snapshot.c 71.3 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5
 *
P
Pavel Machek 已提交
6
 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
24 25 26 27
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
28
#include <linux/list.h>
29
#include <linux/slab.h>
30
#include <linux/compiler.h>
31 32 33 34 35 36 37 38 39

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

40 41 42 43
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

44 45 46 47 48 49 50 51 52 53 54 55
/*
 * Number of bytes to reserve for memory allocations made by device drivers
 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 * cause image creation to fail (tunable via /sys/power/reserved_size).
 */
unsigned long reserved_size;

void __init hibernate_reserved_size_init(void)
{
	reserved_size = SPARE_PAGES * PAGE_SIZE;
}

56 57
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
58 59 60
 * When it is set to N, swsusp will do its best to ensure the image
 * size will not exceed N bytes, but if that is impossible, it will
 * try to create the smallest image possible.
61
 */
62 63 64 65
unsigned long image_size;

void __init hibernate_image_size_init(void)
{
66
	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
67
}
68

69 70 71 72 73
/* List of PBEs needed for restoring the pages that were allocated before
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
74 75
struct pbe *restore_pblist;

76
/* Pointer to an auxiliary buffer (1 page) */
77
static void *buffer;
78

79 80 81
/**
 *	@safe_needed - on resume, for storing the PBE list and the image,
 *	we can only use memory pages that do not conflict with the pages
82 83
 *	used before suspend.  The unsafe pages have PageNosaveFree set
 *	and we count them using unsafe_pages.
84
 *
85 86
 *	Each allocated image page is marked as PageNosave and PageNosaveFree
 *	so that swsusp_free() can release it.
87 88
 */

89 90 91 92 93
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

94
static unsigned int allocated_unsafe_pages;
95

96
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
97 98 99 100 101
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
102
		while (res && swsusp_page_is_free(virt_to_page(res))) {
103
			/* The page is unsafe, mark it for swsusp_free() */
104
			swsusp_set_page_forbidden(virt_to_page(res));
105
			allocated_unsafe_pages++;
106 107 108
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
109 110
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
111 112 113 114 115 116
	}
	return res;
}

unsigned long get_safe_page(gfp_t gfp_mask)
{
117 118 119
	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
}

120 121
static struct page *alloc_image_page(gfp_t gfp_mask)
{
122 123 124 125
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
126 127
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
128 129
	}
	return page;
130 131 132 133
}

/**
 *	free_image_page - free page represented by @addr, allocated with
134
 *	get_image_page (page flags set by it must be cleared)
135 136 137 138
 */

static inline void free_image_page(void *addr, int clear_nosave_free)
{
139 140 141 142 143 144
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

145
	swsusp_unset_page_forbidden(page);
146
	if (clear_nosave_free)
147
		swsusp_unset_page_free(page);
148 149

	__free_page(page);
150 151
}

152 153 154 155 156 157 158
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
159
} __packed;
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

static inline void
free_list_of_pages(struct linked_page *list, int clear_page_nosave)
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

/**
  *	struct chain_allocator is used for allocating small objects out of
  *	a linked list of pages called 'the chain'.
  *
  *	The chain grows each time when there is no room for a new object in
  *	the current page.  The allocated objects cannot be freed individually.
  *	It is only possible to free them all at once, by freeing the entire
  *	chain.
  *
  *	NOTE: The chain allocator may be inefficient if the allocated objects
  *	are not much smaller than PAGE_SIZE.
  */

struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
					 * of the current page
					 */
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

static void
chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

210
		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
 *	Data types related to memory bitmaps.
 *
 *	Memory bitmap is a structure consiting of many linked lists of
 *	objects.  The main list's elements are of type struct zone_bitmap
 *	and each of them corresonds to one zone.  For each zone bitmap
 *	object there is a list of objects of type struct bm_block that
230
 *	represent each blocks of bitmap in which information is stored.
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
 *
 *	struct memory_bitmap contains a pointer to the main list of zone
 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 *	and a pointer to the list of pages used for allocating all of the
 *	zone bitmap objects and bitmap block objects.
 *
 *	NOTE: It has to be possible to lay out the bitmap in memory
 *	using only allocations of order 0.  Additionally, the bitmap is
 *	designed to work with arbitrary number of zones (this is over the
 *	top for now, but let's avoid making unnecessary assumptions ;-).
 *
 *	struct zone_bitmap contains a pointer to a list of bitmap block
 *	objects and a pointer to the bitmap block object that has been
 *	most recently used for setting bits.  Additionally, it contains the
 *	pfns that correspond to the start and end of the represented zone.
 *
 *	struct bm_block contains a pointer to the memory page in which
248 249 250
 *	information is stored (in the form of a block of bitmap)
 *	It also contains the pfns that correspond to the start and end of
 *	the represented memory area.
251 252 253 254 255 256 257 258 259 260 261
 *
 *	The memory bitmap is organized as a radix tree to guarantee fast random
 *	access to the bits. There is one radix tree for each zone (as returned
 *	from create_mem_extents).
 *
 *	One radix tree is represented by one struct mem_zone_bm_rtree. There are
 *	two linked lists for the nodes of the tree, one for the inner nodes and
 *	one for the leave nodes. The linked leave nodes are used for fast linear
 *	access of the memory bitmap.
 *
 *	The struct rtree_node represents one node of the radix tree.
262 263 264 265
 */

#define BM_END_OF_MAP	(~0UL)

W
Wu Fengguang 已提交
266
#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
267 268
#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
269 270

struct bm_block {
271
	struct list_head hook;	/* hook into a list of bitmap blocks */
272 273
	unsigned long start_pfn;	/* pfn represented by the first bit */
	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
274
	unsigned long *data;	/* bitmap representing pages */
275 276
};

277 278 279 280 281
static inline unsigned long bm_block_bits(struct bm_block *bb)
{
	return bb->end_pfn - bb->start_pfn;
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/*
 * struct rtree_node is a wrapper struct to link the nodes
 * of the rtree together for easy linear iteration over
 * bits and easy freeing
 */
struct rtree_node {
	struct list_head list;
	unsigned long *data;
};

/*
 * struct mem_zone_bm_rtree represents a bitmap used for one
 * populated memory zone.
 */
struct mem_zone_bm_rtree {
	struct list_head list;		/* Link Zones together         */
	struct list_head nodes;		/* Radix Tree inner nodes      */
	struct list_head leaves;	/* Radix Tree leaves           */
	unsigned long start_pfn;	/* Zone start page frame       */
	unsigned long end_pfn;		/* Zone end page frame + 1     */
	struct rtree_node *rtree;	/* Radix Tree Root             */
	int levels;			/* Number of Radix Tree Levels */
	unsigned int blocks;		/* Number of Bitmap Blocks     */
};

307 308 309 310 311
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
	struct bm_block *block;
	int bit;
312 313 314 315 316

	struct mem_zone_bm_rtree *zone;
	struct rtree_node *node;
	unsigned long node_pfn;
	int node_bit;
317 318 319
};

struct memory_bitmap {
320
	struct list_head zones;
321
	struct list_head blocks;	/* list of bitmap blocks */
322 323 324 325 326 327 328 329 330
	struct linked_page *p_list;	/* list of pages used to store zone
					 * bitmap objects and bitmap block
					 * objects
					 */
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
#if BITS_PER_LONG == 32
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
#else
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
#endif
#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)

/*
 *	alloc_rtree_node - Allocate a new node and add it to the radix tree.
 *
 *	This function is used to allocate inner nodes as well as the
 *	leave nodes of the radix tree. It also adds the node to the
 *	corresponding linked list passed in by the *list parameter.
 */
static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
					   struct chain_allocator *ca,
					   struct list_head *list)
{
	struct rtree_node *node;

	node = chain_alloc(ca, sizeof(struct rtree_node));
	if (!node)
		return NULL;

	node->data = get_image_page(gfp_mask, safe_needed);
	if (!node->data)
		return NULL;

	list_add_tail(&node->list, list);

	return node;
}

/*
 *	add_rtree_block - Add a new leave node to the radix tree
 *
 *	The leave nodes need to be allocated in order to keep the leaves
 *	linked list in order. This is guaranteed by the zone->blocks
 *	counter.
 */
static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
			   int safe_needed, struct chain_allocator *ca)
{
	struct rtree_node *node, *block, **dst;
	unsigned int levels_needed, block_nr;
	int i;

	block_nr = zone->blocks;
	levels_needed = 0;

	/* How many levels do we need for this block nr? */
	while (block_nr) {
		levels_needed += 1;
		block_nr >>= BM_RTREE_LEVEL_SHIFT;
	}

	/* Make sure the rtree has enough levels */
	for (i = zone->levels; i < levels_needed; i++) {
		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
					&zone->nodes);
		if (!node)
			return -ENOMEM;

		node->data[0] = (unsigned long)zone->rtree;
		zone->rtree = node;
		zone->levels += 1;
	}

	/* Allocate new block */
	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
	if (!block)
		return -ENOMEM;

	/* Now walk the rtree to insert the block */
	node = zone->rtree;
	dst = &zone->rtree;
	block_nr = zone->blocks;
	for (i = zone->levels; i > 0; i--) {
		int index;

		if (!node) {
			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
						&zone->nodes);
			if (!node)
				return -ENOMEM;
			*dst = node;
		}

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		dst = (struct rtree_node **)&((*dst)->data[index]);
		node = *dst;
	}

	zone->blocks += 1;
	*dst = block;

	return 0;
}

static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free);

/*
 *	create_zone_bm_rtree - create a radix tree for one zone
 *
 *	Allocated the mem_zone_bm_rtree structure and initializes it.
 *	This function also allocated and builds the radix tree for the
 *	zone.
 */
static struct mem_zone_bm_rtree *
create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
		     struct chain_allocator *ca,
		     unsigned long start, unsigned long end)
{
	struct mem_zone_bm_rtree *zone;
	unsigned int i, nr_blocks;
	unsigned long pages;

	pages = end - start;
	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
	if (!zone)
		return NULL;

	INIT_LIST_HEAD(&zone->nodes);
	INIT_LIST_HEAD(&zone->leaves);
	zone->start_pfn = start;
	zone->end_pfn = end;
	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);

	for (i = 0; i < nr_blocks; i++) {
		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
			return NULL;
		}
	}

	return zone;
}

/*
 *	free_zone_bm_rtree - Free the memory of the radix tree
 *
 *	Free all node pages of the radix tree. The mem_zone_bm_rtree
 *	structure itself is not freed here nor are the rtree_node
 *	structs.
 */
static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		free_image_page(node->data, clear_nosave_free);

	list_for_each_entry(node, &zone->leaves, list)
		free_image_page(node->data, clear_nosave_free);
}

491 492
static void memory_bm_position_reset(struct memory_bitmap *bm)
{
493
	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
494
	bm->cur.bit = 0;
495 496 497 498 499 500 501

	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
				  list);
	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
				  struct rtree_node, list);
	bm->cur.node_pfn = 0;
	bm->cur.node_bit = 0;
502 503 504 505 506 507
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

/**
 *	create_bm_block_list - create a list of block bitmap objects
W
Wu Fengguang 已提交
508
 *	@pages - number of pages to track
509 510
 *	@list - list to put the allocated blocks into
 *	@ca - chain allocator to be used for allocating memory
511
 */
512 513 514
static int create_bm_block_list(unsigned long pages,
				struct list_head *list,
				struct chain_allocator *ca)
515
{
516
	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
517 518 519 520 521 522

	while (nr_blocks-- > 0) {
		struct bm_block *bb;

		bb = chain_alloc(ca, sizeof(struct bm_block));
		if (!bb)
523 524
			return -ENOMEM;
		list_add(&bb->hook, list);
525
	}
526 527

	return 0;
528 529
}

530 531 532 533 534 535
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

536
/**
537 538
 *	free_mem_extents - free a list of memory extents
 *	@list - list of extents to empty
539
 */
540 541 542
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
543

544 545 546 547 548 549 550 551 552 553 554 555 556
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
 *	create_mem_extents - create a list of memory extents representing
 *	                     contiguous ranges of PFNs
 *	@list - list to put the extents into
 *	@gfp_mask - mask to use for memory allocations
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
557
{
558
	struct zone *zone;
559

560
	INIT_LIST_HEAD(list);
561

562
	for_each_populated_zone(zone) {
563 564 565 566
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
567
		zone_end = zone_end_pfn(zone);
568 569 570 571

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
572

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
604
	}
605 606

	return 0;
607 608 609 610 611 612 613 614 615
}

/**
  *	memory_bm_create - allocate memory for a memory bitmap
  */
static int
memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
{
	struct chain_allocator ca;
616 617 618
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
619 620

	chain_init(&ca, gfp_mask, safe_needed);
621
	INIT_LIST_HEAD(&bm->blocks);
622
	INIT_LIST_HEAD(&bm->zones);
623

624 625 626
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
627

628
	list_for_each_entry(ext, &mem_extents, hook) {
629
		struct mem_zone_bm_rtree *zone;
630 631 632
		struct bm_block *bb;
		unsigned long pfn = ext->start;
		unsigned long pages = ext->end - ext->start;
633

634
		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
635

636 637 638
		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
		if (error)
			goto Error;
639

640 641 642 643 644 645
		list_for_each_entry_continue(bb, &bm->blocks, hook) {
			bb->data = get_image_page(gfp_mask, safe_needed);
			if (!bb->data) {
				error = -ENOMEM;
				goto Error;
			}
646 647

			bb->start_pfn = pfn;
648
			if (pages >= BM_BITS_PER_BLOCK) {
649
				pfn += BM_BITS_PER_BLOCK;
650
				pages -= BM_BITS_PER_BLOCK;
651 652
			} else {
				/* This is executed only once in the loop */
653
				pfn += pages;
654 655 656
			}
			bb->end_pfn = pfn;
		}
657 658 659 660 661 662

		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
					    ext->start, ext->end);
		if (!zone)
			goto Error;
		list_add_tail(&zone->list, &bm->zones);
663
	}
664

665 666
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
667 668 669
 Exit:
	free_mem_extents(&mem_extents);
	return error;
670

671
 Error:
672 673
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
674
	goto Exit;
675 676 677 678 679 680 681
}

/**
  *	memory_bm_free - free memory occupied by the memory bitmap @bm
  */
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
682
	struct mem_zone_bm_rtree *zone;
683
	struct bm_block *bb;
684

685 686 687
	list_for_each_entry(bb, &bm->blocks, hook)
		if (bb->data)
			free_image_page(bb->data, clear_nosave_free);
688

689 690 691
	list_for_each_entry(zone, &bm->zones, list)
		free_zone_bm_rtree(zone, clear_nosave_free);

692
	free_list_of_pages(bm->p_list, clear_nosave_free);
693

694
	INIT_LIST_HEAD(&bm->zones);
695
	INIT_LIST_HEAD(&bm->blocks);
696 697 698
}

/**
699
 *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
700 701 702
 *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
 *	of @bm->cur_zone_bm are updated.
 */
703
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
704
				void **addr, unsigned int *bit_nr)
705 706 707
{
	struct bm_block *bb;

708 709 710 711 712
	/*
	 * Check if the pfn corresponds to the current bitmap block and find
	 * the block where it fits if this is not the case.
	 */
	bb = bm->cur.block;
713
	if (pfn < bb->start_pfn)
714 715 716
		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
			if (pfn >= bb->start_pfn)
				break;
717

718 719 720 721
	if (pfn >= bb->end_pfn)
		list_for_each_entry_continue(bb, &bm->blocks, hook)
			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
				break;
722

723 724 725 726 727
	if (&bb->hook == &bm->blocks)
		return -EFAULT;

	/* The block has been found */
	bm->cur.block = bb;
728
	pfn -= bb->start_pfn;
729
	bm->cur.bit = pfn + 1;
730 731
	*bit_nr = pfn;
	*addr = bb->data;
732
	return 0;
733 734
}

735 736 737 738 739 740 741 742 743 744 745 746 747 748
/*
 *	memory_rtree_find_bit - Find the bit for pfn in the memory
 *				bitmap
 *
 *	Walks the radix tree to find the page which contains the bit for
 *	pfn and returns the bit position in **addr and *bit_nr.
 */
static int memory_rtree_find_bit(struct memory_bitmap *bm, unsigned long pfn,
				 void **addr, unsigned int *bit_nr)
{
	struct mem_zone_bm_rtree *curr, *zone;
	struct rtree_node *node;
	int i, block_nr;

749 750 751 752 753
	zone = bm->cur.zone;

	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
		goto zone_found;

754 755 756 757 758 759 760 761 762 763 764 765 766
	zone = NULL;

	/* Find the right zone */
	list_for_each_entry(curr, &bm->zones, list) {
		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
			zone = curr;
			break;
		}
	}

	if (!zone)
		return -EFAULT;

767
zone_found:
768 769 770 771
	/*
	 * We have a zone. Now walk the radix tree to find the leave
	 * node for our pfn.
	 */
772 773 774 775 776

	node = bm->cur.node;
	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
		goto node_found;

777 778 779 780 781 782 783 784 785 786 787 788
	node      = zone->rtree;
	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;

	for (i = zone->levels; i > 0; i--) {
		int index;

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		BUG_ON(node->data[index] == 0);
		node = (struct rtree_node *)node->data[index];
	}

789 790 791 792 793 794
node_found:
	/* Update last position */
	bm->cur.zone = zone;
	bm->cur.node = node;
	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;

795 796 797 798 799 800 801
	/* Set return values */
	*addr = node->data;
	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;

	return 0;
}

802 803 804 805
static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
806
	int error;
807

808 809
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
810
	set_bit(bit, addr);
811 812 813 814

	error = memory_rtree_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
	set_bit(bit, addr);
815 816
}

817 818 819 820 821 822 823 824 825
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	if (!error)
		set_bit(bit, addr);
826 827 828 829 830 831 832
	else
		return error;

	error = memory_rtree_find_bit(bm, pfn, &addr, &bit);
	if (!error)
		set_bit(bit, addr);

833 834 835
	return error;
}

836 837 838 839
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
840
	int error;
841

842 843
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
844
	clear_bit(bit, addr);
845 846 847 848

	error = memory_rtree_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
	clear_bit(bit, addr);
849 850
}

851 852 853 854 855 856 857 858 859 860 861
static void memory_bm_clear_current(struct memory_bitmap *bm)
{
	int bit;

	bit = max(bm->cur.node_bit - 1, 0);
	clear_bit(bit, bm->cur.node->data);

	bit = max(bm->cur.bit - 1, 0);
	clear_bit(bit, bm->cur.block->data);
}

862 863 864 865
static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
866 867
	int error, error2;
	int v;
868

869 870
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
871 872 873 874 875 876 877 878
	v = test_bit(bit, addr);

	error2 = memory_rtree_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error2);

	WARN_ON_ONCE(v != test_bit(bit, addr));

	return v;
879 880
}

881 882 883 884
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
885 886 887 888 889
	int present;

	present = !memory_bm_find_bit(bm, pfn, &addr, &bit);

	WARN_ON_ONCE(present != !memory_rtree_find_bit(bm, pfn, &addr, &bit));
890

891
	return present;
892 893
}

894 895 896 897 898 899 900 901 902
/**
 *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
 *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
 *	returned.
 *
 *	It is required to run memory_bm_position_reset() before the first call to
 *	this function.
 */

903 904
static unsigned long memory_bm_rtree_next_pfn(struct memory_bitmap *bm);

905 906
static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
{
907
	unsigned long rtree_pfn;
908 909 910
	struct bm_block *bb;
	int bit;

911 912
	rtree_pfn = memory_bm_rtree_next_pfn(bm);

913
	bb = bm->cur.block;
914
	do {
915 916 917 918 919 920 921 922 923 924
		bit = bm->cur.bit;
		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
		if (bit < bm_block_bits(bb))
			goto Return_pfn;

		bb = list_entry(bb->hook.next, struct bm_block, hook);
		bm->cur.block = bb;
		bm->cur.bit = 0;
	} while (&bb->hook != &bm->blocks);

925
	memory_bm_position_reset(bm);
926
	WARN_ON_ONCE(rtree_pfn != BM_END_OF_MAP);
927 928
	return BM_END_OF_MAP;

R
Rafael J. Wysocki 已提交
929
 Return_pfn:
930
	WARN_ON_ONCE(bb->start_pfn + bit != rtree_pfn);
931 932
	bm->cur.bit = bit + 1;
	return bb->start_pfn + bit;
933 934
}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
/*
 *	rtree_next_node - Jumps to the next leave node
 *
 *	Sets the position to the beginning of the next node in the
 *	memory bitmap. This is either the next node in the current
 *	zone's radix tree or the first node in the radix tree of the
 *	next zone.
 *
 *	Returns true if there is a next node, false otherwise.
 */
static bool rtree_next_node(struct memory_bitmap *bm)
{
	bm->cur.node = list_entry(bm->cur.node->list.next,
				  struct rtree_node, list);
	if (&bm->cur.node->list != &bm->cur.zone->leaves) {
		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
		bm->cur.node_bit  = 0;
		return true;
	}

	/* No more nodes, goto next zone */
	bm->cur.zone = list_entry(bm->cur.zone->list.next,
				  struct mem_zone_bm_rtree, list);
	if (&bm->cur.zone->list != &bm->zones) {
		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
					  struct rtree_node, list);
		bm->cur.node_pfn = 0;
		bm->cur.node_bit = 0;
		return true;
	}

	/* No more zones */
	return false;
}

/*
 *	memory_bm_rtree_next_pfn - Find the next set bit
 *
 *	Starting from the last returned position this function searches
 *	for the next set bit in the memory bitmap and returns its
 *	number. If no more bit is set BM_END_OF_MAP is returned.
 */
static unsigned long memory_bm_rtree_next_pfn(struct memory_bitmap *bm)
{
	unsigned long bits, pfn, pages;
	int bit;

	do {
		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
		bit	  = find_next_bit(bm->cur.node->data, bits,
					  bm->cur.node_bit);
		if (bit < bits) {
			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
			bm->cur.node_bit = bit + 1;
			return pfn;
		}
	} while (rtree_next_node(bm));

	return BM_END_OF_MAP;
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
/**
 *	This structure represents a range of page frames the contents of which
 *	should not be saved during the suspend.
 */

struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

/**
 *	register_nosave_region - register a range of page frames the contents
 *	of which should not be saved during the suspend (to be used in the early
 *	initialization code)
 */

void __init
1017 1018
__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
			 int use_kmalloc)
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
1034 1035 1036 1037 1038 1039
	if (use_kmalloc) {
		/* during init, this shouldn't fail */
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
	} else
		/* This allocation cannot fail */
1040
		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
1041 1042 1043 1044
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
1045 1046 1047
	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
		(unsigned long long) start_pfn << PAGE_SHIFT,
		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
 *	mark_nosave_pages - set bits corresponding to the page frames the
 *	contents of which should not be saved in a given bitmap.
 */

static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

1115 1116 1117 1118
		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
				- 1);
1119 1120

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1121 1122 1123 1124 1125 1126 1127 1128 1129
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	}
}

/**
 *	create_basic_memory_bitmaps - create bitmaps needed for marking page
 *	frames that should not be saved and free page frames.  The pointers
 *	forbidden_pages_map and free_pages_map are only modified if everything
 *	goes well, because we don't want the bits to be used before both bitmaps
 *	are set up.
 */

int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

1146 1147 1148 1149
	if (forbidden_pages_map && free_pages_map)
		return 0;
	else
		BUG_ON(forbidden_pages_map || free_pages_map);
1150

1151
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1152 1153 1154
	if (!bm1)
		return -ENOMEM;

1155
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1156 1157 1158
	if (error)
		goto Free_first_object;

1159
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1160 1161 1162
	if (!bm2)
		goto Free_first_bitmap;

1163
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1164 1165 1166 1167 1168 1169 1170
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

R
Rafael J. Wysocki 已提交
1171
	pr_debug("PM: Basic memory bitmaps created\n");
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
 *	free_basic_memory_bitmaps - free memory bitmaps allocated by
 *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
 *	so that the bitmaps themselves are not referred to while they are being
 *	freed.
 */

void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

1195 1196
	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
		return;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

R
Rafael J. Wysocki 已提交
1207
	pr_debug("PM: Basic memory bitmaps freed\n");
1208 1209
}

1210 1211 1212 1213 1214 1215 1216 1217
/**
 *	snapshot_additional_pages - estimate the number of additional pages
 *	be needed for setting up the suspend image data structures for given
 *	zone (usually the returned value is greater than the exact number)
 */

unsigned int snapshot_additional_pages(struct zone *zone)
{
1218
	unsigned int rtree, nodes;
1219 1220 1221
	unsigned int res;

	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1222 1223
	res += DIV_ROUND_UP(res * sizeof(struct bm_block),
			    LINKED_PAGE_DATA_SIZE);
1224 1225 1226 1227 1228 1229 1230 1231 1232
	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
			      LINKED_PAGE_DATA_SIZE);
	while (nodes > 1) {
		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
		rtree += nodes;
	}

	return 2 * (res + rtree);
1233 1234
}

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
#ifdef CONFIG_HIGHMEM
/**
 *	count_free_highmem_pages - compute the total number of free highmem
 *	pages, system-wide.
 */

static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

1246 1247
	for_each_populated_zone(zone)
		if (is_highmem(zone))
1248
			cnt += zone_page_state(zone, NR_FREE_PAGES);
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

	return cnt;
}

/**
 *	saveable_highmem_page - Determine whether a highmem page should be
 *	included in the suspend image.
 *
 *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 *	and it isn't a part of a free chunk of pages.
 */
1260
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1261 1262 1263 1264 1265 1266 1267
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
1268 1269
	if (page_zone(page) != zone)
		return NULL;
1270 1271 1272

	BUG_ON(!PageHighMem(page));

1273 1274
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
1275 1276
		return NULL;

1277 1278 1279
	if (page_is_guard(page))
		return NULL;

1280 1281 1282 1283 1284 1285 1286 1287
	return page;
}

/**
 *	count_highmem_pages - compute the total number of saveable highmem
 *	pages.
 */

1288
static unsigned int count_highmem_pages(void)
1289 1290 1291 1292
{
	struct zone *zone;
	unsigned int n = 0;

1293
	for_each_populated_zone(zone) {
1294 1295 1296 1297 1298 1299
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
1300
		max_zone_pfn = zone_end_pfn(zone);
1301
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1302
			if (saveable_highmem_page(zone, pfn))
1303 1304 1305 1306 1307
				n++;
	}
	return n;
}
#else
1308 1309 1310 1311
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
1312 1313
#endif /* CONFIG_HIGHMEM */

1314
/**
1315 1316
 *	saveable_page - Determine whether a non-highmem page should be included
 *	in the suspend image.
1317
 *
1318 1319 1320
 *	We should save the page if it isn't Nosave, and is not in the range
 *	of pages statically defined as 'unsaveable', and it isn't a part of
 *	a free chunk of pages.
1321
 */
1322
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1323
{
P
Pavel Machek 已提交
1324
	struct page *page;
1325 1326

	if (!pfn_valid(pfn))
1327
		return NULL;
1328 1329

	page = pfn_to_page(pfn);
1330 1331
	if (page_zone(page) != zone)
		return NULL;
1332

1333 1334
	BUG_ON(PageHighMem(page));

1335
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1336
		return NULL;
1337

1338 1339
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1340
		return NULL;
1341

1342 1343 1344
	if (page_is_guard(page))
		return NULL;

1345
	return page;
1346 1347
}

1348 1349 1350 1351 1352
/**
 *	count_data_pages - compute the total number of saveable non-highmem
 *	pages.
 */

1353
static unsigned int count_data_pages(void)
1354 1355
{
	struct zone *zone;
1356
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
1357
	unsigned int n = 0;
1358

1359
	for_each_populated_zone(zone) {
1360 1361
		if (is_highmem(zone))
			continue;
1362

1363
		mark_free_pages(zone);
1364
		max_zone_pfn = zone_end_pfn(zone);
1365
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1366
			if (saveable_page(zone, pfn))
1367
				n++;
1368
	}
1369
	return n;
1370 1371
}

1372 1373 1374 1375
/* This is needed, because copy_page and memcpy are not usable for copying
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
1376 1377 1378 1379 1380 1381 1382
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

/**
 *	safe_copy_page - check if the page we are going to copy is marked as
 *		present in the kernel page tables (this always is the case if
 *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
 *		kernel_page_present() always returns 'true').
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}


1402 1403 1404 1405 1406
#ifdef CONFIG_HIGHMEM
static inline struct page *
page_is_saveable(struct zone *zone, unsigned long pfn)
{
	return is_highmem(zone) ?
1407
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1408 1409
}

1410
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1411 1412 1413 1414 1415 1416 1417
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
1418 1419
		src = kmap_atomic(s_page);
		dst = kmap_atomic(d_page);
1420
		do_copy_page(dst, src);
1421 1422
		kunmap_atomic(dst);
		kunmap_atomic(src);
1423 1424 1425 1426 1427
	} else {
		if (PageHighMem(d_page)) {
			/* Page pointed to by src may contain some kernel
			 * data modified by kmap_atomic()
			 */
1428
			safe_copy_page(buffer, s_page);
1429
			dst = kmap_atomic(d_page);
1430
			copy_page(dst, buffer);
1431
			kunmap_atomic(dst);
1432
		} else {
1433
			safe_copy_page(page_address(d_page), s_page);
1434 1435 1436 1437
		}
	}
}
#else
1438
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1439

1440
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1441
{
1442 1443
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1444 1445 1446
}
#endif /* CONFIG_HIGHMEM */

1447 1448
static void
copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1449 1450
{
	struct zone *zone;
1451
	unsigned long pfn;
1452

1453
	for_each_populated_zone(zone) {
1454 1455
		unsigned long max_zone_pfn;

1456
		mark_free_pages(zone);
1457
		max_zone_pfn = zone_end_pfn(zone);
1458
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1459
			if (page_is_saveable(zone, pfn))
1460
				memory_bm_set_bit(orig_bm, pfn);
1461
	}
1462 1463
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1464
	for(;;) {
1465
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1466 1467 1468 1469
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1470 1471
}

1472 1473 1474 1475
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
unsigned int alloc_normal, alloc_highmem;
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1495

1496
/**
1497
 *	swsusp_free - free pages allocated for the suspend.
1498
 *
1499 1500
 *	Suspend pages are alocated before the atomic copy is made, so we
 *	need to release them after the resume.
1501 1502 1503 1504
 */

void swsusp_free(void)
{
1505
	unsigned long fb_pfn, fr_pfn;
1506

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	memory_bm_position_reset(forbidden_pages_map);
	memory_bm_position_reset(free_pages_map);

loop:
	fr_pfn = memory_bm_next_pfn(free_pages_map);
	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);

	/*
	 * Find the next bit set in both bitmaps. This is guaranteed to
	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
	 */
	do {
		if (fb_pfn < fr_pfn)
			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
		if (fr_pfn < fb_pfn)
			fr_pfn = memory_bm_next_pfn(free_pages_map);
	} while (fb_pfn != fr_pfn);

	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
		struct page *page = pfn_to_page(fr_pfn);

		memory_bm_clear_current(forbidden_pages_map);
		memory_bm_clear_current(free_pages_map);
		__free_page(page);
		goto loop;
1532
	}
1533

1534 1535
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1536
	restore_pblist = NULL;
1537
	buffer = NULL;
1538 1539
	alloc_normal = 0;
	alloc_highmem = 0;
1540 1541
}

1542 1543 1544 1545
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1546
/**
1547 1548 1549
 * preallocate_image_pages - Allocate a number of pages for hibernation image
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1550
 *
1551 1552 1553 1554 1555 1556 1557
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1558 1559 1560 1561
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1562
			break;
1563 1564 1565 1566 1567
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1568 1569 1570 1571 1572 1573 1574
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

1575 1576
static unsigned long preallocate_image_memory(unsigned long nr_pages,
					      unsigned long avail_normal)
1577
{
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	unsigned long alloc;

	if (avail_normal <= alloc_normal)
		return 0;

	alloc = avail_normal - alloc_normal;
	if (nr_pages < alloc)
		alloc = nr_pages;

	return preallocate_image_pages(alloc, GFP_IMAGE);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1598
 */
1599 1600 1601 1602 1603 1604
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
	x *= multiplier;
	do_div(x, base);
	return (unsigned long)x;
}
1605

1606 1607 1608
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
1609
{
1610 1611 1612
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1613
}
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
						unsigned long highmem,
						unsigned long total)
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1627

1628
/**
1629 1630 1631 1632
 * free_unnecessary_pages - Release preallocated pages not needed for the image
 */
static void free_unnecessary_pages(void)
{
1633
	unsigned long save, to_free_normal, to_free_highmem;
1634

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	save = count_data_pages();
	if (alloc_normal >= save) {
		to_free_normal = alloc_normal - save;
		save = 0;
	} else {
		to_free_normal = 0;
		save -= alloc_normal;
	}
	save += count_highmem_pages();
	if (alloc_highmem >= save) {
		to_free_highmem = alloc_highmem - save;
1646 1647
	} else {
		to_free_highmem = 0;
1648 1649 1650 1651 1652
		save -= alloc_highmem;
		if (to_free_normal > save)
			to_free_normal -= save;
		else
			to_free_normal = 0;
1653 1654 1655 1656
	}

	memory_bm_position_reset(&copy_bm);

1657
	while (to_free_normal > 0 || to_free_highmem > 0) {
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
}

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
/**
 * minimum_image_size - Estimate the minimum acceptable size of an image
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1692
 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
 * minus mapped file pages.
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

	size = global_page_state(NR_SLAB_RECLAIMABLE)
		+ global_page_state(NR_ACTIVE_ANON)
		+ global_page_state(NR_INACTIVE_ANON)
		+ global_page_state(NR_ACTIVE_FILE)
		+ global_page_state(NR_INACTIVE_FILE)
		- global_page_state(NR_FILE_MAPPED);

	return saveable <= size ? 0 : saveable - size;
}

1709 1710
/**
 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1711 1712 1713 1714 1715
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
1716 1717 1718 1719
 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
 * total number of available page frames and allocate at least
1720
 *
1721 1722
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1723 1724 1725 1726 1727
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1728 1729
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1730
 */
1731
int hibernate_preallocate_memory(void)
1732 1733
{
	struct zone *zone;
1734
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1735
	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1736
	struct timeval start, stop;
1737
	int error;
1738

1739
	printk(KERN_INFO "PM: Preallocating image memory... ");
1740 1741
	do_gettimeofday(&start);

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	alloc_normal = 0;
	alloc_highmem = 0;

1753
	/* Count the number of saveable data pages. */
1754
	save_highmem = count_highmem_pages();
1755
	saveable = count_data_pages();
1756

1757 1758 1759 1760 1761
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1762 1763
	saveable += save_highmem;
	highmem = save_highmem;
1764 1765 1766 1767 1768 1769 1770 1771
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
1772
	avail_normal = count;
1773 1774 1775
	count += highmem;
	count -= totalreserve_pages;

1776 1777 1778
	/* Add number of pages required for page keys (s390 only). */
	size += page_key_additional_pages(saveable);

1779
	/* Compute the maximum number of saveable pages to leave in memory. */
1780 1781
	max_size = (count - (size + PAGES_FOR_IO)) / 2
			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1782
	/* Compute the desired number of image pages specified by image_size. */
1783 1784 1785 1786
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
1787 1788 1789
	 * If the desired number of image pages is at least as large as the
	 * current number of saveable pages in memory, allocate page frames for
	 * the image and we're done.
1790
	 */
1791 1792
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
1793
		pages += preallocate_image_memory(saveable - pages, avail_normal);
1794
		goto out;
1795
	}
1796

1797 1798
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
1799 1800 1801 1802 1803 1804 1805 1806 1807
	/*
	 * To avoid excessive pressure on the normal zone, leave room in it to
	 * accommodate an image of the minimum size (unless it's already too
	 * small, in which case don't preallocate pages from it at all).
	 */
	if (avail_normal > pages)
		avail_normal -= pages;
	else
		avail_normal = 0;
1808 1809 1810
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1823 1824
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1825 1826
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
1827 1828 1829 1830 1831
	alloc = count - max_size;
	if (alloc > pages_highmem)
		alloc -= pages_highmem;
	else
		alloc = 0;
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	pages = preallocate_image_memory(alloc, avail_normal);
	if (pages < alloc) {
		/* We have exhausted non-highmem pages, try highmem. */
		alloc -= pages;
		pages += pages_highmem;
		pages_highmem = preallocate_image_highmem(alloc);
		if (pages_highmem < alloc)
			goto err_out;
		pages += pages_highmem;
		/*
		 * size is the desired number of saveable pages to leave in
		 * memory, so try to preallocate (all memory - size) pages.
		 */
		alloc = (count - pages) - size;
		pages += preallocate_image_highmem(alloc);
	} else {
		/*
		 * There are approximately max_size saveable pages at this point
		 * and we want to reduce this number down to size.
		 */
		alloc = max_size - size;
		size = preallocate_highmem_fraction(alloc, highmem, count);
		pages_highmem += size;
		alloc -= size;
		size = preallocate_image_memory(alloc, avail_normal);
		pages_highmem += preallocate_image_highmem(alloc - size);
		pages += pages_highmem + size;
	}
1860

1861 1862 1863 1864 1865 1866
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
	free_unnecessary_pages();
1867 1868

 out:
1869
	do_gettimeofday(&stop);
1870 1871
	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
	swsusp_show_speed(&start, &stop, pages, "Allocated");
1872 1873

	return 0;
1874 1875 1876 1877 1878

 err_out:
	printk(KERN_CONT "\n");
	swsusp_free();
	return -ENOMEM;
1879 1880
}

1881 1882 1883 1884 1885 1886 1887 1888
#ifdef CONFIG_HIGHMEM
/**
  *	count_pages_for_highmem - compute the number of non-highmem pages
  *	that will be necessary for creating copies of highmem pages.
  */

static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1889
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
static unsigned int
count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
#endif /* CONFIG_HIGHMEM */
1902 1903

/**
1904 1905
 *	enough_free_mem - Make sure we have enough free memory for the
 *	snapshot image.
1906 1907
 */

1908
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1909
{
1910
	struct zone *zone;
1911
	unsigned int free = alloc_normal;
1912

1913
	for_each_populated_zone(zone)
1914
		if (!is_highmem(zone))
1915
			free += zone_page_state(zone, NR_FREE_PAGES);
1916

1917
	nr_pages += count_pages_for_highmem(nr_highmem);
1918 1919
	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
		nr_pages, PAGES_FOR_IO, free);
1920

1921
	return free > nr_pages + PAGES_FOR_IO;
1922 1923
}

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
#ifdef CONFIG_HIGHMEM
/**
 *	get_highmem_buffer - if there are some highmem pages in the suspend
 *	image, we may need the buffer to copy them and/or load their data.
 */

static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
 *	alloc_highmem_image_pages - allocate some highmem pages for the image.
 *	Try to allocate as many pages as needed, but if the number of free
 *	highmem pages is lesser than that, allocate them all.
 */

static inline unsigned int
1943
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_image_page(__GFP_HIGHMEM);
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

static inline unsigned int
1963
alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
#endif /* CONFIG_HIGHMEM */

/**
 *	swsusp_alloc - allocate memory for the suspend image
 *
 *	We first try to allocate as many highmem pages as there are
 *	saveable highmem pages in the system.  If that fails, we allocate
 *	non-highmem pages for the copies of the remaining highmem ones.
 *
 *	In this approach it is likely that the copies of highmem pages will
 *	also be located in the high memory, because of the way in which
 *	copy_data_pages() works.
 */

1978 1979
static int
swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1980
		unsigned int nr_pages, unsigned int nr_highmem)
1981
{
1982
	if (nr_highmem > 0) {
1983
		if (get_highmem_buffer(PG_ANY))
1984 1985 1986 1987 1988
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1989
	}
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
2000
	}
2001

2002
	return 0;
2003

2004
 err_out:
2005
	swsusp_free();
2006
	return -ENOMEM;
2007 2008
}

2009
asmlinkage __visible int swsusp_save(void)
2010
{
2011
	unsigned int nr_pages, nr_highmem;
2012

2013
	printk(KERN_INFO "PM: Creating hibernation image:\n");
2014

2015
	drain_local_pages(NULL);
2016
	nr_pages = count_data_pages();
2017
	nr_highmem = count_highmem_pages();
R
Rafael J. Wysocki 已提交
2018
	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
2019

2020
	if (!enough_free_mem(nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
2021
		printk(KERN_ERR "PM: Not enough free memory\n");
2022 2023 2024
		return -ENOMEM;
	}

2025
	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
2026
		printk(KERN_ERR "PM: Memory allocation failed\n");
2027
		return -ENOMEM;
2028
	}
2029 2030 2031 2032

	/* During allocating of suspend pagedir, new cold pages may appear.
	 * Kill them.
	 */
2033
	drain_local_pages(NULL);
2034
	copy_data_pages(&copy_bm, &orig_bm);
2035 2036 2037 2038 2039 2040 2041

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

2042
	nr_pages += nr_highmem;
2043
	nr_copy_pages = nr_pages;
2044
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2045

R
Rafael J. Wysocki 已提交
2046 2047
	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
		nr_pages);
2048

2049 2050
	return 0;
}
2051

2052 2053
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
2054
{
2055
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2056
	info->version_code = LINUX_VERSION_CODE;
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

2076 2077 2078 2079 2080
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

2081 2082 2083
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
2084
	info->num_physpages = get_num_physpages();
2085
	info->image_pages = nr_copy_pages;
2086
	info->pages = snapshot_get_image_size();
2087 2088
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
2089
	return init_header_complete(info);
2090 2091 2092
}

/**
2093 2094
 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
 *	are stored in the array @buf[] (1 page at a time)
2095 2096
 */

2097
static inline void
2098
pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2099 2100 2101
{
	int j;

2102
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2103 2104
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
2105
			break;
2106 2107
		/* Save page key for data page (s390 only). */
		page_key_read(buf + j);
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	}
}

/**
 *	snapshot_read_next - used for reading the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to read up to the returned number of bytes from the memory
J
Jiri Slaby 已提交
2120
 *	location computed by the data_of() macro.
2121 2122 2123 2124 2125 2126 2127
 *
 *	The function returns 0 to indicate the end of data stream condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
2128
int snapshot_read_next(struct snapshot_handle *handle)
2129
{
2130
	if (handle->cur > nr_meta_pages + nr_copy_pages)
2131
		return 0;
2132

2133 2134
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
2135
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2136 2137 2138
		if (!buffer)
			return -ENOMEM;
	}
J
Jiri Slaby 已提交
2139
	if (!handle->cur) {
2140 2141 2142 2143 2144
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
2145
		handle->buffer = buffer;
2146 2147
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
J
Jiri Slaby 已提交
2148
	} else if (handle->cur <= nr_meta_pages) {
2149
		clear_page(buffer);
J
Jiri Slaby 已提交
2150 2151 2152
		pack_pfns(buffer, &orig_bm);
	} else {
		struct page *page;
2153

J
Jiri Slaby 已提交
2154 2155 2156 2157 2158 2159 2160
		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
		if (PageHighMem(page)) {
			/* Highmem pages are copied to the buffer,
			 * because we can't return with a kmapped
			 * highmem page (we may not be called again).
			 */
			void *kaddr;
2161

2162
			kaddr = kmap_atomic(page);
2163
			copy_page(buffer, kaddr);
2164
			kunmap_atomic(kaddr);
J
Jiri Slaby 已提交
2165 2166 2167
			handle->buffer = buffer;
		} else {
			handle->buffer = page_address(page);
2168 2169
		}
	}
J
Jiri Slaby 已提交
2170 2171
	handle->cur++;
	return PAGE_SIZE;
2172 2173 2174 2175 2176 2177 2178 2179
}

/**
 *	mark_unsafe_pages - mark the pages that cannot be used for storing
 *	the image during resume, because they conflict with the pages that
 *	had been used before suspend
 */

2180
static int mark_unsafe_pages(struct memory_bitmap *bm)
2181 2182
{
	struct zone *zone;
2183
	unsigned long pfn, max_zone_pfn;
2184 2185

	/* Clear page flags */
2186
	for_each_populated_zone(zone) {
2187
		max_zone_pfn = zone_end_pfn(zone);
2188 2189
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn))
2190
				swsusp_unset_page_free(pfn_to_page(pfn));
2191 2192
	}

2193 2194 2195 2196 2197 2198
	/* Mark pages that correspond to the "original" pfns as "unsafe" */
	memory_bm_position_reset(bm);
	do {
		pfn = memory_bm_next_pfn(bm);
		if (likely(pfn != BM_END_OF_MAP)) {
			if (likely(pfn_valid(pfn)))
2199
				swsusp_set_page_free(pfn_to_page(pfn));
2200 2201 2202 2203
			else
				return -EFAULT;
		}
	} while (pfn != BM_END_OF_MAP);
2204

2205
	allocated_unsafe_pages = 0;
2206

2207 2208 2209
	return 0;
}

2210 2211
static void
duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
2212
{
2213 2214 2215 2216 2217 2218 2219
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
2220 2221 2222
	}
}

2223
static int check_header(struct swsusp_info *info)
2224
{
2225
	char *reason;
2226

2227
	reason = check_image_kernel(info);
2228
	if (!reason && info->num_physpages != get_num_physpages())
2229 2230
		reason = "memory size";
	if (reason) {
R
Rafael J. Wysocki 已提交
2231
		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2232 2233 2234 2235 2236 2237 2238 2239 2240
		return -EPERM;
	}
	return 0;
}

/**
 *	load header - check the image header and copy data from it
 */

2241 2242
static int
load_header(struct swsusp_info *info)
2243 2244 2245
{
	int error;

2246
	restore_pblist = NULL;
2247 2248 2249 2250 2251 2252 2253 2254 2255
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
2256 2257
 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
 *	the corresponding bit in the memory bitmap @bm
2258
 */
2259
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2260 2261 2262
{
	int j;

2263 2264 2265 2266
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

2267 2268 2269
		/* Extract and buffer page key for data page (s390 only). */
		page_key_memorize(buf + j);

2270 2271 2272 2273
		if (memory_bm_pfn_present(bm, buf[j]))
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
2274
	}
2275 2276

	return 0;
2277 2278
}

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
/* List of "safe" pages that may be used to store data loaded from the suspend
 * image
 */
static struct linked_page *safe_pages_list;

#ifdef CONFIG_HIGHMEM
/* struct highmem_pbe is used for creating the list of highmem pages that
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

/* List of highmem PBEs needed for restoring the highmem pages that were
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
 *	count_highmem_image_pages - compute the number of highmem pages in the
 *	suspend image.  The bits in the memory bitmap @bm that correspond to the
 *	image pages are assumed to be set.
 */

static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

/**
 *	prepare_highmem_image - try to allocate as many highmem pages as
 *	there are highmem image pages (@nr_highmem_p points to the variable
 *	containing the number of highmem image pages).  The pages that are
 *	"safe" (ie. will not be overwritten when the suspend image is
 *	restored) have the corresponding bits set in @bm (it must be
 *	unitialized).
 *
 *	NOTE: This function should not be called if there are no highmem
 *	image pages.
 */

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

static int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
2362
		if (!swsusp_page_is_free(page)) {
2363 2364 2365 2366 2367
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
2368 2369
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

/**
 *	get_highmem_page_buffer - for given highmem image page find the buffer
 *	that suspend_write_next() should set for its caller to write to.
 *
 *	If the page is to be saved to its "original" page frame or a copy of
 *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
 *	the copy of the page is to be made in normal memory, so the address of
 *	the copy is returned.
 *
 *	If @buffer is returned, the caller of suspend_write_next() will write
 *	the page's contents to @buffer, so they will have to be copied to the
 *	right location on the next call to suspend_write_next() and it is done
 *	with the help of copy_last_highmem_page().  For this purpose, if
 *	@buffer is returned, @last_highmem page is set to the page to which
 *	the data will have to be copied from @buffer.
 */

static struct page *last_highmem_page;

static void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
	struct highmem_pbe *pbe;
	void *kaddr;

2401
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
2414
		return ERR_PTR(-ENOMEM);
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
 *	copy_last_highmem_page - copy the contents of a highmem image from
 *	@buffer, where the caller of snapshot_write_next() has place them,
 *	to the right location represented by @last_highmem_page .
 */

static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

2448
		dst = kmap_atomic(last_highmem_page);
2449
		copy_page(dst, buffer);
2450
		kunmap_atomic(dst);
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
static inline int get_safe_write_buffer(void) { return 0; }

static unsigned int
count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }

static inline int
prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
{
	return 0;
}

static inline void *
get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
{
2483
	return ERR_PTR(-EINVAL);
2484 2485 2486 2487 2488 2489 2490
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

2491
/**
2492 2493 2494 2495
 *	prepare_image - use the memory bitmap @bm to mark the pages that will
 *	be overwritten in the process of restoring the system memory state
 *	from the suspend image ("unsafe" pages) and allocate memory for the
 *	image.
2496
 *
2497 2498 2499
 *	The idea is to allocate a new memory bitmap first and then allocate
 *	as many pages as needed for the image data, but not to assign these
 *	pages to specific tasks initially.  Instead, we just mark them as
2500 2501 2502
 *	allocated and create a lists of "safe" pages that will be used
 *	later.  On systems with high memory a list of "safe" highmem pages is
 *	also created.
2503 2504
 */

2505 2506 2507 2508
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

static int
prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2509
{
2510
	unsigned int nr_pages, nr_highmem;
2511 2512
	struct linked_page *sp_list, *lp;
	int error;
2513

2514 2515 2516 2517 2518
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	error = mark_unsafe_pages(bm);
	if (error)
		goto Free;

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2529 2530 2531 2532 2533
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2534 2535 2536 2537 2538 2539 2540 2541
	/* Reserve some safe pages for potential later use.
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
	 */
	sp_list = NULL;
	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2542
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2543 2544
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2545
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2546
		if (!lp) {
2547
			error = -ENOMEM;
2548 2549 2550 2551 2552
			goto Free;
		}
		lp->next = sp_list;
		sp_list = lp;
		nr_pages--;
2553
	}
2554 2555
	/* Preallocate memory for the image */
	safe_pages_list = NULL;
2556
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2557 2558 2559 2560 2561 2562
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2563
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2564 2565 2566
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2567
		}
2568
		/* Mark the page as allocated */
2569 2570
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2571
		nr_pages--;
2572
	}
2573 2574 2575 2576 2577
	/* Free the reserved safe pages so that chain_alloc() can use them */
	while (sp_list) {
		lp = sp_list->next;
		free_image_page(sp_list, PG_UNSAFE_CLEAR);
		sp_list = lp;
2578
	}
2579 2580
	return 0;

R
Rafael J. Wysocki 已提交
2581
 Free:
2582
	swsusp_free();
2583 2584 2585
	return error;
}

2586 2587 2588 2589 2590 2591
/**
 *	get_buffer - compute the address that snapshot_write_next() should
 *	set for its caller to write to.
 */

static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2592
{
2593
	struct pbe *pbe;
2594 2595
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2596

2597 2598 2599 2600
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2601 2602 2603
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2604
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2605 2606
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
2607
		 */
2608 2609 2610 2611
		return page_address(page);

	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
2612
	 */
2613 2614 2615
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2616
		return ERR_PTR(-ENOMEM);
2617
	}
2618 2619
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2620 2621 2622
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2623
	return pbe->address;
2624 2625
}

2626 2627 2628 2629 2630 2631 2632 2633 2634
/**
 *	snapshot_write_next - used for writing the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to write up to the returned number of bytes to the memory
J
Jiri Slaby 已提交
2635
 *	location computed by the data_of() macro.
2636 2637 2638 2639 2640 2641 2642
 *
 *	The function returns 0 to indicate the "end of file" condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

J
Jiri Slaby 已提交
2643
int snapshot_write_next(struct snapshot_handle *handle)
2644
{
2645
	static struct chain_allocator ca;
2646 2647
	int error = 0;

2648
	/* Check if we have already loaded the entire image */
J
Jiri Slaby 已提交
2649
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2650
		return 0;
2651

J
Jiri Slaby 已提交
2652 2653 2654
	handle->sync_read = 1;

	if (!handle->cur) {
2655 2656 2657 2658
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2659 2660
		if (!buffer)
			return -ENOMEM;
2661

2662
		handle->buffer = buffer;
J
Jiri Slaby 已提交
2663 2664 2665 2666
	} else if (handle->cur == 1) {
		error = load_header(buffer);
		if (error)
			return error;
2667

J
Jiri Slaby 已提交
2668 2669 2670 2671
		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
		if (error)
			return error;

2672 2673 2674 2675 2676
		/* Allocate buffer for page keys. */
		error = page_key_alloc(nr_copy_pages);
		if (error)
			return error;

J
Jiri Slaby 已提交
2677 2678 2679 2680
	} else if (handle->cur <= nr_meta_pages + 1) {
		error = unpack_orig_pfns(buffer, &copy_bm);
		if (error)
			return error;
2681

J
Jiri Slaby 已提交
2682 2683
		if (handle->cur == nr_meta_pages + 1) {
			error = prepare_image(&orig_bm, &copy_bm);
2684 2685 2686
			if (error)
				return error;

J
Jiri Slaby 已提交
2687 2688 2689
			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
			memory_bm_position_reset(&orig_bm);
			restore_pblist = NULL;
2690
			handle->buffer = get_buffer(&orig_bm, &ca);
J
Jiri Slaby 已提交
2691
			handle->sync_read = 0;
2692 2693
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2694 2695
		}
	} else {
J
Jiri Slaby 已提交
2696
		copy_last_highmem_page();
2697 2698
		/* Restore page key for data page (s390 only). */
		page_key_write(handle->buffer);
J
Jiri Slaby 已提交
2699 2700 2701 2702 2703
		handle->buffer = get_buffer(&orig_bm, &ca);
		if (IS_ERR(handle->buffer))
			return PTR_ERR(handle->buffer);
		if (handle->buffer != buffer)
			handle->sync_read = 0;
2704
	}
J
Jiri Slaby 已提交
2705 2706
	handle->cur++;
	return PAGE_SIZE;
2707 2708
}

2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
/**
 *	snapshot_write_finalize - must be called after the last call to
 *	snapshot_write_next() in case the last page in the image happens
 *	to be a highmem page and its contents should be stored in the
 *	highmem.  Additionally, it releases the memory that will not be
 *	used any more.
 */

void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
2720 2721 2722
	/* Restore page key for data page (s390 only). */
	page_key_write(handle->buffer);
	page_key_free();
2723
	/* Free only if we have loaded the image entirely */
J
Jiri Slaby 已提交
2724
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2725 2726 2727 2728 2729
		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
		free_highmem_data();
	}
}

2730 2731
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2732
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2733 2734 2735
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2736 2737 2738 2739
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
static inline void
swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2740
{
2741 2742
	void *kaddr1, *kaddr2;

2743 2744
	kaddr1 = kmap_atomic(p1);
	kaddr2 = kmap_atomic(p2);
2745 2746 2747
	copy_page(buf, kaddr1);
	copy_page(kaddr1, kaddr2);
	copy_page(kaddr2, buf);
2748 2749
	kunmap_atomic(kaddr2);
	kunmap_atomic(kaddr1);
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
}

/**
 *	restore_highmem - for each highmem page that was allocated before
 *	the suspend and included in the suspend image, and also has been
 *	allocated by the "resume" kernel swap its current (ie. "before
 *	resume") contents with the previous (ie. "before suspend") one.
 *
 *	If the resume eventually fails, we can call this function once
 *	again and restore the "before resume" highmem state.
 */

int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2780
}
2781
#endif /* CONFIG_HIGHMEM */