snapshot.c 59.1 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5 6
 *
 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
24 25 26 27
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
28
#include <linux/list.h>
29 30 31 32 33 34 35 36 37

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

38 39 40 41
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

42 43 44 45 46 47 48 49
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
 * When it is set to N, swsusp will do its best to ensure the image
 * size will not exceed N bytes, but if that is impossible, it will
 * try to create the smallest image possible.
 */
unsigned long image_size = 500 * 1024 * 1024;

50 51 52 53 54
/* List of PBEs needed for restoring the pages that were allocated before
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
55 56
struct pbe *restore_pblist;

57
/* Pointer to an auxiliary buffer (1 page) */
58
static void *buffer;
59

60 61 62
/**
 *	@safe_needed - on resume, for storing the PBE list and the image,
 *	we can only use memory pages that do not conflict with the pages
63 64
 *	used before suspend.  The unsafe pages have PageNosaveFree set
 *	and we count them using unsafe_pages.
65
 *
66 67
 *	Each allocated image page is marked as PageNosave and PageNosaveFree
 *	so that swsusp_free() can release it.
68 69
 */

70 71 72 73 74
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

75
static unsigned int allocated_unsafe_pages;
76

77
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
78 79 80 81 82
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
83
		while (res && swsusp_page_is_free(virt_to_page(res))) {
84
			/* The page is unsafe, mark it for swsusp_free() */
85
			swsusp_set_page_forbidden(virt_to_page(res));
86
			allocated_unsafe_pages++;
87 88 89
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
90 91
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
92 93 94 95 96 97
	}
	return res;
}

unsigned long get_safe_page(gfp_t gfp_mask)
{
98 99 100
	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
}

101 102
static struct page *alloc_image_page(gfp_t gfp_mask)
{
103 104 105 106
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
107 108
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
109 110
	}
	return page;
111 112 113 114
}

/**
 *	free_image_page - free page represented by @addr, allocated with
115
 *	get_image_page (page flags set by it must be cleared)
116 117 118 119
 */

static inline void free_image_page(void *addr, int clear_nosave_free)
{
120 121 122 123 124 125
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

126
	swsusp_unset_page_forbidden(page);
127
	if (clear_nosave_free)
128
		swsusp_unset_page_free(page);
129 130

	__free_page(page);
131 132
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
} __attribute__((packed));

static inline void
free_list_of_pages(struct linked_page *list, int clear_page_nosave)
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

/**
  *	struct chain_allocator is used for allocating small objects out of
  *	a linked list of pages called 'the chain'.
  *
  *	The chain grows each time when there is no room for a new object in
  *	the current page.  The allocated objects cannot be freed individually.
  *	It is only possible to free them all at once, by freeing the entire
  *	chain.
  *
  *	NOTE: The chain allocator may be inefficient if the allocated objects
  *	are not much smaller than PAGE_SIZE.
  */

struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
					 * of the current page
					 */
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

static void
chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

191
		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
 *	Data types related to memory bitmaps.
 *
 *	Memory bitmap is a structure consiting of many linked lists of
 *	objects.  The main list's elements are of type struct zone_bitmap
 *	and each of them corresonds to one zone.  For each zone bitmap
 *	object there is a list of objects of type struct bm_block that
211
 *	represent each blocks of bitmap in which information is stored.
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
 *
 *	struct memory_bitmap contains a pointer to the main list of zone
 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 *	and a pointer to the list of pages used for allocating all of the
 *	zone bitmap objects and bitmap block objects.
 *
 *	NOTE: It has to be possible to lay out the bitmap in memory
 *	using only allocations of order 0.  Additionally, the bitmap is
 *	designed to work with arbitrary number of zones (this is over the
 *	top for now, but let's avoid making unnecessary assumptions ;-).
 *
 *	struct zone_bitmap contains a pointer to a list of bitmap block
 *	objects and a pointer to the bitmap block object that has been
 *	most recently used for setting bits.  Additionally, it contains the
 *	pfns that correspond to the start and end of the represented zone.
 *
 *	struct bm_block contains a pointer to the memory page in which
229 230 231
 *	information is stored (in the form of a block of bitmap)
 *	It also contains the pfns that correspond to the start and end of
 *	the represented memory area.
232 233 234 235 236 237 238
 */

#define BM_END_OF_MAP	(~0UL)

#define BM_BITS_PER_BLOCK	(PAGE_SIZE << 3)

struct bm_block {
239
	struct list_head hook;	/* hook into a list of bitmap blocks */
240 241
	unsigned long start_pfn;	/* pfn represented by the first bit */
	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
242
	unsigned long *data;	/* bitmap representing pages */
243 244
};

245 246 247 248 249
static inline unsigned long bm_block_bits(struct bm_block *bb)
{
	return bb->end_pfn - bb->start_pfn;
}

250 251 252 253 254 255 256 257
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
	struct bm_block *block;
	int bit;
};

struct memory_bitmap {
258
	struct list_head blocks;	/* list of bitmap blocks */
259 260 261 262 263 264 265 266 267 268 269
	struct linked_page *p_list;	/* list of pages used to store zone
					 * bitmap objects and bitmap block
					 * objects
					 */
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

static void memory_bm_position_reset(struct memory_bitmap *bm)
{
270
	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
271
	bm->cur.bit = 0;
272 273 274 275 276 277
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

/**
 *	create_bm_block_list - create a list of block bitmap objects
278 279 280
 *	@nr_blocks - number of blocks to allocate
 *	@list - list to put the allocated blocks into
 *	@ca - chain allocator to be used for allocating memory
281
 */
282 283 284
static int create_bm_block_list(unsigned long pages,
				struct list_head *list,
				struct chain_allocator *ca)
285
{
286
	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
287 288 289 290 291 292

	while (nr_blocks-- > 0) {
		struct bm_block *bb;

		bb = chain_alloc(ca, sizeof(struct bm_block));
		if (!bb)
293 294
			return -ENOMEM;
		list_add(&bb->hook, list);
295
	}
296 297

	return 0;
298 299
}

300 301 302 303 304 305
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

306
/**
307 308
 *	free_mem_extents - free a list of memory extents
 *	@list - list of extents to empty
309
 */
310 311 312
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
313

314 315 316 317 318 319 320 321 322 323 324 325 326
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
 *	create_mem_extents - create a list of memory extents representing
 *	                     contiguous ranges of PFNs
 *	@list - list to put the extents into
 *	@gfp_mask - mask to use for memory allocations
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
327
{
328
	struct zone *zone;
329

330
	INIT_LIST_HEAD(list);
331

332
	for_each_populated_zone(zone) {
333 334 335 336 337 338 339 340 341
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
		zone_end = zone->zone_start_pfn + zone->spanned_pages;

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
342

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
374
	}
375 376

	return 0;
377 378 379 380 381 382 383 384 385
}

/**
  *	memory_bm_create - allocate memory for a memory bitmap
  */
static int
memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
{
	struct chain_allocator ca;
386 387 388
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
389 390

	chain_init(&ca, gfp_mask, safe_needed);
391
	INIT_LIST_HEAD(&bm->blocks);
392

393 394 395
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
396

397 398 399 400
	list_for_each_entry(ext, &mem_extents, hook) {
		struct bm_block *bb;
		unsigned long pfn = ext->start;
		unsigned long pages = ext->end - ext->start;
401

402
		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
403

404 405 406
		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
		if (error)
			goto Error;
407

408 409 410 411 412 413
		list_for_each_entry_continue(bb, &bm->blocks, hook) {
			bb->data = get_image_page(gfp_mask, safe_needed);
			if (!bb->data) {
				error = -ENOMEM;
				goto Error;
			}
414 415

			bb->start_pfn = pfn;
416
			if (pages >= BM_BITS_PER_BLOCK) {
417
				pfn += BM_BITS_PER_BLOCK;
418
				pages -= BM_BITS_PER_BLOCK;
419 420
			} else {
				/* This is executed only once in the loop */
421
				pfn += pages;
422 423 424 425
			}
			bb->end_pfn = pfn;
		}
	}
426

427 428
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
429 430 431
 Exit:
	free_mem_extents(&mem_extents);
	return error;
432

433
 Error:
434 435
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
436
	goto Exit;
437 438 439 440 441 442 443
}

/**
  *	memory_bm_free - free memory occupied by the memory bitmap @bm
  */
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
444
	struct bm_block *bb;
445

446 447 448
	list_for_each_entry(bb, &bm->blocks, hook)
		if (bb->data)
			free_image_page(bb->data, clear_nosave_free);
449 450

	free_list_of_pages(bm->p_list, clear_nosave_free);
451 452

	INIT_LIST_HEAD(&bm->blocks);
453 454 455
}

/**
456
 *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
457 458 459
 *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
 *	of @bm->cur_zone_bm are updated.
 */
460
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
461
				void **addr, unsigned int *bit_nr)
462 463 464
{
	struct bm_block *bb;

465 466 467 468 469
	/*
	 * Check if the pfn corresponds to the current bitmap block and find
	 * the block where it fits if this is not the case.
	 */
	bb = bm->cur.block;
470
	if (pfn < bb->start_pfn)
471 472 473
		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
			if (pfn >= bb->start_pfn)
				break;
474

475 476 477 478
	if (pfn >= bb->end_pfn)
		list_for_each_entry_continue(bb, &bm->blocks, hook)
			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
				break;
479

480 481 482 483 484
	if (&bb->hook == &bm->blocks)
		return -EFAULT;

	/* The block has been found */
	bm->cur.block = bb;
485
	pfn -= bb->start_pfn;
486
	bm->cur.bit = pfn + 1;
487 488
	*bit_nr = pfn;
	*addr = bb->data;
489
	return 0;
490 491 492 493 494 495
}

static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
496
	int error;
497

498 499
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
500 501 502
	set_bit(bit, addr);
}

503 504 505 506 507 508 509 510 511 512 513 514
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	if (!error)
		set_bit(bit, addr);
	return error;
}

515 516 517 518
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
519
	int error;
520

521 522
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
523 524 525 526 527 528 529
	clear_bit(bit, addr);
}

static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
530
	int error;
531

532 533
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
534
	return test_bit(bit, addr);
535 536
}

537 538 539 540 541 542 543 544
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;

	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558
/**
 *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
 *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
 *	returned.
 *
 *	It is required to run memory_bm_position_reset() before the first call to
 *	this function.
 */

static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
{
	struct bm_block *bb;
	int bit;

559
	bb = bm->cur.block;
560
	do {
561 562 563 564 565 566 567 568 569 570
		bit = bm->cur.bit;
		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
		if (bit < bm_block_bits(bb))
			goto Return_pfn;

		bb = list_entry(bb->hook.next, struct bm_block, hook);
		bm->cur.block = bb;
		bm->cur.bit = 0;
	} while (&bb->hook != &bm->blocks);

571 572 573
	memory_bm_position_reset(bm);
	return BM_END_OF_MAP;

R
Rafael J. Wysocki 已提交
574
 Return_pfn:
575 576
	bm->cur.bit = bit + 1;
	return bb->start_pfn + bit;
577 578
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
/**
 *	This structure represents a range of page frames the contents of which
 *	should not be saved during the suspend.
 */

struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

/**
 *	register_nosave_region - register a range of page frames the contents
 *	of which should not be saved during the suspend (to be used in the early
 *	initialization code)
 */

void __init
599 600
__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
			 int use_kmalloc)
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
616 617 618 619 620 621 622
	if (use_kmalloc) {
		/* during init, this shouldn't fail */
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
	} else
		/* This allocation cannot fail */
		region = alloc_bootmem_low(sizeof(struct nosave_region));
623 624 625 626
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
R
Rafael J. Wysocki 已提交
627
	printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
 *	mark_nosave_pages - set bits corresponding to the page frames the
 *	contents of which should not be saved in a given bitmap.
 */

static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

R
Rafael J. Wysocki 已提交
696
		pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
697 698 699 700
				region->start_pfn << PAGE_SHIFT,
				region->end_pfn << PAGE_SHIFT);

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
701 702 703 704 705 706 707 708 709
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	}
}

/**
 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 *	frames that should not be saved and free page frames.  The pointers
 *	forbidden_pages_map and free_pages_map are only modified if everything
 *	goes well, because we don't want the bits to be used before both bitmaps
 *	are set up.
 */

int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

	BUG_ON(forbidden_pages_map || free_pages_map);

728
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
729 730 731
	if (!bm1)
		return -ENOMEM;

732
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
733 734 735
	if (error)
		goto Free_first_object;

736
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
737 738 739
	if (!bm2)
		goto Free_first_bitmap;

740
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
741 742 743 744 745 746 747
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

R
Rafael J. Wysocki 已提交
748
	pr_debug("PM: Basic memory bitmaps created\n");
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
 *	so that the bitmaps themselves are not referred to while they are being
 *	freed.
 */

void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

	BUG_ON(!(forbidden_pages_map && free_pages_map));

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

R
Rafael J. Wysocki 已提交
783
	pr_debug("PM: Basic memory bitmaps freed\n");
784 785
}

786 787 788 789 790 791 792 793 794 795 796 797
/**
 *	snapshot_additional_pages - estimate the number of additional pages
 *	be needed for setting up the suspend image data structures for given
 *	zone (usually the returned value is greater than the exact number)
 */

unsigned int snapshot_additional_pages(struct zone *zone)
{
	unsigned int res;

	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
798
	return 2 * res;
799 800
}

801 802 803 804 805 806 807 808 809 810 811
#ifdef CONFIG_HIGHMEM
/**
 *	count_free_highmem_pages - compute the total number of free highmem
 *	pages, system-wide.
 */

static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

812 813
	for_each_populated_zone(zone)
		if (is_highmem(zone))
814
			cnt += zone_page_state(zone, NR_FREE_PAGES);
815 816 817 818 819 820 821 822 823 824 825

	return cnt;
}

/**
 *	saveable_highmem_page - Determine whether a highmem page should be
 *	included in the suspend image.
 *
 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 *	and it isn't a part of a free chunk of pages.
 */
826
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
827 828 829 830 831 832 833
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
834 835
	if (page_zone(page) != zone)
		return NULL;
836 837 838

	BUG_ON(!PageHighMem(page));

839 840
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
841 842 843 844 845 846 847 848 849 850
		return NULL;

	return page;
}

/**
 *	count_highmem_pages - compute the total number of saveable highmem
 *	pages.
 */

851
static unsigned int count_highmem_pages(void)
852 853 854 855
{
	struct zone *zone;
	unsigned int n = 0;

856
	for_each_populated_zone(zone) {
857 858 859 860 861 862 863 864
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
865
			if (saveable_highmem_page(zone, pfn))
866 867 868 869 870
				n++;
	}
	return n;
}
#else
871 872 873 874
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
875 876
#endif /* CONFIG_HIGHMEM */

877
/**
878 879
 *	saveable_page - Determine whether a non-highmem page should be included
 *	in the suspend image.
880
 *
881 882 883
 *	We should save the page if it isn't Nosave, and is not in the range
 *	of pages statically defined as 'unsaveable', and it isn't a part of
 *	a free chunk of pages.
884
 */
885
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
886
{
P
Pavel Machek 已提交
887
	struct page *page;
888 889

	if (!pfn_valid(pfn))
890
		return NULL;
891 892

	page = pfn_to_page(pfn);
893 894
	if (page_zone(page) != zone)
		return NULL;
895

896 897
	BUG_ON(PageHighMem(page));

898
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
899
		return NULL;
900

901 902
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
903
		return NULL;
904

905
	return page;
906 907
}

908 909 910 911 912
/**
 *	count_data_pages - compute the total number of saveable non-highmem
 *	pages.
 */

913
static unsigned int count_data_pages(void)
914 915
{
	struct zone *zone;
916
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
917
	unsigned int n = 0;
918

919
	for_each_populated_zone(zone) {
920 921
		if (is_highmem(zone))
			continue;
922

923
		mark_free_pages(zone);
924 925
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
926
			if (saveable_page(zone, pfn))
927
				n++;
928
	}
929
	return n;
930 931
}

932 933 934 935
/* This is needed, because copy_page and memcpy are not usable for copying
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
936 937 938 939 940 941 942
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961

/**
 *	safe_copy_page - check if the page we are going to copy is marked as
 *		present in the kernel page tables (this always is the case if
 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
 *		kernel_page_present() always returns 'true').
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}


962 963 964 965 966
#ifdef CONFIG_HIGHMEM
static inline struct page *
page_is_saveable(struct zone *zone, unsigned long pfn)
{
	return is_highmem(zone) ?
967
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
968 969
}

970
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
		src = kmap_atomic(s_page, KM_USER0);
		dst = kmap_atomic(d_page, KM_USER1);
		do_copy_page(dst, src);
		kunmap_atomic(src, KM_USER0);
		kunmap_atomic(dst, KM_USER1);
	} else {
		if (PageHighMem(d_page)) {
			/* Page pointed to by src may contain some kernel
			 * data modified by kmap_atomic()
			 */
988
			safe_copy_page(buffer, s_page);
989
			dst = kmap_atomic(d_page, KM_USER0);
990 991 992
			memcpy(dst, buffer, PAGE_SIZE);
			kunmap_atomic(dst, KM_USER0);
		} else {
993
			safe_copy_page(page_address(d_page), s_page);
994 995 996 997
		}
	}
}
#else
998
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
999

1000
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1001
{
1002 1003
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1004 1005 1006
}
#endif /* CONFIG_HIGHMEM */

1007 1008
static void
copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1009 1010
{
	struct zone *zone;
1011
	unsigned long pfn;
1012

1013
	for_each_populated_zone(zone) {
1014 1015
		unsigned long max_zone_pfn;

1016
		mark_free_pages(zone);
1017
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1018
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1019
			if (page_is_saveable(zone, pfn))
1020
				memory_bm_set_bit(orig_bm, pfn);
1021
	}
1022 1023
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1024
	for(;;) {
1025
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1026 1027 1028 1029
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1030 1031
}

1032 1033 1034 1035
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
unsigned int alloc_normal, alloc_highmem;
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1055

1056
/**
1057
 *	swsusp_free - free pages allocated for the suspend.
1058
 *
1059 1060
 *	Suspend pages are alocated before the atomic copy is made, so we
 *	need to release them after the resume.
1061 1062 1063 1064 1065
 */

void swsusp_free(void)
{
	struct zone *zone;
1066
	unsigned long pfn, max_zone_pfn;
1067

1068
	for_each_populated_zone(zone) {
1069 1070 1071 1072 1073
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn)) {
				struct page *page = pfn_to_page(pfn);

1074 1075 1076 1077
				if (swsusp_page_is_forbidden(page) &&
				    swsusp_page_is_free(page)) {
					swsusp_unset_page_forbidden(page);
					swsusp_unset_page_free(page);
1078
					__free_page(page);
1079 1080 1081
				}
			}
	}
1082 1083
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1084
	restore_pblist = NULL;
1085
	buffer = NULL;
1086 1087
	alloc_normal = 0;
	alloc_highmem = 0;
1088 1089
}

1090 1091 1092 1093
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1094
/**
1095 1096 1097
 * preallocate_image_pages - Allocate a number of pages for hibernation image
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1098
 *
1099 1100 1101 1102 1103 1104 1105
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1106 1107 1108 1109
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1110
			break;
1111 1112 1113 1114 1115
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

static unsigned long preallocate_image_memory(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE);
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1136
 */
1137 1138 1139 1140 1141 1142
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
	x *= multiplier;
	do_div(x, base);
	return (unsigned long)x;
}
1143

1144 1145 1146
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
1147
{
1148 1149 1150
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1151
}
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1165

1166
/**
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
 * free_unnecessary_pages - Release preallocated pages not needed for the image
 */
static void free_unnecessary_pages(void)
{
	unsigned long save_highmem, to_free_normal, to_free_highmem;

	to_free_normal = alloc_normal - count_data_pages();
	save_highmem = count_highmem_pages();
	if (alloc_highmem > save_highmem) {
		to_free_highmem = alloc_highmem - save_highmem;
	} else {
		to_free_highmem = 0;
		to_free_normal -= save_highmem - alloc_highmem;
	}

	memory_bm_position_reset(&copy_bm);

	while (to_free_normal > 0 && to_free_highmem > 0) {
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
/**
 * minimum_image_size - Estimate the minimum acceptable size of an image
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
 * minus mapped file pages.
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

	size = global_page_state(NR_SLAB_RECLAIMABLE)
		+ global_page_state(NR_ACTIVE_ANON)
		+ global_page_state(NR_INACTIVE_ANON)
		+ global_page_state(NR_ACTIVE_FILE)
		+ global_page_state(NR_INACTIVE_FILE)
		- global_page_state(NR_FILE_MAPPED);

	return saveable <= size ? 0 : saveable - size;
}

1236 1237
/**
 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
 * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES,
 * respectively, both of which are rough estimates).  To make this happen, we
 * compute the total number of available page frames and allocate at least
 *
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1253 1254
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1255
 */
1256
int hibernate_preallocate_memory(void)
1257 1258
{
	struct zone *zone;
1259
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1260
	unsigned long alloc, save_highmem, pages_highmem;
1261
	struct timeval start, stop;
1262
	int error;
1263

1264
	printk(KERN_INFO "PM: Preallocating image memory... ");
1265 1266
	do_gettimeofday(&start);

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	alloc_normal = 0;
	alloc_highmem = 0;

1278
	/* Count the number of saveable data pages. */
1279
	save_highmem = count_highmem_pages();
1280
	saveable = count_data_pages();
1281

1282 1283 1284 1285 1286
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1287 1288
	saveable += save_highmem;
	highmem = save_highmem;
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
	count += highmem;
	count -= totalreserve_pages;

	/* Compute the maximum number of saveable pages to leave in memory. */
	max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES;
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
	 * If the maximum is not less than the current number of saveable pages
1307
	 * in memory, allocate page frames for the image and we're done.
1308
	 */
1309 1310 1311
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
		pages += preallocate_image_memory(saveable - pages);
1312
		goto out;
1313
	}
1314

1315 1316 1317 1318 1319
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1332 1333
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1334 1335 1336 1337
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
	alloc = (count - max_size) - pages_highmem;
	pages = preallocate_image_memory(alloc);
1338 1339
	if (pages < alloc)
		goto err_out;
1340 1341 1342 1343 1344 1345 1346 1347
	size = max_size - size;
	alloc = size;
	size = preallocate_highmem_fraction(size, highmem, count);
	pages_highmem += size;
	alloc -= size;
	pages += preallocate_image_memory(alloc);
	pages += pages_highmem;

1348 1349 1350 1351 1352 1353
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
	free_unnecessary_pages();
1354 1355

 out:
1356
	do_gettimeofday(&stop);
1357 1358
	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
	swsusp_show_speed(&start, &stop, pages, "Allocated");
1359 1360

	return 0;
1361 1362 1363 1364 1365

 err_out:
	printk(KERN_CONT "\n");
	swsusp_free();
	return -ENOMEM;
1366 1367
}

1368 1369 1370 1371 1372 1373 1374 1375
#ifdef CONFIG_HIGHMEM
/**
  *	count_pages_for_highmem - compute the number of non-highmem pages
  *	that will be necessary for creating copies of highmem pages.
  */

static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1376
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
static unsigned int
count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
#endif /* CONFIG_HIGHMEM */
1389 1390

/**
1391 1392
 *	enough_free_mem - Make sure we have enough free memory for the
 *	snapshot image.
1393 1394
 */

1395
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1396
{
1397
	struct zone *zone;
1398
	unsigned int free = alloc_normal;
1399

1400
	for_each_populated_zone(zone)
1401
		if (!is_highmem(zone))
1402
			free += zone_page_state(zone, NR_FREE_PAGES);
1403

1404
	nr_pages += count_pages_for_highmem(nr_highmem);
1405 1406
	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
		nr_pages, PAGES_FOR_IO, free);
1407

1408
	return free > nr_pages + PAGES_FOR_IO;
1409 1410
}

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
#ifdef CONFIG_HIGHMEM
/**
 *	get_highmem_buffer - if there are some highmem pages in the suspend
 *	image, we may need the buffer to copy them and/or load their data.
 */

static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
 *	Try to allocate as many pages as needed, but if the number of free
 *	highmem pages is lesser than that, allocate them all.
 */

static inline unsigned int
1430
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_image_page(__GFP_HIGHMEM);
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

static inline unsigned int
1450
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
#endif /* CONFIG_HIGHMEM */

/**
 *	swsusp_alloc - allocate memory for the suspend image
 *
 *	We first try to allocate as many highmem pages as there are
 *	saveable highmem pages in the system.  If that fails, we allocate
 *	non-highmem pages for the copies of the remaining highmem ones.
 *
 *	In this approach it is likely that the copies of highmem pages will
 *	also be located in the high memory, because of the way in which
 *	copy_data_pages() works.
 */

1465 1466
static int
swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1467
		unsigned int nr_pages, unsigned int nr_highmem)
1468
{
1469
	int error = 0;
1470

1471 1472 1473
	if (nr_highmem > 0) {
		error = get_highmem_buffer(PG_ANY);
		if (error)
1474 1475 1476 1477 1478
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1479
	}
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
1490
	}
1491

1492
	return 0;
1493

1494
 err_out:
1495
	swsusp_free();
1496
	return error;
1497 1498
}

1499
asmlinkage int swsusp_save(void)
1500
{
1501
	unsigned int nr_pages, nr_highmem;
1502

R
Rafael J. Wysocki 已提交
1503
	printk(KERN_INFO "PM: Creating hibernation image: \n");
1504

1505
	drain_local_pages(NULL);
1506
	nr_pages = count_data_pages();
1507
	nr_highmem = count_highmem_pages();
R
Rafael J. Wysocki 已提交
1508
	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1509

1510
	if (!enough_free_mem(nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1511
		printk(KERN_ERR "PM: Not enough free memory\n");
1512 1513 1514
		return -ENOMEM;
	}

1515
	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1516
		printk(KERN_ERR "PM: Memory allocation failed\n");
1517
		return -ENOMEM;
1518
	}
1519 1520 1521 1522

	/* During allocating of suspend pagedir, new cold pages may appear.
	 * Kill them.
	 */
1523
	drain_local_pages(NULL);
1524
	copy_data_pages(&copy_bm, &orig_bm);
1525 1526 1527 1528 1529 1530 1531

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1532
	nr_pages += nr_highmem;
1533
	nr_copy_pages = nr_pages;
1534
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1535

R
Rafael J. Wysocki 已提交
1536 1537
	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
		nr_pages);
1538

1539 1540
	return 0;
}
1541

1542 1543
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
1544
{
1545
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1546
	info->version_code = LINUX_VERSION_CODE;
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

1566 1567 1568 1569 1570
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

1571 1572 1573
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
1574 1575
	info->num_physpages = num_physpages;
	info->image_pages = nr_copy_pages;
1576
	info->pages = snapshot_get_image_size();
1577 1578
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
1579
	return init_header_complete(info);
1580 1581 1582
}

/**
1583 1584
 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
 *	are stored in the array @buf[] (1 page at a time)
1585 1586
 */

1587
static inline void
1588
pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1589 1590 1591
{
	int j;

1592
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1593 1594
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
1595
			break;
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	}
}

/**
 *	snapshot_read_next - used for reading the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	The @count parameter should contain the number of bytes the caller
 *	wants to read from the snapshot.  It must not be zero.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to read up to the returned number of bytes from the memory
 *	location computed by the data_of() macro.  The number returned
 *	may be smaller than @count, but this only happens if the read would
 *	cross a page boundary otherwise.
 *
 *	The function returns 0 to indicate the end of data stream condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

int snapshot_read_next(struct snapshot_handle *handle, size_t count)
{
1623
	if (handle->cur > nr_meta_pages + nr_copy_pages)
1624
		return 0;
1625

1626 1627
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
1628
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1629 1630 1631 1632
		if (!buffer)
			return -ENOMEM;
	}
	if (!handle->offset) {
1633 1634 1635 1636 1637
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
1638
		handle->buffer = buffer;
1639 1640
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
1641
	}
1642 1643
	if (handle->prev < handle->cur) {
		if (handle->cur <= nr_meta_pages) {
1644
			memset(buffer, 0, PAGE_SIZE);
1645
			pack_pfns(buffer, &orig_bm);
1646
		} else {
1647
			struct page *page;
1648

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
			page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
			if (PageHighMem(page)) {
				/* Highmem pages are copied to the buffer,
				 * because we can't return with a kmapped
				 * highmem page (we may not be called again).
				 */
				void *kaddr;

				kaddr = kmap_atomic(page, KM_USER0);
				memcpy(buffer, kaddr, PAGE_SIZE);
				kunmap_atomic(kaddr, KM_USER0);
				handle->buffer = buffer;
			} else {
				handle->buffer = page_address(page);
			}
1664
		}
1665
		handle->prev = handle->cur;
1666
	}
1667 1668 1669 1670 1671
	handle->buf_offset = handle->cur_offset;
	if (handle->cur_offset + count >= PAGE_SIZE) {
		count = PAGE_SIZE - handle->cur_offset;
		handle->cur_offset = 0;
		handle->cur++;
1672
	} else {
1673
		handle->cur_offset += count;
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
	}
	handle->offset += count;
	return count;
}

/**
 *	mark_unsafe_pages - mark the pages that cannot be used for storing
 *	the image during resume, because they conflict with the pages that
 *	had been used before suspend
 */

1685
static int mark_unsafe_pages(struct memory_bitmap *bm)
1686 1687
{
	struct zone *zone;
1688
	unsigned long pfn, max_zone_pfn;
1689 1690

	/* Clear page flags */
1691
	for_each_populated_zone(zone) {
1692 1693 1694
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn))
1695
				swsusp_unset_page_free(pfn_to_page(pfn));
1696 1697
	}

1698 1699 1700 1701 1702 1703
	/* Mark pages that correspond to the "original" pfns as "unsafe" */
	memory_bm_position_reset(bm);
	do {
		pfn = memory_bm_next_pfn(bm);
		if (likely(pfn != BM_END_OF_MAP)) {
			if (likely(pfn_valid(pfn)))
1704
				swsusp_set_page_free(pfn_to_page(pfn));
1705 1706 1707 1708
			else
				return -EFAULT;
		}
	} while (pfn != BM_END_OF_MAP);
1709

1710
	allocated_unsafe_pages = 0;
1711

1712 1713 1714
	return 0;
}

1715 1716
static void
duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1717
{
1718 1719 1720 1721 1722 1723 1724
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
1725 1726 1727
	}
}

1728
static int check_header(struct swsusp_info *info)
1729
{
1730
	char *reason;
1731

1732 1733
	reason = check_image_kernel(info);
	if (!reason && info->num_physpages != num_physpages)
1734 1735
		reason = "memory size";
	if (reason) {
R
Rafael J. Wysocki 已提交
1736
		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1737 1738 1739 1740 1741 1742 1743 1744 1745
		return -EPERM;
	}
	return 0;
}

/**
 *	load header - check the image header and copy data from it
 */

1746 1747
static int
load_header(struct swsusp_info *info)
1748 1749 1750
{
	int error;

1751
	restore_pblist = NULL;
1752 1753 1754 1755 1756 1757 1758 1759 1760
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
1761 1762
 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
 *	the corresponding bit in the memory bitmap @bm
1763
 */
1764
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1765 1766 1767
{
	int j;

1768 1769 1770 1771
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

1772 1773 1774 1775
		if (memory_bm_pfn_present(bm, buf[j]))
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
1776
	}
1777 1778

	return 0;
1779 1780
}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
/* List of "safe" pages that may be used to store data loaded from the suspend
 * image
 */
static struct linked_page *safe_pages_list;

#ifdef CONFIG_HIGHMEM
/* struct highmem_pbe is used for creating the list of highmem pages that
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

/* List of highmem PBEs needed for restoring the highmem pages that were
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
 *	count_highmem_image_pages - compute the number of highmem pages in the
 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
 *	image pages are assumed to be set.
 */

static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

/**
 *	prepare_highmem_image - try to allocate as many highmem pages as
 *	there are highmem image pages (@nr_highmem_p points to the variable
 *	containing the number of highmem image pages).  The pages that are
 *	"safe" (ie. will not be overwritten when the suspend image is
 *	restored) have the corresponding bits set in @bm (it must be
 *	unitialized).
 *
 *	NOTE: This function should not be called if there are no highmem
 *	image pages.
 */

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

static int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
1864
		if (!swsusp_page_is_free(page)) {
1865 1866 1867 1868 1869
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
1870 1871
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

/**
 *	get_highmem_page_buffer - for given highmem image page find the buffer
 *	that suspend_write_next() should set for its caller to write to.
 *
 *	If the page is to be saved to its "original" page frame or a copy of
 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
 *	the copy of the page is to be made in normal memory, so the address of
 *	the copy is returned.
 *
 *	If @buffer is returned, the caller of suspend_write_next() will write
 *	the page's contents to @buffer, so they will have to be copied to the
 *	right location on the next call to suspend_write_next() and it is done
 *	with the help of copy_last_highmem_page().  For this purpose, if
 *	@buffer is returned, @last_highmem page is set to the page to which
 *	the data will have to be copied from @buffer.
 */

static struct page *last_highmem_page;

static void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
	struct highmem_pbe *pbe;
	void *kaddr;

1903
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
1916
		return ERR_PTR(-ENOMEM);
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
 *	copy_last_highmem_page - copy the contents of a highmem image from
 *	@buffer, where the caller of snapshot_write_next() has place them,
 *	to the right location represented by @last_highmem_page .
 */

static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

		dst = kmap_atomic(last_highmem_page, KM_USER0);
		memcpy(dst, buffer, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
static inline int get_safe_write_buffer(void) { return 0; }

static unsigned int
count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }

static inline int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	return 0;
}

static inline void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
1985
	return ERR_PTR(-EINVAL);
1986 1987 1988 1989 1990 1991 1992
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

1993
/**
1994 1995 1996 1997
 *	prepare_image - use the memory bitmap @bm to mark the pages that will
 *	be overwritten in the process of restoring the system memory state
 *	from the suspend image ("unsafe" pages) and allocate memory for the
 *	image.
1998
 *
1999 2000 2001
 *	The idea is to allocate a new memory bitmap first and then allocate
 *	as many pages as needed for the image data, but not to assign these
 *	pages to specific tasks initially.  Instead, we just mark them as
2002 2003 2004
 *	allocated and create a lists of "safe" pages that will be used
 *	later.  On systems with high memory a list of "safe" highmem pages is
 *	also created.
2005 2006
 */

2007 2008 2009 2010
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

static int
prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2011
{
2012
	unsigned int nr_pages, nr_highmem;
2013 2014
	struct linked_page *sp_list, *lp;
	int error;
2015

2016 2017 2018 2019 2020
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	error = mark_unsafe_pages(bm);
	if (error)
		goto Free;

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2031 2032 2033 2034 2035
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2036 2037 2038 2039 2040 2041 2042 2043
	/* Reserve some safe pages for potential later use.
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
	 */
	sp_list = NULL;
	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2044
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2045 2046
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2047
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2048
		if (!lp) {
2049
			error = -ENOMEM;
2050 2051 2052 2053 2054
			goto Free;
		}
		lp->next = sp_list;
		sp_list = lp;
		nr_pages--;
2055
	}
2056 2057
	/* Preallocate memory for the image */
	safe_pages_list = NULL;
2058
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2059 2060 2061 2062 2063 2064
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2065
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2066 2067 2068
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2069
		}
2070
		/* Mark the page as allocated */
2071 2072
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2073
		nr_pages--;
2074
	}
2075 2076 2077 2078 2079
	/* Free the reserved safe pages so that chain_alloc() can use them */
	while (sp_list) {
		lp = sp_list->next;
		free_image_page(sp_list, PG_UNSAFE_CLEAR);
		sp_list = lp;
2080
	}
2081 2082
	return 0;

R
Rafael J. Wysocki 已提交
2083
 Free:
2084
	swsusp_free();
2085 2086 2087
	return error;
}

2088 2089 2090 2091 2092 2093
/**
 *	get_buffer - compute the address that snapshot_write_next() should
 *	set for its caller to write to.
 */

static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2094
{
2095
	struct pbe *pbe;
2096 2097
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2098

2099 2100 2101 2102
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2103 2104 2105
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2106
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2107 2108
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
2109
		 */
2110 2111 2112 2113
		return page_address(page);

	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
2114
	 */
2115 2116 2117
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2118
		return ERR_PTR(-ENOMEM);
2119
	}
2120 2121
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2122 2123 2124
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2125
	return pbe->address;
2126 2127
}

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
/**
 *	snapshot_write_next - used for writing the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	The @count parameter should contain the number of bytes the caller
 *	wants to write to the image.  It must not be zero.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to write up to the returned number of bytes to the memory
 *	location computed by the data_of() macro.  The number returned
 *	may be smaller than @count, but this only happens if the write would
 *	cross a page boundary otherwise.
 *
 *	The function returns 0 to indicate the "end of file" condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

int snapshot_write_next(struct snapshot_handle *handle, size_t count)
{
2152
	static struct chain_allocator ca;
2153 2154
	int error = 0;

2155
	/* Check if we have already loaded the entire image */
2156
	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
2157
		return 0;
2158

2159 2160 2161 2162 2163
	if (handle->offset == 0) {
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2164 2165
		if (!buffer)
			return -ENOMEM;
2166

2167
		handle->buffer = buffer;
2168
	}
A
Andrew Morton 已提交
2169
	handle->sync_read = 1;
2170
	if (handle->prev < handle->cur) {
2171 2172 2173 2174 2175 2176
		if (handle->prev == 0) {
			error = load_header(buffer);
			if (error)
				return error;

			error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2177 2178
			if (error)
				return error;
2179

2180
		} else if (handle->prev <= nr_meta_pages) {
2181 2182 2183 2184
			error = unpack_orig_pfns(buffer, &copy_bm);
			if (error)
				return error;

2185 2186
			if (handle->prev == nr_meta_pages) {
				error = prepare_image(&orig_bm, &copy_bm);
2187 2188
				if (error)
					return error;
2189 2190 2191 2192 2193

				chain_init(&ca, GFP_ATOMIC, PG_SAFE);
				memory_bm_position_reset(&orig_bm);
				restore_pblist = NULL;
				handle->buffer = get_buffer(&orig_bm, &ca);
A
Andrew Morton 已提交
2194
				handle->sync_read = 0;
2195 2196
				if (IS_ERR(handle->buffer))
					return PTR_ERR(handle->buffer);
2197 2198
			}
		} else {
2199
			copy_last_highmem_page();
2200
			handle->buffer = get_buffer(&orig_bm, &ca);
2201 2202
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2203 2204
			if (handle->buffer != buffer)
				handle->sync_read = 0;
2205
		}
2206
		handle->prev = handle->cur;
2207
	}
2208 2209 2210 2211 2212
	handle->buf_offset = handle->cur_offset;
	if (handle->cur_offset + count >= PAGE_SIZE) {
		count = PAGE_SIZE - handle->cur_offset;
		handle->cur_offset = 0;
		handle->cur++;
2213
	} else {
2214
		handle->cur_offset += count;
2215 2216 2217 2218 2219
	}
	handle->offset += count;
	return count;
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
/**
 *	snapshot_write_finalize - must be called after the last call to
 *	snapshot_write_next() in case the last page in the image happens
 *	to be a highmem page and its contents should be stored in the
 *	highmem.  Additionally, it releases the memory that will not be
 *	used any more.
 */

void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
	/* Free only if we have loaded the image entirely */
	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
		free_highmem_data();
	}
}

2238 2239
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2240
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2241 2242 2243
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2244 2245 2246 2247
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
static inline void
swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2248
{
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	void *kaddr1, *kaddr2;

	kaddr1 = kmap_atomic(p1, KM_USER0);
	kaddr2 = kmap_atomic(p2, KM_USER1);
	memcpy(buf, kaddr1, PAGE_SIZE);
	memcpy(kaddr1, kaddr2, PAGE_SIZE);
	memcpy(kaddr2, buf, PAGE_SIZE);
	kunmap_atomic(kaddr1, KM_USER0);
	kunmap_atomic(kaddr2, KM_USER1);
}

/**
 *	restore_highmem - for each highmem page that was allocated before
 *	the suspend and included in the suspend image, and also has been
 *	allocated by the "resume" kernel swap its current (ie. "before
 *	resume") contents with the previous (ie. "before suspend") one.
 *
 *	If the resume eventually fails, we can call this function once
 *	again and restore the "before resume" highmem state.
 */

int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2288
}
2289
#endif /* CONFIG_HIGHMEM */