tensor.py 65.6 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
J
Jiabin Yang 已提交
24
from ..framework import convert_np_dtype_to_dtype_, _non_static_mode, _varbase_creator, device_guard, _in_legacy_dygraph
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
W
wanghuancoder 已提交
35
from paddle import _C_ops
Y
Yu Yang 已提交
36 37

__all__ = [
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
64 65 66
]


X
xuwei06 已提交
67
def create_tensor(dtype, name=None, persistable=False):
68
    """
W
wangchaochaohu 已提交
69
    Create a variable, which will hold a Tensor with data type dtype.
70 71

    Args:
W
wangchaochaohu 已提交
72 73 74 75
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
76
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
77
            default value is False.
78 79

    Returns:
W
wangchaochaohu 已提交
80
        Variable: The tensor to be created according to dtype.
81 82 83 84

    Examples:
        .. code-block:: python

85
          import paddle.fluid as fluid
86 87
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
88 89 90 91
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
92
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
93 94
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
95 96


97 98
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
99
                     name=None,
100 101 102 103
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
104
	:api_attr: Static Graph
S
swtkiwi 已提交
105

106
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
107 108 109 110 111
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

112 113 114 115 116 117 118
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
119 120 121
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
122
        default_initializer (Initializer, optional): Initializer for the parameter
123 124

    Returns:
125
        The created parameter.
Y
yuyang18 已提交
126 127

    Examples:
128 129
        .. code-block:: python

130 131 132
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
133
    """
134 135
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
136 137 138
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
139 140 141 142 143 144 145 146 147

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
148
    helper = LayerHelper("create_parameter", **locals())
149
    if attr is None:
X
xuwei06 已提交
150
        attr = ParamAttr(name=name)
151 152
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
153 154 155
                                   default_initializer)


156 157 158 159 160 161 162
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
163
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
164

165
    Parameters:
166
        shape (list[int]|tuple[int]): Shape of the variable
167
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
168
                      variable will be filled with it.
169 170
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
171
                           Default: False
172
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
173
                         Default: False
174 175
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
176 177

    Returns:
178
        Variable: The created Variable
F
fengjiayi 已提交
179 180 181 182

    Examples:
        .. code-block:: python

183 184 185
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
186
                                           persistable=True, force_cpu=True, name='new_var')
187
    """
188 189 190
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
191 192 193
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
194 195

    check_dtype(dtype, 'dtype', [
196 197 198 199 200 201 202 203 204 205
        'bool',
        'float16',
        'float32',
        'float64',
        'int8',
        'int16',
        'int32',
        'int64',
        'uint8',
        'uint16',
206 207
    ], 'create_global_var')

Q
Qiao Longfei 已提交
208 209
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
210 211 212 213 214
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
215 216 217
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
218

Q
Qiao Longfei 已提交
219 220 221
    return var


222
def cast(x, dtype):
Y
Yu Yang 已提交
223
    """
S
swtkiwi 已提交
224

225
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
226 227
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
228 229

    Args:
230
        x(Tensor): An input N-D Tensor with data type bool, float16,
231
            float32, float64, int32, int64, uint8.
232
        dtype(np.dtype|str): Data type of the output:
233
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
234 235

    Returns:
236
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
237 238 239

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
240

241
            import paddle
242

243 244
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
245
    """
J
Jiabin Yang 已提交
246
    if _non_static_mode():
247 248
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
W
wanghuancoder 已提交
249
        out = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
250
        return out
251

252
    check_variable_and_dtype(x, 'x', [
253 254
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
255
    ], 'cast')
256
    check_dtype(dtype, 'dtype', [
257 258
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
259 260 261
    ], 'cast')

    helper = LayerHelper('cast', **locals())
262 263
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
264 265 266 267 268 269 270 271 272
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


273
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
274
    """
275
    This OP concatenates the input along the axis.
276 277

    Args:
278 279
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
280 281
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
282
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
283
            as ``axis+R``. Default is 0.
284 285 286
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
287 288

    Returns:
289
        Tensor: A Tensor with the same data type as ``input``.
290 291 292

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
293

294
            import paddle.fluid as fluid
295 296
            import numpy as np

297 298 299 300 301 302
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
303 304 305 306
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
307 308
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
309 310
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
311 312 313 314 315 316 317 318
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
319
    """
320

J
Jiabin Yang 已提交
321
    if _non_static_mode():
S
songyouwei 已提交
322 323
        if isinstance(axis, Variable):
            axis = axis.numpy()
324
            axis = axis.item(0)
325 326
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
W
wanghuancoder 已提交
327
        return _C_ops.concat(input, 'axis', axis)
328

329 330 331 332 333 334 335 336 337 338 339
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
340
        input = [input]
341
    check_type(axis, 'axis', (int, Variable), 'concat')
342

343 344 345 346 347
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

348
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
349
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
350 351

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
352 353 354 355
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

356
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
357
                "number of the elements must be 1, but received %s." % len(input)
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
377 378 379
    return out


G
Guo Sheng 已提交
380
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
381
    r"""
G
Guo Sheng 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
432 433

    Args:
G
Guo Sheng 已提交
434 435 436 437 438 439 440
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
441 442

    Returns:
G
Guo Sheng 已提交
443 444 445
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
446 447 448 449

    Examples:
        .. code-block:: python

450
            import paddle.fluid as fluid
451
            import numpy as np
G
Guo Sheng 已提交
452 453 454 455 456 457 458
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
459
    """
J
Jiabin Yang 已提交
460
    if _non_static_mode():
461 462 463 464 465 466 467 468 469 470
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

471 472 473 474 475
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
476
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
477 478 479
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
480
        type='tensor_array_to_tensor',
L
li099 已提交
481 482 483
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
484 485
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
486 487 488
    return out, out_index


489
def sums(input, out=None):
490
    r"""
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
512 513

    Args:
514 515 516 517
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
518 519

    Returns:
520 521
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
522 523

    Examples:
F
fengjiayi 已提交
524
        .. code-block:: python
K
kavyasrinet 已提交
525

526 527 528 529 530 531 532 533 534
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
535

536 537
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
538
    """
539 540 541 542
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
543
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
544 545
    else:
        check_variable_and_dtype(input, "input", \
546
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
547

Y
Yu Yang 已提交
548 549
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
550 551
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
552 553 554 555
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
556 557 558 559 560
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
561 562 563
    return out


F
fengjiayi 已提交
564
def assign(input, output=None):
565
    """
S
swtkiwi 已提交
566

567
    The OP copies the :attr:`input` to the :attr:`output`.
568

569
    Parameters:
570 571 572 573
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
574
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
575
            be created as :attr:`output`. Default: None.
576 577

    Returns:
578
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
579 580 581

    Examples:
        .. code-block:: python
582

583
          import paddle
584
          import numpy as np
585
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
586 587 588 589
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
590 591 592
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
593
    """
Y
Yu Yang 已提交
594
    helper = LayerHelper('assign', **locals())
595 596
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
597 598
    is_inplace = True if output is not None else False

599 600 601 602
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
603 604
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
J
Jiabin Yang 已提交
605
    # but _non_static_mode()==False under @to_static, which means
606 607 608
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
A
arlesniak 已提交
609
        check_dtype(input.dtype, 'input', [
610 611
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
A
arlesniak 已提交
612
        ], 'assign', '(When the type of input in assign is Variable.)')
613 614 615
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
616
        helper.append_op(
R
robot 已提交
617
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
618
    elif isinstance(input, numpy.ndarray):
619 620 621 622 623
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
624
        dtype = convert_np_dtype_to_dtype_(input.dtype)
625 626 627 628 629 630 631 632
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
633 634
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
635
            values = [int(v) for v in input.flat]
636
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
637
            value_name = "fp32_values"
638
            values = [float(v) for v in input.flat]
639
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
640
            value_name = "int32_values"
641
            values = [int(v) for v in input.flat]
642 643 644
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
645
        else:
646 647
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
648
                "the data type of 'input' must be bool, float32, int32 or int64, but "
649
                "received %s." % convert_dtype(dtype))
650 651 652
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
653 654 655
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
656 657 658 659 660 661
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
662
                value_name: values
X
xuwei06 已提交
663 664
            })

J
Jiabin Yang 已提交
665
    if is_inplace and _non_static_mode():
J
Jiabin Yang 已提交
666
        # TODO(jiabin): Remove this when we support inplace
J
Jiabin Yang 已提交
667
        if _in_legacy_dygraph():
J
Jiabin Yang 已提交
668
            output._bump_inplace_version()
669

Y
Yu Yang 已提交
670 671 672
    return output


673
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
674
    """
S
swtkiwi 已提交
675

W
wangchaochaohu 已提交
676
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
677
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
678

T
tianshuo78520a 已提交
679
    The attribute `stop_gradient` of the created Tensor is set to True.
680 681

    Args:
682 683 684
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
685
        dtype(np.dtype|str): Data type of the output Tensor which can
686
            be float16, float32, float64, uint8, int16, int32, int64.
687 688 689 690 691 692
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
693 694
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
695 696

    Returns:
697
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
698

699 700 701
    Examples:
        .. code-block:: python

702
          import paddle.fluid as fluid
703
          # attr shape is a list which doesn't contain  Tensor.
704 705
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
706
          # data1=[[5], [5]] data2=[[5], [5]]
707

708
          # attr shape is a list which contains Tensor.
709
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
710
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
711

712
          # attr shape is a Tensor.
713
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
714
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
715
          
716
          # attr value is a Tensor.
W
wangchaochaohu 已提交
717 718
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
719
    """
720

W
wangchaochaohu 已提交
721
    attrs = {'force_cpu': force_cpu}
722
    dtype = convert_dtype(dtype)
723
    if not isinstance(value, Variable):
724
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
725
            attrs['str_value'] = str(int(value))
726
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
727 728
        else:
            attrs['str_value'] = str(float(value))
729
            attrs['value'] = float(value)
730

J
Jiabin Yang 已提交
731
    if _non_static_mode():
732
        shape = utils.convert_shape_to_list(shape)
733 734
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
735 736

        if isinstance(value, Variable):
737
            if dtype in ['uint8', 'int16', 'int32', 'int64']:
738
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
739
            else:
740
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
741

W
wanghuancoder 已提交
742 743 744 745
        _C_ops.fill_constant(out, 'value',
                             float(value), 'force_cpu', force_cpu, 'dtype',
                             out.dtype, 'str_value', attrs['str_value'],
                             'shape', shape)
746 747 748
        out.stop_gradient = True
        return out

749 750 751
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
752 753
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
754 755
        inputs['ValueTensor'] = value

756
    check_shape(shape)
757 758
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32',
759
        'int64', 'complex64', 'complex128'
760
    ], 'fill_constant')
761
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
762

763 764 765 766 767
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
768
    utils.get_shape_tensor_inputs(
769
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
770

Y
Yu Yang 已提交
771
    if out is None:
X
Xin Pan 已提交
772
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
773
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
774 775
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
776
        inputs=inputs,
Y
Yu Yang 已提交
777
        outputs={'Out': [out]},
L
liym27 已提交
778
        attrs=attrs,
M
minqiyang 已提交
779
        stop_gradient=True)
Y
Yu Yang 已提交
780 781 782 783
    out.stop_gradient = True
    return out


784
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
785
@templatedoc()
Y
Yu Yang 已提交
786 787 788 789 790
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
791 792
                                  output_dim_idx=0,
                                  force_cpu=False):
793
    """
T
tianshuo78520a 已提交
794
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
795 796 797 798
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
799 800

    Args:
W
wangchaochaohu 已提交
801 802 803 804 805 806 807 808 809 810 811
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
812
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
813 814

    Returns:
W
wangchaochaohu 已提交
815
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
816 817 818 819 820

    Examples:

        .. code-block:: python

821
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
822
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
823
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
824
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
825

826
    """
Y
Yu Yang 已提交
827
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
828
    out = helper.create_variable_for_type_inference(dtype=dtype)
829 830 831 832 833 834
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
835
        'force_cpu': force_cpu
836 837 838 839 840
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
841 842 843 844
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
845
        attrs=attrs)
Y
Yu Yang 已提交
846 847 848 849
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
850 851
def argmin(x, axis=0):
    """
852 853 854
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
855

S
sneaxiy 已提交
856 857
    **argmin**

858 859
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
860 861

    Args:
862 863 864 865 866
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
867

S
sneaxiy 已提交
868
    Returns:
869
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
870

S
sneaxiy 已提交
871 872
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
873

874
            import paddle.fluid as fluid
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
902
    """
903 904 905
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
906
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
907
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
908 909 910 911 912
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
913
    out.stop_gradient = True
S
sneaxiy 已提交
914 915 916 917 918 919 920
    return out


def argmax(x, axis=0):
    """
    **argmax**

921 922
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
923 924

    Args:
925 926 927 928 929
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
930

S
sneaxiy 已提交
931
    Returns:
932
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
933

S
sneaxiy 已提交
934 935
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
936

937
            import paddle.fluid as fluid
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
965
    """
966 967 968
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
969
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
970
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
971 972 973 974 975
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
976
    out.stop_gradient = True
S
sneaxiy 已提交
977 978 979
    return out


980
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
981
    """
982 983 984
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
985

986 987 988
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
989 990

    Args:
991 992 993 994 995
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
996 997 998
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
999 1000 1001
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1002 1003

    Returns:
1004 1005 1006
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1007 1008 1009 1010

    Examples:
        .. code-block:: python

1011
            import paddle.fluid as fluid
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1053
    """
1054 1055 1056
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1057
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1058 1059 1060 1061
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1062 1063 1064 1065
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1066
                 'Indices': ids},
1067 1068
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1069 1070 1071
    return out, ids


Y
Yang Yu 已提交
1072
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1073
    """
1074 1075
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1076

1077
    Parameters:
1078
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1079
        dtype (np.dtype|str): Data type of output Tensor, it supports
1080
            bool, float16, float32, float64, int32 and int64.
1081 1082
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1083
            Default: False.
1084 1085

    Returns:
1086
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1087 1088 1089 1090

    Examples:
        .. code-block:: python

1091
          import paddle.fluid as fluid
1092 1093 1094 1095 1096
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1097 1098 1099 1100
    """
    return fill_constant(value=1.0, **locals())


1101
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1102
    """
1103 1104
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1105

1106
    Parameters:
1107
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1108
        dtype (np.dtype|str): Data type of output Tensor, it supports
1109
            bool, float16, float32, float64, int32 and int64.
1110 1111
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1112
            Default: False.
1113 1114
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1115 1116

    Returns:
1117
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1118 1119 1120 1121

    Examples:
        .. code-block:: python

1122
          import paddle.fluid as fluid
1123
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1124 1125 1126 1127
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1128 1129
    """
    return fill_constant(value=0.0, **locals())
1130 1131


F
fengjiayi 已提交
1132 1133
def reverse(x, axis):
    """
1134 1135 1136
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1137

1138
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1164
    Parameters:
1165 1166
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1167 1168
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1169 1170
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1171 1172

    Returns:
1173
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1174 1175 1176 1177

    Examples:
        .. code-block:: python

1178
          import paddle.fluid as fluid
1179 1180 1181 1182
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1193
    """
1194 1195 1196
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1197 1198 1199
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1200
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1201 1202
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1203
        inputs={'X': x},
F
fengjiayi 已提交
1204 1205 1206 1207 1208
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1209 1210 1211 1212 1213 1214 1215
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1216 1217 1218
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1234 1235
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1236
        file_path(str): The file path where variables will be saved.
1237
        overwrite(bool): Whether or not cover the given file when it has already
1238 1239
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1240 1241 1242 1243 1244 1245 1246 1247

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1248
            import paddle.fluid as fluid
1249 1250 1251 1252 1253 1254 1255
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1268
    Loads a list of variable from a single file.
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1280 1281 1282 1283 1284 1285 1286


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1287
       x (Tensor): The Tensor to be checked.
1288 1289

    Returns:
S
Steffy-zxf 已提交
1290
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1291 1292 1293 1294
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1295 1296
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1297
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1298
          # [False]
1299

1300
    """
J
Jiabin Yang 已提交
1301
    if _non_static_mode():
W
wanghuancoder 已提交
1302
        return _C_ops.isinf(x)
S
Steffy-zxf 已提交
1303

1304
    check_type(x, 'x', (Variable), 'has_inf')
1305
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1306
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1307 1308 1309 1310 1311 1312 1313 1314 1315
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1316
       x (Tensor): The Tensor to be checked.
1317 1318

    Returns:
S
Steffy-zxf 已提交
1319
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1320 1321 1322 1323
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1324 1325
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1326
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1327
          # [False]
1328

1329
    """
J
Jiabin Yang 已提交
1330
    if _non_static_mode():
W
wanghuancoder 已提交
1331
        return _C_ops.isnan(x)
S
Steffy-zxf 已提交
1332

1333
    check_type(x, 'x', (Variable), 'has_nan')
1334
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1335
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1336 1337 1338 1339 1340 1341
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1342

1343 1344 1345 1346
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1347
        x(Tensor): The Tensor to be checked.
1348 1349

    Returns:
N
Noel 已提交
1350
        Tensor: The tensor storing the output, contains a bool value.
1351 1352 1353 1354 1355

    Examples:

        .. code-block:: python

N
Noel 已提交
1356 1357 1358 1359 1360 1361
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1362
    """
1363 1364
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1365
    helper = LayerHelper("isfinite", **locals())
1366

1367
    out = helper.create_variable_for_type_inference(dtype='bool')
1368 1369
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1370 1371


1372
def range(start, end, step, dtype, name=None):
W
whs 已提交
1373
    """
1374
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1375

1376 1377
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1378

1379 1380
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1381

L
Liufang Sang 已提交
1382
    Parameters:
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1406 1407 1408 1409 1410

    examples:

        .. code-block:: python

1411
            import paddle.fluid as fluid
W
whs 已提交
1412

1413 1414
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1415

1416 1417 1418 1419 1420 1421 1422
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1423

W
whs 已提交
1424
    if not isinstance(start, Variable):
1425
        with device_guard("cpu"):
1426
            start = fill_constant([1], dtype, start, force_cpu=True)
1427 1428
    elif start.dtype != dtype:
        start = cast(start, dtype)
1429

W
whs 已提交
1430
    if not isinstance(end, Variable):
1431
        with device_guard("cpu"):
1432
            end = fill_constant([1], dtype, end, force_cpu=True)
1433 1434
    elif end.dtype != dtype:
        end = cast(end, dtype)
1435

W
whs 已提交
1436
    if not isinstance(step, Variable):
1437
        with device_guard("cpu"):
1438
            step = fill_constant([1], dtype, step, force_cpu=True)
1439 1440
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1441

J
Jiabin Yang 已提交
1442
    if _non_static_mode():
J
Jiawei Wang 已提交
1443 1444 1445
        out = _C_ops.range(start, end, step)
        out.stop_gradient = True
        return out
W
whs 已提交
1446

W
wanghuancoder 已提交
1447 1448 1449 1450 1451
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1452 1453 1454
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1455
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1456 1457 1458 1459 1460
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1461
        outputs={'Out': out})
1462
    out.stop_gradient = True
W
whs 已提交
1463
    return out
Z
zhoukunsheng 已提交
1464 1465


1466
def linspace(start, stop, num, dtype=None, name=None):
1467
    r"""
1468
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1469 1470

    Args:
1471 1472 1473 1474
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1475
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1476
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1477
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1478
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1479 1480
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1481 1482

    Returns:
1483
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1484 1485
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1486

Z
zhoukunsheng 已提交
1487
    Examples:
Z
zhoukunsheng 已提交
1488 1489
        .. code-block:: python

1490 1491 1492
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1493 1494

    """
1495 1496
    if dtype is None:
        dtype = 'float32'
1497 1498 1499
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1500 1501
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1502 1503
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1504
    if not isinstance(start, Variable):
1505 1506
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1507
    if not isinstance(stop, Variable):
1508 1509
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1510
    if not isinstance(num, Variable):
1511 1512
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
J
Jiabin Yang 已提交
1513
    if _non_static_mode():
W
wanghuancoder 已提交
1514 1515
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)
1516 1517 1518

    helper = LayerHelper("linspace", **locals())

1519 1520 1521
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1522
    if isinstance(start, Variable):
1523 1524
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1525 1526
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1527

1528
    if isinstance(stop, Variable):
1529 1530
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1531 1532 1533 1534 1535 1536
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1537 1538 1539 1540 1541 1542 1543 1544
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1545 1546

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1547 1548 1549

    helper.append_op(
        type='linspace',
1550 1551 1552 1553
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1554
        outputs={'Out': [out]})
1555 1556
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1557
    return out
1558 1559


Z
zhoukunsheng 已提交
1560 1561
def zeros_like(x, out=None):
    """
1562
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1563 1564 1565
    with `x`.

    Args:
1566 1567 1568 1569 1570 1571
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1572 1573

    Returns:
1574 1575 1576
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1577 1578 1579 1580

    Examples:
        .. code-block:: python

1581
          import paddle.fluid as fluid
1582
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1583 1584
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1585 1586
    """

1587 1588
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1589 1590 1591
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1592 1593 1594
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1595
            'zeros_like')
1596

Z
zhoukunsheng 已提交
1597 1598 1599 1600
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1601 1602


1603
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1604
def diag(diagonal):
1605
    r"""
1606 1607 1608
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1609

1610
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1611 1612

    Args:
1613 1614
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1615 1616

    Returns:
1617 1618
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1619 1620 1621 1622 1623 1624 1625

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1626 1627 1628

          import paddle.fluid as fluid
          import numpy as np
1629 1630 1631
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1632 1633

    """
1634 1635 1636
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1649 1650


1651 1652 1653 1654 1655
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1656
    """
1657
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1658 1659 1660

    Args:
        num_rows(int): the number of rows in each batch tensor.
1661 1662
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1663 1664
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1665
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1666 1667 1668 1669
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1670 1671

    Returns:
1672
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1673 1674 1675 1676 1677

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1678 1679
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1680
          #  [0, 1, 0]
1681 1682
          #  [0, 0, 1]]

1683
          data = fluid.layers.eye(2, 3, dtype='int32')
1684
          # [[1, 0, 0]
1685
          #  [0, 1, 0]]
1686 1687

          data = fluid.layers.eye(2, batch_shape=[3])
1688 1689 1690 1691 1692
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1693 1694
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1695 1696 1697 1698 1699
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1700

J
Jiabin Yang 已提交
1701
    if _non_static_mode():
W
wanghuancoder 已提交
1702 1703
        out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                         num_columns)
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1722 1723

    if batch_shape is not None:
1724 1725 1726
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
J
Jiabin Yang 已提交
1727
        if _non_static_mode():
W
wanghuancoder 已提交
1728 1729
            out = _C_ops.reshape(out, 'shape', re_shape)
            return _C_ops.expand(out, None, 'expand_times', expand_times)
1730

1731 1732
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1733
        for batch_val in (batch_shape):
1734 1735
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1736 1737 1738 1739 1740 1741

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1742 1743 1744
    return out


Z
zhoukunsheng 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1757
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1768 1769
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1770 1771 1772 1773

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1774 1775 1776 1777
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1778 1779 1780 1781 1782 1783
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1784 1785 1786 1787 1788 1789


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)