tensor.py 68.7 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
24
from ..framework import _current_expected_place, convert_np_dtype_to_dtype_, _non_static_mode, _varbase_creator, device_guard, _in_legacy_dygraph, in_dygraph_mode, _get_paddle_place
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
W
wanghuancoder 已提交
35
from paddle import _C_ops
Y
Yu Yang 已提交
36 37

__all__ = [
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
64 65 66
]


X
xuwei06 已提交
67
def create_tensor(dtype, name=None, persistable=False):
68
    """
W
wangchaochaohu 已提交
69
    Create a variable, which will hold a Tensor with data type dtype.
70 71

    Args:
W
wangchaochaohu 已提交
72 73 74 75
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
76
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
77
            default value is False.
78 79

    Returns:
W
wangchaochaohu 已提交
80
        Variable: The tensor to be created according to dtype.
81 82 83 84

    Examples:
        .. code-block:: python

85
          import paddle.fluid as fluid
86 87
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
88 89 90 91
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
92
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
93 94
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
95 96


97 98
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
99
                     name=None,
100 101 102 103
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
104
	:api_attr: Static Graph
S
swtkiwi 已提交
105

106
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
107 108 109 110 111
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

112 113 114 115 116 117 118
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
119 120 121
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
122
        default_initializer (Initializer, optional): Initializer for the parameter
123 124

    Returns:
125
        The created parameter.
Y
yuyang18 已提交
126 127

    Examples:
128 129
        .. code-block:: python

130 131 132
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
133
    """
134 135
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
136 137 138
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
139 140 141 142 143 144 145 146 147

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
148
    helper = LayerHelper("create_parameter", **locals())
149
    if attr is None:
X
xuwei06 已提交
150
        attr = ParamAttr(name=name)
151 152
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
153 154 155
                                   default_initializer)


156 157 158 159 160 161 162
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
163
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
164

165
    Parameters:
166
        shape (list[int]|tuple[int]): Shape of the variable
167
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
168
                      variable will be filled with it.
169 170
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
171
                           Default: False
172
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
173
                         Default: False
174 175
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
176 177

    Returns:
178
        Variable: The created Variable
F
fengjiayi 已提交
179 180 181 182

    Examples:
        .. code-block:: python

183 184 185
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
186
                                           persistable=True, force_cpu=True, name='new_var')
187
    """
188 189 190
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
191 192 193
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
194 195

    check_dtype(dtype, 'dtype', [
196 197 198 199 200 201 202 203 204 205
        'bool',
        'float16',
        'float32',
        'float64',
        'int8',
        'int16',
        'int32',
        'int64',
        'uint8',
        'uint16',
206 207
    ], 'create_global_var')

Q
Qiao Longfei 已提交
208 209
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
210 211 212 213 214
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
215 216 217
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
218

Q
Qiao Longfei 已提交
219 220 221
    return var


222
def cast(x, dtype):
Y
Yu Yang 已提交
223
    """
S
swtkiwi 已提交
224

225
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
226 227
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
228 229

    Args:
230
        x(Tensor): An input N-D Tensor with data type bool, float16,
231
            float32, float64, int32, int64, uint8.
232
        dtype(np.dtype|str): Data type of the output:
233
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
234 235

    Returns:
236
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
237 238 239

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
240

241
            import paddle
242

243 244
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
245
    """
H
hong 已提交
246 247 248 249 250
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        return _C_ops.final_state_cast(x, dtype)

J
Jiabin Yang 已提交
251
    if _non_static_mode():
252 253
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
W
wanghuancoder 已提交
254
        out = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
255
        return out
256

257
    check_variable_and_dtype(x, 'x', [
258 259
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
260
    ], 'cast')
261
    check_dtype(dtype, 'dtype', [
262 263
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
264 265 266
    ], 'cast')

    helper = LayerHelper('cast', **locals())
267 268
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
269 270 271 272 273 274 275 276 277
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


278
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
279
    """
280
    This OP concatenates the input along the axis.
281 282

    Args:
283 284
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
285 286
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
287
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
288
            as ``axis+R``. Default is 0.
289 290 291
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
292 293

    Returns:
294
        Tensor: A Tensor with the same data type as ``input``.
295 296 297

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
298

299
            import paddle.fluid as fluid
300 301
            import numpy as np

302 303 304 305 306 307
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
308 309 310 311
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
312 313
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
314 315
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
316 317 318 319 320 321 322 323
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
324
    """
325

326 327 328 329 330 331
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
332 333 334
        out = _varbase_creator()
        _C_ops.concat(input, out, 'axis', axis)
        return out
335 336

    if _in_legacy_dygraph():
S
songyouwei 已提交
337 338
        if isinstance(axis, Variable):
            axis = axis.numpy()
339
            axis = axis.item(0)
340 341
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
342 343 344
        out = _varbase_creator()
        _C_ops.concat(input, out, 'axis', axis)
        return out
345

346 347 348 349 350 351 352 353 354 355 356
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
357
        input = [input]
358
    check_type(axis, 'axis', (int, Variable), 'concat')
359

360 361 362 363 364
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

365
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
366
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
367 368

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
369 370 371 372
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

373
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
374
                "number of the elements must be 1, but received %s." % len(input)
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
394 395 396
    return out


G
Guo Sheng 已提交
397
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
398
    r"""
G
Guo Sheng 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
449 450

    Args:
G
Guo Sheng 已提交
451 452 453 454 455 456 457
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
458 459

    Returns:
G
Guo Sheng 已提交
460 461 462
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
463 464 465 466

    Examples:
        .. code-block:: python

467
            import paddle.fluid as fluid
468
            import numpy as np
G
Guo Sheng 已提交
469 470 471 472 473 474 475
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
476
    """
J
Jiabin Yang 已提交
477
    if _non_static_mode():
478 479 480 481 482 483 484 485 486 487
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

488 489 490 491 492
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
493
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
494 495 496
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
497
        type='tensor_array_to_tensor',
L
li099 已提交
498 499 500
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
501 502
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
503 504 505
    return out, out_index


506
def sums(input, out=None):
507
    r"""
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
529 530

    Args:
531 532 533 534
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
535 536

    Returns:
537 538
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
539 540

    Examples:
F
fengjiayi 已提交
541
        .. code-block:: python
K
kavyasrinet 已提交
542

543 544 545 546 547 548 549 550 551
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
552

553 554
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
555
    """
556 557 558 559
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
560
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
561 562
    else:
        check_variable_and_dtype(input, "input", \
563
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
564

Y
Yu Yang 已提交
565 566
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
567 568
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
569 570 571 572
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
573 574 575 576 577
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
578 579 580
    return out


F
fengjiayi 已提交
581
def assign(input, output=None):
582
    """
S
swtkiwi 已提交
583

584
    The OP copies the :attr:`input` to the :attr:`output`.
585

586
    Parameters:
587 588 589 590
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
591
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
592
            be created as :attr:`output`. Default: None.
593 594

    Returns:
595
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
596 597 598

    Examples:
        .. code-block:: python
599

600
          import paddle
601
          import numpy as np
602
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
603 604 605 606
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
607 608 609
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
610
    """
Y
Yu Yang 已提交
611
    helper = LayerHelper('assign', **locals())
612 613
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
614 615
    is_inplace = True if output is not None else False

616 617 618 619
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
620 621
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
J
Jiabin Yang 已提交
622
    # but _non_static_mode()==False under @to_static, which means
623 624 625
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
626
        if _non_static_mode():
C
chentianyu03 已提交
627 628 629 630 631 632 633 634 635
            if in_dygraph_mode() and output is None:
                output = _C_ops.final_state_assign(input)
            else:
                if output is None:
                    if _in_legacy_dygraph():
                        output = core.VarBase()
                    else:
                        output = core.eager.Tensor()
                _C_ops.assign(input, output)
636 637 638 639 640 641 642 643 644 645 646
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
            helper.append_op(
                type='assign', inputs={'X': [input]},
                outputs={'Out': [output]})
X
xuwei06 已提交
647
    elif isinstance(input, numpy.ndarray):
648 649 650 651 652
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
653
        dtype = convert_np_dtype_to_dtype_(input.dtype)
654 655 656 657 658 659 660 661
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
662 663
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
664
            values = [int(v) for v in input.flat]
665
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
666
            value_name = "fp32_values"
667
            values = [float(v) for v in input.flat]
668
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
669
            value_name = "int32_values"
670
            values = [int(v) for v in input.flat]
671 672 673
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
674
        else:
675 676
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
677
                "the data type of 'input' must be bool, float32, int32 or int64, but "
678
                "received %s." % convert_dtype(dtype))
679 680 681
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
682
        if output is None:
C
caozhou 已提交
683
            output = helper.create_variable_for_type_inference(dtype=dtype)
684 685 686 687 688 689 690 691 692 693 694 695 696
        if _non_static_mode():
            _C_ops.assign_value(output, 'shape',
                                list(input.shape), 'dtype', dtype, value_name,
                                values)
        else:
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values
                })
X
xuwei06 已提交
697

J
Jiabin Yang 已提交
698
    if is_inplace and _non_static_mode():
699
        output._bump_inplace_version()
700

Y
Yu Yang 已提交
701 702 703
    return output


704
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
705
    """
S
swtkiwi 已提交
706

W
wangchaochaohu 已提交
707
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
708
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
709

T
tianshuo78520a 已提交
710
    The attribute `stop_gradient` of the created Tensor is set to True.
711 712

    Args:
713 714 715
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
716
        dtype(np.dtype|str): Data type of the output Tensor which can
717
            be float16, float32, float64, uint8, int16, int32, int64.
718 719 720 721 722 723
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
724 725
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
726 727

    Returns:
728
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
729

730 731 732
    Examples:
        .. code-block:: python

733
          import paddle.fluid as fluid
734
          # attr shape is a list which doesn't contain  Tensor.
735 736
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
737
          # data1=[[5], [5]] data2=[[5], [5]]
738

739
          # attr shape is a list which contains Tensor.
740
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
741
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
742

743
          # attr shape is a Tensor.
744
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
745
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
746
          
747
          # attr value is a Tensor.
W
wangchaochaohu 已提交
748 749
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
750
    """
751

W
wangchaochaohu 已提交
752
    attrs = {'force_cpu': force_cpu}
753
    dtype = convert_dtype(dtype)
754
    if not isinstance(value, Variable):
755
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
756
            attrs['str_value'] = str(int(value))
757
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
758 759
        else:
            attrs['str_value'] = str(float(value))
760
            attrs['value'] = float(value)
761

J
Jiabin Yang 已提交
762
    if _non_static_mode():
763 764 765 766 767
        if out is None and in_dygraph_mode():
            #Currently, final state mode don't support out is None.
            place = _current_expected_place()
            if force_cpu:
                place = core.CPUPlace()
768 769 770 771 772 773 774
            if isinstance(shape, (list, tuple)):
                for item in shape:
                    if not isinstance(item, Variable):
                        shape = list(
                            map(lambda x: x.numpy().flat[0] if isinstance(x, Variable) else x,
                                shape))
                        break
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798

            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)
            out = _C_ops.final_state_full(shape, float(value), dtype, place)
            out.stop_gradient = True
            return out

        else:
            shape = utils.convert_shape_to_list(shape)
            if out is None:
                out = _varbase_creator(dtype=dtype)

            if isinstance(value, Variable):
                if dtype in ['uint8', 'int16', 'int32', 'int64']:
                    attrs['str_value'] = str(int(value.numpy().item(0)))
                else:
                    attrs['str_value'] = str(float(value.numpy().item(0)))

            _C_ops.fill_constant(out, 'value',
                                 float(value), 'force_cpu', force_cpu, 'dtype',
                                 out.dtype, 'str_value', attrs['str_value'],
                                 'shape', shape)
            out.stop_gradient = True
            return out
799

800 801 802
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
803 804
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
805 806
        inputs['ValueTensor'] = value

807
    check_shape(shape)
808 809
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32',
810
        'int64', 'complex64', 'complex128'
811
    ], 'fill_constant')
812
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
813

814 815 816 817 818
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
819
    utils.get_shape_tensor_inputs(
820
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
821

Y
Yu Yang 已提交
822
    if out is None:
X
Xin Pan 已提交
823
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
824
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
825 826
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
827
        inputs=inputs,
Y
Yu Yang 已提交
828
        outputs={'Out': [out]},
L
liym27 已提交
829
        attrs=attrs,
M
minqiyang 已提交
830
        stop_gradient=True)
Y
Yu Yang 已提交
831 832 833 834
    out.stop_gradient = True
    return out


835
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
836
@templatedoc()
Y
Yu Yang 已提交
837 838 839 840 841
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
842 843
                                  output_dim_idx=0,
                                  force_cpu=False):
844
    """
T
tianshuo78520a 已提交
845
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
846 847 848 849
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
850 851

    Args:
W
wangchaochaohu 已提交
852 853 854 855 856 857 858 859 860 861 862
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
863
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
864 865

    Returns:
W
wangchaochaohu 已提交
866
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
867 868 869 870 871

    Examples:

        .. code-block:: python

872
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
873
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
874
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
875
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
876

877
    """
878 879 880 881 882 883 884 885 886 887 888 889
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        out = _C_ops.final_state_full_batch_size_like(
            input, shape, dtype, value, input_dim_idx, output_dim_idx, place)
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
890
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
891
    out = helper.create_variable_for_type_inference(dtype=dtype)
892 893 894 895 896 897
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
898
        'force_cpu': force_cpu
899 900 901 902 903
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
904 905 906 907
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
908
        attrs=attrs)
Y
Yu Yang 已提交
909 910 911 912
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
913 914
def argmin(x, axis=0):
    """
915 916 917
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
918

S
sneaxiy 已提交
919 920
    **argmin**

921 922
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
923 924

    Args:
925 926 927 928 929
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
930

S
sneaxiy 已提交
931
    Returns:
932
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
933

S
sneaxiy 已提交
934 935
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
936

937
            import paddle.fluid as fluid
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
965
    """
966 967 968
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
969
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
970
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
971 972 973 974 975
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
976
    out.stop_gradient = True
S
sneaxiy 已提交
977 978 979 980 981 982 983
    return out


def argmax(x, axis=0):
    """
    **argmax**

984 985
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
986 987

    Args:
988 989 990 991 992
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
993

S
sneaxiy 已提交
994
    Returns:
995
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
996

S
sneaxiy 已提交
997 998
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
999

1000
            import paddle.fluid as fluid
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
1028
    """
1029 1030 1031
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
1032
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
1033
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
1034 1035 1036 1037 1038
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
1039
    out.stop_gradient = True
S
sneaxiy 已提交
1040 1041 1042
    return out


1043
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
1044
    """
1045 1046 1047
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
1048

1049 1050 1051
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
1052 1053

    Args:
1054 1055 1056 1057 1058
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
1059 1060 1061
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
1062 1063 1064
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1065 1066

    Returns:
1067 1068 1069
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1070 1071 1072 1073

    Examples:
        .. code-block:: python

1074
            import paddle.fluid as fluid
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1116
    """
1117 1118 1119
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1120
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1121 1122 1123 1124
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1125 1126 1127 1128
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1129
                 'Indices': ids},
1130 1131
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1132 1133 1134
    return out, ids


Y
Yang Yu 已提交
1135
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1136
    """
1137 1138
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1139

1140
    Parameters:
1141
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1142
        dtype (np.dtype|str): Data type of output Tensor, it supports
1143
            bool, float16, float32, float64, int32 and int64.
1144 1145
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1146
            Default: False.
1147 1148

    Returns:
1149
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1150 1151 1152 1153

    Examples:
        .. code-block:: python

1154
          import paddle.fluid as fluid
1155 1156 1157 1158 1159
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1160 1161 1162 1163
    """
    return fill_constant(value=1.0, **locals())


1164
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1165
    """
1166 1167
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1168

1169
    Parameters:
1170
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1171
        dtype (np.dtype|str): Data type of output Tensor, it supports
1172
            bool, float16, float32, float64, int32 and int64.
1173 1174
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1175
            Default: False.
1176 1177
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1178 1179

    Returns:
1180
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1181 1182 1183 1184

    Examples:
        .. code-block:: python

1185
          import paddle.fluid as fluid
1186
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1187 1188 1189 1190
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1191 1192
    """
    return fill_constant(value=0.0, **locals())
1193 1194


F
fengjiayi 已提交
1195 1196
def reverse(x, axis):
    """
1197 1198 1199
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1200

1201
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1227
    Parameters:
1228 1229
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1230 1231
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1232 1233
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1234 1235

    Returns:
1236
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1237 1238 1239 1240

    Examples:
        .. code-block:: python

1241
          import paddle.fluid as fluid
1242 1243 1244 1245
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1256
    """
1257 1258 1259
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1260 1261 1262
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1263
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1264 1265
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1266
        inputs={'X': x},
F
fengjiayi 已提交
1267 1268 1269 1270 1271
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1272 1273 1274 1275 1276 1277 1278
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1279 1280 1281
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1297 1298
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1299
        file_path(str): The file path where variables will be saved.
1300
        overwrite(bool): Whether or not cover the given file when it has already
1301 1302
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1303 1304 1305 1306 1307 1308 1309 1310

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1311
            import paddle.fluid as fluid
1312 1313 1314 1315 1316 1317 1318
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1331
    Loads a list of variable from a single file.
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1343 1344 1345 1346 1347 1348 1349


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1350
       x (Tensor): The Tensor to be checked.
1351 1352

    Returns:
S
Steffy-zxf 已提交
1353
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1354 1355 1356 1357
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1358 1359
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1360
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1361
          # [False]
1362

1363
    """
J
Jiabin Yang 已提交
1364
    if _non_static_mode():
W
wanghuancoder 已提交
1365
        return _C_ops.isinf(x)
S
Steffy-zxf 已提交
1366

1367
    check_type(x, 'x', (Variable), 'has_inf')
1368
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1369
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1370 1371 1372 1373 1374 1375 1376 1377 1378
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1379
       x (Tensor): The Tensor to be checked.
1380 1381

    Returns:
S
Steffy-zxf 已提交
1382
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1383 1384 1385 1386
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1387 1388
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1389
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1390
          # [False]
1391

1392
    """
J
Jiabin Yang 已提交
1393
    if _non_static_mode():
W
wanghuancoder 已提交
1394
        return _C_ops.isnan(x)
S
Steffy-zxf 已提交
1395

1396
    check_type(x, 'x', (Variable), 'has_nan')
1397
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1398
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1399 1400 1401 1402 1403 1404
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1405

1406 1407 1408 1409
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1410
        x(Tensor): The Tensor to be checked.
1411 1412

    Returns:
N
Noel 已提交
1413
        Tensor: The tensor storing the output, contains a bool value.
1414 1415 1416 1417 1418

    Examples:

        .. code-block:: python

N
Noel 已提交
1419 1420 1421 1422 1423 1424
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1425
    """
1426 1427
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1428
    helper = LayerHelper("isfinite", **locals())
1429

1430
    out = helper.create_variable_for_type_inference(dtype='bool')
1431 1432
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1433 1434


1435
def range(start, end, step, dtype, name=None):
W
whs 已提交
1436
    """
1437
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1438

1439 1440
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1441

1442 1443
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1444

L
Liufang Sang 已提交
1445
    Parameters:
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1469 1470 1471 1472 1473

    examples:

        .. code-block:: python

1474
            import paddle.fluid as fluid
W
whs 已提交
1475

1476 1477
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1478

1479 1480 1481 1482 1483
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
1484 1485 1486 1487 1488
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1489 1490
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1491

W
whs 已提交
1492
    if not isinstance(start, Variable):
1493
        with device_guard("cpu"):
1494
            start = fill_constant([1], dtype, start, force_cpu=True)
1495 1496
    elif start.dtype != dtype:
        start = cast(start, dtype)
1497

W
whs 已提交
1498
    if not isinstance(end, Variable):
1499
        with device_guard("cpu"):
1500
            end = fill_constant([1], dtype, end, force_cpu=True)
1501 1502
    elif end.dtype != dtype:
        end = cast(end, dtype)
1503

W
whs 已提交
1504
    if not isinstance(step, Variable):
1505
        with device_guard("cpu"):
1506
            step = fill_constant([1], dtype, step, force_cpu=True)
1507 1508
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1509

Z
zyfncg 已提交
1510 1511 1512 1513
    if in_dygraph_mode():
        return _C_ops.final_state_arange(start, end, step, dtype,
                                         _current_expected_place())

Z
zyfncg 已提交
1514
    if _in_legacy_dygraph():
J
Jiawei Wang 已提交
1515 1516 1517
        out = _C_ops.range(start, end, step)
        out.stop_gradient = True
        return out
W
whs 已提交
1518

1519 1520 1521
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1522
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1523 1524 1525 1526 1527
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1528
        outputs={'Out': out})
1529
    out.stop_gradient = True
1530 1531
    if out_shape is not None:
        out.desc.set_shape(out_shape)
W
whs 已提交
1532
    return out
Z
zhoukunsheng 已提交
1533 1534


1535
def linspace(start, stop, num, dtype=None, name=None):
1536
    r"""
1537
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1538 1539

    Args:
1540 1541 1542 1543
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1544
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1545
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1546
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1547
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1548 1549
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1550 1551

    Returns:
1552
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1553 1554
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1555

Z
zhoukunsheng 已提交
1556
    Examples:
Z
zhoukunsheng 已提交
1557 1558
        .. code-block:: python

1559 1560 1561
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1562 1563

    """
1564 1565
    if dtype is None:
        dtype = 'float32'
1566 1567 1568
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1569 1570
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1571 1572
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1573
    if not isinstance(start, Variable):
1574 1575
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1576
    if not isinstance(stop, Variable):
1577 1578
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1579
    if not isinstance(num, Variable):
1580 1581
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1582
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1583 1584
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)
1585 1586 1587
    if in_dygraph_mode():
        return _C_ops.final_state_linspace(tensor_start, tensor_stop,
                                           tensor_num, dtype)
1588 1589
    helper = LayerHelper("linspace", **locals())

1590 1591 1592
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1593
    if isinstance(start, Variable):
1594 1595
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1596 1597
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1598

1599
    if isinstance(stop, Variable):
1600 1601
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1602 1603 1604 1605 1606 1607
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1608 1609 1610 1611 1612 1613 1614 1615
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1616 1617

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1618 1619 1620

    helper.append_op(
        type='linspace',
1621 1622 1623 1624
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1625
        outputs={'Out': [out]})
1626 1627
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1628
    return out
1629 1630


Z
zhoukunsheng 已提交
1631 1632
def zeros_like(x, out=None):
    """
1633
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1634 1635 1636
    with `x`.

    Args:
1637 1638 1639 1640 1641 1642
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1643 1644

    Returns:
1645 1646 1647
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1648 1649 1650 1651

    Examples:
        .. code-block:: python

1652
          import paddle.fluid as fluid
1653
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1654 1655
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1656 1657
    """

1658 1659
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1660 1661 1662
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1663 1664 1665
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1666
            'zeros_like')
1667

Z
zhoukunsheng 已提交
1668 1669 1670 1671
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1672 1673


1674
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1675
def diag(diagonal):
1676
    r"""
1677 1678 1679
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1680

1681
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1682 1683

    Args:
1684 1685
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1686 1687

    Returns:
1688 1689
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1690 1691 1692 1693 1694 1695 1696

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1697 1698 1699

          import paddle.fluid as fluid
          import numpy as np
1700 1701 1702
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1703 1704

    """
1705 1706 1707
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1720 1721


1722 1723 1724 1725 1726
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1727
    """
1728
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1729 1730 1731

    Args:
        num_rows(int): the number of rows in each batch tensor.
1732 1733
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1734 1735
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1736
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1737 1738 1739 1740
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1741 1742

    Returns:
1743
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1744 1745 1746 1747 1748

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1749 1750
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1751
          #  [0, 1, 0]
1752 1753
          #  [0, 0, 1]]

1754
          data = fluid.layers.eye(2, 3, dtype='int32')
1755
          # [[1, 0, 0]
1756
          #  [0, 1, 0]]
1757 1758

          data = fluid.layers.eye(2, batch_shape=[3])
1759 1760 1761 1762 1763
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1764 1765
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1766 1767 1768 1769 1770
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1771

R
Ruibiao Chen 已提交
1772 1773 1774 1775
    if in_dygraph_mode():
        out = _C_ops.final_state_eye(num_rows, num_columns, dtype,
                                     _current_expected_place())
    elif _in_legacy_dygraph():
W
wanghuancoder 已提交
1776 1777
        out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                         num_columns)
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1795 1796

    if batch_shape is not None:
1797 1798 1799
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
J
Jiabin Yang 已提交
1800
        if _non_static_mode():
W
wanghuancoder 已提交
1801 1802
            out = _C_ops.reshape(out, 'shape', re_shape)
            return _C_ops.expand(out, None, 'expand_times', expand_times)
1803

1804 1805
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1806
        for batch_val in (batch_shape):
1807 1808
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1809 1810 1811 1812 1813 1814

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1815 1816 1817
    return out


Z
zhoukunsheng 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1830
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1841 1842
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1843 1844 1845 1846

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1847 1848 1849 1850
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1851 1852 1853 1854 1855 1856
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1857 1858 1859 1860 1861 1862


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)