tensor.py 66.1 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
H
hong 已提交
24
from ..framework import convert_np_dtype_to_dtype_, _non_static_mode, _varbase_creator, device_guard, _in_legacy_dygraph, in_dygraph_mode
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
W
wanghuancoder 已提交
35
from paddle import _C_ops
Y
Yu Yang 已提交
36 37

__all__ = [
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
64 65 66
]


X
xuwei06 已提交
67
def create_tensor(dtype, name=None, persistable=False):
68
    """
W
wangchaochaohu 已提交
69
    Create a variable, which will hold a Tensor with data type dtype.
70 71

    Args:
W
wangchaochaohu 已提交
72 73 74 75
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
76
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
77
            default value is False.
78 79

    Returns:
W
wangchaochaohu 已提交
80
        Variable: The tensor to be created according to dtype.
81 82 83 84

    Examples:
        .. code-block:: python

85
          import paddle.fluid as fluid
86 87
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
88 89 90 91
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
92
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
93 94
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
95 96


97 98
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
99
                     name=None,
100 101 102 103
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
104
	:api_attr: Static Graph
S
swtkiwi 已提交
105

106
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
107 108 109 110 111
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

112 113 114 115 116 117 118
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
119 120 121
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
122
        default_initializer (Initializer, optional): Initializer for the parameter
123 124

    Returns:
125
        The created parameter.
Y
yuyang18 已提交
126 127

    Examples:
128 129
        .. code-block:: python

130 131 132
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
133
    """
134 135
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
136 137 138
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
139 140 141 142 143 144 145 146 147

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
148
    helper = LayerHelper("create_parameter", **locals())
149
    if attr is None:
X
xuwei06 已提交
150
        attr = ParamAttr(name=name)
151 152
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
153 154 155
                                   default_initializer)


156 157 158 159 160 161 162
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
163
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
164

165
    Parameters:
166
        shape (list[int]|tuple[int]): Shape of the variable
167
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
168
                      variable will be filled with it.
169 170
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
171
                           Default: False
172
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
173
                         Default: False
174 175
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
176 177

    Returns:
178
        Variable: The created Variable
F
fengjiayi 已提交
179 180 181 182

    Examples:
        .. code-block:: python

183 184 185
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
186
                                           persistable=True, force_cpu=True, name='new_var')
187
    """
188 189 190
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
191 192 193
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
194 195

    check_dtype(dtype, 'dtype', [
196 197 198 199 200 201 202 203 204 205
        'bool',
        'float16',
        'float32',
        'float64',
        'int8',
        'int16',
        'int32',
        'int64',
        'uint8',
        'uint16',
206 207
    ], 'create_global_var')

Q
Qiao Longfei 已提交
208 209
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
210 211 212 213 214
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
215 216 217
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
218

Q
Qiao Longfei 已提交
219 220 221
    return var


222
def cast(x, dtype):
Y
Yu Yang 已提交
223
    """
S
swtkiwi 已提交
224

225
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
226 227
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
228 229

    Args:
230
        x(Tensor): An input N-D Tensor with data type bool, float16,
231
            float32, float64, int32, int64, uint8.
232
        dtype(np.dtype|str): Data type of the output:
233
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
234 235

    Returns:
236
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
237 238 239

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
240

241
            import paddle
242

243 244
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
245
    """
H
hong 已提交
246 247 248 249 250
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        return _C_ops.final_state_cast(x, dtype)

J
Jiabin Yang 已提交
251
    if _non_static_mode():
252 253
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
W
wanghuancoder 已提交
254
        out = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
255
        return out
256

257
    check_variable_and_dtype(x, 'x', [
258 259
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
260
    ], 'cast')
261
    check_dtype(dtype, 'dtype', [
262 263
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
264 265 266
    ], 'cast')

    helper = LayerHelper('cast', **locals())
267 268
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
269 270 271 272 273 274 275 276 277
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


278
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
279
    """
280
    This OP concatenates the input along the axis.
281 282

    Args:
283 284
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
285 286
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
287
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
288
            as ``axis+R``. Default is 0.
289 290 291
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
292 293

    Returns:
294
        Tensor: A Tensor with the same data type as ``input``.
295 296 297

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
298

299
            import paddle.fluid as fluid
300 301
            import numpy as np

302 303 304 305 306 307
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
308 309 310 311
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
312 313
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
314 315
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
316 317 318 319 320 321 322 323
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
324
    """
325

J
Jiabin Yang 已提交
326
    if _non_static_mode():
S
songyouwei 已提交
327 328
        if isinstance(axis, Variable):
            axis = axis.numpy()
329
            axis = axis.item(0)
330 331
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
W
wanghuancoder 已提交
332
        return _C_ops.concat(input, 'axis', axis)
333

334 335 336 337 338 339 340 341 342 343 344
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
345
        input = [input]
346
    check_type(axis, 'axis', (int, Variable), 'concat')
347

348 349 350 351 352
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

353
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
354
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
355 356

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
357 358 359 360
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

361
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
362
                "number of the elements must be 1, but received %s." % len(input)
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
382 383 384
    return out


G
Guo Sheng 已提交
385
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
386
    r"""
G
Guo Sheng 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
437 438

    Args:
G
Guo Sheng 已提交
439 440 441 442 443 444 445
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
446 447

    Returns:
G
Guo Sheng 已提交
448 449 450
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
451 452 453 454

    Examples:
        .. code-block:: python

455
            import paddle.fluid as fluid
456
            import numpy as np
G
Guo Sheng 已提交
457 458 459 460 461 462 463
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
464
    """
J
Jiabin Yang 已提交
465
    if _non_static_mode():
466 467 468 469 470 471 472 473 474 475
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

476 477 478 479 480
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
481
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
482 483 484
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
485
        type='tensor_array_to_tensor',
L
li099 已提交
486 487 488
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
489 490
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
491 492 493
    return out, out_index


494
def sums(input, out=None):
495
    r"""
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
517 518

    Args:
519 520 521 522
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
523 524

    Returns:
525 526
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
527 528

    Examples:
F
fengjiayi 已提交
529
        .. code-block:: python
K
kavyasrinet 已提交
530

531 532 533 534 535 536 537 538 539
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
540

541 542
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
543
    """
544 545 546 547
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
548
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
549 550
    else:
        check_variable_and_dtype(input, "input", \
551
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
552

Y
Yu Yang 已提交
553 554
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
555 556
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
557 558 559 560
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
561 562 563 564 565
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
566 567 568
    return out


F
fengjiayi 已提交
569
def assign(input, output=None):
570
    """
S
swtkiwi 已提交
571

572
    The OP copies the :attr:`input` to the :attr:`output`.
573

574
    Parameters:
575 576 577 578
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
579
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
580
            be created as :attr:`output`. Default: None.
581 582

    Returns:
583
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
584 585 586

    Examples:
        .. code-block:: python
587

588
          import paddle
589
          import numpy as np
590
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
591 592 593 594
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
595 596 597
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
598
    """
Y
Yu Yang 已提交
599
    helper = LayerHelper('assign', **locals())
600 601
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
602 603
    is_inplace = True if output is not None else False

604 605 606 607
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
608 609
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
J
Jiabin Yang 已提交
610
    # but _non_static_mode()==False under @to_static, which means
611 612 613
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
        if _non_static_mode():
            if output is None:
                if _in_legacy_dygraph():
                    output = core.VarBase()
                else:
                    output = core.eager.Tensor()
            _C_ops.assign(input, output)
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
            helper.append_op(
                type='assign', inputs={'X': [input]},
                outputs={'Out': [output]})
X
xuwei06 已提交
632
    elif isinstance(input, numpy.ndarray):
633 634 635 636 637
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
638
        dtype = convert_np_dtype_to_dtype_(input.dtype)
639 640 641 642 643 644 645 646
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
647 648
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
649
            values = [int(v) for v in input.flat]
650
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
651
            value_name = "fp32_values"
652
            values = [float(v) for v in input.flat]
653
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
654
            value_name = "int32_values"
655
            values = [int(v) for v in input.flat]
656 657 658
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
659
        else:
660 661
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
662
                "the data type of 'input' must be bool, float32, int32 or int64, but "
663
                "received %s." % convert_dtype(dtype))
664 665 666
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
667 668 669
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
670 671 672 673 674 675
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
676
                value_name: values
X
xuwei06 已提交
677 678
            })

J
Jiabin Yang 已提交
679
    if is_inplace and _non_static_mode():
680
        output._bump_inplace_version()
681

Y
Yu Yang 已提交
682 683 684
    return output


685
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
686
    """
S
swtkiwi 已提交
687

W
wangchaochaohu 已提交
688
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
689
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
690

T
tianshuo78520a 已提交
691
    The attribute `stop_gradient` of the created Tensor is set to True.
692 693

    Args:
694 695 696
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
697
        dtype(np.dtype|str): Data type of the output Tensor which can
698
            be float16, float32, float64, uint8, int16, int32, int64.
699 700 701 702 703 704
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
705 706
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
707 708

    Returns:
709
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
710

711 712 713
    Examples:
        .. code-block:: python

714
          import paddle.fluid as fluid
715
          # attr shape is a list which doesn't contain  Tensor.
716 717
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
718
          # data1=[[5], [5]] data2=[[5], [5]]
719

720
          # attr shape is a list which contains Tensor.
721
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
722
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
723

724
          # attr shape is a Tensor.
725
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
726
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
727
          
728
          # attr value is a Tensor.
W
wangchaochaohu 已提交
729 730
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
731
    """
732

W
wangchaochaohu 已提交
733
    attrs = {'force_cpu': force_cpu}
734
    dtype = convert_dtype(dtype)
735
    if not isinstance(value, Variable):
736
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
737
            attrs['str_value'] = str(int(value))
738
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
739 740
        else:
            attrs['str_value'] = str(float(value))
741
            attrs['value'] = float(value)
742

J
Jiabin Yang 已提交
743
    if _non_static_mode():
744
        shape = utils.convert_shape_to_list(shape)
745 746
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
747 748

        if isinstance(value, Variable):
749
            if dtype in ['uint8', 'int16', 'int32', 'int64']:
750
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
751
            else:
752
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
753

W
wanghuancoder 已提交
754 755 756 757
        _C_ops.fill_constant(out, 'value',
                             float(value), 'force_cpu', force_cpu, 'dtype',
                             out.dtype, 'str_value', attrs['str_value'],
                             'shape', shape)
758 759 760
        out.stop_gradient = True
        return out

761 762 763
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
764 765
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
766 767
        inputs['ValueTensor'] = value

768
    check_shape(shape)
769 770
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32',
771
        'int64', 'complex64', 'complex128'
772
    ], 'fill_constant')
773
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
774

775 776 777 778 779
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
780
    utils.get_shape_tensor_inputs(
781
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
782

Y
Yu Yang 已提交
783
    if out is None:
X
Xin Pan 已提交
784
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
785
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
786 787
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
788
        inputs=inputs,
Y
Yu Yang 已提交
789
        outputs={'Out': [out]},
L
liym27 已提交
790
        attrs=attrs,
M
minqiyang 已提交
791
        stop_gradient=True)
Y
Yu Yang 已提交
792 793 794 795
    out.stop_gradient = True
    return out


796
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
797
@templatedoc()
Y
Yu Yang 已提交
798 799 800 801 802
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
803 804
                                  output_dim_idx=0,
                                  force_cpu=False):
805
    """
T
tianshuo78520a 已提交
806
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
807 808 809 810
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
811 812

    Args:
W
wangchaochaohu 已提交
813 814 815 816 817 818 819 820 821 822 823
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
824
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
825 826

    Returns:
W
wangchaochaohu 已提交
827
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
828 829 830 831 832

    Examples:

        .. code-block:: python

833
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
834
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
835
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
836
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
837

838
    """
Y
Yu Yang 已提交
839
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
840
    out = helper.create_variable_for_type_inference(dtype=dtype)
841 842 843 844 845 846
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
847
        'force_cpu': force_cpu
848 849 850 851 852
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
853 854 855 856
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
857
        attrs=attrs)
Y
Yu Yang 已提交
858 859 860 861
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
862 863
def argmin(x, axis=0):
    """
864 865 866
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
867

S
sneaxiy 已提交
868 869
    **argmin**

870 871
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
872 873

    Args:
874 875 876 877 878
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
879

S
sneaxiy 已提交
880
    Returns:
881
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
882

S
sneaxiy 已提交
883 884
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
885

886
            import paddle.fluid as fluid
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
914
    """
915 916 917
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
918
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
919
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
920 921 922 923 924
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
925
    out.stop_gradient = True
S
sneaxiy 已提交
926 927 928 929 930 931 932
    return out


def argmax(x, axis=0):
    """
    **argmax**

933 934
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
935 936

    Args:
937 938 939 940 941
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
942

S
sneaxiy 已提交
943
    Returns:
944
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
945

S
sneaxiy 已提交
946 947
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
948

949
            import paddle.fluid as fluid
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
977
    """
978 979 980
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
981
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
982
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
983 984 985 986 987
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
988
    out.stop_gradient = True
S
sneaxiy 已提交
989 990 991
    return out


992
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
993
    """
994 995 996
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
997

998 999 1000
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
1001 1002

    Args:
1003 1004 1005 1006 1007
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
1008 1009 1010
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
1011 1012 1013
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1014 1015

    Returns:
1016 1017 1018
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1019 1020 1021 1022

    Examples:
        .. code-block:: python

1023
            import paddle.fluid as fluid
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1065
    """
1066 1067 1068
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1069
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1070 1071 1072 1073
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1074 1075 1076 1077
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1078
                 'Indices': ids},
1079 1080
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1081 1082 1083
    return out, ids


Y
Yang Yu 已提交
1084
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1085
    """
1086 1087
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1088

1089
    Parameters:
1090
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1091
        dtype (np.dtype|str): Data type of output Tensor, it supports
1092
            bool, float16, float32, float64, int32 and int64.
1093 1094
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1095
            Default: False.
1096 1097

    Returns:
1098
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1099 1100 1101 1102

    Examples:
        .. code-block:: python

1103
          import paddle.fluid as fluid
1104 1105 1106 1107 1108
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1109 1110 1111 1112
    """
    return fill_constant(value=1.0, **locals())


1113
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1114
    """
1115 1116
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1117

1118
    Parameters:
1119
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1120
        dtype (np.dtype|str): Data type of output Tensor, it supports
1121
            bool, float16, float32, float64, int32 and int64.
1122 1123
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1124
            Default: False.
1125 1126
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1127 1128

    Returns:
1129
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1130 1131 1132 1133

    Examples:
        .. code-block:: python

1134
          import paddle.fluid as fluid
1135
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1136 1137 1138 1139
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1140 1141
    """
    return fill_constant(value=0.0, **locals())
1142 1143


F
fengjiayi 已提交
1144 1145
def reverse(x, axis):
    """
1146 1147 1148
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1149

1150
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1151

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1176
    Parameters:
1177 1178
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1179 1180
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1181 1182
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1183 1184

    Returns:
1185
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1186 1187 1188 1189

    Examples:
        .. code-block:: python

1190
          import paddle.fluid as fluid
1191 1192 1193 1194
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1205
    """
1206 1207 1208
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1209 1210 1211
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1212
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1213 1214
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1215
        inputs={'X': x},
F
fengjiayi 已提交
1216 1217 1218 1219 1220
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1221 1222 1223 1224 1225 1226 1227
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1228 1229 1230
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1246 1247
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1248
        file_path(str): The file path where variables will be saved.
1249
        overwrite(bool): Whether or not cover the given file when it has already
1250 1251
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1252 1253 1254 1255 1256 1257 1258 1259

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1260
            import paddle.fluid as fluid
1261 1262 1263 1264 1265 1266 1267
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1280
    Loads a list of variable from a single file.
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1292 1293 1294 1295 1296 1297 1298


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1299
       x (Tensor): The Tensor to be checked.
1300 1301

    Returns:
S
Steffy-zxf 已提交
1302
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1303 1304 1305 1306
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1307 1308
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1309
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1310
          # [False]
1311

1312
    """
J
Jiabin Yang 已提交
1313
    if _non_static_mode():
W
wanghuancoder 已提交
1314
        return _C_ops.isinf(x)
S
Steffy-zxf 已提交
1315

1316
    check_type(x, 'x', (Variable), 'has_inf')
1317
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1318
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1319 1320 1321 1322 1323 1324 1325 1326 1327
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1328
       x (Tensor): The Tensor to be checked.
1329 1330

    Returns:
S
Steffy-zxf 已提交
1331
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1332 1333 1334 1335
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1336 1337
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1338
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1339
          # [False]
1340

1341
    """
J
Jiabin Yang 已提交
1342
    if _non_static_mode():
W
wanghuancoder 已提交
1343
        return _C_ops.isnan(x)
S
Steffy-zxf 已提交
1344

1345
    check_type(x, 'x', (Variable), 'has_nan')
1346
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1347
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1348 1349 1350 1351 1352 1353
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1354

1355 1356 1357 1358
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1359
        x(Tensor): The Tensor to be checked.
1360 1361

    Returns:
N
Noel 已提交
1362
        Tensor: The tensor storing the output, contains a bool value.
1363 1364 1365 1366 1367

    Examples:

        .. code-block:: python

N
Noel 已提交
1368 1369 1370 1371 1372 1373
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1374
    """
1375 1376
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1377
    helper = LayerHelper("isfinite", **locals())
1378

1379
    out = helper.create_variable_for_type_inference(dtype='bool')
1380 1381
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1382 1383


1384
def range(start, end, step, dtype, name=None):
W
whs 已提交
1385
    """
1386
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1387

1388 1389
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1390

1391 1392
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1393

L
Liufang Sang 已提交
1394
    Parameters:
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1418 1419 1420 1421 1422

    examples:

        .. code-block:: python

1423
            import paddle.fluid as fluid
W
whs 已提交
1424

1425 1426
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1427

1428 1429 1430 1431 1432 1433 1434
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1435

W
whs 已提交
1436
    if not isinstance(start, Variable):
1437
        with device_guard("cpu"):
1438
            start = fill_constant([1], dtype, start, force_cpu=True)
1439 1440
    elif start.dtype != dtype:
        start = cast(start, dtype)
1441

W
whs 已提交
1442
    if not isinstance(end, Variable):
1443
        with device_guard("cpu"):
1444
            end = fill_constant([1], dtype, end, force_cpu=True)
1445 1446
    elif end.dtype != dtype:
        end = cast(end, dtype)
1447

W
whs 已提交
1448
    if not isinstance(step, Variable):
1449
        with device_guard("cpu"):
1450
            step = fill_constant([1], dtype, step, force_cpu=True)
1451 1452
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1453

J
Jiabin Yang 已提交
1454
    if _non_static_mode():
J
Jiawei Wang 已提交
1455 1456 1457
        out = _C_ops.range(start, end, step)
        out.stop_gradient = True
        return out
W
whs 已提交
1458

W
wanghuancoder 已提交
1459 1460 1461 1462 1463
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1464 1465 1466
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1467
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1468 1469 1470 1471 1472
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1473
        outputs={'Out': out})
1474
    out.stop_gradient = True
W
whs 已提交
1475
    return out
Z
zhoukunsheng 已提交
1476 1477


1478
def linspace(start, stop, num, dtype=None, name=None):
1479
    r"""
1480
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1481 1482

    Args:
1483 1484 1485 1486
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1487
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1488
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1489
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1490
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1491 1492
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1493 1494

    Returns:
1495
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1496 1497
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1498

Z
zhoukunsheng 已提交
1499
    Examples:
Z
zhoukunsheng 已提交
1500 1501
        .. code-block:: python

1502 1503 1504
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1505 1506

    """
1507 1508
    if dtype is None:
        dtype = 'float32'
1509 1510 1511
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1512 1513
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1514 1515
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1516
    if not isinstance(start, Variable):
1517 1518
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1519
    if not isinstance(stop, Variable):
1520 1521
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1522
    if not isinstance(num, Variable):
1523 1524
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
J
Jiabin Yang 已提交
1525
    if _non_static_mode():
W
wanghuancoder 已提交
1526 1527
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)
1528 1529 1530

    helper = LayerHelper("linspace", **locals())

1531 1532 1533
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1534
    if isinstance(start, Variable):
1535 1536
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1537 1538
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1539

1540
    if isinstance(stop, Variable):
1541 1542
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1543 1544 1545 1546 1547 1548
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1549 1550 1551 1552 1553 1554 1555 1556
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1557 1558

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1559 1560 1561

    helper.append_op(
        type='linspace',
1562 1563 1564 1565
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1566
        outputs={'Out': [out]})
1567 1568
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1569
    return out
1570 1571


Z
zhoukunsheng 已提交
1572 1573
def zeros_like(x, out=None):
    """
1574
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1575 1576 1577
    with `x`.

    Args:
1578 1579 1580 1581 1582 1583
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1584 1585

    Returns:
1586 1587 1588
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1589 1590 1591 1592

    Examples:
        .. code-block:: python

1593
          import paddle.fluid as fluid
1594
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1595 1596
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1597 1598
    """

1599 1600
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1601 1602 1603
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1604 1605 1606
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1607
            'zeros_like')
1608

Z
zhoukunsheng 已提交
1609 1610 1611 1612
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1613 1614


1615
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1616
def diag(diagonal):
1617
    r"""
1618 1619 1620
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1621

1622
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1623 1624

    Args:
1625 1626
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1627 1628

    Returns:
1629 1630
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1631 1632 1633 1634 1635 1636 1637

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1638 1639 1640

          import paddle.fluid as fluid
          import numpy as np
1641 1642 1643
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1644 1645

    """
1646 1647 1648
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1661 1662


1663 1664 1665 1666 1667
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1668
    """
1669
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1670 1671 1672

    Args:
        num_rows(int): the number of rows in each batch tensor.
1673 1674
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1675 1676
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1677
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1678 1679 1680 1681
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1682 1683

    Returns:
1684
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1685 1686 1687 1688 1689

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1690 1691
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1692
          #  [0, 1, 0]
1693 1694
          #  [0, 0, 1]]

1695
          data = fluid.layers.eye(2, 3, dtype='int32')
1696
          # [[1, 0, 0]
1697
          #  [0, 1, 0]]
1698 1699

          data = fluid.layers.eye(2, batch_shape=[3])
1700 1701 1702 1703 1704
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1705 1706
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1707 1708 1709 1710 1711
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1712

J
Jiabin Yang 已提交
1713
    if _non_static_mode():
W
wanghuancoder 已提交
1714 1715
        out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                         num_columns)
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1734 1735

    if batch_shape is not None:
1736 1737 1738
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
J
Jiabin Yang 已提交
1739
        if _non_static_mode():
W
wanghuancoder 已提交
1740 1741
            out = _C_ops.reshape(out, 'shape', re_shape)
            return _C_ops.expand(out, None, 'expand_times', expand_times)
1742

1743 1744
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1745
        for batch_val in (batch_shape):
1746 1747
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1748 1749 1750 1751 1752 1753

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1754 1755 1756
    return out


Z
zhoukunsheng 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1769
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1780 1781
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1782 1783 1784 1785

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1786 1787 1788 1789
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1790 1791 1792 1793 1794 1795
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1796 1797 1798 1799 1800 1801


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)