snapshot.c 69.8 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provides system snapshot/restore functionality for swsusp.
5
 *
P
Pavel Machek 已提交
6
 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7
 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8
 *
9
 * This file is released under the GPLv2.
10 11 12
 *
 */

13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
23
#include <linux/init.h>
24 25 26 27
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>
28
#include <linux/list.h>
29
#include <linux/slab.h>
30
#include <linux/compiler.h>
31
#include <linux/ktime.h>
32 33 34 35 36 37 38 39 40

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

41 42 43 44
static int swsusp_page_is_free(struct page *);
static void swsusp_set_page_forbidden(struct page *);
static void swsusp_unset_page_forbidden(struct page *);

45 46 47 48 49 50 51 52 53 54 55 56
/*
 * Number of bytes to reserve for memory allocations made by device drivers
 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 * cause image creation to fail (tunable via /sys/power/reserved_size).
 */
unsigned long reserved_size;

void __init hibernate_reserved_size_init(void)
{
	reserved_size = SPARE_PAGES * PAGE_SIZE;
}

57 58
/*
 * Preferred image size in bytes (tunable via /sys/power/image_size).
59 60 61
 * When it is set to N, swsusp will do its best to ensure the image
 * size will not exceed N bytes, but if that is impossible, it will
 * try to create the smallest image possible.
62
 */
63 64 65 66
unsigned long image_size;

void __init hibernate_image_size_init(void)
{
67
	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
68
}
69

70 71
/*
 * List of PBEs needed for restoring the pages that were allocated before
72 73 74 75
 * the suspend and included in the suspend image, but have also been
 * allocated by the "resume" kernel, so their contents cannot be written
 * directly to their "original" page frames.
 */
76 77
struct pbe *restore_pblist;

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
} __packed;

/*
 * List of "safe" pages (ie. pages that were not used by the image kernel
 * before hibernation) that may be used as temporary storage for image kernel
 * memory contents.
 */
static struct linked_page *safe_pages_list;

94
/* Pointer to an auxiliary buffer (1 page) */
95
static void *buffer;
96

97 98 99 100 101
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

102
static unsigned int allocated_unsafe_pages;
103

104 105 106 107 108 109 110 111 112 113 114 115 116
/**
 * get_image_page - Allocate a page for a hibernation image.
 * @gfp_mask: GFP mask for the allocation.
 * @safe_needed: Get pages that were not used before hibernation (restore only)
 *
 * During image restoration, for storing the PBE list and the image data, we can
 * only use memory pages that do not conflict with the pages used before
 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 * using allocated_unsafe_pages.
 *
 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 * swsusp_free() can release it.
 */
117
static void *get_image_page(gfp_t gfp_mask, int safe_needed)
118 119 120 121 122
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
123
		while (res && swsusp_page_is_free(virt_to_page(res))) {
124
			/* The page is unsafe, mark it for swsusp_free() */
125
			swsusp_set_page_forbidden(virt_to_page(res));
126
			allocated_unsafe_pages++;
127 128 129
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
130 131
		swsusp_set_page_forbidden(virt_to_page(res));
		swsusp_set_page_free(virt_to_page(res));
132 133 134 135
	}
	return res;
}

136 137 138 139 140 141 142 143 144 145 146 147
static void *__get_safe_page(gfp_t gfp_mask)
{
	if (safe_pages_list) {
		void *ret = safe_pages_list;

		safe_pages_list = safe_pages_list->next;
		memset(ret, 0, PAGE_SIZE);
		return ret;
	}
	return get_image_page(gfp_mask, PG_SAFE);
}

148 149
unsigned long get_safe_page(gfp_t gfp_mask)
{
150
	return (unsigned long)__get_safe_page(gfp_mask);
151 152
}

153 154
static struct page *alloc_image_page(gfp_t gfp_mask)
{
155 156 157 158
	struct page *page;

	page = alloc_page(gfp_mask);
	if (page) {
159 160
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
161 162
	}
	return page;
163 164
}

165 166 167 168 169 170 171 172
static void recycle_safe_page(void *page_address)
{
	struct linked_page *lp = page_address;

	lp->next = safe_pages_list;
	safe_pages_list = lp;
}

173
/**
174 175 176 177 178 179
 * free_image_page - Free a page allocated for hibernation image.
 * @addr: Address of the page to free.
 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 *
 * The page to free should have been allocated by get_image_page() (page flags
 * set by it are affected).
180 181 182
 */
static inline void free_image_page(void *addr, int clear_nosave_free)
{
183 184 185 186 187 188
	struct page *page;

	BUG_ON(!virt_addr_valid(addr));

	page = virt_to_page(addr);

189
	swsusp_unset_page_forbidden(page);
190
	if (clear_nosave_free)
191
		swsusp_unset_page_free(page);
192 193

	__free_page(page);
194 195
}

196 197
static inline void free_list_of_pages(struct linked_page *list,
				      int clear_page_nosave)
198 199 200 201 202 203 204 205 206
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

207 208 209 210 211 212 213 214 215 216 217 218
/*
 * struct chain_allocator is used for allocating small objects out of
 * a linked list of pages called 'the chain'.
 *
 * The chain grows each time when there is no room for a new object in
 * the current page.  The allocated objects cannot be freed individually.
 * It is only possible to free them all at once, by freeing the entire
 * chain.
 *
 * NOTE: The chain allocator may be inefficient if the allocated objects
 * are not much smaller than PAGE_SIZE.
 */
219 220 221
struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
222
					   of the current page */
223 224 225 226
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

227 228
static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
		       int safe_needed)
229 230 231 232 233 234 235 236 237 238 239 240 241 242
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

243 244
		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
					get_image_page(ca->gfp_mask, PG_ANY);
245 246 247 248 249 250 251 252 253 254 255 256 257
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

/**
258
 * Data types related to memory bitmaps.
259
 *
260 261 262 263 264
 * Memory bitmap is a structure consiting of many linked lists of
 * objects.  The main list's elements are of type struct zone_bitmap
 * and each of them corresonds to one zone.  For each zone bitmap
 * object there is a list of objects of type struct bm_block that
 * represent each blocks of bitmap in which information is stored.
265
 *
266 267 268 269
 * struct memory_bitmap contains a pointer to the main list of zone
 * bitmap objects, a struct bm_position used for browsing the bitmap,
 * and a pointer to the list of pages used for allocating all of the
 * zone bitmap objects and bitmap block objects.
270
 *
271 272 273 274
 * NOTE: It has to be possible to lay out the bitmap in memory
 * using only allocations of order 0.  Additionally, the bitmap is
 * designed to work with arbitrary number of zones (this is over the
 * top for now, but let's avoid making unnecessary assumptions ;-).
275
 *
276 277 278 279
 * struct zone_bitmap contains a pointer to a list of bitmap block
 * objects and a pointer to the bitmap block object that has been
 * most recently used for setting bits.  Additionally, it contains the
 * PFNs that correspond to the start and end of the represented zone.
280
 *
281 282 283 284
 * struct bm_block contains a pointer to the memory page in which
 * information is stored (in the form of a block of bitmap)
 * It also contains the pfns that correspond to the start and end of
 * the represented memory area.
285
 *
286 287 288
 * The memory bitmap is organized as a radix tree to guarantee fast random
 * access to the bits. There is one radix tree for each zone (as returned
 * from create_mem_extents).
289
 *
290 291 292 293
 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 * two linked lists for the nodes of the tree, one for the inner nodes and
 * one for the leave nodes. The linked leave nodes are used for fast linear
 * access of the memory bitmap.
294
 *
295
 * The struct rtree_node represents one node of the radix tree.
296 297 298 299
 */

#define BM_END_OF_MAP	(~0UL)

W
Wu Fengguang 已提交
300
#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
301 302
#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
303

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
/*
 * struct rtree_node is a wrapper struct to link the nodes
 * of the rtree together for easy linear iteration over
 * bits and easy freeing
 */
struct rtree_node {
	struct list_head list;
	unsigned long *data;
};

/*
 * struct mem_zone_bm_rtree represents a bitmap used for one
 * populated memory zone.
 */
struct mem_zone_bm_rtree {
	struct list_head list;		/* Link Zones together         */
	struct list_head nodes;		/* Radix Tree inner nodes      */
	struct list_head leaves;	/* Radix Tree leaves           */
	unsigned long start_pfn;	/* Zone start page frame       */
	unsigned long end_pfn;		/* Zone end page frame + 1     */
	struct rtree_node *rtree;	/* Radix Tree Root             */
	int levels;			/* Number of Radix Tree Levels */
	unsigned int blocks;		/* Number of Bitmap Blocks     */
};

329 330 331
/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
332 333 334 335
	struct mem_zone_bm_rtree *zone;
	struct rtree_node *node;
	unsigned long node_pfn;
	int node_bit;
336 337 338
};

struct memory_bitmap {
339
	struct list_head zones;
340
	struct linked_page *p_list;	/* list of pages used to store zone
341 342
					   bitmap objects and bitmap block
					   objects */
343 344 345 346 347
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

348 349 350 351 352 353 354 355
#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
#if BITS_PER_LONG == 32
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
#else
#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
#endif
#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)

356 357
/**
 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
358
 *
359 360 361
 * This function is used to allocate inner nodes as well as the
 * leave nodes of the radix tree. It also adds the node to the
 * corresponding linked list passed in by the *list parameter.
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
 */
static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
					   struct chain_allocator *ca,
					   struct list_head *list)
{
	struct rtree_node *node;

	node = chain_alloc(ca, sizeof(struct rtree_node));
	if (!node)
		return NULL;

	node->data = get_image_page(gfp_mask, safe_needed);
	if (!node->data)
		return NULL;

	list_add_tail(&node->list, list);

	return node;
}

382 383
/**
 * add_rtree_block - Add a new leave node to the radix tree.
384
 *
385 386 387
 * The leave nodes need to be allocated in order to keep the leaves
 * linked list in order. This is guaranteed by the zone->blocks
 * counter.
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
 */
static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
			   int safe_needed, struct chain_allocator *ca)
{
	struct rtree_node *node, *block, **dst;
	unsigned int levels_needed, block_nr;
	int i;

	block_nr = zone->blocks;
	levels_needed = 0;

	/* How many levels do we need for this block nr? */
	while (block_nr) {
		levels_needed += 1;
		block_nr >>= BM_RTREE_LEVEL_SHIFT;
	}

	/* Make sure the rtree has enough levels */
	for (i = zone->levels; i < levels_needed; i++) {
		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
					&zone->nodes);
		if (!node)
			return -ENOMEM;

		node->data[0] = (unsigned long)zone->rtree;
		zone->rtree = node;
		zone->levels += 1;
	}

	/* Allocate new block */
	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
	if (!block)
		return -ENOMEM;

	/* Now walk the rtree to insert the block */
	node = zone->rtree;
	dst = &zone->rtree;
	block_nr = zone->blocks;
	for (i = zone->levels; i > 0; i--) {
		int index;

		if (!node) {
			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
						&zone->nodes);
			if (!node)
				return -ENOMEM;
			*dst = node;
		}

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		dst = (struct rtree_node **)&((*dst)->data[index]);
		node = *dst;
	}

	zone->blocks += 1;
	*dst = block;

	return 0;
}

static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free);

452 453
/**
 * create_zone_bm_rtree - Create a radix tree for one zone.
454
 *
455 456 457
 * Allocated the mem_zone_bm_rtree structure and initializes it.
 * This function also allocated and builds the radix tree for the
 * zone.
458
 */
459 460 461 462 463
static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
						      int safe_needed,
						      struct chain_allocator *ca,
						      unsigned long start,
						      unsigned long end)
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
{
	struct mem_zone_bm_rtree *zone;
	unsigned int i, nr_blocks;
	unsigned long pages;

	pages = end - start;
	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
	if (!zone)
		return NULL;

	INIT_LIST_HEAD(&zone->nodes);
	INIT_LIST_HEAD(&zone->leaves);
	zone->start_pfn = start;
	zone->end_pfn = end;
	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);

	for (i = 0; i < nr_blocks; i++) {
		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
			return NULL;
		}
	}

	return zone;
}

490 491
/**
 * free_zone_bm_rtree - Free the memory of the radix tree.
492
 *
493 494 495
 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 * structure itself is not freed here nor are the rtree_node
 * structs.
496 497 498 499 500 501 502 503 504 505 506 507 508
 */
static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
			       int clear_nosave_free)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		free_image_page(node->data, clear_nosave_free);

	list_for_each_entry(node, &zone->leaves, list)
		free_image_page(node->data, clear_nosave_free);
}

509 510
static void memory_bm_position_reset(struct memory_bitmap *bm)
{
511 512 513 514 515 516
	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
				  list);
	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
				  struct rtree_node, list);
	bm->cur.node_pfn = 0;
	bm->cur.node_bit = 0;
517 518 519 520
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

521 522 523 524 525 526
struct mem_extent {
	struct list_head hook;
	unsigned long start;
	unsigned long end;
};

527
/**
528 529
 * free_mem_extents - Free a list of memory extents.
 * @list: List of extents to free.
530
 */
531 532 533
static void free_mem_extents(struct list_head *list)
{
	struct mem_extent *ext, *aux;
534

535 536 537 538 539 540 541
	list_for_each_entry_safe(ext, aux, list, hook) {
		list_del(&ext->hook);
		kfree(ext);
	}
}

/**
542 543 544 545 546
 * create_mem_extents - Create a list of memory extents.
 * @list: List to put the extents into.
 * @gfp_mask: Mask to use for memory allocations.
 *
 * The extents represent contiguous ranges of PFNs.
547 548
 */
static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
549
{
550
	struct zone *zone;
551

552
	INIT_LIST_HEAD(list);
553

554
	for_each_populated_zone(zone) {
555 556 557 558
		unsigned long zone_start, zone_end;
		struct mem_extent *ext, *cur, *aux;

		zone_start = zone->zone_start_pfn;
559
		zone_end = zone_end_pfn(zone);
560 561 562 563

		list_for_each_entry(ext, list, hook)
			if (zone_start <= ext->end)
				break;
564

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
		if (&ext->hook == list || zone_end < ext->start) {
			/* New extent is necessary */
			struct mem_extent *new_ext;

			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
			if (!new_ext) {
				free_mem_extents(list);
				return -ENOMEM;
			}
			new_ext->start = zone_start;
			new_ext->end = zone_end;
			list_add_tail(&new_ext->hook, &ext->hook);
			continue;
		}

		/* Merge this zone's range of PFNs with the existing one */
		if (zone_start < ext->start)
			ext->start = zone_start;
		if (zone_end > ext->end)
			ext->end = zone_end;

		/* More merging may be possible */
		cur = ext;
		list_for_each_entry_safe_continue(cur, aux, list, hook) {
			if (zone_end < cur->start)
				break;
			if (zone_end < cur->end)
				ext->end = cur->end;
			list_del(&cur->hook);
			kfree(cur);
		}
596
	}
597 598

	return 0;
599 600 601
}

/**
602 603
 * memory_bm_create - Allocate memory for a memory bitmap.
 */
604 605
static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
			    int safe_needed)
606 607
{
	struct chain_allocator ca;
608 609 610
	struct list_head mem_extents;
	struct mem_extent *ext;
	int error;
611 612

	chain_init(&ca, gfp_mask, safe_needed);
613
	INIT_LIST_HEAD(&bm->zones);
614

615 616 617
	error = create_mem_extents(&mem_extents, gfp_mask);
	if (error)
		return error;
618

619
	list_for_each_entry(ext, &mem_extents, hook) {
620 621 622 623
		struct mem_zone_bm_rtree *zone;

		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
					    ext->start, ext->end);
624 625
		if (!zone) {
			error = -ENOMEM;
626
			goto Error;
627
		}
628
		list_add_tail(&zone->list, &bm->zones);
629
	}
630

631 632
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
633 634 635
 Exit:
	free_mem_extents(&mem_extents);
	return error;
636

637
 Error:
638 639
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
640
	goto Exit;
641 642 643
}

/**
644 645 646
 * memory_bm_free - Free memory occupied by the memory bitmap.
 * @bm: Memory bitmap.
 */
647 648
static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
649
	struct mem_zone_bm_rtree *zone;
650

651 652 653
	list_for_each_entry(zone, &bm->zones, list)
		free_zone_bm_rtree(zone, clear_nosave_free);

654
	free_list_of_pages(bm->p_list, clear_nosave_free);
655

656
	INIT_LIST_HEAD(&bm->zones);
657 658 659
}

/**
660
 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
661
 *
662 663 664 665 666
 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 *
 * Walk the radix tree to find the page containing the bit that represents @pfn
 * and return the position of the bit in @addr and @bit_nr.
667
 */
668 669
static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
			      void **addr, unsigned int *bit_nr)
670 671 672 673 674
{
	struct mem_zone_bm_rtree *curr, *zone;
	struct rtree_node *node;
	int i, block_nr;

675 676 677 678 679
	zone = bm->cur.zone;

	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
		goto zone_found;

680 681 682 683 684 685 686 687 688 689 690 691 692
	zone = NULL;

	/* Find the right zone */
	list_for_each_entry(curr, &bm->zones, list) {
		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
			zone = curr;
			break;
		}
	}

	if (!zone)
		return -EFAULT;

693
zone_found:
694
	/*
695 696
	 * We have found the zone. Now walk the radix tree to find the leaf node
	 * for our PFN.
697
	 */
698 699 700 701
	node = bm->cur.node;
	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
		goto node_found;

702 703 704 705 706 707 708 709 710 711 712 713
	node      = zone->rtree;
	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;

	for (i = zone->levels; i > 0; i--) {
		int index;

		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
		index &= BM_RTREE_LEVEL_MASK;
		BUG_ON(node->data[index] == 0);
		node = (struct rtree_node *)node->data[index];
	}

714 715 716 717 718 719
node_found:
	/* Update last position */
	bm->cur.zone = zone;
	bm->cur.node = node;
	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;

720 721 722 723 724 725 726
	/* Set return values */
	*addr = node->data;
	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;

	return 0;
}

727 728 729 730
static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
731
	int error;
732

733 734
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
735 736 737
	set_bit(bit, addr);
}

738 739 740 741 742 743 744
static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
	int error;

	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
745 746 747
	if (!error)
		set_bit(bit, addr);

748 749 750
	return error;
}

751 752 753 754
static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
755
	int error;
756

757 758
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
759 760 761
	clear_bit(bit, addr);
}

762 763 764 765 766 767 768 769
static void memory_bm_clear_current(struct memory_bitmap *bm)
{
	int bit;

	bit = max(bm->cur.node_bit - 1, 0);
	clear_bit(bit, bm->cur.node->data);
}

770 771 772 773
static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
774
	int error;
775

776 777
	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
	BUG_ON(error);
778
	return test_bit(bit, addr);
779 780
}

781 782 783 784
static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
{
	void *addr;
	unsigned int bit;
785

786
	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
787 788
}

789
/*
790
 * rtree_next_node - Jump to the next leaf node.
791
 *
792 793 794 795
 * Set the position to the beginning of the next node in the
 * memory bitmap. This is either the next node in the current
 * zone's radix tree or the first node in the radix tree of the
 * next zone.
796
 *
797
 * Return true if there is a next node, false otherwise.
798 799 800 801 802 803 804 805
 */
static bool rtree_next_node(struct memory_bitmap *bm)
{
	bm->cur.node = list_entry(bm->cur.node->list.next,
				  struct rtree_node, list);
	if (&bm->cur.node->list != &bm->cur.zone->leaves) {
		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
		bm->cur.node_bit  = 0;
806
		touch_softlockup_watchdog();
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
		return true;
	}

	/* No more nodes, goto next zone */
	bm->cur.zone = list_entry(bm->cur.zone->list.next,
				  struct mem_zone_bm_rtree, list);
	if (&bm->cur.zone->list != &bm->zones) {
		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
					  struct rtree_node, list);
		bm->cur.node_pfn = 0;
		bm->cur.node_bit = 0;
		return true;
	}

	/* No more zones */
	return false;
}

825
/**
826 827
 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 * @bm: Memory bitmap.
828
 *
829 830 831
 * Starting from the last returned position this function searches for the next
 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 * set, BM_END_OF_MAP is returned.
832
 *
833 834
 * It is required to run memory_bm_position_reset() before the first call to
 * this function for the given memory bitmap.
835
 */
836
static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
{
	unsigned long bits, pfn, pages;
	int bit;

	do {
		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
		bit	  = find_next_bit(bm->cur.node->data, bits,
					  bm->cur.node_bit);
		if (bit < bits) {
			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
			bm->cur.node_bit = bit + 1;
			return pfn;
		}
	} while (rtree_next_node(bm));

	return BM_END_OF_MAP;
}

856 857 858
/*
 * This structure represents a range of page frames the contents of which
 * should not be saved during hibernation.
859 860 861 862 863 864 865 866 867
 */
struct nosave_region {
	struct list_head list;
	unsigned long start_pfn;
	unsigned long end_pfn;
};

static LIST_HEAD(nosave_regions);

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
{
	struct rtree_node *node;

	list_for_each_entry(node, &zone->nodes, list)
		recycle_safe_page(node->data);

	list_for_each_entry(node, &zone->leaves, list)
		recycle_safe_page(node->data);
}

static void memory_bm_recycle(struct memory_bitmap *bm)
{
	struct mem_zone_bm_rtree *zone;
	struct linked_page *p_list;

	list_for_each_entry(zone, &bm->zones, list)
		recycle_zone_bm_rtree(zone);

	p_list = bm->p_list;
	while (p_list) {
		struct linked_page *lp = p_list;

		p_list = lp->next;
		recycle_safe_page(lp);
	}
}

896
/**
897 898 899 900
 * register_nosave_region - Register a region of unsaveable memory.
 *
 * Register a range of page frames the contents of which should not be saved
 * during hibernation (to be used in the early initialization code).
901
 */
902 903
void __init __register_nosave_region(unsigned long start_pfn,
				     unsigned long end_pfn, int use_kmalloc)
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
{
	struct nosave_region *region;

	if (start_pfn >= end_pfn)
		return;

	if (!list_empty(&nosave_regions)) {
		/* Try to extend the previous region (they should be sorted) */
		region = list_entry(nosave_regions.prev,
					struct nosave_region, list);
		if (region->end_pfn == start_pfn) {
			region->end_pfn = end_pfn;
			goto Report;
		}
	}
919
	if (use_kmalloc) {
920
		/* During init, this shouldn't fail */
921 922
		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
		BUG_ON(!region);
923
	} else {
924
		/* This allocation cannot fail */
925
		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
926
	}
927 928 929 930
	region->start_pfn = start_pfn;
	region->end_pfn = end_pfn;
	list_add_tail(&region->list, &nosave_regions);
 Report:
931 932 933
	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
		(unsigned long long) start_pfn << PAGE_SHIFT,
		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
}

/*
 * Set bits in this map correspond to the page frames the contents of which
 * should not be saved during the suspend.
 */
static struct memory_bitmap *forbidden_pages_map;

/* Set bits in this map correspond to free page frames. */
static struct memory_bitmap *free_pages_map;

/*
 * Each page frame allocated for creating the image is marked by setting the
 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 */

void swsusp_set_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
}

static int swsusp_page_is_free(struct page *page)
{
	return free_pages_map ?
		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
}

void swsusp_unset_page_free(struct page *page)
{
	if (free_pages_map)
		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
}

static void swsusp_set_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
}

int swsusp_page_is_forbidden(struct page *page)
{
	return forbidden_pages_map ?
		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
}

static void swsusp_unset_page_forbidden(struct page *page)
{
	if (forbidden_pages_map)
		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
}

/**
987 988 989 990 991
 * mark_nosave_pages - Mark pages that should not be saved.
 * @bm: Memory bitmap.
 *
 * Set the bits in @bm that correspond to the page frames the contents of which
 * should not be saved.
992 993 994 995 996 997 998 999 1000 1001 1002
 */
static void mark_nosave_pages(struct memory_bitmap *bm)
{
	struct nosave_region *region;

	if (list_empty(&nosave_regions))
		return;

	list_for_each_entry(region, &nosave_regions, list) {
		unsigned long pfn;

1003 1004 1005 1006
		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
				- 1);
1007 1008

		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1009 1010 1011 1012 1013 1014 1015 1016 1017
			if (pfn_valid(pfn)) {
				/*
				 * It is safe to ignore the result of
				 * mem_bm_set_bit_check() here, since we won't
				 * touch the PFNs for which the error is
				 * returned anyway.
				 */
				mem_bm_set_bit_check(bm, pfn);
			}
1018 1019 1020 1021
	}
}

/**
1022 1023 1024 1025 1026 1027
 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
 *
 * Create bitmaps needed for marking page frames that should not be saved and
 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
 * only modified if everything goes well, because we don't want the bits to be
 * touched before both bitmaps are set up.
1028 1029 1030 1031 1032 1033
 */
int create_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;
	int error = 0;

1034 1035 1036 1037
	if (forbidden_pages_map && free_pages_map)
		return 0;
	else
		BUG_ON(forbidden_pages_map || free_pages_map);
1038

1039
	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1040 1041 1042
	if (!bm1)
		return -ENOMEM;

1043
	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1044 1045 1046
	if (error)
		goto Free_first_object;

1047
	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1048 1049 1050
	if (!bm2)
		goto Free_first_bitmap;

1051
	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1052 1053 1054 1055 1056 1057 1058
	if (error)
		goto Free_second_object;

	forbidden_pages_map = bm1;
	free_pages_map = bm2;
	mark_nosave_pages(forbidden_pages_map);

R
Rafael J. Wysocki 已提交
1059
	pr_debug("PM: Basic memory bitmaps created\n");
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

	return 0;

 Free_second_object:
	kfree(bm2);
 Free_first_bitmap:
 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 Free_first_object:
	kfree(bm1);
	return -ENOMEM;
}

/**
1073 1074 1075 1076 1077
 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
 *
 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
 * auxiliary pointers are necessary so that the bitmaps themselves are not
 * referred to while they are being freed.
1078 1079 1080 1081 1082
 */
void free_basic_memory_bitmaps(void)
{
	struct memory_bitmap *bm1, *bm2;

1083 1084
	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
		return;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

	bm1 = forbidden_pages_map;
	bm2 = free_pages_map;
	forbidden_pages_map = NULL;
	free_pages_map = NULL;
	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
	kfree(bm1);
	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
	kfree(bm2);

R
Rafael J. Wysocki 已提交
1095
	pr_debug("PM: Basic memory bitmaps freed\n");
1096 1097
}

1098
/**
1099 1100 1101 1102 1103 1104
 * snapshot_additional_pages - Estimate the number of extra pages needed.
 * @zone: Memory zone to carry out the computation for.
 *
 * Estimate the number of additional pages needed for setting up a hibernation
 * image data structures for @zone (usually, the returned value is greater than
 * the exact number).
1105 1106 1107
 */
unsigned int snapshot_additional_pages(struct zone *zone)
{
1108
	unsigned int rtree, nodes;
1109

1110 1111 1112 1113 1114 1115 1116 1117
	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
			      LINKED_PAGE_DATA_SIZE);
	while (nodes > 1) {
		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
		rtree += nodes;
	}

1118
	return 2 * rtree;
1119 1120
}

1121 1122
#ifdef CONFIG_HIGHMEM
/**
1123 1124 1125
 * count_free_highmem_pages - Compute the total number of free highmem pages.
 *
 * The returned number is system-wide.
1126 1127 1128 1129 1130 1131
 */
static unsigned int count_free_highmem_pages(void)
{
	struct zone *zone;
	unsigned int cnt = 0;

1132 1133
	for_each_populated_zone(zone)
		if (is_highmem(zone))
1134
			cnt += zone_page_state(zone, NR_FREE_PAGES);
1135 1136 1137 1138 1139

	return cnt;
}

/**
1140 1141 1142
 * saveable_highmem_page - Check if a highmem page is saveable.
 *
 * Determine whether a highmem page should be included in a hibernation image.
1143
 *
1144 1145
 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 * and it isn't part of a free chunk of pages.
1146
 */
1147
static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1148 1149 1150 1151 1152 1153 1154
{
	struct page *page;

	if (!pfn_valid(pfn))
		return NULL;

	page = pfn_to_page(pfn);
1155 1156
	if (page_zone(page) != zone)
		return NULL;
1157 1158 1159

	BUG_ON(!PageHighMem(page));

1160 1161
	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
	    PageReserved(page))
1162 1163
		return NULL;

1164 1165 1166
	if (page_is_guard(page))
		return NULL;

1167 1168 1169 1170
	return page;
}

/**
1171
 * count_highmem_pages - Compute the total number of saveable highmem pages.
1172
 */
1173
static unsigned int count_highmem_pages(void)
1174 1175 1176 1177
{
	struct zone *zone;
	unsigned int n = 0;

1178
	for_each_populated_zone(zone) {
1179 1180 1181 1182 1183 1184
		unsigned long pfn, max_zone_pfn;

		if (!is_highmem(zone))
			continue;

		mark_free_pages(zone);
1185
		max_zone_pfn = zone_end_pfn(zone);
1186
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1187
			if (saveable_highmem_page(zone, pfn))
1188 1189 1190 1191 1192
				n++;
	}
	return n;
}
#else
1193 1194 1195 1196
static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
{
	return NULL;
}
1197 1198
#endif /* CONFIG_HIGHMEM */

1199
/**
1200 1201 1202 1203
 * saveable_page - Check if the given page is saveable.
 *
 * Determine whether a non-highmem page should be included in a hibernation
 * image.
1204
 *
1205 1206 1207
 * We should save the page if it isn't Nosave, and is not in the range
 * of pages statically defined as 'unsaveable', and it isn't part of
 * a free chunk of pages.
1208
 */
1209
static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1210
{
P
Pavel Machek 已提交
1211
	struct page *page;
1212 1213

	if (!pfn_valid(pfn))
1214
		return NULL;
1215 1216

	page = pfn_to_page(pfn);
1217 1218
	if (page_zone(page) != zone)
		return NULL;
1219

1220 1221
	BUG_ON(PageHighMem(page));

1222
	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1223
		return NULL;
1224

1225 1226
	if (PageReserved(page)
	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1227
		return NULL;
1228

1229 1230 1231
	if (page_is_guard(page))
		return NULL;

1232
	return page;
1233 1234
}

1235
/**
1236
 * count_data_pages - Compute the total number of saveable non-highmem pages.
1237
 */
1238
static unsigned int count_data_pages(void)
1239 1240
{
	struct zone *zone;
1241
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
1242
	unsigned int n = 0;
1243

1244
	for_each_populated_zone(zone) {
1245 1246
		if (is_highmem(zone))
			continue;
1247

1248
		mark_free_pages(zone);
1249
		max_zone_pfn = zone_end_pfn(zone);
1250
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1251
			if (saveable_page(zone, pfn))
1252
				n++;
1253
	}
1254
	return n;
1255 1256
}

1257 1258
/*
 * This is needed, because copy_page and memcpy are not usable for copying
1259 1260 1261
 * task structs.
 */
static inline void do_copy_page(long *dst, long *src)
1262 1263 1264 1265 1266 1267 1268
{
	int n;

	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

1269
/**
1270 1271 1272 1273 1274
 * safe_copy_page - Copy a page in a safe way.
 *
 * Check if the page we are going to copy is marked as present in the kernel
 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
 * and in that case kernel_page_present() always returns 'true').
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
 */
static void safe_copy_page(void *dst, struct page *s_page)
{
	if (kernel_page_present(s_page)) {
		do_copy_page(dst, page_address(s_page));
	} else {
		kernel_map_pages(s_page, 1, 1);
		do_copy_page(dst, page_address(s_page));
		kernel_map_pages(s_page, 1, 0);
	}
}

1287
#ifdef CONFIG_HIGHMEM
1288
static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1289 1290
{
	return is_highmem(zone) ?
1291
		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1292 1293
}

1294
static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1295 1296 1297 1298 1299 1300 1301
{
	struct page *s_page, *d_page;
	void *src, *dst;

	s_page = pfn_to_page(src_pfn);
	d_page = pfn_to_page(dst_pfn);
	if (PageHighMem(s_page)) {
1302 1303
		src = kmap_atomic(s_page);
		dst = kmap_atomic(d_page);
1304
		do_copy_page(dst, src);
1305 1306
		kunmap_atomic(dst);
		kunmap_atomic(src);
1307 1308
	} else {
		if (PageHighMem(d_page)) {
1309 1310
			/*
			 * The page pointed to by src may contain some kernel
1311 1312
			 * data modified by kmap_atomic()
			 */
1313
			safe_copy_page(buffer, s_page);
1314
			dst = kmap_atomic(d_page);
1315
			copy_page(dst, buffer);
1316
			kunmap_atomic(dst);
1317
		} else {
1318
			safe_copy_page(page_address(d_page), s_page);
1319 1320 1321 1322
		}
	}
}
#else
1323
#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1324

1325
static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1326
{
1327 1328
	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
				pfn_to_page(src_pfn));
1329 1330 1331
}
#endif /* CONFIG_HIGHMEM */

1332 1333
static void copy_data_pages(struct memory_bitmap *copy_bm,
			    struct memory_bitmap *orig_bm)
1334 1335
{
	struct zone *zone;
1336
	unsigned long pfn;
1337

1338
	for_each_populated_zone(zone) {
1339 1340
		unsigned long max_zone_pfn;

1341
		mark_free_pages(zone);
1342
		max_zone_pfn = zone_end_pfn(zone);
1343
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1344
			if (page_is_saveable(zone, pfn))
1345
				memory_bm_set_bit(orig_bm, pfn);
1346
	}
1347 1348
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
F
Fengguang Wu 已提交
1349
	for(;;) {
1350
		pfn = memory_bm_next_pfn(orig_bm);
F
Fengguang Wu 已提交
1351 1352 1353 1354
		if (unlikely(pfn == BM_END_OF_MAP))
			break;
		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
	}
1355 1356
}

1357 1358 1359 1360
/* Total number of image pages */
static unsigned int nr_copy_pages;
/* Number of pages needed for saving the original pfns of the image pages */
static unsigned int nr_meta_pages;
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
/*
 * Numbers of normal and highmem page frames allocated for hibernation image
 * before suspending devices.
 */
unsigned int alloc_normal, alloc_highmem;
/*
 * Memory bitmap used for marking saveable pages (during hibernation) or
 * hibernation image pages (during restore)
 */
static struct memory_bitmap orig_bm;
/*
 * Memory bitmap used during hibernation for marking allocated page frames that
 * will contain copies of saveable pages.  During restore it is initially used
 * for marking hibernation image pages, but then the set bits from it are
 * duplicated in @orig_bm and it is released.  On highmem systems it is next
 * used for marking "safe" highmem pages, but it has to be reinitialized for
 * this purpose.
 */
static struct memory_bitmap copy_bm;
1380

1381
/**
1382
 * swsusp_free - Free pages allocated for hibernation image.
1383
 *
1384 1385
 * Image pages are alocated before snapshot creation, so they need to be
 * released after resume.
1386 1387 1388
 */
void swsusp_free(void)
{
1389
	unsigned long fb_pfn, fr_pfn;
1390

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	if (!forbidden_pages_map || !free_pages_map)
		goto out;

	memory_bm_position_reset(forbidden_pages_map);
	memory_bm_position_reset(free_pages_map);

loop:
	fr_pfn = memory_bm_next_pfn(free_pages_map);
	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);

	/*
	 * Find the next bit set in both bitmaps. This is guaranteed to
	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
	 */
	do {
		if (fb_pfn < fr_pfn)
			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
		if (fr_pfn < fb_pfn)
			fr_pfn = memory_bm_next_pfn(free_pages_map);
	} while (fb_pfn != fr_pfn);

	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
		struct page *page = pfn_to_page(fr_pfn);

		memory_bm_clear_current(forbidden_pages_map);
		memory_bm_clear_current(free_pages_map);
		__free_page(page);
		goto loop;
1419
	}
1420 1421

out:
1422 1423
	nr_copy_pages = 0;
	nr_meta_pages = 0;
1424
	restore_pblist = NULL;
1425
	buffer = NULL;
1426 1427
	alloc_normal = 0;
	alloc_highmem = 0;
1428 1429
}

1430 1431 1432 1433
/* Helper functions used for the shrinking of memory. */

#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)

1434
/**
1435
 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1436 1437
 * @nr_pages: Number of page frames to allocate.
 * @mask: GFP flags to use for the allocation.
1438
 *
1439 1440 1441 1442 1443 1444 1445
 * Return value: Number of page frames actually allocated
 */
static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
{
	unsigned long nr_alloc = 0;

	while (nr_pages > 0) {
1446 1447 1448 1449
		struct page *page;

		page = alloc_image_page(mask);
		if (!page)
1450
			break;
1451 1452 1453 1454 1455
		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
		if (PageHighMem(page))
			alloc_highmem++;
		else
			alloc_normal++;
1456 1457 1458 1459 1460 1461 1462
		nr_pages--;
		nr_alloc++;
	}

	return nr_alloc;
}

1463 1464
static unsigned long preallocate_image_memory(unsigned long nr_pages,
					      unsigned long avail_normal)
1465
{
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	unsigned long alloc;

	if (avail_normal <= alloc_normal)
		return 0;

	alloc = avail_normal - alloc_normal;
	if (nr_pages < alloc)
		alloc = nr_pages;

	return preallocate_image_pages(alloc, GFP_IMAGE);
1476 1477 1478 1479 1480 1481 1482 1483 1484
}

#ifdef CONFIG_HIGHMEM
static unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
}

/**
1485
 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1486
 */
1487 1488 1489 1490 1491 1492
static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
{
	x *= multiplier;
	do_div(x, base);
	return (unsigned long)x;
}
1493

1494
static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1495 1496
						  unsigned long highmem,
						  unsigned long total)
1497
{
1498 1499 1500
	unsigned long alloc = __fraction(nr_pages, highmem, total);

	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1501
}
1502 1503 1504 1505 1506 1507 1508
#else /* CONFIG_HIGHMEM */
static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
{
	return 0;
}

static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1509 1510
							 unsigned long highmem,
							 unsigned long total)
1511 1512 1513 1514
{
	return 0;
}
#endif /* CONFIG_HIGHMEM */
1515

1516
/**
1517
 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1518
 */
1519
static unsigned long free_unnecessary_pages(void)
1520
{
1521
	unsigned long save, to_free_normal, to_free_highmem, free;
1522

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	save = count_data_pages();
	if (alloc_normal >= save) {
		to_free_normal = alloc_normal - save;
		save = 0;
	} else {
		to_free_normal = 0;
		save -= alloc_normal;
	}
	save += count_highmem_pages();
	if (alloc_highmem >= save) {
		to_free_highmem = alloc_highmem - save;
1534 1535
	} else {
		to_free_highmem = 0;
1536 1537 1538 1539 1540
		save -= alloc_highmem;
		if (to_free_normal > save)
			to_free_normal -= save;
		else
			to_free_normal = 0;
1541
	}
1542
	free = to_free_normal + to_free_highmem;
1543 1544 1545

	memory_bm_position_reset(&copy_bm);

1546
	while (to_free_normal > 0 || to_free_highmem > 0) {
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
		struct page *page = pfn_to_page(pfn);

		if (PageHighMem(page)) {
			if (!to_free_highmem)
				continue;
			to_free_highmem--;
			alloc_highmem--;
		} else {
			if (!to_free_normal)
				continue;
			to_free_normal--;
			alloc_normal--;
		}
		memory_bm_clear_bit(&copy_bm, pfn);
		swsusp_unset_page_forbidden(page);
		swsusp_unset_page_free(page);
		__free_page(page);
	}
1566 1567

	return free;
1568 1569
}

1570
/**
1571
 * minimum_image_size - Estimate the minimum acceptable size of an image.
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
 * @saveable: Number of saveable pages in the system.
 *
 * We want to avoid attempting to free too much memory too hard, so estimate the
 * minimum acceptable size of a hibernation image to use as the lower limit for
 * preallocating memory.
 *
 * We assume that the minimum image size should be proportional to
 *
 * [number of saveable pages] - [number of pages that can be freed in theory]
 *
 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1583
 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
 * minus mapped file pages.
 */
static unsigned long minimum_image_size(unsigned long saveable)
{
	unsigned long size;

	size = global_page_state(NR_SLAB_RECLAIMABLE)
		+ global_page_state(NR_ACTIVE_ANON)
		+ global_page_state(NR_INACTIVE_ANON)
		+ global_page_state(NR_ACTIVE_FILE)
		+ global_page_state(NR_INACTIVE_FILE)
		- global_page_state(NR_FILE_MAPPED);

	return saveable <= size ? 0 : saveable - size;
}

1600
/**
1601
 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1602 1603 1604 1605 1606
 *
 * To create a hibernation image it is necessary to make a copy of every page
 * frame in use.  We also need a number of page frames to be free during
 * hibernation for allocations made while saving the image and for device
 * drivers, in case they need to allocate memory from their hibernation
1607 1608 1609 1610
 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
 * total number of available page frames and allocate at least
1611
 *
1612 1613
 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1614 1615 1616 1617 1618
 *
 * of them, which corresponds to the maximum size of a hibernation image.
 *
 * If image_size is set below the number following from the above formula,
 * the preallocation of memory is continued until the total number of saveable
1619 1620
 * pages in the system is below the requested image size or the minimum
 * acceptable image size returned by minimum_image_size(), whichever is greater.
1621
 */
1622
int hibernate_preallocate_memory(void)
1623 1624
{
	struct zone *zone;
1625
	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1626
	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1627
	ktime_t start, stop;
1628
	int error;
1629

1630
	printk(KERN_INFO "PM: Preallocating image memory... ");
1631
	start = ktime_get();
1632

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
	if (error)
		goto err_out;

	alloc_normal = 0;
	alloc_highmem = 0;

1644
	/* Count the number of saveable data pages. */
1645
	save_highmem = count_highmem_pages();
1646
	saveable = count_data_pages();
1647

1648 1649 1650 1651 1652
	/*
	 * Compute the total number of page frames we can use (count) and the
	 * number of pages needed for image metadata (size).
	 */
	count = saveable;
1653 1654
	saveable += save_highmem;
	highmem = save_highmem;
1655 1656 1657 1658 1659 1660 1661 1662
	size = 0;
	for_each_populated_zone(zone) {
		size += snapshot_additional_pages(zone);
		if (is_highmem(zone))
			highmem += zone_page_state(zone, NR_FREE_PAGES);
		else
			count += zone_page_state(zone, NR_FREE_PAGES);
	}
1663
	avail_normal = count;
1664 1665 1666
	count += highmem;
	count -= totalreserve_pages;

1667 1668 1669
	/* Add number of pages required for page keys (s390 only). */
	size += page_key_additional_pages(saveable);

1670
	/* Compute the maximum number of saveable pages to leave in memory. */
1671 1672
	max_size = (count - (size + PAGES_FOR_IO)) / 2
			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1673
	/* Compute the desired number of image pages specified by image_size. */
1674 1675 1676 1677
	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
	if (size > max_size)
		size = max_size;
	/*
1678 1679 1680
	 * If the desired number of image pages is at least as large as the
	 * current number of saveable pages in memory, allocate page frames for
	 * the image and we're done.
1681
	 */
1682 1683
	if (size >= saveable) {
		pages = preallocate_image_highmem(save_highmem);
1684
		pages += preallocate_image_memory(saveable - pages, avail_normal);
1685
		goto out;
1686
	}
1687

1688 1689
	/* Estimate the minimum size of the image. */
	pages = minimum_image_size(saveable);
1690 1691 1692 1693 1694 1695 1696 1697 1698
	/*
	 * To avoid excessive pressure on the normal zone, leave room in it to
	 * accommodate an image of the minimum size (unless it's already too
	 * small, in which case don't preallocate pages from it at all).
	 */
	if (avail_normal > pages)
		avail_normal -= pages;
	else
		avail_normal = 0;
1699 1700 1701
	if (size < pages)
		size = min_t(unsigned long, pages, max_size);

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	/*
	 * Let the memory management subsystem know that we're going to need a
	 * large number of page frames to allocate and make it free some memory.
	 * NOTE: If this is not done, performance will be hurt badly in some
	 * test cases.
	 */
	shrink_all_memory(saveable - size);

	/*
	 * The number of saveable pages in memory was too high, so apply some
	 * pressure to decrease it.  First, make room for the largest possible
	 * image and fail if that doesn't work.  Next, try to decrease the size
1714 1715
	 * of the image as much as indicated by 'size' using allocations from
	 * highmem and non-highmem zones separately.
1716 1717
	 */
	pages_highmem = preallocate_image_highmem(highmem / 2);
1718 1719 1720 1721 1722
	alloc = count - max_size;
	if (alloc > pages_highmem)
		alloc -= pages_highmem;
	else
		alloc = 0;
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	pages = preallocate_image_memory(alloc, avail_normal);
	if (pages < alloc) {
		/* We have exhausted non-highmem pages, try highmem. */
		alloc -= pages;
		pages += pages_highmem;
		pages_highmem = preallocate_image_highmem(alloc);
		if (pages_highmem < alloc)
			goto err_out;
		pages += pages_highmem;
		/*
		 * size is the desired number of saveable pages to leave in
		 * memory, so try to preallocate (all memory - size) pages.
		 */
		alloc = (count - pages) - size;
		pages += preallocate_image_highmem(alloc);
	} else {
		/*
		 * There are approximately max_size saveable pages at this point
		 * and we want to reduce this number down to size.
		 */
		alloc = max_size - size;
		size = preallocate_highmem_fraction(alloc, highmem, count);
		pages_highmem += size;
		alloc -= size;
		size = preallocate_image_memory(alloc, avail_normal);
		pages_highmem += preallocate_image_highmem(alloc - size);
		pages += pages_highmem + size;
	}
1751

1752 1753 1754 1755 1756
	/*
	 * We only need as many page frames for the image as there are saveable
	 * pages in memory, but we have allocated more.  Release the excessive
	 * ones now.
	 */
1757
	pages -= free_unnecessary_pages();
1758 1759

 out:
1760
	stop = ktime_get();
1761
	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1762
	swsusp_show_speed(start, stop, pages, "Allocated");
1763 1764

	return 0;
1765 1766 1767 1768 1769

 err_out:
	printk(KERN_CONT "\n");
	swsusp_free();
	return -ENOMEM;
1770 1771
}

1772 1773
#ifdef CONFIG_HIGHMEM
/**
1774 1775 1776 1777 1778
 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
 *
 * Compute the number of non-highmem pages that will be necessary for creating
 * copies of highmem pages.
 */
1779 1780
static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
{
1781
	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1782 1783 1784 1785 1786 1787 1788 1789 1790

	if (free_highmem >= nr_highmem)
		nr_highmem = 0;
	else
		nr_highmem -= free_highmem;

	return nr_highmem;
}
#else
1791
static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1792
#endif /* CONFIG_HIGHMEM */
1793 1794

/**
1795
 * enough_free_mem - Check if there is enough free memory for the image.
1796
 */
1797
static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1798
{
1799
	struct zone *zone;
1800
	unsigned int free = alloc_normal;
1801

1802
	for_each_populated_zone(zone)
1803
		if (!is_highmem(zone))
1804
			free += zone_page_state(zone, NR_FREE_PAGES);
1805

1806
	nr_pages += count_pages_for_highmem(nr_highmem);
1807 1808
	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
		nr_pages, PAGES_FOR_IO, free);
1809

1810
	return free > nr_pages + PAGES_FOR_IO;
1811 1812
}

1813 1814
#ifdef CONFIG_HIGHMEM
/**
1815 1816 1817 1818
 * get_highmem_buffer - Allocate a buffer for highmem pages.
 *
 * If there are some highmem pages in the hibernation image, we may need a
 * buffer to copy them and/or load their data.
1819 1820 1821 1822 1823 1824 1825 1826
 */
static inline int get_highmem_buffer(int safe_needed)
{
	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
	return buffer ? 0 : -ENOMEM;
}

/**
1827 1828 1829 1830
 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
 *
 * Try to allocate as many pages as needed, but if the number of free highmem
 * pages is less than that, allocate them all.
1831
 */
1832 1833
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int nr_highmem)
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
{
	unsigned int to_alloc = count_free_highmem_pages();

	if (to_alloc > nr_highmem)
		to_alloc = nr_highmem;

	nr_highmem -= to_alloc;
	while (to_alloc-- > 0) {
		struct page *page;

1844
		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1845 1846 1847 1848 1849 1850 1851
		memory_bm_set_bit(bm, page_to_pfn(page));
	}
	return nr_highmem;
}
#else
static inline int get_highmem_buffer(int safe_needed) { return 0; }

1852 1853
static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
					       unsigned int n) { return 0; }
1854 1855 1856
#endif /* CONFIG_HIGHMEM */

/**
1857
 * swsusp_alloc - Allocate memory for hibernation image.
1858
 *
1859 1860 1861
 * We first try to allocate as many highmem pages as there are
 * saveable highmem pages in the system.  If that fails, we allocate
 * non-highmem pages for the copies of the remaining highmem ones.
1862
 *
1863 1864 1865
 * In this approach it is likely that the copies of highmem pages will
 * also be located in the high memory, because of the way in which
 * copy_data_pages() works.
1866
 */
1867 1868 1869
static int swsusp_alloc(struct memory_bitmap *orig_bm,
			struct memory_bitmap *copy_bm,
			unsigned int nr_pages, unsigned int nr_highmem)
1870
{
1871
	if (nr_highmem > 0) {
1872
		if (get_highmem_buffer(PG_ANY))
1873 1874 1875 1876 1877
			goto err_out;
		if (nr_highmem > alloc_highmem) {
			nr_highmem -= alloc_highmem;
			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
		}
1878
	}
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	if (nr_pages > alloc_normal) {
		nr_pages -= alloc_normal;
		while (nr_pages-- > 0) {
			struct page *page;

			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
			if (!page)
				goto err_out;
			memory_bm_set_bit(copy_bm, page_to_pfn(page));
		}
1889
	}
1890

1891
	return 0;
1892

1893
 err_out:
1894
	swsusp_free();
1895
	return -ENOMEM;
1896 1897
}

1898
asmlinkage __visible int swsusp_save(void)
1899
{
1900
	unsigned int nr_pages, nr_highmem;
1901

1902
	printk(KERN_INFO "PM: Creating hibernation image:\n");
1903

1904
	drain_local_pages(NULL);
1905
	nr_pages = count_data_pages();
1906
	nr_highmem = count_highmem_pages();
R
Rafael J. Wysocki 已提交
1907
	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1908

1909
	if (!enough_free_mem(nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1910
		printk(KERN_ERR "PM: Not enough free memory\n");
1911 1912 1913
		return -ENOMEM;
	}

1914
	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
R
Rafael J. Wysocki 已提交
1915
		printk(KERN_ERR "PM: Memory allocation failed\n");
1916
		return -ENOMEM;
1917
	}
1918

1919 1920
	/*
	 * During allocating of suspend pagedir, new cold pages may appear.
1921 1922
	 * Kill them.
	 */
1923
	drain_local_pages(NULL);
1924
	copy_data_pages(&copy_bm, &orig_bm);
1925 1926 1927 1928 1929 1930 1931

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

1932
	nr_pages += nr_highmem;
1933
	nr_copy_pages = nr_pages;
1934
	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1935

R
Rafael J. Wysocki 已提交
1936 1937
	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
		nr_pages);
1938

1939 1940
	return 0;
}
1941

1942 1943
#ifndef CONFIG_ARCH_HIBERNATION_HEADER
static int init_header_complete(struct swsusp_info *info)
1944
{
1945
	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1946
	info->version_code = LINUX_VERSION_CODE;
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	return 0;
}

static char *check_image_kernel(struct swsusp_info *info)
{
	if (info->version_code != LINUX_VERSION_CODE)
		return "kernel version";
	if (strcmp(info->uts.sysname,init_utsname()->sysname))
		return "system type";
	if (strcmp(info->uts.release,init_utsname()->release))
		return "kernel release";
	if (strcmp(info->uts.version,init_utsname()->version))
		return "version";
	if (strcmp(info->uts.machine,init_utsname()->machine))
		return "machine";
	return NULL;
}
#endif /* CONFIG_ARCH_HIBERNATION_HEADER */

1966 1967 1968 1969 1970
unsigned long snapshot_get_image_size(void)
{
	return nr_copy_pages + nr_meta_pages + 1;
}

1971 1972 1973
static int init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
1974
	info->num_physpages = get_num_physpages();
1975
	info->image_pages = nr_copy_pages;
1976
	info->pages = snapshot_get_image_size();
1977 1978
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
1979
	return init_header_complete(info);
1980 1981 1982
}

/**
1983 1984 1985 1986 1987 1988
 * pack_pfns - Prepare PFNs for saving.
 * @bm: Memory bitmap.
 * @buf: Memory buffer to store the PFNs in.
 *
 * PFNs corresponding to set bits in @bm are stored in the area of memory
 * pointed to by @buf (1 page at a time).
1989
 */
1990
static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1991 1992 1993
{
	int j;

1994
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1995 1996
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
1997
			break;
1998 1999
		/* Save page key for data page (s390 only). */
		page_key_read(buf + j);
2000 2001 2002 2003
	}
}

/**
2004 2005
 * snapshot_read_next - Get the address to read the next image page from.
 * @handle: Snapshot handle to be used for the reading.
2006
 *
2007 2008 2009
 * On the first call, @handle should point to a zeroed snapshot_handle
 * structure.  The structure gets populated then and a pointer to it should be
 * passed to this function every next time.
2010
 *
2011 2012 2013
 * On success, the function returns a positive number.  Then, the caller
 * is allowed to read up to the returned number of bytes from the memory
 * location computed by the data_of() macro.
2014
 *
2015 2016 2017
 * The function returns 0 to indicate the end of the data stream condition,
 * and negative numbers are returned on errors.  If that happens, the structure
 * pointed to by @handle is not updated and should not be used any more.
2018
 */
J
Jiri Slaby 已提交
2019
int snapshot_read_next(struct snapshot_handle *handle)
2020
{
2021
	if (handle->cur > nr_meta_pages + nr_copy_pages)
2022
		return 0;
2023

2024 2025
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
2026
		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2027 2028 2029
		if (!buffer)
			return -ENOMEM;
	}
J
Jiri Slaby 已提交
2030
	if (!handle->cur) {
2031 2032 2033 2034 2035
		int error;

		error = init_header((struct swsusp_info *)buffer);
		if (error)
			return error;
2036
		handle->buffer = buffer;
2037 2038
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
J
Jiri Slaby 已提交
2039
	} else if (handle->cur <= nr_meta_pages) {
2040
		clear_page(buffer);
J
Jiri Slaby 已提交
2041 2042 2043
		pack_pfns(buffer, &orig_bm);
	} else {
		struct page *page;
2044

J
Jiri Slaby 已提交
2045 2046
		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
		if (PageHighMem(page)) {
2047 2048
			/*
			 * Highmem pages are copied to the buffer,
J
Jiri Slaby 已提交
2049 2050 2051 2052
			 * because we can't return with a kmapped
			 * highmem page (we may not be called again).
			 */
			void *kaddr;
2053

2054
			kaddr = kmap_atomic(page);
2055
			copy_page(buffer, kaddr);
2056
			kunmap_atomic(kaddr);
J
Jiri Slaby 已提交
2057 2058 2059
			handle->buffer = buffer;
		} else {
			handle->buffer = page_address(page);
2060 2061
		}
	}
J
Jiri Slaby 已提交
2062 2063
	handle->cur++;
	return PAGE_SIZE;
2064 2065
}

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
static void duplicate_memory_bitmap(struct memory_bitmap *dst,
				    struct memory_bitmap *src)
{
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
	}
}

2079
/**
2080 2081 2082 2083
 * mark_unsafe_pages - Mark pages that were used before hibernation.
 *
 * Mark the pages that cannot be used for storing the image during restoration,
 * because they conflict with the pages that had been used before hibernation.
2084
 */
2085
static void mark_unsafe_pages(struct memory_bitmap *bm)
2086
{
2087
	unsigned long pfn;
2088

2089 2090 2091 2092 2093 2094
	/* Clear the "free"/"unsafe" bit for all PFNs */
	memory_bm_position_reset(free_pages_map);
	pfn = memory_bm_next_pfn(free_pages_map);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_clear_current(free_pages_map);
		pfn = memory_bm_next_pfn(free_pages_map);
2095 2096
	}

2097 2098
	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
	duplicate_memory_bitmap(free_pages_map, bm);
2099

2100
	allocated_unsafe_pages = 0;
2101 2102
}

2103
static int check_header(struct swsusp_info *info)
2104
{
2105
	char *reason;
2106

2107
	reason = check_image_kernel(info);
2108
	if (!reason && info->num_physpages != get_num_physpages())
2109 2110
		reason = "memory size";
	if (reason) {
R
Rafael J. Wysocki 已提交
2111
		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2112 2113 2114 2115 2116 2117
		return -EPERM;
	}
	return 0;
}

/**
2118
 * load header - Check the image header and copy the data from it.
2119
 */
2120
static int load_header(struct swsusp_info *info)
2121 2122 2123
{
	int error;

2124
	restore_pblist = NULL;
2125 2126 2127 2128 2129 2130 2131 2132 2133
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
2134 2135 2136 2137 2138 2139
 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
 * @bm: Memory bitmap.
 * @buf: Area of memory containing the PFNs.
 *
 * For each element of the array pointed to by @buf (1 page at a time), set the
 * corresponding bit in @bm.
2140
 */
2141
static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2142 2143 2144
{
	int j;

2145 2146 2147 2148
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

2149 2150 2151
		/* Extract and buffer page key for data page (s390 only). */
		page_key_memorize(buf + j);

2152
		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2153 2154 2155
			memory_bm_set_bit(bm, buf[j]);
		else
			return -EFAULT;
2156
	}
2157 2158

	return 0;
2159 2160
}

2161
#ifdef CONFIG_HIGHMEM
2162 2163
/*
 * struct highmem_pbe is used for creating the list of highmem pages that
2164 2165 2166 2167 2168 2169 2170 2171 2172
 * should be restored atomically during the resume from disk, because the page
 * frames they have occupied before the suspend are in use.
 */
struct highmem_pbe {
	struct page *copy_page;	/* data is here now */
	struct page *orig_page;	/* data was here before the suspend */
	struct highmem_pbe *next;
};

2173 2174
/*
 * List of highmem PBEs needed for restoring the highmem pages that were
2175 2176 2177 2178 2179 2180 2181
 * allocated before the suspend and included in the suspend image, but have
 * also been allocated by the "resume" kernel, so their contents cannot be
 * written directly to their "original" page frames.
 */
static struct highmem_pbe *highmem_pblist;

/**
2182 2183 2184 2185
 * count_highmem_image_pages - Compute the number of highmem pages in the image.
 * @bm: Memory bitmap.
 *
 * The bits in @bm that correspond to image pages are assumed to be set.
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
 */
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
{
	unsigned long pfn;
	unsigned int cnt = 0;

	memory_bm_position_reset(bm);
	pfn = memory_bm_next_pfn(bm);
	while (pfn != BM_END_OF_MAP) {
		if (PageHighMem(pfn_to_page(pfn)))
			cnt++;

		pfn = memory_bm_next_pfn(bm);
	}
	return cnt;
}

static unsigned int safe_highmem_pages;

static struct memory_bitmap *safe_highmem_bm;

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
/**
 * prepare_highmem_image - Allocate memory for loading highmem data from image.
 * @bm: Pointer to an uninitialized memory bitmap structure.
 * @nr_highmem_p: Pointer to the number of highmem image pages.
 *
 * Try to allocate as many highmem pages as there are highmem image pages
 * (@nr_highmem_p points to the variable containing the number of highmem image
 * pages).  The pages that are "safe" (ie. will not be overwritten when the
 * hibernation image is restored entirely) have the corresponding bits set in
 * @bm (it must be unitialized).
 *
 * NOTE: This function should not be called if there are no highmem image pages.
 */
2220 2221
static int prepare_highmem_image(struct memory_bitmap *bm,
				 unsigned int *nr_highmem_p)
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
{
	unsigned int to_alloc;

	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
		return -ENOMEM;

	if (get_highmem_buffer(PG_SAFE))
		return -ENOMEM;

	to_alloc = count_free_highmem_pages();
	if (to_alloc > *nr_highmem_p)
		to_alloc = *nr_highmem_p;
	else
		*nr_highmem_p = to_alloc;

	safe_highmem_pages = 0;
	while (to_alloc-- > 0) {
		struct page *page;

		page = alloc_page(__GFP_HIGHMEM);
2242
		if (!swsusp_page_is_free(page)) {
2243 2244 2245 2246 2247
			/* The page is "safe", set its bit the bitmap */
			memory_bm_set_bit(bm, page_to_pfn(page));
			safe_highmem_pages++;
		}
		/* Mark the page as allocated */
2248 2249
		swsusp_set_page_forbidden(page);
		swsusp_set_page_free(page);
2250 2251 2252 2253 2254 2255
	}
	memory_bm_position_reset(bm);
	safe_highmem_bm = bm;
	return 0;
}

2256 2257
static struct page *last_highmem_page;

2258
/**
2259 2260 2261 2262
 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
 *
 * For a given highmem image page get a buffer that suspend_write_next() should
 * return to its caller to write to.
2263
 *
2264 2265 2266 2267
 * If the page is to be saved to its "original" page frame or a copy of
 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
 * the copy of the page is to be made in normal memory, so the address of
 * the copy is returned.
2268
 *
2269 2270 2271 2272 2273 2274
 * If @buffer is returned, the caller of suspend_write_next() will write
 * the page's contents to @buffer, so they will have to be copied to the
 * right location on the next call to suspend_write_next() and it is done
 * with the help of copy_last_highmem_page().  For this purpose, if
 * @buffer is returned, @last_highmem_page is set to the page to which
 * the data will have to be copied from @buffer.
2275
 */
2276 2277
static void *get_highmem_page_buffer(struct page *page,
				     struct chain_allocator *ca)
2278 2279 2280 2281
{
	struct highmem_pbe *pbe;
	void *kaddr;

2282
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2283 2284
		/*
		 * We have allocated the "original" page frame and we can
2285 2286 2287 2288 2289
		 * use it directly to store the loaded page.
		 */
		last_highmem_page = page;
		return buffer;
	}
2290 2291
	/*
	 * The "original" page frame has not been allocated and we have to
2292 2293 2294 2295 2296
	 * use a "safe" page frame to store the loaded page.
	 */
	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
	if (!pbe) {
		swsusp_free();
2297
		return ERR_PTR(-ENOMEM);
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
	}
	pbe->orig_page = page;
	if (safe_highmem_pages > 0) {
		struct page *tmp;

		/* Copy of the page will be stored in high memory */
		kaddr = buffer;
		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
		safe_highmem_pages--;
		last_highmem_page = tmp;
		pbe->copy_page = tmp;
	} else {
		/* Copy of the page will be stored in normal memory */
		kaddr = safe_pages_list;
		safe_pages_list = safe_pages_list->next;
		pbe->copy_page = virt_to_page(kaddr);
	}
	pbe->next = highmem_pblist;
	highmem_pblist = pbe;
	return kaddr;
}

/**
2321 2322 2323 2324 2325
 * copy_last_highmem_page - Copy most the most recent highmem image page.
 *
 * Copy the contents of a highmem image from @buffer, where the caller of
 * snapshot_write_next() has stored them, to the right location represented by
 * @last_highmem_page .
2326 2327 2328 2329 2330 2331
 */
static void copy_last_highmem_page(void)
{
	if (last_highmem_page) {
		void *dst;

2332
		dst = kmap_atomic(last_highmem_page);
2333
		copy_page(dst, buffer);
2334
		kunmap_atomic(dst);
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
		last_highmem_page = NULL;
	}
}

static inline int last_highmem_page_copied(void)
{
	return !last_highmem_page;
}

static inline void free_highmem_data(void)
{
	if (safe_highmem_bm)
		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);

	if (buffer)
		free_image_page(buffer, PG_UNSAFE_CLEAR);
}
#else
2353
static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2354

2355 2356
static inline int prepare_highmem_image(struct memory_bitmap *bm,
					unsigned int *nr_highmem_p) { return 0; }
2357

2358 2359
static inline void *get_highmem_page_buffer(struct page *page,
					    struct chain_allocator *ca)
2360
{
2361
	return ERR_PTR(-EINVAL);
2362 2363 2364 2365 2366 2367 2368
}

static inline void copy_last_highmem_page(void) {}
static inline int last_highmem_page_copied(void) { return 1; }
static inline void free_highmem_data(void) {}
#endif /* CONFIG_HIGHMEM */

2369 2370
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

2371
/**
2372 2373 2374 2375 2376 2377 2378
 * prepare_image - Make room for loading hibernation image.
 * @new_bm: Unitialized memory bitmap structure.
 * @bm: Memory bitmap with unsafe pages marked.
 *
 * Use @bm to mark the pages that will be overwritten in the process of
 * restoring the system memory state from the suspend image ("unsafe" pages)
 * and allocate memory for the image.
2379
 *
2380 2381 2382 2383 2384
 * The idea is to allocate a new memory bitmap first and then allocate
 * as many pages as needed for image data, but without specifying what those
 * pages will be used for just yet.  Instead, we mark them all as allocated and
 * create a lists of "safe" pages to be used later.  On systems with high
 * memory a list of "safe" highmem pages is created too.
2385
 */
2386
static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2387
{
2388
	unsigned int nr_pages, nr_highmem;
2389
	struct linked_page *lp;
2390
	int error;
2391

2392 2393 2394 2395 2396
	/* If there is no highmem, the buffer will not be necessary */
	free_image_page(buffer, PG_UNSAFE_CLEAR);
	buffer = NULL;

	nr_highmem = count_highmem_image_pages(bm);
2397
	mark_unsafe_pages(bm);
2398 2399 2400 2401 2402 2403 2404

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
2405 2406 2407 2408 2409
	if (nr_highmem > 0) {
		error = prepare_highmem_image(bm, &nr_highmem);
		if (error)
			goto Free;
	}
2410 2411
	/*
	 * Reserve some safe pages for potential later use.
2412 2413 2414 2415
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2416 2417
	 *
	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2418
	 */
2419
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2420 2421
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
2422
		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2423
		if (!lp) {
2424
			error = -ENOMEM;
2425 2426
			goto Free;
		}
2427 2428
		lp->next = safe_pages_list;
		safe_pages_list = lp;
2429
		nr_pages--;
2430
	}
2431
	/* Preallocate memory for the image */
2432
	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2433 2434 2435 2436 2437 2438
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
2439
		if (!swsusp_page_is_free(virt_to_page(lp))) {
2440 2441 2442
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
2443
		}
2444
		/* Mark the page as allocated */
2445 2446
		swsusp_set_page_forbidden(virt_to_page(lp));
		swsusp_set_page_free(virt_to_page(lp));
2447
		nr_pages--;
2448
	}
2449 2450
	return 0;

R
Rafael J. Wysocki 已提交
2451
 Free:
2452
	swsusp_free();
2453 2454 2455
	return error;
}

2456
/**
2457 2458 2459 2460
 * get_buffer - Get the address to store the next image data page.
 *
 * Get the address that snapshot_write_next() should return to its caller to
 * write to.
2461 2462
 */
static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2463
{
2464
	struct pbe *pbe;
2465 2466
	struct page *page;
	unsigned long pfn = memory_bm_next_pfn(bm);
2467

2468 2469 2470 2471
	if (pfn == BM_END_OF_MAP)
		return ERR_PTR(-EFAULT);

	page = pfn_to_page(pfn);
2472 2473 2474
	if (PageHighMem(page))
		return get_highmem_page_buffer(page, ca);

2475
	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2476 2477
		/*
		 * We have allocated the "original" page frame and we can
2478
		 * use it directly to store the loaded page.
2479
		 */
2480 2481
		return page_address(page);

2482 2483
	/*
	 * The "original" page frame has not been allocated and we have to
2484
	 * use a "safe" page frame to store the loaded page.
2485
	 */
2486 2487 2488
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
2489
		return ERR_PTR(-ENOMEM);
2490
	}
2491 2492
	pbe->orig_address = page_address(page);
	pbe->address = safe_pages_list;
2493 2494 2495
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
2496
	return pbe->address;
2497 2498
}

2499
/**
2500 2501
 * snapshot_write_next - Get the address to store the next image page.
 * @handle: Snapshot handle structure to guide the writing.
2502
 *
2503 2504 2505
 * On the first call, @handle should point to a zeroed snapshot_handle
 * structure.  The structure gets populated then and a pointer to it should be
 * passed to this function every next time.
2506
 *
2507 2508 2509
 * On success, the function returns a positive number.  Then, the caller
 * is allowed to write up to the returned number of bytes to the memory
 * location computed by the data_of() macro.
2510
 *
2511 2512 2513
 * The function returns 0 to indicate the "end of file" condition.  Negative
 * numbers are returned on errors, in which cases the structure pointed to by
 * @handle is not updated and should not be used any more.
2514
 */
J
Jiri Slaby 已提交
2515
int snapshot_write_next(struct snapshot_handle *handle)
2516
{
2517
	static struct chain_allocator ca;
2518 2519
	int error = 0;

2520
	/* Check if we have already loaded the entire image */
J
Jiri Slaby 已提交
2521
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2522
		return 0;
2523

J
Jiri Slaby 已提交
2524 2525 2526
	handle->sync_read = 1;

	if (!handle->cur) {
2527 2528 2529 2530
		if (!buffer)
			/* This makes the buffer be freed by swsusp_free() */
			buffer = get_image_page(GFP_ATOMIC, PG_ANY);

2531 2532
		if (!buffer)
			return -ENOMEM;
2533

2534
		handle->buffer = buffer;
J
Jiri Slaby 已提交
2535 2536 2537 2538
	} else if (handle->cur == 1) {
		error = load_header(buffer);
		if (error)
			return error;
2539

2540 2541
		safe_pages_list = NULL;

J
Jiri Slaby 已提交
2542 2543 2544 2545
		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
		if (error)
			return error;

2546 2547 2548 2549 2550
		/* Allocate buffer for page keys. */
		error = page_key_alloc(nr_copy_pages);
		if (error)
			return error;

J
Jiri Slaby 已提交
2551 2552 2553 2554
	} else if (handle->cur <= nr_meta_pages + 1) {
		error = unpack_orig_pfns(buffer, &copy_bm);
		if (error)
			return error;
2555

J
Jiri Slaby 已提交
2556 2557
		if (handle->cur == nr_meta_pages + 1) {
			error = prepare_image(&orig_bm, &copy_bm);
2558 2559 2560
			if (error)
				return error;

J
Jiri Slaby 已提交
2561 2562 2563
			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
			memory_bm_position_reset(&orig_bm);
			restore_pblist = NULL;
2564
			handle->buffer = get_buffer(&orig_bm, &ca);
J
Jiri Slaby 已提交
2565
			handle->sync_read = 0;
2566 2567
			if (IS_ERR(handle->buffer))
				return PTR_ERR(handle->buffer);
2568 2569
		}
	} else {
J
Jiri Slaby 已提交
2570
		copy_last_highmem_page();
2571 2572
		/* Restore page key for data page (s390 only). */
		page_key_write(handle->buffer);
J
Jiri Slaby 已提交
2573 2574 2575 2576 2577
		handle->buffer = get_buffer(&orig_bm, &ca);
		if (IS_ERR(handle->buffer))
			return PTR_ERR(handle->buffer);
		if (handle->buffer != buffer)
			handle->sync_read = 0;
2578
	}
J
Jiri Slaby 已提交
2579 2580
	handle->cur++;
	return PAGE_SIZE;
2581 2582
}

2583
/**
2584 2585 2586 2587 2588 2589
 * snapshot_write_finalize - Complete the loading of a hibernation image.
 *
 * Must be called after the last call to snapshot_write_next() in case the last
 * page in the image happens to be a highmem page and its contents should be
 * stored in highmem.  Additionally, it recycles bitmap memory that's not
 * necessary any more.
2590 2591 2592 2593
 */
void snapshot_write_finalize(struct snapshot_handle *handle)
{
	copy_last_highmem_page();
2594 2595 2596
	/* Restore page key for data page (s390 only). */
	page_key_write(handle->buffer);
	page_key_free();
2597
	/* Do that only if we have loaded the image entirely */
J
Jiri Slaby 已提交
2598
	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2599
		memory_bm_recycle(&orig_bm);
2600 2601 2602 2603
		free_highmem_data();
	}
}

2604 2605
int snapshot_image_loaded(struct snapshot_handle *handle)
{
2606
	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2607 2608 2609
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

2610 2611
#ifdef CONFIG_HIGHMEM
/* Assumes that @buf is ready and points to a "safe" page */
2612 2613
static inline void swap_two_pages_data(struct page *p1, struct page *p2,
				       void *buf)
2614
{
2615 2616
	void *kaddr1, *kaddr2;

2617 2618
	kaddr1 = kmap_atomic(p1);
	kaddr2 = kmap_atomic(p2);
2619 2620 2621
	copy_page(buf, kaddr1);
	copy_page(kaddr1, kaddr2);
	copy_page(kaddr2, buf);
2622 2623
	kunmap_atomic(kaddr2);
	kunmap_atomic(kaddr1);
2624 2625 2626
}

/**
2627 2628 2629 2630 2631
 * restore_highmem - Put highmem image pages into their original locations.
 *
 * For each highmem page that was in use before hibernation and is included in
 * the image, and also has been allocated by the "restore" kernel, swap its
 * current contents with the previous (ie. "before hibernation") ones.
2632
 *
2633 2634
 * If the restore eventually fails, we can call this function once again and
 * restore the highmem state as seen by the restore kernel.
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
 */
int restore_highmem(void)
{
	struct highmem_pbe *pbe = highmem_pblist;
	void *buf;

	if (!pbe)
		return 0;

	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
	if (!buf)
		return -ENOMEM;

	while (pbe) {
		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
		pbe = pbe->next;
	}
	free_image_page(buf, PG_UNSAFE_CLEAR);
	return 0;
2654
}
2655
#endif /* CONFIG_HIGHMEM */