tensor.py 71.2 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
24
from ..framework import _current_expected_place, convert_np_dtype_to_dtype_, _non_static_mode, _varbase_creator, device_guard, _in_legacy_dygraph, in_dygraph_mode, _get_paddle_place
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
W
wanghuancoder 已提交
35
from paddle import _C_ops
Y
Yu Yang 已提交
36 37

__all__ = [
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
64 65 66
]


X
xuwei06 已提交
67
def create_tensor(dtype, name=None, persistable=False):
68
    """
W
wangchaochaohu 已提交
69
    Create a variable, which will hold a Tensor with data type dtype.
70 71

    Args:
W
wangchaochaohu 已提交
72 73 74 75
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
76
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
77
            default value is False.
78 79

    Returns:
W
wangchaochaohu 已提交
80
        Variable: The tensor to be created according to dtype.
81 82 83 84

    Examples:
        .. code-block:: python

85
          import paddle.fluid as fluid
86 87
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
88 89 90 91
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
92
    helper = LayerHelper("create_tensor", **locals())
93 94 95
    return helper.create_variable(name=helper.name,
                                  dtype=dtype,
                                  persistable=persistable)
Y
Yu Yang 已提交
96 97


98 99
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
100
                     name=None,
101 102 103 104
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
105
	:api_attr: Static Graph
S
swtkiwi 已提交
106

107
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
108 109 110 111 112
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

113 114 115 116 117 118 119
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
120 121 122
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
123
        default_initializer (Initializer, optional): Initializer for the parameter
124 125

    Returns:
126
        The created parameter.
Y
yuyang18 已提交
127 128

    Examples:
129 130
        .. code-block:: python

131 132 133
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
134
    """
135 136
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
137 138 139
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
140 141 142 143 144 145 146 147 148

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
149
    helper = LayerHelper("create_parameter", **locals())
150
    if attr is None:
X
xuwei06 已提交
151
        attr = ParamAttr(name=name)
152
    return helper.create_parameter(attr, shape, convert_dtype(dtype), is_bias,
153 154 155
                                   default_initializer)


156 157 158 159 160 161 162
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
163
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
164

165
    Parameters:
166
        shape (list[int]|tuple[int]): Shape of the variable
167
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
168
                      variable will be filled with it.
169 170
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
171
                           Default: False
172
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
173
                         Default: False
174 175
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
176 177

    Returns:
178
        Variable: The created Variable
F
fengjiayi 已提交
179 180 181 182

    Examples:
        .. code-block:: python

183 184 185
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
186
                                           persistable=True, force_cpu=True, name='new_var')
187
    """
188 189 190
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
191 192 193
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
194 195

    check_dtype(dtype, 'dtype', [
196 197 198 199 200 201 202 203 204 205
        'bool',
        'float16',
        'float32',
        'float64',
        'int8',
        'int16',
        'int32',
        'int64',
        'uint8',
        'uint16',
206 207
    ], 'create_global_var')

Q
Qiao Longfei 已提交
208
    helper = LayerHelper("global_var", **locals())
209 210 211 212 213 214 215 216
    var = helper.create_global_variable(dtype=dtype,
                                        shape=shape,
                                        persistable=persistable,
                                        name=name,
                                        stop_gradient=True)
    helper.set_variable_initializer(var,
                                    initializer=Constant(value=float(value),
                                                         force_cpu=force_cpu))
M
minqiyang 已提交
217

Q
Qiao Longfei 已提交
218 219 220
    return var


221
def cast(x, dtype):
Y
Yu Yang 已提交
222
    """
S
swtkiwi 已提交
223

224
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
225 226
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
227 228

    Args:
229
        x(Tensor): An input N-D Tensor with data type bool, float16,
230
            float32, float64, int32, int64, uint8.
231
        dtype(np.dtype|str): Data type of the output:
232
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
233 234

    Returns:
235
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
236 237 238

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
239

240
            import paddle
241

242 243
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
244
    """
H
hong 已提交
245 246 247 248 249
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        return _C_ops.final_state_cast(x, dtype)

J
Jiabin Yang 已提交
250
    if _non_static_mode():
251 252
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
W
wanghuancoder 已提交
253
        out = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
254
        return out
255

256
    check_variable_and_dtype(x, 'x', [
257 258
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
259
    ], 'cast')
260
    check_dtype(dtype, 'dtype', [
261 262
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
263 264 265
    ], 'cast')

    helper = LayerHelper('cast', **locals())
266 267
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
268 269 270 271 272 273 274
    helper.append_op(type='cast',
                     inputs={'X': [x]},
                     outputs={'Out': [out]},
                     attrs={
                         'in_dtype': x.dtype,
                         'out_dtype': out.dtype
                     })
Y
Yu Yang 已提交
275 276 277
    return out


278
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
279
    """
280
    This OP concatenates the input along the axis.
281 282

    Args:
283 284
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
285 286
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
287
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
288
            as ``axis+R``. Default is 0.
289 290 291
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
292 293

    Returns:
294
        Tensor: A Tensor with the same data type as ``input``.
295 296 297

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
298

299
            import paddle.fluid as fluid
300 301
            import numpy as np

302 303 304 305 306 307
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
308 309 310 311
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
312 313
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
314 315
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
316 317 318 319 320 321 322 323
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
324
    """
325

326 327 328 329 330 331
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
H
hong 已提交
332
        out = _C_ops.final_state_concat(input, axis)
333
        return out
334 335

    if _in_legacy_dygraph():
S
songyouwei 已提交
336 337
        if isinstance(axis, Variable):
            axis = axis.numpy()
338
            axis = axis.item(0)
339 340
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
341 342 343
        out = _varbase_creator()
        _C_ops.concat(input, out, 'axis', axis)
        return out
344

345 346 347 348 349 350 351 352 353
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
354 355
                    "All the Tensors in the input must have the same data type."
                )
356
    else:
357
        input = [input]
358
    check_type(axis, 'axis', (int, Variable), 'concat')
359

360 361 362
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
363 364
            "The data type of axis must be int32 or int64 when axis is a Tensor"
        )
365

366
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
367
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
368 369

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
370 371 372 373
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

374
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
375
                "number of the elements must be 1, but received %s." % len(input)
376
        out_index = helper.create_variable_for_type_inference(dtype="int32")
377 378 379 380 381 382 383 384 385 386
        helper.append_op(type='tensor_array_to_tensor',
                         inputs={'X': input[0]},
                         outputs={
                             'Out': [out],
                             'OutIndex': [out_index]
                         },
                         attrs={
                             'axis': axis,
                             'use_stack': False
                         })
387 388 389 390 391
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
392
        attrs['axis'] = axis
393

394 395 396 397
        helper.append_op(type='concat',
                         inputs=inputs,
                         outputs={'Out': [out]},
                         attrs=attrs)
Y
Yu Yang 已提交
398 399 400
    return out


G
Guo Sheng 已提交
401
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
402
    r"""
G
Guo Sheng 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
453 454

    Args:
G
Guo Sheng 已提交
455 456 457 458 459 460 461
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
462 463

    Returns:
G
Guo Sheng 已提交
464 465 466
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
467 468 469 470

    Examples:
        .. code-block:: python

471
            import paddle.fluid as fluid
472
            import numpy as np
G
Guo Sheng 已提交
473 474 475 476 477 478 479
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
480
    """
J
Jiabin Yang 已提交
481
    if _non_static_mode():
482 483 484 485 486 487 488 489 490 491
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

492 493 494 495 496
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
497
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
498 499
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
500 501 502 503 504 505 506 507 508 509
    helper.append_op(type='tensor_array_to_tensor',
                     inputs={'X': input},
                     outputs={
                         'Out': [out],
                         'OutIndex': [out_index]
                     },
                     attrs={
                         'axis': axis,
                         'use_stack': use_stack
                     })
L
li099 已提交
510 511 512
    return out, out_index


513
def sums(input, out=None):
514
    r"""
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
536 537

    Args:
538 539 540 541
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
542 543

    Returns:
544 545
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
546 547

    Examples:
F
fengjiayi 已提交
548
        .. code-block:: python
K
kavyasrinet 已提交
549

550 551 552 553 554 555 556 557 558
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
559

560 561
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
562
    """
563 564 565 566
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
567
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
568 569
    else:
        check_variable_and_dtype(input, "input", \
570
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
571

Y
Yu Yang 已提交
572 573
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
574 575
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
576
    else:
577 578 579 580 581 582 583 584
        check_variable_and_dtype(out, "out",
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'sums')

    helper.append_op(type='sum',
                     inputs={'X': input},
                     outputs={'Out': out},
                     attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
585 586 587
    return out


F
fengjiayi 已提交
588
def assign(input, output=None):
589
    """
S
swtkiwi 已提交
590

591
    The OP copies the :attr:`input` to the :attr:`output`.
592

593
    Parameters:
594 595 596 597
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
598
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
599
            be created as :attr:`output`. Default: None.
600 601

    Returns:
602
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
603 604 605

    Examples:
        .. code-block:: python
606

607
          import paddle
608
          import numpy as np
609
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
610 611 612 613
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
614 615 616
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
617
    """
Y
Yu Yang 已提交
618
    helper = LayerHelper('assign', **locals())
619 620 621
    check_type(input, 'input',
               (Variable, numpy.ndarray, list, tuple, float, int, bool),
               'assign')
622 623
    is_inplace = True if output is not None else False

624 625 626 627
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
628 629
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
J
Jiabin Yang 已提交
630
    # but _non_static_mode()==False under @to_static, which means
631 632 633
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
634
        if _non_static_mode():
C
chentianyu03 已提交
635 636 637 638 639 640 641 642 643
            if in_dygraph_mode() and output is None:
                output = _C_ops.final_state_assign(input)
            else:
                if output is None:
                    if _in_legacy_dygraph():
                        output = core.VarBase()
                    else:
                        output = core.eager.Tensor()
                _C_ops.assign(input, output)
644 645 646 647 648 649 650 651
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
652 653 654
            helper.append_op(type='assign',
                             inputs={'X': [input]},
                             outputs={'Out': [output]})
X
xuwei06 已提交
655
    elif isinstance(input, numpy.ndarray):
656 657 658 659 660
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
661
        dtype = convert_np_dtype_to_dtype_(input.dtype)
662 663 664 665 666 667 668 669
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
670 671
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
672
            values = [int(v) for v in input.flat]
673
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
674
            value_name = "fp32_values"
675
            values = [float(v) for v in input.flat]
676
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
677
            value_name = "int32_values"
678
            values = [int(v) for v in input.flat]
679 680 681
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
682
        else:
683 684
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
685
                "the data type of 'input' must be bool, float32, int32 or int64, but "
686
                "received %s." % convert_dtype(dtype))
687 688 689
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
690 691 692 693 694 695 696 697
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
            _C_ops.final_state_assign_value_(output, list(input.shape), dtype,
                                             values, _current_expected_place())
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
698 699
            _C_ops.assign_value(output, 'shape', list(input.shape), 'dtype',
                                dtype, value_name, values)
700
        else:
701 702 703
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
704 705 706 707 708 709 710
            helper.append_op(type='assign_value',
                             outputs={'Out': [output]},
                             attrs={
                                 'dtype': dtype,
                                 'shape': list(input.shape),
                                 value_name: values
                             })
X
xuwei06 已提交
711

J
Jiabin Yang 已提交
712
    if is_inplace and _non_static_mode():
713
        output._bump_inplace_version()
714

Y
Yu Yang 已提交
715 716 717
    return output


718
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
719
    """
S
swtkiwi 已提交
720

W
wangchaochaohu 已提交
721
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
722
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
723

T
tianshuo78520a 已提交
724
    The attribute `stop_gradient` of the created Tensor is set to True.
725 726

    Args:
727 728 729
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
730
        dtype(np.dtype|str): Data type of the output Tensor which can
731
            be float16, float32, float64, uint8, int16, int32, int64.
732 733 734 735 736 737
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
738 739
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
740 741

    Returns:
742
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
743

744 745 746
    Examples:
        .. code-block:: python

747
          import paddle.fluid as fluid
748
          # attr shape is a list which doesn't contain  Tensor.
749 750
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
751
          # data1=[[5], [5]] data2=[[5], [5]]
752

753
          # attr shape is a list which contains Tensor.
754
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
755
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
756

757
          # attr shape is a Tensor.
758
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
759
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
760
          
761
          # attr value is a Tensor.
W
wangchaochaohu 已提交
762 763
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
764
    """
765

W
wangchaochaohu 已提交
766
    attrs = {'force_cpu': force_cpu}
767
    dtype = convert_dtype(dtype)
768
    if not isinstance(value, Variable):
769
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
770
            attrs['str_value'] = str(int(value))
771
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
772 773
        else:
            attrs['str_value'] = str(float(value))
774
            attrs['value'] = float(value)
775

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
    if in_dygraph_mode():
        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        if isinstance(shape, (list, tuple)):
            for item in shape:
                if not isinstance(item, Variable):
                    shape = list(
                        map(
                            lambda x: x.numpy().flat[0]
                            if isinstance(x, Variable) else x, shape))
                    break

        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        if out is None:
793 794 795 796
            out = _C_ops.final_state_full(shape, float(value), dtype, place)
            out.stop_gradient = True
            return out

797 798 799
        if out is not None:
            # final state mode is support out is not None.
            _C_ops.final_state_full_(out, shape, float(value), dtype, place)
800 801
            out.stop_gradient = True
            return out
802

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
    if _in_legacy_dygraph():
        shape = utils.convert_shape_to_list(shape)
        if out is None:
            out = _varbase_creator(dtype=dtype)

        if isinstance(value, Variable):
            if dtype in ['uint8', 'int16', 'int32', 'int64']:
                attrs['str_value'] = str(int(value.numpy().item(0)))
            else:
                attrs['str_value'] = str(float(value.numpy().item(0)))

        _C_ops.fill_constant(out, 'value', float(value), 'force_cpu', force_cpu,
                             'dtype', out.dtype, 'str_value',
                             attrs['str_value'], 'shape', shape)
        out.stop_gradient = True
        return out

820 821 822
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
823 824
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
825 826
        inputs['ValueTensor'] = value

827
    check_shape(shape)
828 829
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32',
830
        'int64', 'complex64', 'complex128'
831
    ], 'fill_constant')
832
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
833

834 835 836 837 838
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
839 840 841 842
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='fill_constant')
L
liym27 已提交
843

Y
Yu Yang 已提交
844
    if out is None:
X
Xin Pan 已提交
845
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
846
    attrs['dtype'] = out.dtype
847 848 849 850 851
    helper.append_op(type='fill_constant',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
Y
Yu Yang 已提交
852 853 854 855
    out.stop_gradient = True
    return out


856
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
857
@templatedoc()
Y
Yu Yang 已提交
858 859 860 861 862
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
863 864
                                  output_dim_idx=0,
                                  force_cpu=False):
865
    """
T
tianshuo78520a 已提交
866
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
867 868 869 870
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
871 872

    Args:
W
wangchaochaohu 已提交
873 874 875 876 877 878 879 880 881 882 883
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
884
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
885 886

    Returns:
W
wangchaochaohu 已提交
887
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
888 889 890 891 892

    Examples:

        .. code-block:: python

893
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
894
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
895
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
896
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
897

898
    """
899 900 901 902 903 904 905
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
906 907 908
        out = _C_ops.final_state_full_batch_size_like(input, shape, dtype,
                                                      value, input_dim_idx,
                                                      output_dim_idx, place)
909 910 911
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
912
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
913
    out = helper.create_variable_for_type_inference(dtype=dtype)
914 915 916 917 918 919
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
920
        'force_cpu': force_cpu
921 922 923 924 925
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
926 927 928 929
    helper.append_op(type='fill_constant_batch_size_like',
                     inputs={'Input': input},
                     outputs={'Out': [out]},
                     attrs=attrs)
Y
Yu Yang 已提交
930 931 932 933
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
934 935
def argmin(x, axis=0):
    """
936 937 938
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
939

S
sneaxiy 已提交
940 941
    **argmin**

942 943
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
944 945

    Args:
946 947 948 949 950
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
951

S
sneaxiy 已提交
952
    Returns:
953
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
954

S
sneaxiy 已提交
955 956
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
957

958
            import paddle.fluid as fluid
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
986
    """
987 988 989
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
990
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
991
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
992 993 994 995
    helper.append_op(type='arg_min',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
996
    out.stop_gradient = True
S
sneaxiy 已提交
997 998 999 1000 1001 1002 1003
    return out


def argmax(x, axis=0):
    """
    **argmax**

1004 1005
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
1006 1007

    Args:
1008 1009 1010 1011 1012
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
1013

S
sneaxiy 已提交
1014
    Returns:
1015
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
1016

S
sneaxiy 已提交
1017 1018
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1019

1020
            import paddle.fluid as fluid
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
1048
    """
1049 1050 1051
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
1052
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
1053
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1054 1055 1056 1057
    helper.append_op(type='arg_max',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
1058
    out.stop_gradient = True
S
sneaxiy 已提交
1059 1060 1061
    return out


1062
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
1063
    """
1064 1065 1066
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
1067

1068 1069 1070
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
1071 1072

    Args:
1073 1074 1075 1076 1077
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
1078 1079 1080
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
1081 1082 1083
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1084 1085

    Returns:
1086 1087 1088
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1089 1090 1091 1092

    Examples:
        .. code-block:: python

1093
            import paddle.fluid as fluid
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1135
    """
1136 1137 1138
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1139
    helper = LayerHelper("argsort", **locals())
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
    out = helper.create_variable_for_type_inference(dtype=input.dtype,
                                                    stop_gradient=True)
    ids = helper.create_variable_for_type_inference(VarDesc.VarType.INT64,
                                                    stop_gradient=True)
    helper.append_op(type='argsort',
                     inputs={'X': input},
                     outputs={
                         'Out': out,
                         'Indices': ids
                     },
                     attrs={
                         'axis': axis,
                         'descending': descending
                     })
Y
Yibing Liu 已提交
1154 1155 1156
    return out, ids


Y
Yang Yu 已提交
1157
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1158
    """
1159 1160
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1161

1162
    Parameters:
1163
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1164
        dtype (np.dtype|str): Data type of output Tensor, it supports
1165
            bool, float16, float32, float64, int32 and int64.
1166 1167
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1168
            Default: False.
1169 1170

    Returns:
1171
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1172 1173 1174 1175

    Examples:
        .. code-block:: python

1176
          import paddle.fluid as fluid
1177 1178 1179 1180 1181
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1182 1183 1184 1185
    """
    return fill_constant(value=1.0, **locals())


1186
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1187
    """
1188 1189
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1190

1191
    Parameters:
1192
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1193
        dtype (np.dtype|str): Data type of output Tensor, it supports
1194
            bool, float16, float32, float64, int32 and int64.
1195 1196
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1197
            Default: False.
1198 1199
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1200 1201

    Returns:
1202
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1203 1204 1205 1206

    Examples:
        .. code-block:: python

1207
          import paddle.fluid as fluid
1208
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1209 1210 1211 1212
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1213 1214
    """
    return fill_constant(value=0.0, **locals())
1215 1216


F
fengjiayi 已提交
1217 1218
def reverse(x, axis):
    """
1219 1220 1221
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1222

1223
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1224

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1249
    Parameters:
1250 1251
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1252 1253
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1254 1255
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1256 1257

    Returns:
1258
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1259 1260 1261 1262

    Examples:
        .. code-block:: python

1263
          import paddle.fluid as fluid
1264 1265 1266 1267
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1278
    """
1279 1280 1281
    check_variable_and_dtype(x, 'x',
                             ('float32', 'float64', 'int32', 'int64', 'uint8'),
                             'reverse')
1282
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1283 1284
    if isinstance(axis, int):
        axis = [axis]
W
wanghuancoder 已提交
1285 1286 1287 1288 1289
    if in_dygraph_mode():
        if x.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            return _C_ops.final_state_reverse_array(x, axis)
        else:
            return _C_ops.final_state_reverse(x, axis)
F
fengjiayi 已提交
1290
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1291
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1292 1293 1294 1295
    helper.append_op(type='reverse',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
F
fengjiayi 已提交
1296 1297 1298
    return out


1299 1300 1301 1302 1303 1304 1305
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1306 1307 1308
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1309 1310
    """
    helper = LayerHelper("save", **locals())
1311 1312 1313 1314 1315 1316 1317
    helper.append_op(type="save",
                     inputs={"input": x},
                     outputs={},
                     args={
                         "file_path": file_path,
                         "overwrite": overwrite
                     })
1318 1319 1320 1321 1322 1323 1324


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1325 1326
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1327
        file_path(str): The file path where variables will be saved.
1328
        overwrite(bool): Whether or not cover the given file when it has already
1329 1330
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1331 1332 1333 1334 1335 1336 1337 1338

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1339
            import paddle.fluid as fluid
1340 1341 1342 1343 1344 1345 1346
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1347 1348
    """
    helper = LayerHelper("save_combine", **locals())
1349 1350 1351 1352 1353 1354 1355
    helper.append_op(type="save_combine",
                     inputs={"input": x},
                     outputs={},
                     args={
                         "file_path": file_path,
                         "overwrite": overwrite
                     })
1356 1357 1358 1359


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1360
    Loads a list of variable from a single file.
1361 1362 1363 1364 1365 1366

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
1367 1368 1369 1370
    helper.append_op(type="load_combine",
                     inputs={},
                     output={"Out": out},
                     args={"file_path": file_path})
1371 1372 1373 1374 1375 1376 1377


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1378
       x (Tensor): The Tensor to be checked.
1379 1380

    Returns:
S
Steffy-zxf 已提交
1381
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1382 1383 1384 1385
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1386 1387
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1388
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1389
          # [False]
1390

1391
    """
J
Jiabin Yang 已提交
1392
    if _non_static_mode():
W
wanghuancoder 已提交
1393
        return _C_ops.isinf(x)
S
Steffy-zxf 已提交
1394

1395
    check_type(x, 'x', (Variable), 'has_inf')
1396
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1397
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1398 1399 1400 1401 1402 1403 1404 1405 1406
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1407
       x (Tensor): The Tensor to be checked.
1408 1409

    Returns:
S
Steffy-zxf 已提交
1410
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1411 1412 1413 1414
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1415 1416
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1417
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1418
          # [False]
1419

1420
    """
J
Jiabin Yang 已提交
1421
    if _non_static_mode():
W
wanghuancoder 已提交
1422
        return _C_ops.isnan(x)
S
Steffy-zxf 已提交
1423

1424
    check_type(x, 'x', (Variable), 'has_nan')
1425
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1426
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1427 1428 1429 1430 1431 1432
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1433

1434 1435 1436 1437
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1438
        x(Tensor): The Tensor to be checked.
1439 1440

    Returns:
N
Noel 已提交
1441
        Tensor: The tensor storing the output, contains a bool value.
1442 1443 1444 1445 1446

    Examples:

        .. code-block:: python

N
Noel 已提交
1447 1448 1449 1450 1451 1452
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1453
    """
1454 1455
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1456
    helper = LayerHelper("isfinite", **locals())
1457

1458
    out = helper.create_variable_for_type_inference(dtype='bool')
1459 1460
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1461 1462


1463
def range(start, end, step, dtype, name=None):
W
whs 已提交
1464
    """
1465
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1466

1467 1468
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1469

1470 1471
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1472

L
Liufang Sang 已提交
1473
    Parameters:
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1497 1498 1499 1500 1501

    examples:

        .. code-block:: python

1502
            import paddle.fluid as fluid
W
whs 已提交
1503

1504 1505
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1506

1507 1508 1509 1510 1511
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
1512 1513 1514 1515 1516
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1517 1518
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1519

W
whs 已提交
1520
    if not isinstance(start, Variable):
1521
        with device_guard("cpu"):
1522
            start = fill_constant([1], dtype, start, force_cpu=True)
1523 1524
    elif start.dtype != dtype:
        start = cast(start, dtype)
1525

W
whs 已提交
1526
    if not isinstance(end, Variable):
1527
        with device_guard("cpu"):
1528
            end = fill_constant([1], dtype, end, force_cpu=True)
1529 1530
    elif end.dtype != dtype:
        end = cast(end, dtype)
1531

W
whs 已提交
1532
    if not isinstance(step, Variable):
1533
        with device_guard("cpu"):
1534
            step = fill_constant([1], dtype, step, force_cpu=True)
1535 1536
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1537

Z
zyfncg 已提交
1538 1539 1540 1541
    if in_dygraph_mode():
        return _C_ops.final_state_arange(start, end, step, dtype,
                                         _current_expected_place())

Z
zyfncg 已提交
1542
    if _in_legacy_dygraph():
J
Jiawei Wang 已提交
1543 1544 1545
        out = _C_ops.range(start, end, step)
        out.stop_gradient = True
        return out
W
whs 已提交
1546

1547 1548 1549
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1550
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
1551 1552 1553 1554 1555 1556 1557
    helper.append_op(type='range',
                     inputs={
                         'Start': start,
                         'End': end,
                         'Step': step
                     },
                     outputs={'Out': out})
1558
    out.stop_gradient = True
1559 1560
    if out_shape is not None:
        out.desc.set_shape(out_shape)
W
whs 已提交
1561
    return out
Z
zhoukunsheng 已提交
1562 1563


1564
def linspace(start, stop, num, dtype=None, name=None):
1565
    r"""
1566
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1567 1568

    Args:
1569 1570 1571 1572
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1573
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1574
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1575
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1576
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1577 1578
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1579 1580

    Returns:
1581
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1582 1583
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1584

Z
zhoukunsheng 已提交
1585
    Examples:
Z
zhoukunsheng 已提交
1586 1587
        .. code-block:: python

1588 1589 1590
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1591 1592

    """
1593 1594
    if dtype is None:
        dtype = 'float32'
1595 1596 1597
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1598 1599
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1600 1601
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1602
    if not isinstance(start, Variable):
1603 1604
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1605
    if not isinstance(stop, Variable):
1606 1607
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1608
    if not isinstance(num, Variable):
1609 1610
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1611 1612 1613
    if in_dygraph_mode():
        return _C_ops.final_state_linspace(tensor_start, tensor_stop,
                                           tensor_num, dtype)
1614 1615 1616
    if _in_legacy_dygraph():
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)
1617 1618
    helper = LayerHelper("linspace", **locals())

1619 1620 1621
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1622
    if isinstance(start, Variable):
1623 1624
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1625 1626
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1627

1628
    if isinstance(stop, Variable):
1629 1630
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1631 1632 1633 1634 1635 1636
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1637 1638 1639 1640
    if ((stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]) or (
                (stop_dtype == "int64" or start_dtype == "int64")
                and out_dtype == "int32"):
1641 1642 1643 1644
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1645 1646

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1647

1648 1649 1650 1651 1652 1653 1654 1655
    helper.append_op(type='linspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
1656 1657
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1658
    return out
1659 1660


Z
zhoukunsheng 已提交
1661 1662
def zeros_like(x, out=None):
    """
1663
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1664 1665 1666
    with `x`.

    Args:
1667 1668 1669 1670 1671 1672
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1673 1674

    Returns:
1675 1676 1677
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1678 1679 1680 1681

    Examples:
        .. code-block:: python

1682
          import paddle.fluid as fluid
1683
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1684 1685
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1686 1687
    """

1688 1689 1690
    check_variable_and_dtype(x, "x",
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'ones_like')
Z
zhoukunsheng 已提交
1691 1692 1693
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1694 1695 1696
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1697
            'zeros_like')
1698

1699 1700 1701
    helper.append_op(type='fill_zeros_like',
                     inputs={'X': [x]},
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1702 1703
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1704 1705


1706
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1707
def diag(diagonal):
1708
    r"""
1709 1710 1711
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1712

1713
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1714 1715

    Args:
1716 1717
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1718 1719

    Returns:
1720 1721
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1722 1723 1724 1725 1726 1727 1728

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1729 1730 1731

          import paddle.fluid as fluid
          import numpy as np
1732 1733 1734
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1735 1736

    """
1737 1738 1739
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1740 1741 1742 1743 1744 1745 1746
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

1747 1748 1749
    helper.append_op(type='diag',
                     inputs={'Diagonal': [diagonal]},
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1750 1751 1752

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1753 1754


1755 1756 1757 1758 1759
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1760
    """
1761
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1762 1763 1764

    Args:
        num_rows(int): the number of rows in each batch tensor.
1765 1766
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1767 1768
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1769
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1770 1771 1772 1773
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1774 1775

    Returns:
1776
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1777 1778 1779 1780 1781

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1782 1783
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1784
          #  [0, 1, 0]
1785 1786
          #  [0, 0, 1]]

1787
          data = fluid.layers.eye(2, 3, dtype='int32')
1788
          # [[1, 0, 0]
1789
          #  [0, 1, 0]]
1790 1791

          data = fluid.layers.eye(2, batch_shape=[3])
1792 1793 1794 1795 1796
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1797 1798
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1799 1800 1801 1802 1803
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1804

R
Ruibiao Chen 已提交
1805 1806 1807 1808
    if in_dygraph_mode():
        out = _C_ops.final_state_eye(num_rows, num_columns, dtype,
                                     _current_expected_place())
    elif _in_legacy_dygraph():
W
wanghuancoder 已提交
1809 1810
        out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                         num_columns)
1811 1812 1813 1814 1815 1816 1817
    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
1818 1819 1820 1821 1822 1823 1824 1825 1826
        helper.append_op(type='eye',
                         inputs={},
                         outputs={'Out': [out]},
                         attrs={
                             'num_rows': num_rows,
                             'num_columns': num_columns,
                             'dtype': dtype
                         },
                         stop_gradient=True)
1827 1828

    if batch_shape is not None:
1829 1830 1831
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
J
Jiabin Yang 已提交
1832
        if _non_static_mode():
W
wanghuancoder 已提交
1833 1834
            out = _C_ops.reshape(out, 'shape', re_shape)
            return _C_ops.expand(out, None, 'expand_times', expand_times)
1835

1836 1837
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1838
        for batch_val in (batch_shape):
1839 1840
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1841 1842 1843 1844 1845 1846

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1847 1848 1849
    return out


Z
zhoukunsheng 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1862
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1873 1874 1875
    check_variable_and_dtype(x, "x",
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'ones_like')
Z
zhoukunsheng 已提交
1876 1877 1878 1879

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1880 1881 1882 1883
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
1884 1885 1886 1887
    helper.append_op(type='fill_any_like',
                     inputs={'X': [x]},
                     attrs={'value': 1.0},
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1888
    return out
Y
yaoxuefeng 已提交
1889 1890 1891 1892 1893 1894


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)