tensor.py 65.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18
import numpy
19
import six
20
import warnings
21
from six.moves import reduce
22

Y
Yu Yang 已提交
23
from ..layer_helper import LayerHelper
24
from ..param_attr import ParamAttr
25
from ..initializer import Initializer
26
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
27
from ..framework import Variable
28
from ..initializer import Constant
29
from ..core import VarDesc
30
from .. import core
31
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
32
from . import utils
33
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
34
from paddle.utils import deprecated
35

36
from .utils import check_shape
Y
Yu Yang 已提交
37 38

__all__ = [
L
li099 已提交
39 40 41
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
42
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
Y
yaoxuefeng 已提交
43
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye', 'triu'
Y
Yu Yang 已提交
44 45 46
]


X
xuwei06 已提交
47
def create_tensor(dtype, name=None, persistable=False):
48
    """
W
wangchaochaohu 已提交
49
    Create a variable, which will hold a Tensor with data type dtype.
50 51

    Args:
W
wangchaochaohu 已提交
52 53 54 55
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
56
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
57
            default value is False.
58 59

    Returns:
W
wangchaochaohu 已提交
60
        Variable: The tensor to be created according to dtype.
61 62 63 64

    Examples:
        .. code-block:: python

65
          import paddle.fluid as fluid
66 67
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
68 69 70 71
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
72
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
73 74
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
75 76


77 78
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
79
                     name=None,
80 81 82 83
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
84
	:api_attr: Static Graph
S
swtkiwi 已提交
85

86
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
87 88 89 90 91
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

92 93 94 95 96 97 98
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
99 100 101
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
102
        default_initializer (Initializer, optional): Initializer for the parameter
103 104

    Returns:
105
        The created parameter.
Y
yuyang18 已提交
106 107

    Examples:
108 109
        .. code-block:: python

110 111 112
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
113
    """
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
133
    helper = LayerHelper("create_parameter", **locals())
134
    if attr is None:
X
xuwei06 已提交
135
        attr = ParamAttr(name=name)
136 137
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
138 139 140
                                   default_initializer)


141 142 143 144 145 146 147
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
148
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
149

150
    Parameters:
151
        shape (list[int]|tuple[int]): Shape of the variable
152
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
153
                      variable will be filled with it.
154 155
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
156
                           Default: False
157
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
158
                         Default: False
159 160
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
161 162

    Returns:
163
        Variable: The created Variable
F
fengjiayi 已提交
164 165 166 167

    Examples:
        .. code-block:: python

168 169 170
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
171
                                           persistable=True, force_cpu=True, name='new_var')
172
    """
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
190 191
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
192 193 194 195 196
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
197 198 199
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
200

Q
Qiao Longfei 已提交
201 202 203
    return var


204
def cast(x, dtype):
Y
Yu Yang 已提交
205
    """
S
swtkiwi 已提交
206

207
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
208 209
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
210 211

    Args:
212
        x(Tensor): An input N-D Tensor with data type bool, float16,
213 214
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
215
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
216 217

    Returns:
218
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
219 220 221

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
222

223
            import paddle
224

225 226
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
227
    """
228 229 230 231
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        out = core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
232
        return out
233

234 235 236 237
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8',
        'uint16'
    ], 'cast')
238 239
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
240
        'uint8', 'uint16'
241 242 243
    ], 'cast')

    helper = LayerHelper('cast', **locals())
244 245
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
246 247 248 249 250 251 252 253 254
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


255
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
256
    """
257
    This OP concatenates the input along the axis.
258 259

    Args:
260 261
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
262 263
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
264
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
265
            as ``axis+R``. Default is 0.
266 267 268
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
269 270

    Returns:
271
        Tensor: A Tensor with the same data type as ``input``.
272 273 274

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
275

276
            import paddle.fluid as fluid
277 278
            import numpy as np

279 280 281 282 283 284
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
285 286 287 288
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
289 290
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
291 292
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
293 294 295 296 297 298 299 300
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
301
    """
302 303

    if in_dygraph_mode():
S
songyouwei 已提交
304 305
        if isinstance(axis, Variable):
            axis = axis.numpy()
306
            axis = axis.item(0)
307
        return core.ops.concat(input, 'axis', axis)
308

309 310 311 312 313 314 315 316 317 318 319
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
320
        input = [input]
321
    check_type(axis, 'axis', (int, Variable), 'concat')
322

323 324 325 326 327
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

328
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
329
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
330 331

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
332 333 334 335
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

336
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
337
                "number of the elements must be 1, but received %s." % len(input)
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
357 358 359
    return out


G
Guo Sheng 已提交
360
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
361
    r"""
G
Guo Sheng 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
412 413

    Args:
G
Guo Sheng 已提交
414 415 416 417 418 419 420
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
421 422

    Returns:
G
Guo Sheng 已提交
423 424 425
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
426 427 428 429

    Examples:
        .. code-block:: python

430
            import paddle.fluid as fluid
431
            import numpy as np
G
Guo Sheng 已提交
432 433 434 435 436 437 438
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
439
    """
440 441 442 443 444 445 446 447 448 449 450
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

451 452 453 454 455
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
456
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
457 458 459
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
460
        type='tensor_array_to_tensor',
L
li099 已提交
461 462 463
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
464 465
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
466 467 468
    return out, out_index


469
def sums(input, out=None):
470
    r"""
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
492 493

    Args:
494 495 496 497
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
498 499

    Returns:
500 501
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
502 503

    Examples:
F
fengjiayi 已提交
504
        .. code-block:: python
K
kavyasrinet 已提交
505

506 507 508 509 510 511 512 513 514
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
515

516 517
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
518
    """
519 520 521 522 523 524 525 526 527
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
528 529
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
530 531
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
532 533 534 535
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
536 537 538 539 540
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
541 542 543
    return out


F
fengjiayi 已提交
544
def assign(input, output=None):
545
    """
S
swtkiwi 已提交
546

547
    The OP copies the :attr:`input` to the :attr:`output`.
548

549
    Parameters:
550 551 552 553
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
554
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
555
            be created as :attr:`output`. Default: None.
556 557

    Returns:
558
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
559 560 561

    Examples:
        .. code-block:: python
562

563
          import paddle
564
          import numpy as np
565
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
566 567 568 569
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
570 571 572
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
573
    """
Y
Yu Yang 已提交
574
    helper = LayerHelper('assign', **locals())
575 576
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
577 578
    is_inplace = True if output is not None else False

579 580 581 582
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
583 584 585 586 587 588
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but in_dygraph_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
A
arlesniak 已提交
589
        check_dtype(input.dtype, 'input', [
590 591
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
A
arlesniak 已提交
592
        ], 'assign', '(When the type of input in assign is Variable.)')
593 594 595
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
596
        helper.append_op(
R
robot 已提交
597
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
598 599
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
600 601 602 603 604 605 606 607
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
608 609 610 611
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
612
            value_name = "fp32_values"
613
            values = [float(v) for v in input.flat]
614
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
615
            value_name = "int32_values"
616
            values = [int(v) for v in input.flat]
617 618 619
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
620
        else:
621 622
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
623
                "the data type of 'input' must be bool, float32, int32 or int64, but "
624
                "received %s." % convert_dtype(dtype))
625 626 627
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
628 629 630
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
631 632 633 634 635 636
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
637
                value_name: values
X
xuwei06 已提交
638 639
            })

640 641 642
    if is_inplace and in_dygraph_mode():
        output._bump_inplace_version()

Y
Yu Yang 已提交
643 644 645
    return output


646
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
647
    """
S
swtkiwi 已提交
648

W
wangchaochaohu 已提交
649
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
650
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
651

T
tianshuo78520a 已提交
652
    The attribute `stop_gradient` of the created Tensor is set to True.
653 654

    Args:
655 656 657
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
658
        dtype(np.dtype|str): Data type of the output Tensor which can
659
            be float16, float32, float64, uint8, int32, int64.
660 661 662 663 664 665
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
666 667
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
668 669

    Returns:
670
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
671

672 673 674
    Examples:
        .. code-block:: python

675
          import paddle.fluid as fluid
676
          # attr shape is a list which doesn't contain  Tensor.
677 678
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
679
          # data1=[[5], [5]] data2=[[5], [5]]
680

681
          # attr shape is a list which contains Tensor.
682
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
683
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
684

685
          # attr shape is a Tensor.
686
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
687
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
688
          
689
          # attr value is a Tensor.
W
wangchaochaohu 已提交
690 691
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
692
    """
693

W
wangchaochaohu 已提交
694
    attrs = {'force_cpu': force_cpu}
695
    dtype = convert_dtype(dtype)
696
    if not isinstance(value, Variable):
697
        if dtype in ['uint8', 'int64', 'int32']:
W
wangchaochaohu 已提交
698
            attrs['str_value'] = str(int(value))
699
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
700 701
        else:
            attrs['str_value'] = str(float(value))
702
            attrs['value'] = float(value)
703 704

    if in_dygraph_mode():
705
        shape = utils.convert_shape_to_list(shape)
706 707
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
708 709

        if isinstance(value, Variable):
710
            if dtype in ['uint8', 'int64', 'int32']:
711
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
712
            else:
713
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
714

715 716
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
717 718
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
719 720 721
        out.stop_gradient = True
        return out

722 723 724
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
725 726
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
727 728
        inputs['ValueTensor'] = value

729
    check_shape(shape)
730 731 732 733
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'uint8', 'int32', 'int64'],
        'fill_constant')
734
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
735

736 737 738 739 740
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
741
    utils.get_shape_tensor_inputs(
742
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
743

Y
Yu Yang 已提交
744
    if out is None:
X
Xin Pan 已提交
745
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
746
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
747 748
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
749
        inputs=inputs,
Y
Yu Yang 已提交
750
        outputs={'Out': [out]},
L
liym27 已提交
751
        attrs=attrs,
M
minqiyang 已提交
752
        stop_gradient=True)
Y
Yu Yang 已提交
753 754 755 756
    out.stop_gradient = True
    return out


757
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
758
@templatedoc()
Y
Yu Yang 已提交
759 760 761 762 763
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
764 765
                                  output_dim_idx=0,
                                  force_cpu=False):
766
    """
T
tianshuo78520a 已提交
767
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
768 769 770 771
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
772 773

    Args:
W
wangchaochaohu 已提交
774 775 776 777 778 779 780 781 782 783 784
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
785
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
786 787

    Returns:
W
wangchaochaohu 已提交
788
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
789 790 791 792 793

    Examples:

        .. code-block:: python

794
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
795
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
796
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
797
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
798

799
    """
Y
Yu Yang 已提交
800
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
801
    out = helper.create_variable_for_type_inference(dtype=dtype)
802 803 804 805 806 807
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
808
        'force_cpu': force_cpu
809 810 811 812 813
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
814 815 816 817
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
818
        attrs=attrs)
Y
Yu Yang 已提交
819 820 821 822
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
823 824
def argmin(x, axis=0):
    """
825 826 827
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
828

S
sneaxiy 已提交
829 830
    **argmin**

831 832
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
833 834

    Args:
835 836 837 838 839
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
840

S
sneaxiy 已提交
841
    Returns:
842
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
843

S
sneaxiy 已提交
844 845
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
846

847
            import paddle.fluid as fluid
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
875
    """
876 877 878
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
879
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
880
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
881 882 883 884 885
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
886
    out.stop_gradient = True
S
sneaxiy 已提交
887 888 889 890 891 892 893
    return out


def argmax(x, axis=0):
    """
    **argmax**

894 895
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
896 897

    Args:
898 899 900 901 902
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
903

S
sneaxiy 已提交
904
    Returns:
905
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
906

S
sneaxiy 已提交
907 908
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
909

910
            import paddle.fluid as fluid
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
938
    """
939 940 941
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
942
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
943
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
944 945 946 947 948
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
949
    out.stop_gradient = True
S
sneaxiy 已提交
950 951 952
    return out


953
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
954
    """
955 956 957
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
958

959 960 961
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
962 963

    Args:
964 965 966 967 968
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
969 970 971
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
972 973 974
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
975 976

    Returns:
977 978 979
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
980 981 982 983

    Examples:
        .. code-block:: python

984
            import paddle.fluid as fluid
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1026
    """
1027 1028 1029
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1030
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1031 1032 1033 1034
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1035 1036 1037 1038
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1039
                 'Indices': ids},
1040 1041
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1042 1043 1044
    return out, ids


Y
Yang Yu 已提交
1045
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1046
    """
1047 1048
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1049

1050
    Parameters:
1051
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1052
        dtype (np.dtype|str): Data type of output Tensor, it supports
1053
            bool, float16, float32, float64, int32 and int64.
1054 1055
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1056
            Default: False.
1057 1058

    Returns:
1059
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1060 1061 1062 1063

    Examples:
        .. code-block:: python

1064
          import paddle.fluid as fluid
1065 1066 1067 1068 1069
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1070 1071 1072 1073
    """
    return fill_constant(value=1.0, **locals())


1074
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1075
    """
1076 1077
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1078

1079
    Parameters:
1080
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1081
        dtype (np.dtype|str): Data type of output Tensor, it supports
1082
            bool, float16, float32, float64, int32 and int64.
1083 1084
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1085
            Default: False.
1086 1087
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1088 1089

    Returns:
1090
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1091 1092 1093 1094

    Examples:
        .. code-block:: python

1095
          import paddle.fluid as fluid
1096
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1097 1098 1099 1100
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1101 1102
    """
    return fill_constant(value=0.0, **locals())
1103 1104


F
fengjiayi 已提交
1105 1106
def reverse(x, axis):
    """
1107 1108 1109
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1110

1111
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1137
    Parameters:
1138 1139
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1140 1141
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1142 1143
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1144 1145

    Returns:
1146
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1147 1148 1149 1150

    Examples:
        .. code-block:: python

1151
          import paddle.fluid as fluid
1152 1153 1154 1155
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1166
    """
1167 1168 1169
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1170 1171 1172
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1173
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1174 1175
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1176
        inputs={'X': x},
F
fengjiayi 已提交
1177 1178 1179 1180 1181
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1182 1183 1184 1185 1186 1187 1188
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1189 1190 1191
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1207 1208
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1209
        file_path(str): The file path where variables will be saved.
1210
        overwrite(bool): Whether or not cover the given file when it has already
1211 1212
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1213 1214 1215 1216 1217 1218 1219 1220

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1221
            import paddle.fluid as fluid
1222 1223 1224 1225 1226 1227 1228
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1241
    Loads a list of variable from a single file.
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1253 1254 1255 1256 1257 1258 1259


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1260
       x (Tensor): The Tensor to be checked.
1261 1262

    Returns:
S
Steffy-zxf 已提交
1263
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1264 1265 1266 1267
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1268 1269
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1270
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1271
          # [False]
1272

1273
    """
S
Steffy-zxf 已提交
1274 1275 1276
    if in_dygraph_mode():
        return core.ops.isinf(x)

1277
    check_type(x, 'x', (Variable), 'has_inf')
1278
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1279
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1280 1281 1282 1283 1284 1285 1286 1287 1288
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1289
       x (Tensor): The Tensor to be checked.
1290 1291

    Returns:
S
Steffy-zxf 已提交
1292
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1293 1294 1295 1296
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1297 1298
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1299
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1300
          # [False]
1301

1302
    """
S
Steffy-zxf 已提交
1303 1304 1305
    if in_dygraph_mode():
        return core.ops.isnan(x)

1306
    check_type(x, 'x', (Variable), 'has_nan')
1307
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1308
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1309 1310 1311 1312 1313 1314
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1315

1316 1317 1318 1319
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1320
        x(Tensor): The Tensor to be checked.
1321 1322

    Returns:
N
Noel 已提交
1323
        Tensor: The tensor storing the output, contains a bool value.
1324 1325 1326 1327 1328

    Examples:

        .. code-block:: python

N
Noel 已提交
1329 1330 1331 1332 1333 1334
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1335
    """
1336 1337
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1338
    helper = LayerHelper("isfinite", **locals())
1339

1340
    out = helper.create_variable_for_type_inference(dtype='bool')
1341 1342
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1343 1344


1345
def range(start, end, step, dtype, name=None):
W
whs 已提交
1346
    """
1347
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1348

1349 1350
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1351

1352 1353
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1354

L
Liufang Sang 已提交
1355
    Parameters:
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1379 1380 1381 1382 1383

    examples:

        .. code-block:: python

1384
            import paddle.fluid as fluid
W
whs 已提交
1385

1386 1387
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1388

1389 1390 1391 1392 1393 1394 1395
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1396

1397 1398 1399 1400 1401
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

W
whs 已提交
1402
    if not isinstance(start, Variable):
1403
        with device_guard("cpu"):
1404
            start = fill_constant([1], dtype, start, force_cpu=True)
1405 1406
    elif start.dtype != dtype:
        start = cast(start, dtype)
1407

W
whs 已提交
1408
    if not isinstance(end, Variable):
1409
        with device_guard("cpu"):
1410
            end = fill_constant([1], dtype, end, force_cpu=True)
1411 1412
    elif end.dtype != dtype:
        end = cast(end, dtype)
1413

W
whs 已提交
1414
    if not isinstance(step, Variable):
1415
        with device_guard("cpu"):
1416
            step = fill_constant([1], dtype, step, force_cpu=True)
1417 1418
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1419

1420 1421
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1422

1423 1424 1425
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1426
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1427 1428 1429 1430 1431
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1432
        outputs={'Out': out})
1433
    out.stop_gradient = True
W
whs 已提交
1434
    return out
Z
zhoukunsheng 已提交
1435 1436


1437
def linspace(start, stop, num, dtype=None, name=None):
1438
    r"""
1439
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1440 1441

    Args:
1442 1443 1444 1445
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1446
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1447
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1448
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1449
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1450 1451
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1452 1453

    Returns:
1454
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1455 1456
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1457

Z
zhoukunsheng 已提交
1458
    Examples:
Z
zhoukunsheng 已提交
1459 1460
        .. code-block:: python

1461 1462 1463
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1464 1465

    """
1466 1467
    if dtype is None:
        dtype = 'float32'
1468 1469 1470
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1471 1472
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1473 1474
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1475
    if not isinstance(start, Variable):
1476 1477
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1478
    if not isinstance(stop, Variable):
1479 1480
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1481
    if not isinstance(num, Variable):
1482 1483
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1484
    if in_dygraph_mode():
1485 1486
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1487 1488 1489

    helper = LayerHelper("linspace", **locals())

1490 1491 1492
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1493
    if isinstance(start, Variable):
1494 1495
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1496 1497
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1498

1499
    if isinstance(stop, Variable):
1500 1501
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1502 1503 1504 1505 1506 1507
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1508 1509 1510 1511 1512 1513 1514 1515
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1516 1517

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1518 1519 1520

    helper.append_op(
        type='linspace',
1521 1522 1523 1524
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1525
        outputs={'Out': [out]})
1526 1527
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1528
    return out
1529 1530


Z
zhoukunsheng 已提交
1531 1532
def zeros_like(x, out=None):
    """
1533
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1534 1535 1536
    with `x`.

    Args:
1537 1538 1539 1540 1541 1542
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1543 1544

    Returns:
1545 1546 1547
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1548 1549 1550 1551

    Examples:
        .. code-block:: python

1552
          import paddle.fluid as fluid
1553
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1554 1555
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1556 1557
    """

1558 1559
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1560 1561 1562
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1563 1564 1565
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1566
            'zeros_like')
1567

Z
zhoukunsheng 已提交
1568 1569 1570 1571
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1572 1573


1574
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1575
def diag(diagonal):
1576
    r"""
1577 1578 1579
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1580

1581
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1582 1583

    Args:
1584 1585
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1586 1587

    Returns:
1588 1589
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1590 1591 1592 1593 1594 1595 1596

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1597 1598 1599

          import paddle.fluid as fluid
          import numpy as np
1600 1601 1602
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1603 1604

    """
1605 1606 1607
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1620 1621


1622 1623 1624 1625 1626
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1627
    """
1628
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1629 1630 1631

    Args:
        num_rows(int): the number of rows in each batch tensor.
1632 1633
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1634 1635
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1636
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1637 1638 1639 1640
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1641 1642

    Returns:
1643
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1644 1645 1646 1647 1648

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1649 1650
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1651
          #  [0, 1, 0]
1652 1653
          #  [0, 0, 1]]

1654
          data = fluid.layers.eye(2, 3, dtype='int32')
1655
          # [[1, 0, 0]
1656
          #  [0, 1, 0]]
1657 1658

          data = fluid.layers.eye(2, batch_shape=[3])
1659 1660 1661 1662 1663
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1664 1665
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1666 1667 1668 1669 1670
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1693 1694

    if batch_shape is not None:
1695 1696 1697 1698 1699
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
1700
            return core.ops.expand(out, None, 'expand_times', expand_times)
1701

1702 1703
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1704
        for batch_val in (batch_shape):
1705 1706
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1707 1708 1709 1710 1711 1712

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1713 1714 1715
    return out


Z
zhoukunsheng 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1728
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1739 1740
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1741 1742 1743 1744

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1745 1746 1747 1748
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1749 1750 1751 1752 1753 1754
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1755 1756 1757 1758 1759 1760


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)