_protect_page(handle->buffer);
J
Jiri Slaby 已提交
2639 2640 2641 2642 2643
		handle->buffer = get_buffer(&orig_bm, &ca);
		if (IS_ERR(handle->buffer))
			return PTR_ERR(handle->buffer);
		if (handle->buffer != buffer)
			handle->sync_read = 0;
2644
	}
J
Jiri Slaby 已提交
2645 2646
	handle->cur++;
	return PAGE_SIZE;
2647 2648
}

2649
/**
2650 2651 2652 2653 2654 2655
 * snapshot_write_finalize - Complete the loading of a hibernation image.
 *
 * Must be called after the last call to snapshot_write_next() in case the last
 * page in the image happens to be a highmem page and its contents should be
 * stored in highmem.  Additionally, it recycles bitmap memory that's not
 * necessary any more.
2656 2657 2658 2659
 */
void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
2660 2661 2662
	/* Restore page key for data page (s390 only). */
	page_key_write(handle->buffer);
	page_key_free();
2663
	hibernate_restore_protect_page(handle->buffer);
2664
	/* Do that only if we have loaded the image entirely */
J
Jiri Slaby 已提交
2665
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2666
		memory_bm_recycle(&orig_bm);
2667 2668 2669 2670
		free_highmem_data();
	}
}

2671 2672
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2673
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2674 2675 2676
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2677 2678
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
2679 2680
static inline void swap_two_pages_data(struct page *p1, struct page *p2,
				       void *buf)
2681
{
2682 2683
	void *kaddr1, *kaddr2;

2684 2685
	kaddr1 = kmap_atomic(p1);
	kaddr2 = kmap_atomic(p2);
2686 2687 2688
	copy_page(buf, kaddr1);
	copy_page(kaddr1, kaddr2);
	copy_page(kaddr2, buf);
2689 2690
	kunmap_atomic(kaddr2);
	kunmap_atomic(kaddr1);
2691 2692 2693
}

/**
2694 2695 2696 2697 2698
 * restore_highmem - Put highmem image pages into their original locations.
 *
 * For each highmem page that was in use before hibernation and is included in
 * the image, and also has been allocated by the "restore" kernel, swap its
 * current contents with the previous (ie. "before hibernation") ones.
2699
 *
2700 2701
 * If the restore eventually fails, we can call this function once again and
 * restore the highmem state as seen by the restore kernel.
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
 */
int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2721
}
2722
#endif /* CONFIG_HIGHMEM */