snapshot.c 68.2 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5
 *
P
Pavel Machek 已提交
6
 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
24 25 26 27
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
28
#include <linux/list.h>
29
#include <linux/slab.h>
30
#include <linux/compiler.h>
31 32 33 34 35 36 37 38 39

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

40 41 42 43
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

44 45 46 47 48 49 50 51 52 53 54 55
/*
 * Number of bytes to reserve for memory allocations made by device drivers
 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 * cause image creation to fail (tunable via /sys/power/reserved_size).
 */
unsigned long reserved_size;

void __init hibernate_reserved_size_init(void)
{
	reserved_size = SPARE_PAGES * PAGE_SIZE;
}

56 57
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
58 59 60
 * When it is set to N, swsusp will do its best to ensure the image
 * size will not exceed N bytes, but if that is impossible, it will
 * try to create the smallest image possible.
61
 */
62 63 64 65
unsigned long image_size;

void __init hibernate_image_size_init(void)
{
66
	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
67
}
68

69 70 71 72 73
/* List of PBEs needed for restoring the pages that were allocated before
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
74 75
struct pbe *restore_pblist;

76
/* Pointer to an auxiliary buffer (1 page) */
77
static void *buffer;
78

79 80 81
/**
 *	@safe_needed - on resume, for storing the PBE list and the image,
 *	we can only use memory pages that do not conflict with the pages
82 83
 *	used before suspend.  The unsafe pages have PageNosaveFree set
 *	and we count them using unsafe_pages.
84
 *
85 86
 *	Each allocated image page is marked as PageNosave and PageNosaveFree
 *	so that swsusp_free() can release it.
87 88
 */

89 90 91 92 93
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

94
static unsigned int allocated_unsafe_pages;
95

96
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
97 98 99 100 101
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
102
		while (res && swsusp_page_is_free(virt_to_page(res))) {
103
			/* The page is unsafe, mark it for swsusp_free() */
104
			swsusp_set_page_forbidden(virt_to_page(res));
105
			allocated_unsafe_pages++;
106 107 108
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
109 110
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
111 112 113 114 115 116
	}
	return res;
}

unsigned long get_safe_page(gfp_t gfp_mask)
{
117 118 119
	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
}

120 121
static struct page *alloc_image_page(gfp_t gfp_mask)
{
122 123 124 125
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
126 127
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
128 129
	}
	return page;
130 131 132 133
}

/**
 *	free_image_page - free page represented by @addr, allocated with
134
 *	get_image_page (page flags set by it must be cleared)
135 136 137 138
 */

static inline void free_image_page(void *addr, int clear_nosave_free)
{
139 140 141 142 143 144
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

145
	swsusp_unset_page_forbidden(page);
146
	if (clear_nosave_free)
147
		swsusp_unset_page_free(page);
148 149

	__free_page(page);
150 151
}

152 153 154 155 156 157 158
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
159
} __packed;
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

static inline void
free_list_of_pages(struct linked_page *list, int clear_page_nosave)
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

/**
  *	struct chain_allocator is used for allocating small objects out of
  *	a linked list of pages called 'the chain'.
  *
  *	The chain grows each time when there is no room for a new object in
  *	the current page.  The allocated objects cannot be freed individually.
  *	It is only possible to free them all at once, by freeing the entire
  *	chain.
  *
  *	NOTE: The chain allocator may be inefficient if the allocated objects
  *	are not much smaller than PAGE_SIZE.
  */

struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
					 * of the current page
					 */
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

static void
chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

210
		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
 *	Data types related to memory bitmaps.
 *
 *	Memory bitmap is a structure consiting of many linked lists of
 *	objects.  The main list's elements are of type struct zone_bitmap
 *	and each of them corresonds to one zone.  For each zone bitmap
 *	object there is a list of objects of type struct bm_block that
230
 *	represent each blocks of bitmap in which information is stored.
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
 *
 *	struct memory_bitmap contains a pointer to the main list of zone
 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 *	and a pointer to the list of pages used for allocating all of the
 *	zone bitmap objects and bitmap block objects.
 *
 *	NOTE: It has to be possible to lay out the bitmap in memory
 *	using only allocations of order 0.  Additionally, the bitmap is
 *	designed to work with arbitrary number of zones (this is over the
 *	top for now, but let's avoid making unnecessary assumptions ;-).
 *
 *	struct zone_bitmap contains a pointer to a list of bitmap block
 *	objects and a pointer to the bitmap block object that has been
 *	most recently used for setting bits.  Additionally, it contains the
 *	pfns that correspond to the start and end of the represented zone.
 *
 *	struct bm_block contains a pointer to the memory page in which
248 249 250
 *	information is stored (in the form of a block of bitmap)
 *	It also contains the pfns that correspond to the start and end of
 *	the represented memory area.
251 252 253 254 255 256 257 258 259 260 261
 *
 *	The memory bitmap is organized as a radix tree to guarantee fast random
 *	access to the bits. There is one radix tree for each zone (as returned
 *	from create_mem_extents).
 *
 *	One radix tree is represented by one struct mem_zone_bm_rtree. There are
 *	two linked lists for the nodes of the tree, one for the inner nodes and
 *	one for the leave nodes. The linked leave nodes are used for fast linear
 *	access of the memory bitmap.
 *
 *	The struct rtree_node represents one node of the radix tree.
262 263 264 265
 */

#define BM_END_OF_MAP	(~0UL)

W
Wu Fengguang 已提交
266
#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
267 268
#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
269 270

struct bm_block {
271
	struct list_head hook;	/* hook into a list of bitmap blocks */
272 273
	unsigned long start_pfn;	/* pfn represented by the first bit */
	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
274
	unsigned long *data;	/* bitmap representing pages */
275 276
};

277 278 279 280 281
static inline unsigned long bm_block_bits(struct bm_block *bb)
{
	return bb->end_pfn - bb->start_pfn;
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/*
 * struct rtree_node is a wrapper struct to link the nodes
 * of the rtree together for easy linear iteration over
 * bits and easy freeing
 */
struct rtree_node {
	struct list_head list;
	unsigned long *data;
};

/*
 * struct mem_zone_bm_rtree represents a bitmap used for one
 * populated memory zone.
 */
struct mem_zone_bm_rtree {
	struct list_head list;		/* Link Zones together         */
	struct list_head nodes;		/* Radix Tree inner nodes      */
	struct list_head leaves;	/* Radix Tree leaves           */
	unsigned long start_pfn;	/* Zone start page frame       */
	unsigned long end_pfn;		/* Zone end page frame + 1     */
	struct rtree_node *rtree;	/* Radix Tree Root             */
	int levels;			/* Number of Radix Tree Levels */
	unsigned int blocks;		/* Number of Bitmap Blocks     */
};

307 308 309 310 311 312 313 314
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
	struct bm_block *block;
	int bit;
};

struct memory_bitmap {
315
	struct list_head zones;
316
	struct list_head blocks;	/* list of bitmap blocks */
317 318 319 320 321 322 323 324 325
	struct linked_page *p_list;	/* list of pages used to store zone
					 * bitmap objects and bitmap block
					 * objects
					 */
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
#if BITS_PER_LONG == 32
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
#else
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
#endif
#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)

/*
 *	alloc_rtree_node - Allocate a new node and add it to the radix tree.
 *
 *	This function is used to allocate inner nodes as well as the
 *	leave nodes of the radix tree. It also adds the node to the
 *	corresponding linked list passed in by the *list parameter.
 */
static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
					   struct chain_allocator *ca,
					   struct list_head *list)
{
	struct rtree_node *node;

	node = chain_alloc(ca, sizeof(struct rtree_node));
	if (!node)
		return NULL;

	node->data = get_image_page(gfp_mask, safe_needed);
	if (!node->data)
		return NULL;

	list_add_tail(&node->list, list);

	return node;
}

/*
 *	add_rtree_block - Add a new leave node to the radix tree
 *
 *	The leave nodes need to be allocated in order to keep the leaves
 *	linked list in order. This is guaranteed by the zone->blocks
 *	counter.
 */
static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
			   int safe_needed, struct chain_allocator *ca)
{
	struct rtree_node *node, *block, **dst;
	unsigned int levels_needed, block_nr;
	int i;

	block_nr = zone->blocks;
	levels_needed = 0;

	/* How many levels do we need for this block nr? */
	while (block_nr) {
		levels_needed += 1;
		block_nr >>= BM_RTREE_LEVEL_SHIFT;
	}

	/* Make sure the rtree has enough levels */
	for (i = zone->levels; i < levels_needed; i++) {
		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
					&zone->nodes);
		if (!node)
			return -ENOMEM;

		node->data[0] = (unsigned long)zone->rtree;
		zone->rtree = node;
		zone->levels += 1;
	}

	/* Allocate new block */
	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
	if (!block)
		return -ENOMEM;

	/* Now walk the rtree to insert the block */
	node = zone->rtree;
	dst = &zone->rtree;
	block_nr = zone->blocks;
	for (i = zone->levels; i > 0; i--) {
		int index;

		if (!node) {
			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
						&zone->nodes);
			if (!node)
				return -ENOMEM;
			*dst = node;
		}

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		dst = (struct rtree_node **)&((*dst)->data[index]);
		node = *dst;
	}

	zone->blocks += 1;
	*dst = block;

	return 0;
}

static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free);

/*
 *	create_zone_bm_rtree - create a radix tree for one zone
 *
 *	Allocated the mem_zone_bm_rtree structure and initializes it.
 *	This function also allocated and builds the radix tree for the
 *	zone.
 */
static struct mem_zone_bm_rtree *
create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
		     struct chain_allocator *ca,
		     unsigned long start, unsigned long end)
{
	struct mem_zone_bm_rtree *zone;
	unsigned int i, nr_blocks;
	unsigned long pages;

	pages = end - start;
	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
	if (!zone)
		return NULL;

	INIT_LIST_HEAD(&zone->nodes);
	INIT_LIST_HEAD(&zone->leaves);
	zone->start_pfn = start;
	zone->end_pfn = end;
	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);

	for (i = 0; i < nr_blocks; i++) {
		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
			return NULL;
		}
	}

	return zone;
}

/*
 *	free_zone_bm_rtree - Free the memory of the radix tree
 *
 *	Free all node pages of the radix tree. The mem_zone_bm_rtree
 *	structure itself is not freed here nor are the rtree_node
 *	structs.
 */
static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		free_image_page(node->data, clear_nosave_free);

	list_for_each_entry(node, &zone->leaves, list)
		free_image_page(node->data, clear_nosave_free);
}

486 487
static void memory_bm_position_reset(struct memory_bitmap *bm)
{
488
	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
489
	bm->cur.bit = 0;
490 491 492 493 494 495
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

/**
 *	create_bm_block_list - create a list of block bitmap objects
W
Wu Fengguang 已提交
496
 *	@pages - number of pages to track
497 498
 *	@list - list to put the allocated blocks into
 *	@ca - chain allocator to be used for allocating memory
499
 */
500 501 502
static int create_bm_block_list(unsigned long pages,
				struct list_head *list,
				struct chain_allocator *ca)
503
{
504
	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
505 506 507 508 509 510

	while (nr_blocks-- > 0) {
		struct bm_block *bb;

		bb = chain_alloc(ca, sizeof(struct bm_block));
		if (!bb)
511 512
			return -ENOMEM;
		list_add(&bb->hook, list);
513
	}
514 515

	return 0;
516 517
}

518 519 520 521 522 523
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

524
/**
525 526
 *	free_mem_extents - free a list of memory extents
 *	@list - list of extents to empty
527
 */
528 529 530
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
531

532 533 534 535 536 537 538 539 540 541 542 543 544
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
 *	create_mem_extents - create a list of memory extents representing
 *	                     contiguous ranges of PFNs
 *	@list - list to put the extents into
 *	@gfp_mask - mask to use for memory allocations
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
545
{
546
	struct zone *zone;
547

548
	INIT_LIST_HEAD(list);
549

550
	for_each_populated_zone(zone) {
551 552 553 554
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
555
		zone_end = zone_end_pfn(zone);
556 557 558 559

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
592
	}
593 594

	return 0;
595 596 597 598 599 600 601 602 603
}

/**
  *	memory_bm_create - allocate memory for a memory bitmap
  */
static int
memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
{
	struct chain_allocator ca;
604 605 606
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
607 608

	chain_init(&ca, gfp_mask, safe_needed);
609
	INIT_LIST_HEAD(&bm->blocks);
610
	INIT_LIST_HEAD(&bm->zones);
611

612 613 614
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
615

616
	list_for_each_entry(ext, &mem_extents, hook) {
617
		struct mem_zone_bm_rtree *zone;
618 619 620
		struct bm_block *bb;
		unsigned long pfn = ext->start;
		unsigned long pages = ext->end - ext->start;
621

622
		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
623

624 625 626
		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
		if (error)
			goto Error;
627

628 629 630 631 632 633
		list_for_each_entry_continue(bb, &bm->blocks, hook) {
			bb->data = get_image_page(gfp_mask, safe_needed);
			if (!bb->data) {
				error = -ENOMEM;
				goto Error;
			}
634 635

			bb->start_pfn = pfn;
636
			if (pages >= BM_BITS_PER_BLOCK) {
637
				pfn += BM_BITS_PER_BLOCK;
638
				pages -= BM_BITS_PER_BLOCK;
639 640
			} else {
				/* This is executed only once in the loop */
641
				pfn += pages;
642 643 644
			}
			bb->end_pfn = pfn;
		}
645 646 647 648 649 650

		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
					    ext->start, ext->end);
		if (!zone)
			goto Error;
		list_add_tail(&zone->list, &bm->zones);
651
	}
652

653 654
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
655 656 657
 Exit:
	free_mem_extents(&mem_extents);
	return error;
658

659
 Error:
660 661
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
662
	goto Exit;
663 664 665 666 667 668 669
}

/**
  *	memory_bm_free - free memory occupied by the memory bitmap @bm
  */
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
670
	struct mem_zone_bm_rtree *zone;
671
	struct bm_block *bb;
672

673 674 675
	list_for_each_entry(bb, &bm->blocks, hook)
		if (bb->data)
			free_image_page(bb->data, clear_nosave_free);
676

677 678 679
	list_for_each_entry(zone, &bm->zones, list)
		free_zone_bm_rtree(zone, clear_nosave_free);

680
	free_list_of_pages(bm->p_list, clear_nosave_free);
681

682
	INIT_LIST_HEAD(&bm->zones);
683
	INIT_LIST_HEAD(&bm->blocks);
684 685 686
}

/**
687
 *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
688 689 690
 *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
 *	of @bm->cur_zone_bm are updated.
 */
691
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
692
				void **addr, unsigned int *bit_nr)
693 694 695
{
	struct bm_block *bb;

696 697 698 699 700
	/*
	 * Check if the pfn corresponds to the current bitmap block and find
	 * the block where it fits if this is not the case.
	 */
	bb = bm->cur.block;
701
	if (pfn < bb->start_pfn)
702 703 704
		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
			if (pfn >= bb->start_pfn)
				break;
705

706 707 708 709
	if (pfn >= bb->end_pfn)
		list_for_each_entry_continue(bb, &bm->blocks, hook)
			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
				break;
710

711 712 713 714 715
	if (&bb->hook == &bm->blocks)
		return -EFAULT;

	/* The block has been found */
	bm->cur.block = bb;
716
	pfn -= bb->start_pfn;
717
	bm->cur.bit = pfn + 1;
718 719
	*bit_nr = pfn;
	*addr = bb->data;
720
	return 0;
721 722
}

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
/*
 *	memory_rtree_find_bit - Find the bit for pfn in the memory
 *				bitmap
 *
 *	Walks the radix tree to find the page which contains the bit for
 *	pfn and returns the bit position in **addr and *bit_nr.
 */
static int memory_rtree_find_bit(struct memory_bitmap *bm, unsigned long pfn,
				 void **addr, unsigned int *bit_nr)
{
	struct mem_zone_bm_rtree *curr, *zone;
	struct rtree_node *node;
	int i, block_nr;

	zone = NULL;

	/* Find the right zone */
	list_for_each_entry(curr, &bm->zones, list) {
		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
			zone = curr;
			break;
		}
	}

	if (!zone)
		return -EFAULT;

	/*
	 * We have a zone. Now walk the radix tree to find the leave
	 * node for our pfn.
	 */
	node      = zone->rtree;
	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;

	for (i = zone->levels; i > 0; i--) {
		int index;

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		BUG_ON(node->data[index] == 0);
		node = (struct rtree_node *)node->data[index];
	}

	/* Set return values */
	*addr = node->data;
	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;

	return 0;
}

773 774 775 776
static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
777
	int error;
778

779 780
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
781
	set_bit(bit, addr);
782 783 784 785

	error = memory_rtree_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
	set_bit(bit, addr);
786 787
}

788 789 790 791 792 793 794 795 796
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	if (!error)
		set_bit(bit, addr);
797 798 799 800 801 802 803
	else
		return error;

	error = memory_rtree_find_bit(bm, pfn, &addr, &bit);
	if (!error)
		set_bit(bit, addr);

804 805 806
	return error;
}

807 808 809 810
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
811
	int error;
812

813 814
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
815
	clear_bit(bit, addr);
816 817 818 819

	error = memory_rtree_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
	clear_bit(bit, addr);
820 821 822 823 824 825
}

static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
826 827
	int error, error2;
	int v;
828

829 830
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
831 832 833 834 835 836 837 838
	v = test_bit(bit, addr);

	error2 = memory_rtree_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error2);

	WARN_ON_ONCE(v != test_bit(bit, addr));

	return v;
839 840
}

841 842 843 844
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
845 846 847 848 849
	int present;

	present = !memory_bm_find_bit(bm, pfn, &addr, &bit);

	WARN_ON_ONCE(present != !memory_rtree_find_bit(bm, pfn, &addr, &bit));
850

851
	return present;
852 853
}

854 855 856 857 858 859 860 861 862 863 864 865 866 867
/**
 *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
 *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
 *	returned.
 *
 *	It is required to run memory_bm_position_reset() before the first call to
 *	this function.
 */

static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
{
	struct bm_block *bb;
	int bit;

868
	bb = bm->cur.block;
869
	do {
870 871 872 873 874 875 876 877 878 879
		bit = bm->cur.bit;
		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
		if (bit < bm_block_bits(bb))
			goto Return_pfn;

		bb = list_entry(bb->hook.next, struct bm_block, hook);
		bm->cur.block = bb;
		bm->cur.bit = 0;
	} while (&bb->hook != &bm->blocks);

880 881 882
	memory_bm_position_reset(bm);
	return BM_END_OF_MAP;

R
Rafael J. Wysocki 已提交
883
 Return_pfn:
884 885
	bm->cur.bit = bit + 1;
	return bb->start_pfn + bit;
886 887
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
/**
 *	This structure represents a range of page frames the contents of which
 *	should not be saved during the suspend.
 */

struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

/**
 *	register_nosave_region - register a range of page frames the contents
 *	of which should not be saved during the suspend (to be used in the early
 *	initialization code)
 */

void __init
908 909
__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
			 int use_kmalloc)
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
925 926 927 928 929 930
	if (use_kmalloc) {
		/* during init, this shouldn't fail */
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
	} else
		/* This allocation cannot fail */
931
		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
932 933 934 935
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
936 937 938
	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
		(unsigned long long) start_pfn << PAGE_SHIFT,
		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
 *	mark_nosave_pages - set bits corresponding to the page frames the
 *	contents of which should not be saved in a given bitmap.
 */

static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

1006 1007 1008 1009
		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
				- 1);
1010 1011

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1012 1013 1014 1015 1016 1017 1018 1019 1020
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	}
}

/**
 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 *	frames that should not be saved and free page frames.  The pointers
 *	forbidden_pages_map and free_pages_map are only modified if everything
 *	goes well, because we don't want the bits to be used before both bitmaps
 *	are set up.
 */

int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

1037 1038 1039 1040
	if (forbidden_pages_map && free_pages_map)
		return 0;
	else
		BUG_ON(forbidden_pages_map || free_pages_map);
1041

1042
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1043 1044 1045
	if (!bm1)
		return -ENOMEM;

1046
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1047 1048 1049
	if (error)
		goto Free_first_object;

1050
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1051 1052 1053
	if (!bm2)
		goto Free_first_bitmap;

1054
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1055 1056 1057 1058 1059 1060 1061
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

R
Rafael J. Wysocki 已提交
1062
	pr_debug("PM: Basic memory bitmaps created\n");
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
 *	so that the bitmaps themselves are not referred to while they are being
 *	freed.
 */

void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

1086 1087
	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
		return;
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

R
Rafael J. Wysocki 已提交
1098
	pr_debug("PM: Basic memory bitmaps freed\n");
1099 1100
}

1101 1102 1103 1104 1105 1106 1107 1108
/**
 *	snapshot_additional_pages - estimate the number of additional pages
 *	be needed for setting up the suspend image data structures for given
 *	zone (usually the returned value is greater than the exact number)
 */

unsigned int snapshot_additional_pages(struct zone *zone)
{
1109
	unsigned int rtree, nodes;
1110 1111 1112
	unsigned int res;

	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1113 1114
	res += DIV_ROUND_UP(res * sizeof(struct bm_block),
			    LINKED_PAGE_DATA_SIZE);
1115 1116 1117 1118 1119 1120 1121 1122 1123
	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
			      LINKED_PAGE_DATA_SIZE);
	while (nodes > 1) {
		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
		rtree += nodes;
	}

	return 2 * (res + rtree);
1124 1125
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
#ifdef CONFIG_HIGHMEM
/**
 *	count_free_highmem_pages - compute the total number of free highmem
 *	pages, system-wide.
 */

static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

1137 1138
	for_each_populated_zone(zone)
		if (is_highmem(zone))
1139
			cnt += zone_page_state(zone, NR_FREE_PAGES);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	return cnt;
}

/**
 *	saveable_highmem_page - Determine whether a highmem page should be
 *	included in the suspend image.
 *
 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 *	and it isn't a part of a free chunk of pages.
 */
1151
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1152 1153 1154 1155 1156 1157 1158
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
1159 1160
	if (page_zone(page) != zone)
		return NULL;
1161 1162 1163

	BUG_ON(!PageHighMem(page));

1164 1165
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
1166 1167
		return NULL;

1168 1169 1170
	if (page_is_guard(page))
		return NULL;

1171 1172 1173 1174 1175 1176 1177 1178
	return page;
}

/**
 *	count_highmem_pages - compute the total number of saveable highmem
 *	pages.
 */

1179
static unsigned int count_highmem_pages(void)
1180 1181 1182 1183
{
	struct zone *zone;
	unsigned int n = 0;

1184
	for_each_populated_zone(zone) {
1185 1186 1187 1188 1189 1190
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
1191
		max_zone_pfn = zone_end_pfn(zone);
1192
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1193
			if (saveable_highmem_page(zone, pfn))
1194 1195 1196 1197 1198
				n++;
	}
	return n;
}
#else
1199 1200 1201 1202
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
1203 1204
#endif /* CONFIG_HIGHMEM */

1205
/**
1206 1207
 *	saveable_page - Determine whether a non-highmem page should be included
 *	in the suspend image.
1208
 *
1209 1210 1211
 *	We should save the page if it isn't Nosave, and is not in the range
 *	of pages statically defined as 'unsaveable', and it isn't a part of
 *	a free chunk of pages.
1212
 */
1213
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1214
{
P
Pavel Machek 已提交
1215
	struct page *page;
1216 1217

	if (!pfn_valid(pfn))
1218
		return NULL;
1219 1220

	page = pfn_to_page(pfn);
1221 1222
	if (page_zone(page) != zone)
		return NULL;
1223

1224 1225
	BUG_ON(PageHighMem(page));

1226
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1227
		return NULL;
1228

1229 1230
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1231
		return NULL;
1232

1233 1234 1235
	if (page_is_guard(page))
		return NULL;

1236
	return page;
1237 1238
}

1239 1240 1241 1242 1243
/**
 *	count_data_pages - compute the total number of saveable non-highmem
 *	pages.
 */

1244
static unsigned int count_data_pages(void)
1245 1246
{
	struct zone *zone;
1247
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
1248
	unsigned int n = 0;
1249

1250
	for_each_populated_zone(zone) {
1251 1252
		if (is_highmem(zone))
			continue;
1253

1254
		mark_free_pages(zone);
1255
		max_zone_pfn = zone_end_pfn(zone);
1256
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1257
			if (saveable_page(zone, pfn))
1258
				n++;
1259
	}
1260
	return n;
1261 1262
}

1263 1264 1265 1266
/* This is needed, because copy_page and memcpy are not usable for copying
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
1267 1268 1269 1270 1271 1272 1273
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

/**
 *	safe_copy_page - check if the page we are going to copy is marked as
 *		present in the kernel page tables (this always is the case if
 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
 *		kernel_page_present() always returns 'true').
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}


1293 1294 1295 1296 1297
#ifdef CONFIG_HIGHMEM
static inline struct page *
page_is_saveable(struct zone *zone, unsigned long pfn)
{
	return is_highmem(zone) ?
1298
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1299 1300
}

1301
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1302 1303 1304 1305 1306 1307 1308
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
1309 1310
		src = kmap_atomic(s_page);
		dst = kmap_atomic(d_page);
1311
		do_copy_page(dst, src);
1312 1313
		kunmap_atomic(dst);
		kunmap_atomic(src);
1314 1315 1316 1317 1318
	} else {
		if (PageHighMem(d_page)) {
			/* Page pointed to by src may contain some kernel
			 * data modified by kmap_atomic()
			 */
1319
			safe_copy_page(buffer, s_page);
1320
			dst = kmap_atomic(d_page);
1321
			copy_page(dst, buffer);
1322
			kunmap_atomic(dst);
1323
		} else {
1324
			safe_copy_page(page_address(d_page), s_page);
1325 1326 1327 1328
		}
	}
}
#else
1329
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1330

1331
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1332
{
1333 1334
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1335 1336 1337
}
#endif /* CONFIG_HIGHMEM */

1338 1339
static void
copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1340 1341
{
	struct zone *zone;
1342
	unsigned long pfn;
1343

1344
	for_each_populated_zone(zone) {
1345 1346
		unsigned long max_zone_pfn;

1347
		mark_free_pages(zone);
1348
		max_zone_pfn = zone_end_pfn(zone);
1349
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1350
			if (page_is_saveable(zone, pfn))
1351
				memory_bm_set_bit(orig_bm, pfn);
1352
	}
1353 1354
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1355
	for(;;) {
1356
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1357 1358 1359 1360
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1361 1362
}

1363 1364 1365 1366
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
unsigned int alloc_normal, alloc_highmem;
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1386

1387
/**
1388
 *	swsusp_free - free pages allocated for the suspend.
1389
 *
1390 1391
 *	Suspend pages are alocated before the atomic copy is made, so we
 *	need to release them after the resume.
1392 1393 1394 1395 1396
 */

void swsusp_free(void)
{
	struct zone *zone;
1397
	unsigned long pfn, max_zone_pfn;
1398

1399
	for_each_populated_zone(zone) {
1400
		max_zone_pfn = zone_end_pfn(zone);
1401 1402 1403 1404
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn)) {
				struct page *page = pfn_to_page(pfn);

1405 1406 1407 1408
				if (swsusp_page_is_forbidden(page) &&
				    swsusp_page_is_free(page)) {
					swsusp_unset_page_forbidden(page);
					swsusp_unset_page_free(page);
1409
					__free_page(page);
1410 1411 1412
				}
			}
	}
1413 1414
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1415
	restore_pblist = NULL;
1416
	buffer = NULL;
1417 1418
	alloc_normal = 0;
	alloc_highmem = 0;
1419 1420
}

1421 1422 1423 1424
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1425
/**
1426 1427 1428
 * preallocate_image_pages - Allocate a number of pages for hibernation image
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1429
 *
1430 1431 1432 1433 1434 1435 1436
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1437 1438 1439 1440
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1441
			break;
1442 1443 1444 1445 1446
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1447 1448 1449 1450 1451 1452 1453
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

1454 1455
static unsigned long preallocate_image_memory(unsigned long nr_pages,
					      unsigned long avail_normal)
1456
{
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	unsigned long alloc;

	if (avail_normal <= alloc_normal)
		return 0;

	alloc = avail_normal - alloc_normal;
	if (nr_pages < alloc)
		alloc = nr_pages;

	return preallocate_image_pages(alloc, GFP_IMAGE);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1477
 */
1478 1479 1480 1481 1482 1483
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
	x *= multiplier;
	do_div(x, base);
	return (unsigned long)x;
}
1484

1485 1486 1487
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
1488
{
1489 1490 1491
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1492
}
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1506

1507
/**
1508 1509 1510 1511
 * free_unnecessary_pages - Release preallocated pages not needed for the image
 */
static void free_unnecessary_pages(void)
{
1512
	unsigned long save, to_free_normal, to_free_highmem;
1513

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	save = count_data_pages();
	if (alloc_normal >= save) {
		to_free_normal = alloc_normal - save;
		save = 0;
	} else {
		to_free_normal = 0;
		save -= alloc_normal;
	}
	save += count_highmem_pages();
	if (alloc_highmem >= save) {
		to_free_highmem = alloc_highmem - save;
1525 1526
	} else {
		to_free_highmem = 0;
1527 1528 1529 1530 1531
		save -= alloc_highmem;
		if (to_free_normal > save)
			to_free_normal -= save;
		else
			to_free_normal = 0;
1532 1533 1534 1535
	}

	memory_bm_position_reset(&copy_bm);

1536
	while (to_free_normal > 0 || to_free_highmem > 0) {
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
/**
 * minimum_image_size - Estimate the minimum acceptable size of an image
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1571
 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
 * minus mapped file pages.
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

	size = global_page_state(NR_SLAB_RECLAIMABLE)
		+ global_page_state(NR_ACTIVE_ANON)
		+ global_page_state(NR_INACTIVE_ANON)
		+ global_page_state(NR_ACTIVE_FILE)
		+ global_page_state(NR_INACTIVE_FILE)
		- global_page_state(NR_FILE_MAPPED);

	return saveable <= size ? 0 : saveable - size;
}

1588 1589
/**
 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1590 1591 1592 1593 1594
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
1595 1596 1597 1598
 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
 * total number of available page frames and allocate at least
1599
 *
1600 1601
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1602 1603 1604 1605 1606
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1607 1608
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1609
 */
1610
int hibernate_preallocate_memory(void)
1611 1612
{
	struct zone *zone;
1613
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1614
	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1615
	struct timeval start, stop;
1616
	int error;
1617

1618
	printk(KERN_INFO "PM: Preallocating image memory... ");
1619 1620
	do_gettimeofday(&start);

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	alloc_normal = 0;
	alloc_highmem = 0;

1632
	/* Count the number of saveable data pages. */
1633
	save_highmem = count_highmem_pages();
1634
	saveable = count_data_pages();
1635

1636 1637 1638 1639 1640
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1641 1642
	saveable += save_highmem;
	highmem = save_highmem;
1643 1644 1645 1646 1647 1648 1649 1650
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
1651
	avail_normal = count;
1652 1653 1654
	count += highmem;
	count -= totalreserve_pages;

1655 1656 1657
	/* Add number of pages required for page keys (s390 only). */
	size += page_key_additional_pages(saveable);

1658
	/* Compute the maximum number of saveable pages to leave in memory. */
1659 1660
	max_size = (count - (size + PAGES_FOR_IO)) / 2
			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1661
	/* Compute the desired number of image pages specified by image_size. */
1662 1663 1664 1665
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
1666 1667 1668
	 * If the desired number of image pages is at least as large as the
	 * current number of saveable pages in memory, allocate page frames for
	 * the image and we're done.
1669
	 */
1670 1671
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
1672
		pages += preallocate_image_memory(saveable - pages, avail_normal);
1673
		goto out;
1674
	}
1675

1676 1677
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
1678 1679 1680 1681 1682 1683 1684 1685 1686
	/*
	 * To avoid excessive pressure on the normal zone, leave room in it to
	 * accommodate an image of the minimum size (unless it's already too
	 * small, in which case don't preallocate pages from it at all).
	 */
	if (avail_normal > pages)
		avail_normal -= pages;
	else
		avail_normal = 0;
1687 1688 1689
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1702 1703
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1704 1705
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
1706 1707 1708 1709 1710
	alloc = count - max_size;
	if (alloc > pages_highmem)
		alloc -= pages_highmem;
	else
		alloc = 0;
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	pages = preallocate_image_memory(alloc, avail_normal);
	if (pages < alloc) {
		/* We have exhausted non-highmem pages, try highmem. */
		alloc -= pages;
		pages += pages_highmem;
		pages_highmem = preallocate_image_highmem(alloc);
		if (pages_highmem < alloc)
			goto err_out;
		pages += pages_highmem;
		/*
		 * size is the desired number of saveable pages to leave in
		 * memory, so try to preallocate (all memory - size) pages.
		 */
		alloc = (count - pages) - size;
		pages += preallocate_image_highmem(alloc);
	} else {
		/*
		 * There are approximately max_size saveable pages at this point
		 * and we want to reduce this number down to size.
		 */
		alloc = max_size - size;
		size = preallocate_highmem_fraction(alloc, highmem, count);
		pages_highmem += size;
		alloc -= size;
		size = preallocate_image_memory(alloc, avail_normal);
		pages_highmem += preallocate_image_highmem(alloc - size);
		pages += pages_highmem + size;
	}
1739

1740 1741 1742 1743 1744 1745
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
	free_unnecessary_pages();
1746 1747

 out:
1748
	do_gettimeofday(&stop);
1749 1750
	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
	swsusp_show_speed(&start, &stop, pages, "Allocated");
1751 1752

	return 0;
1753 1754 1755 1756 1757

 err_out:
	printk(KERN_CONT "\n");
	swsusp_free();
	return -ENOMEM;
1758 1759
}

1760 1761 1762 1763 1764 1765 1766 1767
#ifdef CONFIG_HIGHMEM
/**
  *	count_pages_for_highmem - compute the number of non-highmem pages
  *	that will be necessary for creating copies of highmem pages.
  */

static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1768
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
static unsigned int
count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
#endif /* CONFIG_HIGHMEM */
1781 1782

/**
1783 1784
 *	enough_free_mem - Make sure we have enough free memory for the
 *	snapshot image.
1785 1786
 */

1787
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1788
{
1789
	struct zone *zone;
1790
	unsigned int free = alloc_normal;
1791

1792
	for_each_populated_zone(zone)
1793
		if (!is_highmem(zone))
1794
			free += zone_page_state(zone, NR_FREE_PAGES);
1795

1796
	nr_pages += count_pages_for_highmem(nr_highmem);
1797 1798
	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
		nr_pages, PAGES_FOR_IO, free);
1799

1800
	return free > nr_pages + PAGES_FOR_IO;
1801 1802
}

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
#ifdef CONFIG_HIGHMEM
/**
 *	get_highmem_buffer - if there are some highmem pages in the suspend
 *	image, we may need the buffer to copy them and/or load their data.
 */

static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
 *	Try to allocate as many pages as needed, but if the number of free
 *	highmem pages is lesser than that, allocate them all.
 */

static inline unsigned int
1822
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_image_page(__GFP_HIGHMEM);
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

static inline unsigned int
1842
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
#endif /* CONFIG_HIGHMEM */

/**
 *	swsusp_alloc - allocate memory for the suspend image
 *
 *	We first try to allocate as many highmem pages as there are
 *	saveable highmem pages in the system.  If that fails, we allocate
 *	non-highmem pages for the copies of the remaining highmem ones.
 *
 *	In this approach it is likely that the copies of highmem pages will
 *	also be located in the high memory, because of the way in which
 *	copy_data_pages() works.
 */

1857 1858
static int
swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1859
		unsigned int nr_pages, unsigned int nr_highmem)
1860
{
1861
	if (nr_highmem > 0) {
1862
		if (get_highmem_buffer(PG_ANY))
1863 1864 1865 1866 1867
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1868
	}
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
1879
	}
1880

1881
	return 0;
1882

1883
 err_out:
1884
	swsusp_free();
1885
	return -ENOMEM;
1886 1887
}

1888
asmlinkage __visible int swsusp_save(void)
1889
{
1890
	unsigned int nr_pages, nr_highmem;
1891

1892
	printk(KERN_INFO "PM: Creating hibernation image:\n");
1893

1894
	drain_local_pages(NULL);
1895
	nr_pages = count_data_pages();
1896
	nr_highmem = count_highmem_pages();
R
Rafael J. Wysocki 已提交
1897
	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1898

1899
	if (!enough_free_mem(nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1900
		printk(KERN_ERR "PM: Not enough free memory\n");
1901 1902 1903
		return -ENOMEM;
	}

1904
	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1905
		printk(KERN_ERR "PM: Memory allocation failed\n");
1906
		return -ENOMEM;
1907
	}
1908 1909 1910 1911

	/* During allocating of suspend pagedir, new cold pages may appear.
	 * Kill them.
	 */
1912
	drain_local_pages(NULL);
1913
	copy_data_pages(&copy_bm, &orig_bm);
1914 1915 1916 1917 1918 1919 1920

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1921
	nr_pages += nr_highmem;
1922
	nr_copy_pages = nr_pages;
1923
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1924

R
Rafael J. Wysocki 已提交
1925 1926
	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
		nr_pages);
1927

1928 1929
	return 0;
}
1930

1931 1932
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
1933
{
1934
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1935
	info->version_code = LINUX_VERSION_CODE;
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

1955 1956 1957 1958 1959
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

1960 1961 1962
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
1963
	info->num_physpages = get_num_physpages();
1964
	info->image_pages = nr_copy_pages;
1965
	info->pages = snapshot_get_image_size();
1966 1967
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
1968
	return init_header_complete(info);
1969 1970 1971
}

/**
1972 1973
 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
 *	are stored in the array @buf[] (1 page at a time)
1974 1975
 */

1976
static inline void
1977
pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1978 1979 1980
{
	int j;

1981
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1982 1983
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
1984
			break;
1985 1986
		/* Save page key for data page (s390 only). */
		page_key_read(buf + j);
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
	}
}

/**
 *	snapshot_read_next - used for reading the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to read up to the returned number of bytes from the memory
J
Jiri Slaby 已提交
1999
 *	location computed by the data_of() macro.
2000 2001 2002 2003 2004 2005 2006
 *
 *	The function returns 0 to indicate the end of data stream condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
2007
int snapshot_read_next(struct snapshot_handle *handle)
2008
{
2009
	if (handle->cur > nr_meta_pages + nr_copy_pages)
2010
		return 0;
2011

2012 2013
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
2014
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2015 2016 2017
		if (!buffer)
			return -ENOMEM;
	}
J
Jiri Slaby 已提交
2018
	if (!handle->cur) {
2019 2020 2021 2022 2023
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
2024
		handle->buffer = buffer;
2025 2026
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
J
Jiri Slaby 已提交
2027
	} else if (handle->cur <= nr_meta_pages) {
2028
		clear_page(buffer);
J
Jiri Slaby 已提交
2029 2030 2031
		pack_pfns(buffer, &orig_bm);
	} else {
		struct page *page;
2032

J
Jiri Slaby 已提交
2033 2034 2035 2036 2037 2038 2039
		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
		if (PageHighMem(page)) {
			/* Highmem pages are copied to the buffer,
			 * because we can't return with a kmapped
			 * highmem page (we may not be called again).
			 */
			void *kaddr;
2040

2041
			kaddr = kmap_atomic(page);
2042
			copy_page(buffer, kaddr);
2043
			kunmap_atomic(kaddr);
J
Jiri Slaby 已提交
2044 2045 2046
			handle->buffer = buffer;
		} else {
			handle->buffer = page_address(page);
2047 2048
		}
	}
J
Jiri Slaby 已提交
2049 2050
	handle->cur++;
	return PAGE_SIZE;
2051 2052 2053 2054 2055 2056 2057 2058
}

/**
 *	mark_unsafe_pages - mark the pages that cannot be used for storing
 *	the image during resume, because they conflict with the pages that
 *	had been used before suspend
 */

2059
static int mark_unsafe_pages(struct memory_bitmap *bm)
2060 2061
{
	struct zone *zone;
2062
	unsigned long pfn, max_zone_pfn;
2063 2064

	/* Clear page flags */
2065
	for_each_populated_zone(zone) {
2066
		max_zone_pfn = zone_end_pfn(zone);
2067 2068
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn))
2069
				swsusp_unset_page_free(pfn_to_page(pfn));
2070 2071
	}

2072 2073 2074 2075 2076 2077
	/* Mark pages that correspond to the "original" pfns as "unsafe" */
	memory_bm_position_reset(bm);
	do {
		pfn = memory_bm_next_pfn(bm);
		if (likely(pfn != BM_END_OF_MAP)) {
			if (likely(pfn_valid(pfn)))
2078
				swsusp_set_page_free(pfn_to_page(pfn));
2079 2080 2081 2082
			else
				return -EFAULT;
		}
	} while (pfn != BM_END_OF_MAP);
2083

2084
	allocated_unsafe_pages = 0;
2085

2086 2087 2088
	return 0;
}

2089 2090
static void
duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
2091
{
2092 2093 2094 2095 2096 2097 2098
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
2099 2100 2101
	}
}

2102
static int check_header(struct swsusp_info *info)
2103
{
2104
	char *reason;
2105

2106
	reason = check_image_kernel(info);
2107
	if (!reason && info->num_physpages != get_num_physpages())
2108 2109
		reason = "memory size";
	if (reason) {
R
Rafael J. Wysocki 已提交
2110
		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2111 2112 2113 2114 2115 2116 2117 2118 2119
		return -EPERM;
	}
	return 0;
}

/**
 *	load header - check the image header and copy data from it
 */

2120 2121
static int
load_header(struct swsusp_info *info)
2122 2123 2124
{
	int error;

2125
	restore_pblist = NULL;
2126 2127 2128 2129 2130 2131 2132 2133 2134
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
2135 2136
 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
 *	the corresponding bit in the memory bitmap @bm
2137
 */
2138
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2139 2140 2141
{
	int j;

2142 2143 2144 2145
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

2146 2147 2148
		/* Extract and buffer page key for data page (s390 only). */
		page_key_memorize(buf + j);

2149 2150 2151 2152
		if (memory_bm_pfn_present(bm, buf[j]))
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
2153
	}
2154 2155

	return 0;
2156 2157
}

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
/* List of "safe" pages that may be used to store data loaded from the suspend
 * image
 */
static struct linked_page *safe_pages_list;

#ifdef CONFIG_HIGHMEM
/* struct highmem_pbe is used for creating the list of highmem pages that
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

/* List of highmem PBEs needed for restoring the highmem pages that were
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
 *	count_highmem_image_pages - compute the number of highmem pages in the
 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
 *	image pages are assumed to be set.
 */

static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

/**
 *	prepare_highmem_image - try to allocate as many highmem pages as
 *	there are highmem image pages (@nr_highmem_p points to the variable
 *	containing the number of highmem image pages).  The pages that are
 *	"safe" (ie. will not be overwritten when the suspend image is
 *	restored) have the corresponding bits set in @bm (it must be
 *	unitialized).
 *
 *	NOTE: This function should not be called if there are no highmem
 *	image pages.
 */

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

static int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
2241
		if (!swsusp_page_is_free(page)) {
2242 2243 2244 2245 2246
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
2247 2248
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

/**
 *	get_highmem_page_buffer - for given highmem image page find the buffer
 *	that suspend_write_next() should set for its caller to write to.
 *
 *	If the page is to be saved to its "original" page frame or a copy of
 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
 *	the copy of the page is to be made in normal memory, so the address of
 *	the copy is returned.
 *
 *	If @buffer is returned, the caller of suspend_write_next() will write
 *	the page's contents to @buffer, so they will have to be copied to the
 *	right location on the next call to suspend_write_next() and it is done
 *	with the help of copy_last_highmem_page().  For this purpose, if
 *	@buffer is returned, @last_highmem page is set to the page to which
 *	the data will have to be copied from @buffer.
 */

static struct page *last_highmem_page;

static void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
	struct highmem_pbe *pbe;
	void *kaddr;

2280
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
2293
		return ERR_PTR(-ENOMEM);
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
 *	copy_last_highmem_page - copy the contents of a highmem image from
 *	@buffer, where the caller of snapshot_write_next() has place them,
 *	to the right location represented by @last_highmem_page .
 */

static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

2327
		dst = kmap_atomic(last_highmem_page);
2328
		copy_page(dst, buffer);
2329
		kunmap_atomic(dst);
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
static inline int get_safe_write_buffer(void) { return 0; }

static unsigned int
count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }

static inline int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	return 0;
}

static inline void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
2362
	return ERR_PTR(-EINVAL);
2363 2364 2365 2366 2367 2368 2369
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

2370
/**
2371 2372 2373 2374
 *	prepare_image - use the memory bitmap @bm to mark the pages that will
 *	be overwritten in the process of restoring the system memory state
 *	from the suspend image ("unsafe" pages) and allocate memory for the
 *	image.
2375
 *
2376 2377 2378
 *	The idea is to allocate a new memory bitmap first and then allocate
 *	as many pages as needed for the image data, but not to assign these
 *	pages to specific tasks initially.  Instead, we just mark them as
2379 2380 2381
 *	allocated and create a lists of "safe" pages that will be used
 *	later.  On systems with high memory a list of "safe" highmem pages is
 *	also created.
2382 2383
 */

2384 2385 2386 2387
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

static int
prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2388
{
2389
	unsigned int nr_pages, nr_highmem;
2390 2391
	struct linked_page *sp_list, *lp;
	int error;
2392

2393 2394 2395 2396 2397
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
	error = mark_unsafe_pages(bm);
	if (error)
		goto Free;

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2408 2409 2410 2411 2412
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2413 2414 2415 2416 2417 2418 2419 2420
	/* Reserve some safe pages for potential later use.
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
	 */
	sp_list = NULL;
	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2421
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2422 2423
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2424
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2425
		if (!lp) {
2426
			error = -ENOMEM;
2427 2428 2429 2430 2431
			goto Free;
		}
		lp->next = sp_list;
		sp_list = lp;
		nr_pages--;
2432
	}
2433 2434
	/* Preallocate memory for the image */
	safe_pages_list = NULL;
2435
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2436 2437 2438 2439 2440 2441
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2442
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2443 2444 2445
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2446
		}
2447
		/* Mark the page as allocated */
2448 2449
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2450
		nr_pages--;
2451
	}
2452 2453 2454 2455 2456
	/* Free the reserved safe pages so that chain_alloc() can use them */
	while (sp_list) {
		lp = sp_list->next;
		free_image_page(sp_list, PG_UNSAFE_CLEAR);
		sp_list = lp;
2457
	}
2458 2459
	return 0;

R
Rafael J. Wysocki 已提交
2460
 Free:
2461
	swsusp_free();
2462 2463 2464
	return error;
}

2465 2466 2467 2468 2469 2470
/**
 *	get_buffer - compute the address that snapshot_write_next() should
 *	set for its caller to write to.
 */

static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2471
{
2472
	struct pbe *pbe;
2473 2474
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2475

2476 2477 2478 2479
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2480 2481 2482
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2483
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2484 2485
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
2486
		 */
2487 2488 2489 2490
		return page_address(page);

	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
2491
	 */
2492 2493 2494
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2495
		return ERR_PTR(-ENOMEM);
2496
	}
2497 2498
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2499 2500 2501
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2502
	return pbe->address;
2503 2504
}

2505 2506 2507 2508 2509 2510 2511 2512 2513
/**
 *	snapshot_write_next - used for writing the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to write up to the returned number of bytes to the memory
J
Jiri Slaby 已提交
2514
 *	location computed by the data_of() macro.
2515 2516 2517 2518 2519 2520 2521
 *
 *	The function returns 0 to indicate the "end of file" condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
2522
int snapshot_write_next(struct snapshot_handle *handle)
2523
{
2524
	static struct chain_allocator ca;
2525 2526
	int error = 0;

2527
	/* Check if we have already loaded the entire image */
J
Jiri Slaby 已提交
2528
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2529
		return 0;
2530

J
Jiri Slaby 已提交
2531 2532 2533
	handle->sync_read = 1;

	if (!handle->cur) {
2534 2535 2536 2537
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2538 2539
		if (!buffer)
			return -ENOMEM;
2540

2541
		handle->buffer = buffer;
J
Jiri Slaby 已提交
2542 2543 2544 2545
	} else if (handle->cur == 1) {
		error = load_header(buffer);
		if (error)
			return error;
2546

J
Jiri Slaby 已提交
2547 2548 2549 2550
		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
		if (error)
			return error;

2551 2552 2553 2554 2555
		/* Allocate buffer for page keys. */
		error = page_key_alloc(nr_copy_pages);
		if (error)
			return error;

J
Jiri Slaby 已提交
2556 2557 2558 2559
	} else if (handle->cur <= nr_meta_pages + 1) {
		error = unpack_orig_pfns(buffer, &copy_bm);
		if (error)
			return error;
2560

J
Jiri Slaby 已提交
2561 2562
		if (handle->cur == nr_meta_pages + 1) {
			error = prepare_image(&orig_bm, &copy_bm);
2563 2564 2565
			if (error)
				return error;

J
Jiri Slaby 已提交
2566 2567 2568
			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
			memory_bm_position_reset(&orig_bm);
			restore_pblist = NULL;
2569
			handle->buffer = get_buffer(&orig_bm, &ca);
J
Jiri Slaby 已提交
2570
			handle->sync_read = 0;
2571 2572
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2573 2574
		}
	} else {
J
Jiri Slaby 已提交
2575
		copy_last_highmem_page();
2576 2577
		/* Restore page key for data page (s390 only). */
		page_key_write(handle->buffer);
J
Jiri Slaby 已提交
2578 2579 2580 2581 2582
		handle->buffer = get_buffer(&orig_bm, &ca);
		if (IS_ERR(handle->buffer))
			return PTR_ERR(handle->buffer);
		if (handle->buffer != buffer)
			handle->sync_read = 0;
2583
	}
J
Jiri Slaby 已提交
2584 2585
	handle->cur++;
	return PAGE_SIZE;
2586 2587
}

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
/**
 *	snapshot_write_finalize - must be called after the last call to
 *	snapshot_write_next() in case the last page in the image happens
 *	to be a highmem page and its contents should be stored in the
 *	highmem.  Additionally, it releases the memory that will not be
 *	used any more.
 */

void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
2599 2600 2601
	/* Restore page key for data page (s390 only). */
	page_key_write(handle->buffer);
	page_key_free();
2602
	/* Free only if we have loaded the image entirely */
J
Jiri Slaby 已提交
2603
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2604 2605 2606 2607 2608
		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
		free_highmem_data();
	}
}

2609 2610
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2611
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2612 2613 2614
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2615 2616 2617 2618
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
static inline void
swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2619
{
2620 2621
	void *kaddr1, *kaddr2;

2622 2623
	kaddr1 = kmap_atomic(p1);
	kaddr2 = kmap_atomic(p2);
2624 2625 2626
	copy_page(buf, kaddr1);
	copy_page(kaddr1, kaddr2);
	copy_page(kaddr2, buf);
2627 2628
	kunmap_atomic(kaddr2);
	kunmap_atomic(kaddr1);
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
}

/**
 *	restore_highmem - for each highmem page that was allocated before
 *	the suspend and included in the suspend image, and also has been
 *	allocated by the "resume" kernel swap its current (ie. "before
 *	resume") contents with the previous (ie. "before suspend") one.
 *
 *	If the resume eventually fails, we can call this function once
 *	again and restore the "before resume" highmem state.
 */

int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2659
}
2660
#endif /* CONFIG_HIGHMEM */