snapshot.c 44.4 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5 6
 *
 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/smp_lock.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

37 38 39 40 41
/* List of PBEs needed for restoring the pages that were allocated before
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
42 43
struct pbe *restore_pblist;

44
/* Pointer to an auxiliary buffer (1 page) */
45
static void *buffer;
46

47 48 49
/**
 *	@safe_needed - on resume, for storing the PBE list and the image,
 *	we can only use memory pages that do not conflict with the pages
50 51
 *	used before suspend.  The unsafe pages have PageNosaveFree set
 *	and we count them using unsafe_pages.
52
 *
53 54
 *	Each allocated image page is marked as PageNosave and PageNosaveFree
 *	so that swsusp_free() can release it.
55 56
 */

57 58 59 60 61
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

62
static unsigned int allocated_unsafe_pages;
63

64
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
65 66 67 68 69
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
70
		while (res && swsusp_page_is_free(virt_to_page(res))) {
71
			/* The page is unsafe, mark it for swsusp_free() */
72
			swsusp_set_page_forbidden(virt_to_page(res));
73
			allocated_unsafe_pages++;
74 75 76
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
77 78
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
79 80 81 82 83 84
	}
	return res;
}

unsigned long get_safe_page(gfp_t gfp_mask)
{
85 86 87
	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
}

88 89
static struct page *alloc_image_page(gfp_t gfp_mask)
{
90 91 92 93
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
94 95
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
96 97
	}
	return page;
98 99 100 101
}

/**
 *	free_image_page - free page represented by @addr, allocated with
102
 *	get_image_page (page flags set by it must be cleared)
103 104 105 106
 */

static inline void free_image_page(void *addr, int clear_nosave_free)
{
107 108 109 110 111 112
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

113
	swsusp_unset_page_forbidden(page);
114
	if (clear_nosave_free)
115
		swsusp_unset_page_free(page);
116 117

	__free_page(page);
118 119
}

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
} __attribute__((packed));

static inline void
free_list_of_pages(struct linked_page *list, int clear_page_nosave)
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

/**
  *	struct chain_allocator is used for allocating small objects out of
  *	a linked list of pages called 'the chain'.
  *
  *	The chain grows each time when there is no room for a new object in
  *	the current page.  The allocated objects cannot be freed individually.
  *	It is only possible to free them all at once, by freeing the entire
  *	chain.
  *
  *	NOTE: The chain allocator may be inefficient if the allocated objects
  *	are not much smaller than PAGE_SIZE.
  */

struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
					 * of the current page
					 */
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

static void
chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

178
		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
{
	free_list_of_pages(ca->chain, clear_page_nosave);
	memset(ca, 0, sizeof(struct chain_allocator));
}

/**
 *	Data types related to memory bitmaps.
 *
 *	Memory bitmap is a structure consiting of many linked lists of
 *	objects.  The main list's elements are of type struct zone_bitmap
 *	and each of them corresonds to one zone.  For each zone bitmap
 *	object there is a list of objects of type struct bm_block that
 *	represent each blocks of bit chunks in which information is
 *	stored.
 *
 *	struct memory_bitmap contains a pointer to the main list of zone
 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 *	and a pointer to the list of pages used for allocating all of the
 *	zone bitmap objects and bitmap block objects.
 *
 *	NOTE: It has to be possible to lay out the bitmap in memory
 *	using only allocations of order 0.  Additionally, the bitmap is
 *	designed to work with arbitrary number of zones (this is over the
 *	top for now, but let's avoid making unnecessary assumptions ;-).
 *
 *	struct zone_bitmap contains a pointer to a list of bitmap block
 *	objects and a pointer to the bitmap block object that has been
 *	most recently used for setting bits.  Additionally, it contains the
 *	pfns that correspond to the start and end of the represented zone.
 *
 *	struct bm_block contains a pointer to the memory page in which
 *	information is stored (in the form of a block of bit chunks
 *	of type unsigned long each).  It also contains the pfns that
 *	correspond to the start and end of the represented memory area and
 *	the number of bit chunks in the block.
 *
 *	NOTE: Memory bitmaps are used for two types of operations only:
 *	"set a bit" and "find the next bit set".  Moreover, the searching
 *	is always carried out after all of the "set a bit" operations
 *	on given bitmap.
 */

#define BM_END_OF_MAP	(~0UL)

#define BM_CHUNKS_PER_BLOCK	(PAGE_SIZE / sizeof(long))
#define BM_BITS_PER_CHUNK	(sizeof(long) << 3)
#define BM_BITS_PER_BLOCK	(PAGE_SIZE << 3)

struct bm_block {
	struct bm_block *next;		/* next element of the list */
	unsigned long start_pfn;	/* pfn represented by the first bit */
	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
	unsigned int size;	/* number of bit chunks */
	unsigned long *data;	/* chunks of bits representing pages */
};

struct zone_bitmap {
	struct zone_bitmap *next;	/* next element of the list */
	unsigned long start_pfn;	/* minimal pfn in this zone */
	unsigned long end_pfn;		/* maximal pfn in this zone plus 1 */
	struct bm_block *bm_blocks;	/* list of bitmap blocks */
	struct bm_block *cur_block;	/* recently used bitmap block */
};

/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
	struct zone_bitmap *zone_bm;
	struct bm_block *block;
	int chunk;
	int bit;
};

struct memory_bitmap {
	struct zone_bitmap *zone_bm_list;	/* list of zone bitmaps */
	struct linked_page *p_list;	/* list of pages used to store zone
					 * bitmap objects and bitmap block
					 * objects
					 */
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
{
	bm->cur.chunk = 0;
	bm->cur.bit = -1;
}

static void memory_bm_position_reset(struct memory_bitmap *bm)
{
	struct zone_bitmap *zone_bm;

	zone_bm = bm->zone_bm_list;
	bm->cur.zone_bm = zone_bm;
	bm->cur.block = zone_bm->bm_blocks;
	memory_bm_reset_chunk(bm);
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

/**
 *	create_bm_block_list - create a list of block bitmap objects
 */

static inline struct bm_block *
create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
{
	struct bm_block *bblist = NULL;

	while (nr_blocks-- > 0) {
		struct bm_block *bb;

		bb = chain_alloc(ca, sizeof(struct bm_block));
		if (!bb)
			return NULL;

		bb->next = bblist;
		bblist = bb;
	}
	return bblist;
}

/**
 *	create_zone_bm_list - create a list of zone bitmap objects
 */

static inline struct zone_bitmap *
create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
{
	struct zone_bitmap *zbmlist = NULL;

	while (nr_zones-- > 0) {
		struct zone_bitmap *zbm;

		zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
		if (!zbm)
			return NULL;

		zbm->next = zbmlist;
		zbmlist = zbm;
	}
	return zbmlist;
}

/**
  *	memory_bm_create - allocate memory for a memory bitmap
  */

static int
memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
{
	struct chain_allocator ca;
	struct zone *zone;
	struct zone_bitmap *zone_bm;
	struct bm_block *bb;
	unsigned int nr;

	chain_init(&ca, gfp_mask, safe_needed);

	/* Compute the number of zones */
	nr = 0;
355 356
	for_each_zone(zone)
		if (populated_zone(zone))
357 358 359 360 361 362 363 364 365 366 367
			nr++;

	/* Allocate the list of zones bitmap objects */
	zone_bm = create_zone_bm_list(nr, &ca);
	bm->zone_bm_list = zone_bm;
	if (!zone_bm) {
		chain_free(&ca, PG_UNSAFE_CLEAR);
		return -ENOMEM;
	}

	/* Initialize the zone bitmap objects */
368
	for_each_zone(zone) {
369 370
		unsigned long pfn;

371
		if (!populated_zone(zone))
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
			continue;

		zone_bm->start_pfn = zone->zone_start_pfn;
		zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
		/* Allocate the list of bitmap block objects */
		nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
		bb = create_bm_block_list(nr, &ca);
		zone_bm->bm_blocks = bb;
		zone_bm->cur_block = bb;
		if (!bb)
			goto Free;

		nr = zone->spanned_pages;
		pfn = zone->zone_start_pfn;
		/* Initialize the bitmap block objects */
		while (bb) {
			unsigned long *ptr;

390
			ptr = get_image_page(gfp_mask, safe_needed);
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
			bb->data = ptr;
			if (!ptr)
				goto Free;

			bb->start_pfn = pfn;
			if (nr >= BM_BITS_PER_BLOCK) {
				pfn += BM_BITS_PER_BLOCK;
				bb->size = BM_CHUNKS_PER_BLOCK;
				nr -= BM_BITS_PER_BLOCK;
			} else {
				/* This is executed only once in the loop */
				pfn += nr;
				bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
			}
			bb->end_pfn = pfn;
			bb = bb->next;
		}
		zone_bm = zone_bm->next;
	}
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
	return 0;

R
Rafael J. Wysocki 已提交
414
 Free:
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
	return -ENOMEM;
}

/**
  *	memory_bm_free - free memory occupied by the memory bitmap @bm
  */

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
	struct zone_bitmap *zone_bm;

	/* Free the list of bit blocks for each zone_bitmap object */
	zone_bm = bm->zone_bm_list;
	while (zone_bm) {
		struct bm_block *bb;

		bb = zone_bm->bm_blocks;
		while (bb) {
			if (bb->data)
				free_image_page(bb->data, clear_nosave_free);
			bb = bb->next;
		}
		zone_bm = zone_bm->next;
	}
	free_list_of_pages(bm->p_list, clear_nosave_free);
	bm->zone_bm_list = NULL;
}

/**
 *	memory_bm_set_bit - set the bit in the bitmap @bm that corresponds
 *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
 *	of @bm->cur_zone_bm are updated.
 *
 *	If the bit cannot be set, the function returns -EINVAL .
 */

static int
memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	struct zone_bitmap *zone_bm;
	struct bm_block *bb;

	/* Check if the pfn is from the current zone */
	zone_bm = bm->cur.zone_bm;
	if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
		zone_bm = bm->zone_bm_list;
		/* We don't assume that the zones are sorted by pfns */
		while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
			zone_bm = zone_bm->next;
			if (unlikely(!zone_bm))
				return -EINVAL;
		}
		bm->cur.zone_bm = zone_bm;
	}
	/* Check if the pfn corresponds to the current bitmap block */
	bb = zone_bm->cur_block;
	if (pfn < bb->start_pfn)
		bb = zone_bm->bm_blocks;

	while (pfn >= bb->end_pfn) {
		bb = bb->next;
		if (unlikely(!bb))
			return -EINVAL;
	}
	zone_bm->cur_block = bb;
	pfn -= bb->start_pfn;
	set_bit(pfn % BM_BITS_PER_CHUNK, bb->data + pfn / BM_BITS_PER_CHUNK);
	return 0;
}

/* Two auxiliary functions for memory_bm_next_pfn */

/* Find the first set bit in the given chunk, if there is one */

static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
{
	bit++;
	while (bit < BM_BITS_PER_CHUNK) {
		if (test_bit(bit, chunk_p))
			return bit;

		bit++;
	}
	return -1;
}

/* Find a chunk containing some bits set in given block of bits */

static inline int next_chunk_in_block(int n, struct bm_block *bb)
{
	n++;
	while (n < bb->size) {
		if (bb->data[n])
			return n;

		n++;
	}
	return -1;
}

/**
 *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
 *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
 *	returned.
 *
 *	It is required to run memory_bm_position_reset() before the first call to
 *	this function.
 */

static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
{
	struct zone_bitmap *zone_bm;
	struct bm_block *bb;
	int chunk;
	int bit;

	do {
		bb = bm->cur.block;
		do {
			chunk = bm->cur.chunk;
			bit = bm->cur.bit;
			do {
				bit = next_bit_in_chunk(bit, bb->data + chunk);
				if (bit >= 0)
					goto Return_pfn;

				chunk = next_chunk_in_block(chunk, bb);
				bit = -1;
			} while (chunk >= 0);
			bb = bb->next;
			bm->cur.block = bb;
			memory_bm_reset_chunk(bm);
		} while (bb);
		zone_bm = bm->cur.zone_bm->next;
		if (zone_bm) {
			bm->cur.zone_bm = zone_bm;
			bm->cur.block = zone_bm->bm_blocks;
			memory_bm_reset_chunk(bm);
		}
	} while (zone_bm);
	memory_bm_position_reset(bm);
	return BM_END_OF_MAP;

R
Rafael J. Wysocki 已提交
560
 Return_pfn:
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
	bm->cur.chunk = chunk;
	bm->cur.bit = bit;
	return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
}

/**
 *	snapshot_additional_pages - estimate the number of additional pages
 *	be needed for setting up the suspend image data structures for given
 *	zone (usually the returned value is greater than the exact number)
 */

unsigned int snapshot_additional_pages(struct zone *zone)
{
	unsigned int res;

	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
578
	return 2 * res;
579 580
}

581 582 583 584 585 586 587 588 589 590 591 592 593
#ifdef CONFIG_HIGHMEM
/**
 *	count_free_highmem_pages - compute the total number of free highmem
 *	pages, system-wide.
 */

static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

	for_each_zone(zone)
		if (populated_zone(zone) && is_highmem(zone))
594
			cnt += zone_page_state(zone, NR_FREE_PAGES);
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617

	return cnt;
}

/**
 *	saveable_highmem_page - Determine whether a highmem page should be
 *	included in the suspend image.
 *
 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 *	and it isn't a part of a free chunk of pages.
 */

static struct page *saveable_highmem_page(unsigned long pfn)
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);

	BUG_ON(!PageHighMem(page));

618 619
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
		return NULL;

	return page;
}

/**
 *	count_highmem_pages - compute the total number of saveable highmem
 *	pages.
 */

unsigned int count_highmem_pages(void)
{
	struct zone *zone;
	unsigned int n = 0;

	for_each_zone(zone) {
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (saveable_highmem_page(pfn))
				n++;
	}
	return n;
}
#else
static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
static inline unsigned int count_highmem_pages(void) { return 0; }
#endif /* CONFIG_HIGHMEM */

654
/**
655 656
 *	saveable - Determine whether a non-highmem page should be included in
 *	the suspend image.
657
 *
658 659 660
 *	We should save the page if it isn't Nosave, and is not in the range
 *	of pages statically defined as 'unsaveable', and it isn't a part of
 *	a free chunk of pages.
661 662
 */

663
static struct page *saveable_page(unsigned long pfn)
664
{
P
Pavel Machek 已提交
665
	struct page *page;
666 667

	if (!pfn_valid(pfn))
668
		return NULL;
669 670

	page = pfn_to_page(pfn);
671

672 673
	BUG_ON(PageHighMem(page));

674
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
675
		return NULL;
676

677
	if (PageReserved(page) && pfn_is_nosave(pfn))
678
		return NULL;
679

680
	return page;
681 682
}

683 684 685 686 687
/**
 *	count_data_pages - compute the total number of saveable non-highmem
 *	pages.
 */

688
unsigned int count_data_pages(void)
689 690
{
	struct zone *zone;
691
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
692
	unsigned int n = 0;
693

694
	for_each_zone(zone) {
695 696
		if (is_highmem(zone))
			continue;
697

698
		mark_free_pages(zone);
699 700
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
701 702
			if(saveable_page(pfn))
				n++;
703
	}
704
	return n;
705 706
}

707 708 709 710
/* This is needed, because copy_page and memcpy are not usable for copying
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
711 712 713 714 715 716 717
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
#ifdef CONFIG_HIGHMEM
static inline struct page *
page_is_saveable(struct zone *zone, unsigned long pfn)
{
	return is_highmem(zone) ?
			saveable_highmem_page(pfn) : saveable_page(pfn);
}

static inline void
copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
		src = kmap_atomic(s_page, KM_USER0);
		dst = kmap_atomic(d_page, KM_USER1);
		do_copy_page(dst, src);
		kunmap_atomic(src, KM_USER0);
		kunmap_atomic(dst, KM_USER1);
	} else {
		src = page_address(s_page);
		if (PageHighMem(d_page)) {
			/* Page pointed to by src may contain some kernel
			 * data modified by kmap_atomic()
			 */
			do_copy_page(buffer, src);
			dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
			memcpy(dst, buffer, PAGE_SIZE);
			kunmap_atomic(dst, KM_USER0);
		} else {
			dst = page_address(d_page);
			do_copy_page(dst, src);
		}
	}
}
#else
#define page_is_saveable(zone, pfn)	saveable_page(pfn)

static inline void
copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
{
	do_copy_page(page_address(pfn_to_page(dst_pfn)),
			page_address(pfn_to_page(src_pfn)));
}
#endif /* CONFIG_HIGHMEM */

767 768
static void
copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
769 770
{
	struct zone *zone;
771
	unsigned long pfn;
772

773
	for_each_zone(zone) {
774 775
		unsigned long max_zone_pfn;

776
		mark_free_pages(zone);
777
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
778
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
779
			if (page_is_saveable(zone, pfn))
780
				memory_bm_set_bit(orig_bm, pfn);
781
	}
782 783 784 785
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
	do {
		pfn = memory_bm_next_pfn(orig_bm);
786 787
		if (likely(pfn != BM_END_OF_MAP))
			copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
788
	} while (pfn != BM_END_OF_MAP);
789 790
}

791 792 793 794 795
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;

796
/**
797
 *	swsusp_free - free pages allocated for the suspend.
798
 *
799 800
 *	Suspend pages are alocated before the atomic copy is made, so we
 *	need to release them after the resume.
801 802 803 804 805
 */

void swsusp_free(void)
{
	struct zone *zone;
806
	unsigned long pfn, max_zone_pfn;
807 808

	for_each_zone(zone) {
809 810 811 812 813
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn)) {
				struct page *page = pfn_to_page(pfn);

814 815 816 817
				if (swsusp_page_is_forbidden(page) &&
				    swsusp_page_is_free(page)) {
					swsusp_unset_page_forbidden(page);
					swsusp_unset_page_free(page);
818
					__free_page(page);
819 820 821
				}
			}
	}
822 823
	nr_copy_pages = 0;
	nr_meta_pages = 0;
824
	restore_pblist = NULL;
825
	buffer = NULL;
826 827
}

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
#ifdef CONFIG_HIGHMEM
/**
  *	count_pages_for_highmem - compute the number of non-highmem pages
  *	that will be necessary for creating copies of highmem pages.
  */

static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
	unsigned int free_highmem = count_free_highmem_pages();

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
static unsigned int
count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
#endif /* CONFIG_HIGHMEM */
849 850

/**
851 852
 *	enough_free_mem - Make sure we have enough free memory for the
 *	snapshot image.
853 854
 */

855
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
856
{
857
	struct zone *zone;
858
	unsigned int free = 0, meta = 0;
859

860 861 862
	for_each_zone(zone) {
		meta += snapshot_additional_pages(zone);
		if (!is_highmem(zone))
863
			free += zone_page_state(zone, NR_FREE_PAGES);
864
	}
865

866 867
	nr_pages += count_pages_for_highmem(nr_highmem);
	pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n",
868 869 870
		nr_pages, PAGES_FOR_IO, meta, free);

	return free > nr_pages + PAGES_FOR_IO + meta;
871 872
}

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
#ifdef CONFIG_HIGHMEM
/**
 *	get_highmem_buffer - if there are some highmem pages in the suspend
 *	image, we may need the buffer to copy them and/or load their data.
 */

static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
 *	Try to allocate as many pages as needed, but if the number of free
 *	highmem pages is lesser than that, allocate them all.
 */

static inline unsigned int
alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_image_page(__GFP_HIGHMEM);
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

static inline unsigned int
alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
#endif /* CONFIG_HIGHMEM */

/**
 *	swsusp_alloc - allocate memory for the suspend image
 *
 *	We first try to allocate as many highmem pages as there are
 *	saveable highmem pages in the system.  If that fails, we allocate
 *	non-highmem pages for the copies of the remaining highmem ones.
 *
 *	In this approach it is likely that the copies of highmem pages will
 *	also be located in the high memory, because of the way in which
 *	copy_data_pages() works.
 */

927 928
static int
swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
929
		unsigned int nr_pages, unsigned int nr_highmem)
930
{
931
	int error;
932

933 934 935
	error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
	if (error)
		goto Free;
936

937 938 939
	error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
	if (error)
		goto Free;
940

941 942 943 944 945 946 947
	if (nr_highmem > 0) {
		error = get_highmem_buffer(PG_ANY);
		if (error)
			goto Free;

		nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
	}
948
	while (nr_pages-- > 0) {
949 950
		struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);

951 952
		if (!page)
			goto Free;
953

954
		memory_bm_set_bit(copy_bm, page_to_pfn(page));
955
	}
956
	return 0;
957

R
Rafael J. Wysocki 已提交
958
 Free:
959 960
	swsusp_free();
	return -ENOMEM;
961 962
}

963 964 965
/* Memory bitmap used for marking saveable pages (during suspend) or the
 * suspend image pages (during resume)
 */
966
static struct memory_bitmap orig_bm;
967 968 969 970 971 972
/* Memory bitmap used on suspend for marking allocated pages that will contain
 * the copies of saveable pages.  During resume it is initially used for
 * marking the suspend image pages, but then its set bits are duplicated in
 * @orig_bm and it is released.  Next, on systems with high memory, it may be
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
973 974 975
 */
static struct memory_bitmap copy_bm;

976
asmlinkage int swsusp_save(void)
977
{
978
	unsigned int nr_pages, nr_highmem;
979

980
	printk("swsusp: critical section: \n");
981 982

	drain_local_pages();
983
	nr_pages = count_data_pages();
984 985
	nr_highmem = count_highmem_pages();
	printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem);
986

987
	if (!enough_free_mem(nr_pages, nr_highmem)) {
988 989 990 991
		printk(KERN_ERR "swsusp: Not enough free memory\n");
		return -ENOMEM;
	}

992 993
	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
		printk(KERN_ERR "swsusp: Memory allocation failed\n");
994
		return -ENOMEM;
995
	}
996 997 998 999 1000

	/* During allocating of suspend pagedir, new cold pages may appear.
	 * Kill them.
	 */
	drain_local_pages();
1001
	copy_data_pages(&copy_bm, &orig_bm);
1002 1003 1004 1005 1006 1007 1008

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1009
	nr_pages += nr_highmem;
1010
	nr_copy_pages = nr_pages;
1011
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1012 1013

	printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages);
1014

1015 1016
	return 0;
}
1017 1018 1019 1020 1021 1022

static void init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
	info->version_code = LINUX_VERSION_CODE;
	info->num_physpages = num_physpages;
1023
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1024 1025 1026
	info->cpus = num_online_cpus();
	info->image_pages = nr_copy_pages;
	info->pages = nr_copy_pages + nr_meta_pages + 1;
1027 1028
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
1029 1030 1031
}

/**
1032 1033
 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
 *	are stored in the array @buf[] (1 page at a time)
1034 1035
 */

1036
static inline void
1037
pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1038 1039 1040
{
	int j;

1041
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1042 1043
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
1044
			break;
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	}
}

/**
 *	snapshot_read_next - used for reading the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	The @count parameter should contain the number of bytes the caller
 *	wants to read from the snapshot.  It must not be zero.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to read up to the returned number of bytes from the memory
 *	location computed by the data_of() macro.  The number returned
 *	may be smaller than @count, but this only happens if the read would
 *	cross a page boundary otherwise.
 *
 *	The function returns 0 to indicate the end of data stream condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

int snapshot_read_next(struct snapshot_handle *handle, size_t count)
{
1072
	if (handle->cur > nr_meta_pages + nr_copy_pages)
1073
		return 0;
1074

1075 1076
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
1077
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1078 1079 1080 1081 1082 1083
		if (!buffer)
			return -ENOMEM;
	}
	if (!handle->offset) {
		init_header((struct swsusp_info *)buffer);
		handle->buffer = buffer;
1084 1085
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
1086
	}
1087 1088
	if (handle->prev < handle->cur) {
		if (handle->cur <= nr_meta_pages) {
1089
			memset(buffer, 0, PAGE_SIZE);
1090
			pack_pfns(buffer, &orig_bm);
1091
		} else {
1092
			struct page *page;
1093

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
			page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
			if (PageHighMem(page)) {
				/* Highmem pages are copied to the buffer,
				 * because we can't return with a kmapped
				 * highmem page (we may not be called again).
				 */
				void *kaddr;

				kaddr = kmap_atomic(page, KM_USER0);
				memcpy(buffer, kaddr, PAGE_SIZE);
				kunmap_atomic(kaddr, KM_USER0);
				handle->buffer = buffer;
			} else {
				handle->buffer = page_address(page);
			}
1109
		}
1110
		handle->prev = handle->cur;
1111
	}
1112 1113 1114 1115 1116
	handle->buf_offset = handle->cur_offset;
	if (handle->cur_offset + count >= PAGE_SIZE) {
		count = PAGE_SIZE - handle->cur_offset;
		handle->cur_offset = 0;
		handle->cur++;
1117
	} else {
1118
		handle->cur_offset += count;
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	}
	handle->offset += count;
	return count;
}

/**
 *	mark_unsafe_pages - mark the pages that cannot be used for storing
 *	the image during resume, because they conflict with the pages that
 *	had been used before suspend
 */

1130
static int mark_unsafe_pages(struct memory_bitmap *bm)
1131 1132
{
	struct zone *zone;
1133
	unsigned long pfn, max_zone_pfn;
1134 1135

	/* Clear page flags */
1136
	for_each_zone(zone) {
1137 1138 1139
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn))
1140
				swsusp_unset_page_free(pfn_to_page(pfn));
1141 1142
	}

1143 1144 1145 1146 1147 1148
	/* Mark pages that correspond to the "original" pfns as "unsafe" */
	memory_bm_position_reset(bm);
	do {
		pfn = memory_bm_next_pfn(bm);
		if (likely(pfn != BM_END_OF_MAP)) {
			if (likely(pfn_valid(pfn)))
1149
				swsusp_set_page_free(pfn_to_page(pfn));
1150 1151 1152 1153
			else
				return -EFAULT;
		}
	} while (pfn != BM_END_OF_MAP);
1154

1155
	allocated_unsafe_pages = 0;
1156

1157 1158 1159
	return 0;
}

1160 1161
static void
duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1162
{
1163 1164 1165 1166 1167 1168 1169
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
1170 1171 1172
	}
}

1173
static inline int check_header(struct swsusp_info *info)
1174 1175 1176 1177 1178 1179 1180
{
	char *reason = NULL;

	if (info->version_code != LINUX_VERSION_CODE)
		reason = "kernel version";
	if (info->num_physpages != num_physpages)
		reason = "memory size";
1181
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1182
		reason = "system type";
1183
	if (strcmp(info->uts.release,init_utsname()->release))
1184
		reason = "kernel release";
1185
	if (strcmp(info->uts.version,init_utsname()->version))
1186
		reason = "version";
1187
	if (strcmp(info->uts.machine,init_utsname()->machine))
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
		reason = "machine";
	if (reason) {
		printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
		return -EPERM;
	}
	return 0;
}

/**
 *	load header - check the image header and copy data from it
 */

1200 1201
static int
load_header(struct swsusp_info *info)
1202 1203 1204
{
	int error;

1205
	restore_pblist = NULL;
1206 1207 1208 1209 1210 1211 1212 1213 1214
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
1215 1216
 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
 *	the corresponding bit in the memory bitmap @bm
1217 1218
 */

1219 1220
static inline void
unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1221 1222 1223
{
	int j;

1224 1225 1226 1227 1228
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

		memory_bm_set_bit(bm, buf[j]);
1229 1230 1231
	}
}

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
/* List of "safe" pages that may be used to store data loaded from the suspend
 * image
 */
static struct linked_page *safe_pages_list;

#ifdef CONFIG_HIGHMEM
/* struct highmem_pbe is used for creating the list of highmem pages that
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

/* List of highmem PBEs needed for restoring the highmem pages that were
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
 *	count_highmem_image_pages - compute the number of highmem pages in the
 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
 *	image pages are assumed to be set.
 */

static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

/**
 *	prepare_highmem_image - try to allocate as many highmem pages as
 *	there are highmem image pages (@nr_highmem_p points to the variable
 *	containing the number of highmem image pages).  The pages that are
 *	"safe" (ie. will not be overwritten when the suspend image is
 *	restored) have the corresponding bits set in @bm (it must be
 *	unitialized).
 *
 *	NOTE: This function should not be called if there are no highmem
 *	image pages.
 */

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

static int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
1315
		if (!swsusp_page_is_free(page)) {
1316 1317 1318 1319 1320
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
1321 1322
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

/**
 *	get_highmem_page_buffer - for given highmem image page find the buffer
 *	that suspend_write_next() should set for its caller to write to.
 *
 *	If the page is to be saved to its "original" page frame or a copy of
 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
 *	the copy of the page is to be made in normal memory, so the address of
 *	the copy is returned.
 *
 *	If @buffer is returned, the caller of suspend_write_next() will write
 *	the page's contents to @buffer, so they will have to be copied to the
 *	right location on the next call to suspend_write_next() and it is done
 *	with the help of copy_last_highmem_page().  For this purpose, if
 *	@buffer is returned, @last_highmem page is set to the page to which
 *	the data will have to be copied from @buffer.
 */

static struct page *last_highmem_page;

static void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
	struct highmem_pbe *pbe;
	void *kaddr;

1354
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
		return NULL;
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
 *	copy_last_highmem_page - copy the contents of a highmem image from
 *	@buffer, where the caller of snapshot_write_next() has place them,
 *	to the right location represented by @last_highmem_page .
 */

static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

		dst = kmap_atomic(last_highmem_page, KM_USER0);
		memcpy(dst, buffer, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
static inline int get_safe_write_buffer(void) { return 0; }

static unsigned int
count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }

static inline int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	return 0;
}

static inline void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
	return NULL;
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

1444
/**
1445 1446 1447 1448
 *	prepare_image - use the memory bitmap @bm to mark the pages that will
 *	be overwritten in the process of restoring the system memory state
 *	from the suspend image ("unsafe" pages) and allocate memory for the
 *	image.
1449
 *
1450 1451 1452
 *	The idea is to allocate a new memory bitmap first and then allocate
 *	as many pages as needed for the image data, but not to assign these
 *	pages to specific tasks initially.  Instead, we just mark them as
1453 1454 1455
 *	allocated and create a lists of "safe" pages that will be used
 *	later.  On systems with high memory a list of "safe" highmem pages is
 *	also created.
1456 1457
 */

1458 1459 1460 1461
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

static int
prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1462
{
1463
	unsigned int nr_pages, nr_highmem;
1464 1465
	struct linked_page *sp_list, *lp;
	int error;
1466

1467 1468 1469 1470 1471
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	error = mark_unsafe_pages(bm);
	if (error)
		goto Free;

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
1482 1483 1484 1485 1486
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
1487 1488 1489 1490 1491 1492 1493 1494
	/* Reserve some safe pages for potential later use.
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
	 */
	sp_list = NULL;
	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1495
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1496 1497
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
1498
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1499
		if (!lp) {
1500
			error = -ENOMEM;
1501 1502 1503 1504 1505
			goto Free;
		}
		lp->next = sp_list;
		sp_list = lp;
		nr_pages--;
1506
	}
1507 1508
	/* Preallocate memory for the image */
	safe_pages_list = NULL;
1509
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1510 1511 1512 1513 1514 1515
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
1516
		if (!swsusp_page_is_free(virt_to_page(lp))) {
1517 1518 1519
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
1520
		}
1521
		/* Mark the page as allocated */
1522 1523
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
1524
		nr_pages--;
1525
	}
1526 1527 1528 1529 1530
	/* Free the reserved safe pages so that chain_alloc() can use them */
	while (sp_list) {
		lp = sp_list->next;
		free_image_page(sp_list, PG_UNSAFE_CLEAR);
		sp_list = lp;
1531
	}
1532 1533
	return 0;

R
Rafael J. Wysocki 已提交
1534
 Free:
1535
	swsusp_free();
1536 1537 1538
	return error;
}

1539 1540 1541 1542 1543 1544
/**
 *	get_buffer - compute the address that snapshot_write_next() should
 *	set for its caller to write to.
 */

static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1545
{
1546 1547
	struct pbe *pbe;
	struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1548

1549 1550 1551
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

1552
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1553 1554
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
1555
		 */
1556 1557 1558 1559
		return page_address(page);

	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
1560
	 */
1561 1562 1563 1564 1565
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
		return NULL;
	}
1566 1567
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
1568 1569 1570
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
1571
	return pbe->address;
1572 1573
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
/**
 *	snapshot_write_next - used for writing the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	The @count parameter should contain the number of bytes the caller
 *	wants to write to the image.  It must not be zero.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to write up to the returned number of bytes to the memory
 *	location computed by the data_of() macro.  The number returned
 *	may be smaller than @count, but this only happens if the write would
 *	cross a page boundary otherwise.
 *
 *	The function returns 0 to indicate the "end of file" condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

int snapshot_write_next(struct snapshot_handle *handle, size_t count)
{
1598
	static struct chain_allocator ca;
1599 1600
	int error = 0;

1601
	/* Check if we have already loaded the entire image */
1602
	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1603
		return 0;
1604

1605 1606 1607 1608 1609
	if (handle->offset == 0) {
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

1610 1611
		if (!buffer)
			return -ENOMEM;
1612

1613
		handle->buffer = buffer;
1614
	}
A
Andrew Morton 已提交
1615
	handle->sync_read = 1;
1616
	if (handle->prev < handle->cur) {
1617 1618 1619 1620 1621 1622
		if (handle->prev == 0) {
			error = load_header(buffer);
			if (error)
				return error;

			error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1623 1624
			if (error)
				return error;
1625

1626
		} else if (handle->prev <= nr_meta_pages) {
1627 1628 1629
			unpack_orig_pfns(buffer, &copy_bm);
			if (handle->prev == nr_meta_pages) {
				error = prepare_image(&orig_bm, &copy_bm);
1630 1631
				if (error)
					return error;
1632 1633 1634 1635 1636

				chain_init(&ca, GFP_ATOMIC, PG_SAFE);
				memory_bm_position_reset(&orig_bm);
				restore_pblist = NULL;
				handle->buffer = get_buffer(&orig_bm, &ca);
A
Andrew Morton 已提交
1637
				handle->sync_read = 0;
1638 1639
				if (!handle->buffer)
					return -ENOMEM;
1640 1641
			}
		} else {
1642
			copy_last_highmem_page();
1643
			handle->buffer = get_buffer(&orig_bm, &ca);
1644 1645
			if (handle->buffer != buffer)
				handle->sync_read = 0;
1646
		}
1647
		handle->prev = handle->cur;
1648
	}
1649 1650 1651 1652 1653
	handle->buf_offset = handle->cur_offset;
	if (handle->cur_offset + count >= PAGE_SIZE) {
		count = PAGE_SIZE - handle->cur_offset;
		handle->cur_offset = 0;
		handle->cur++;
1654
	} else {
1655
		handle->cur_offset += count;
1656 1657 1658 1659 1660
	}
	handle->offset += count;
	return count;
}

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
/**
 *	snapshot_write_finalize - must be called after the last call to
 *	snapshot_write_next() in case the last page in the image happens
 *	to be a highmem page and its contents should be stored in the
 *	highmem.  Additionally, it releases the memory that will not be
 *	used any more.
 */

void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
	/* Free only if we have loaded the image entirely */
	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
		free_highmem_data();
	}
}

1679 1680
int snapshot_image_loaded(struct snapshot_handle *handle)
{
1681
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
1682 1683 1684
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

1685 1686 1687 1688
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
static inline void
swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1689
{
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	void *kaddr1, *kaddr2;

	kaddr1 = kmap_atomic(p1, KM_USER0);
	kaddr2 = kmap_atomic(p2, KM_USER1);
	memcpy(buf, kaddr1, PAGE_SIZE);
	memcpy(kaddr1, kaddr2, PAGE_SIZE);
	memcpy(kaddr2, buf, PAGE_SIZE);
	kunmap_atomic(kaddr1, KM_USER0);
	kunmap_atomic(kaddr2, KM_USER1);
}

/**
 *	restore_highmem - for each highmem page that was allocated before
 *	the suspend and included in the suspend image, and also has been
 *	allocated by the "resume" kernel swap its current (ie. "before
 *	resume") contents with the previous (ie. "before suspend") one.
 *
 *	If the resume eventually fails, we can call this function once
 *	again and restore the "before resume" highmem state.
 */

int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
1729
}
1730
#endif /* CONFIG_HIGHMEM */