tensor.py 53.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
19
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator
X
xuwei06 已提交
20
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .. import core
24
from .layer_function_generator import templatedoc
25
from ..data_feeder import check_type_and_dtype, check_type, check_dtype, convert_dtype
X
xuwei06 已提交
26
import numpy
27
import warnings
Y
Yu Yang 已提交
28 29

__all__ = [
L
li099 已提交
30 31 32
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
33
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
34
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
35 36 37
]


X
xuwei06 已提交
38
def create_tensor(dtype, name=None, persistable=False):
39
    """
W
wangchaochaohu 已提交
40
    Create a variable, which will hold a Tensor with data type dtype.
41 42

    Args:
W
wangchaochaohu 已提交
43 44 45 46
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
47
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
48
            default value is False.
49 50

    Returns:
W
wangchaochaohu 已提交
51
        Variable: The tensor to be created according to dtype.
52 53 54 55

    Examples:
        .. code-block:: python

56
          import paddle.fluid as fluid
57 58
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
59
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
60 61
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
62 63


64 65
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
66
                     name=None,
67 68 69 70
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
71
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
72 73 74 75 76
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

77 78 79 80 81 82 83
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
84 85 86
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
87
        default_initializer (Initializer, optional): Initializer for the parameter
88 89

    Returns:
90
        The created parameter.
Y
yuyang18 已提交
91 92

    Examples:
93 94
        .. code-block:: python

95
            import paddle.fluid as fluid
96 97
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
98
    """
Q
Qiao Longfei 已提交
99
    helper = LayerHelper("create_parameter", **locals())
100
    if attr is None:
X
xuwei06 已提交
101
        attr = ParamAttr(name=name)
102 103 104 105
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


106 107 108 109 110 111 112
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
113
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
114

115 116 117
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
118
                      variable will be filled with it.
119 120
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
121
                           Default: False
122
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
123
                         Default: False
124 125
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
126 127

    Returns:
128
        Variable: The created Variable
F
fengjiayi 已提交
129 130 131 132

    Examples:
        .. code-block:: python

133
            import paddle.fluid as fluid
134 135 136
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                          persistable=True, force_cpu=True, name='new_var')
137
    """
Q
Qiao Longfei 已提交
138 139
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
140 141 142 143 144
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
145 146 147
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
148

Q
Qiao Longfei 已提交
149 150 151
    return var


152
def cast(x, dtype):
Y
Yu Yang 已提交
153
    """
154 155 156
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
157 158

    Args:
159 160 161 162
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
            bool, float15, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
163 164

    Returns:
165
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
166 167 168

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
169

170
            import paddle.fluid as fluid
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
193 194
    """
    helper = LayerHelper('cast', **locals())
195 196 197 198
    check_type_and_dtype(
        x, 'x', Variable,
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
X
Xin Pan 已提交
199
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
200 201 202 203 204 205 206 207 208
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


209
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
210
    """
211 212
    **Concat**

213
    This OP concatenates the input along the axis.
214 215

    Args:
216 217
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
218
        axis(int32|Variable, optional):  A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range
219 220 221 222 223
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
224 225

    Returns:
226
        Variable: A Tensor with the same data type as input's.
227 228 229

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
230

231
            import paddle.fluid as fluid
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
254
    """
255 256 257 258 259 260 261 262 263 264

    if in_dygraph_mode():
        inputs = {'X': input}
        if not isinstance(axis, int):
            raise TypeError(
                "Input 'axis' in concat must be int in Dygraph mode.")
        attrs = {'axis': axis}
        outs = core.ops.concat(inputs, attrs)
        return outs['Out'][0]

265 266 267 268 269
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
270 271 272 273 274
    for id, x in enumerate(input):
        check_type_and_dtype(
            x, 'input[' + str(id) + ']', Variable,
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'concat')
    check_type(axis, 'axis', (int, Variable), 'concat')
275 276 277 278 279 280 281 282
    inputs = {'X': input}
    attrs = {}
    if isinstance(axis, Variable):
        axis.stop_gradient = True
        inputs['AxisTensor'] = axis
    else:
        attrs['axis'] = axis

283
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
284
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
285
    helper.append_op(
286
        type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
287 288 289
    return out


G
Guo Sheng 已提交
290
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
291
    """
G
Guo Sheng 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
342 343

    Args:
G
Guo Sheng 已提交
344 345 346 347 348 349 350
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
351 352

    Returns:
G
Guo Sheng 已提交
353 354 355
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
356 357 358 359

    Examples:
        .. code-block:: python

360
            import paddle.fluid as fluid
361
            import numpy as np
G
Guo Sheng 已提交
362 363 364 365 366 367 368
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
369
    """
L
li099 已提交
370
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
371 372 373
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
374
        type='tensor_array_to_tensor',
L
li099 已提交
375 376 377
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
378 379
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
380 381 382
    return out, out_index


383
def sums(input, out=None):
F
fengjiayi 已提交
384
    """
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
406 407

    Args:
408 409 410 411
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
412 413

    Returns:
414 415
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
416 417

    Examples:
F
fengjiayi 已提交
418
        .. code-block:: python
K
kavyasrinet 已提交
419

420 421 422 423 424 425 426 427 428
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
429

430 431
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
432 433 434
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
435 436
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
437 438 439 440 441
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
442 443 444
    return out


F
fengjiayi 已提交
445
def assign(input, output=None):
446
    """
447
    The OP copies the :attr:`input` to the :attr:`output`.
448

449 450 451 452 453
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
454 455

    Returns:
456
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
457 458 459

    Examples:
        .. code-block:: python
460

461
          import paddle.fluid as fluid
462 463 464 465 466 467
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
468
    """
Y
Yu Yang 已提交
469
    helper = LayerHelper('assign', **locals())
470
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
471
    if isinstance(input, Variable):
472 473 474
        check_dtype(input.dtype, 'input',
                    ['float32', 'float64', 'int32', 'int64', 'bool'], 'assign',
                    '(When the type of input in assign is Variable.)')
475 476 477
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
478
        helper.append_op(
R
robot 已提交
479
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
480 481
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
482
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
483
            value_name = "fp32_values"
484
            values = [float(v) for v in input.flat]
485
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
486
            value_name = "int32_values"
487
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
488
        else:
489 490 491 492
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be float32 or int32, but "
                "received %s." % convert_dtype(dtype))
493 494 495
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
496 497 498
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
499 500 501 502 503 504
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
505
                value_name: values
X
xuwei06 已提交
506 507
            })

Y
Yu Yang 已提交
508 509 510
    return output


Q
QI JUN 已提交
511
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
512
    """
W
wangchaochaohu 已提交
513
    This OP creates a Tensor with specified `shape` and `dtype`, and
514
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
515

W
wangchaochaohu 已提交
516
    The attribute `stop_gradient` of the created Tensor is setted to True.
517 518

    Args:
519 520 521 522
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
W
wangchaochaohu 已提交
523 524 525 526 527 528 529
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
        value(float): The constant value used to initialize the Tensor to be created.
        force_cpu(True): data should be on CPU if it's true, defalut value is False.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
530 531

    Returns:
W
wangchaochaohu 已提交
532 533 534 535 536
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
537 538 539 540

    Examples:
        .. code-block:: python

541
          import paddle.fluid as fluid
542 543 544 545 546 547 548 549 550 551 552 553
          # attr shape is a list which doesn't contain Variable Tensor.
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
          # data1=[[0], [0]] data2=[[5], [5]]

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
Y
Yu Yang 已提交
554
    """
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

    def _contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    attrs = {
        'value': float(value),
        'force_cpu': force_cpu or force_init_on_cpu()
    }

    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))

    if in_dygraph_mode():
        if isinstance(shape, (list, tuple)):
            contain_var = _contain_var(shape)
            if contain_var:
                raise TypeError(
                    "The type of 'shape' in fill_constant must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
            attrs['shape'] = shape
        else:
            raise TypeError(
                "The type of 'shape' in fill_constant must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))
        if out is None:
            out = _varbase_creator(dtype=dtype)
        attrs['dtype'] = out.dtype
        outputs = {'Out': [out]}
        outs = core.ops.fill_constant({}, attrs, outputs)
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
592
    helper = LayerHelper("fill_constant", **locals())
593 594 595 596
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
L
liym27 已提交
597 598 599 600 601 602
    inputs = {}
    attrs = {
        'value': float(value),
        'force_cpu': force_cpu or force_init_on_cpu()
    }

603 604 605 606 607
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))

L
liym27 已提交
608 609 610 611 612 613 614 615 616 617 618
    def _get_attr_shape(list_shape):
        attr_shape = []
        for idx, dim in enumerate(list_shape):
            if isinstance(dim, Variable):
                attr_shape.append(-1)
            else:
                attr_shape.append(dim)
        return attr_shape

    def _get_shape_tensor(list_shape):
        new_shape_tensor = []
619
        for idx, dim in enumerate(list_shape):
L
liym27 已提交
620 621
            if isinstance(dim, Variable):
                dim.stop_gradient = True
622 623 624 625
                check_dtype(
                    dim.dtype, 'shape[' + str(idx) + ']', ['int32', 'int64'],
                    'fill_constant',
                    '(When type of shape in fill_constant is list or tuple.)')
626 627
                if convert_dtype(dim.dtype) == 'int64':
                    dim = cast(x=dim, dtype='int32')
L
liym27 已提交
628 629 630 631 632 633 634 635 636
                new_shape_tensor.append(dim)
            else:
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    if isinstance(shape, Variable):
        shape.stop_gradient = True
637 638
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'fill_constant',
                    '(When type of shape in fill_constant is Variable.)')
639 640
        if (convert_dtype(shape.dtype) == 'int64'):
            shape = cast(shape, 'int32')
L
liym27 已提交
641 642 643 644 645 646 647 648 649
        inputs["ShapeTensor"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, (
            "The size of 'shape' in fill_constant can't be zero, "
            "but received %s." % len(shape))
        attrs["shape"] = _get_attr_shape(shape)
        if _contain_var(shape):
            inputs['ShapeTensorList'] = _get_shape_tensor(shape)

Y
Yu Yang 已提交
650
    if out is None:
X
Xin Pan 已提交
651
        out = helper.create_variable_for_type_inference(dtype=dtype)
652
    else:
653 654 655 656 657
        check_dtype(
            dtype, 'create data type',
            convert_dtype(out.dtype), 'fill_constant',
            '(The create data type in fill_constant must be the same with out data type.)'
        )
L
liym27 已提交
658
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
659 660
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
661
        inputs=inputs,
Y
Yu Yang 已提交
662
        outputs={'Out': [out]},
L
liym27 已提交
663
        attrs=attrs,
M
minqiyang 已提交
664
        stop_gradient=True)
Y
Yu Yang 已提交
665 666 667 668
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
669
@templatedoc()
Y
Yu Yang 已提交
670 671 672 673 674
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
675 676
                                  output_dim_idx=0,
                                  force_cpu=False):
677
    """
W
wangchaochaohu 已提交
678 679 680 681 682
    This OP creates a Tesnor accroding the shape and dtype, and initializes the
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
683 684

    Args:
W
wangchaochaohu 已提交
685 686 687 688 689 690 691 692 693 694 695
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
G
Guo Sheng 已提交
696
        force_cpu(bool): data should be on CPU if it's true, defalut value is False.
Y
yuyang18 已提交
697 698

    Returns:
W
wangchaochaohu 已提交
699
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
700 701 702 703 704

    Examples:

        .. code-block:: python

705
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
706
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
707
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
708
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
709

710
    """
Y
Yu Yang 已提交
711
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
712
    out = helper.create_variable_for_type_inference(dtype=dtype)
713 714 715 716 717 718 719 720 721 722 723 724
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
        'force_cpu': force_cpu or force_init_on_cpu()
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
725 726 727 728
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
729
        attrs=attrs)
Y
Yu Yang 已提交
730 731 732 733
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
734 735 736 737
def argmin(x, axis=0):
    """
    **argmin**

738 739
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
740 741

    Args:
742 743 744 745 746
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
747

S
sneaxiy 已提交
748
    Returns:
749
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
750

S
sneaxiy 已提交
751 752
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
753

754
            import paddle.fluid as fluid
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
782 783
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
784
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
785 786 787 788 789 790 791 792 793 794 795 796
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

797 798
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
799 800

    Args:
801 802 803 804 805
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
806

S
sneaxiy 已提交
807
    Returns:
808
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
809

S
sneaxiy 已提交
810 811
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
812

813
            import paddle.fluid as fluid
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
841 842
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
843
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
844 845 846 847 848 849 850 851
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


852
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
853
    """
854 855 856
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
857 858

    Args:
859 860 861 862 863
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
864 865 866
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
867 868 869
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
870 871

    Returns:
872 873 874
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
875 876 877 878

    Examples:
        .. code-block:: python

879
            import paddle.fluid as fluid
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
921 922
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
923 924 925 926
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
927 928 929 930
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
931
                 'Indices': ids},
932 933
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
934 935 936
    return out, ids


Y
Yang Yu 已提交
937
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
938
    """
939 940
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
941

942 943 944 945 946 947 948
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
949 950

    Returns:
951
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
952 953 954 955

    Examples:
        .. code-block:: python

956
          import paddle.fluid as fluid
957
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
958
    """
C
chengduozh 已提交
959 960 961 962
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
963 964 965
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
966
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
967
    """
968 969
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
970

971 972 973 974 975 976 977
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
978 979

    Returns:
980
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
981 982 983 984

    Examples:
        .. code-block:: python

985
          import paddle.fluid as fluid
986
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
987
    """
988 989 990
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')
Y
Yu Yang 已提交
991
    return fill_constant(value=0.0, **locals())
992 993


F
fengjiayi 已提交
994 995
def reverse(x, axis):
    """
996
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
997

998 999 1000 1001 1002
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
1003 1004

    Returns:
1005
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1006 1007 1008 1009

    Examples:
        .. code-block:: python

1010
          import paddle.fluid as fluid
1011 1012 1013 1014
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
1015 1016 1017 1018
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1019
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1020 1021
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1022
        inputs={'X': x},
F
fengjiayi 已提交
1023 1024 1025 1026 1027
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1028 1029 1030 1031 1032 1033 1034
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1035 1036 1037
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1053 1054
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1055
        file_path(str): The file path where variables will be saved.
1056
        overwrite(bool): Whether or not cover the given file when it has already
1057 1058
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1059 1060 1061 1062 1063 1064 1065 1066

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1067
            import paddle.fluid as fluid
1068 1069 1070 1071 1072 1073 1074
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1099 1100 1101 1102 1103 1104 1105


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1106
       x (Variable): The Tensor/LoDTensor to be checked.
1107 1108

    Returns:
L
liu zhengxi 已提交
1109
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1110 1111 1112 1113 1114 1115 1116 1117
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1118 1119
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1120
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1121 1122 1123 1124 1125 1126 1127 1128 1129
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1130
       x (Variable): The Tensor/LoDTensor to be checked.
1131 1132

    Returns:
L
liu zhengxi 已提交
1133
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1134 1135 1136 1137 1138 1139 1140 1141
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1142 1143
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1144
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1159 1160 1161 1162 1163

    Examples:

        .. code-block:: python

1164
            import paddle.fluid as fluid
1165 1166 1167
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1168
            out = fluid.layers.isfinite(var)
1169 1170
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
1171
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1172 1173
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1183 1184 1185 1186
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1187
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1188 1189 1190
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1191
                                  distance between two adjacent values, out[i+1] - out[i].
1192
        dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1193

L
Liufang Sang 已提交
1194 1195 1196
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1197 1198 1199 1200 1201

    examples:

        .. code-block:: python

1202
             import paddle.fluid as fluid
W
whs 已提交
1203 1204 1205 1206 1207
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

1208 1209 1210 1211
    check_dtype(dtype, 'create data type',
                ['float32', 'float64', 'int32', 'int64'], 'range')

    dtype = convert_dtype(dtype)
W
whs 已提交
1212 1213
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1214 1215 1216 1217 1218
    elif convert_dtype(start.dtype) != dtype:
        # make sure that start, end, step has the same dtype as
        # `dtype`
        start = cast(x=start, dtype=dtype)

W
whs 已提交
1219 1220
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
1221 1222 1223
    elif convert_dtype(end.dtype) != dtype:
        end = cast(x=end, dtype=dtype)

W
whs 已提交
1224 1225
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)
1226 1227
    elif convert_dtype(step.dtype) != dtype:
        step = cast(x=step, dtype=dtype)
W
whs 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1237
    out.stop_gradient = True
W
whs 已提交
1238
    return out
Z
zhoukunsheng 已提交
1239 1240


Z
zhoukunsheng 已提交
1241 1242
def linspace(start, stop, num, dtype):
    """
1243
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1244 1245

    Args:
1246 1247 1248 1249 1250 1251 1252
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1253 1254

    Returns:
1255 1256 1257
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1258

Z
zhoukunsheng 已提交
1259
    Examples:
Z
zhoukunsheng 已提交
1260 1261
        .. code-block:: python

1262
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1263 1264
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1285 1286


Z
zhoukunsheng 已提交
1287 1288
def zeros_like(x, out=None):
    """
1289
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1290 1291 1292
    with `x`.

    Args:
1293 1294 1295 1296
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
            The defalut value is :attr:`None` .
Z
zhoukunsheng 已提交
1297 1298

    Returns:
1299 1300
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1301 1302 1303 1304

    Examples:
        .. code-block:: python

1305
          import paddle.fluid as fluid
1306
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1307 1308
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1318 1319 1320 1321


def diag(diagonal):
    """
1322
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1323 1324

    Args:
1325 1326
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1327 1328

    Returns:
1329 1330
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1331 1332 1333 1334 1335 1336 1337

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1338 1339 1340

          import paddle.fluid as fluid
          import numpy as np
1341 1342 1343
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1359 1360


1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1373 1374
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1375 1376

    Returns:
1377
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1378 1379 1380 1381 1382

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1383 1384
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1385
          #  [0, 1, 0]
1386 1387
          #  [0, 0, 1]]

1388
          data = fluid.layers.eye(2, 3, dtype='int32')
1389
          # [[1, 0, 0]
1390
          #  [0, 1, 0]]
1391 1392

          data = fluid.layers.eye(2, batch_shape=[3])
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1445
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out