tensor.py 53.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
19
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator
X
xuwei06 已提交
20
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .. import core
24
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
25
from . import utils
26
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
X
xuwei06 已提交
27
import numpy
28
import warnings
Y
Yu Yang 已提交
29 30

__all__ = [
L
li099 已提交
31 32 33
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
34
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
35
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
36 37 38
]


X
xuwei06 已提交
39
def create_tensor(dtype, name=None, persistable=False):
40
    """
W
wangchaochaohu 已提交
41
    Create a variable, which will hold a Tensor with data type dtype.
42 43

    Args:
W
wangchaochaohu 已提交
44 45 46 47
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
48
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
49
            default value is False.
50 51

    Returns:
W
wangchaochaohu 已提交
52
        Variable: The tensor to be created according to dtype.
53 54 55 56

    Examples:
        .. code-block:: python

57
          import paddle.fluid as fluid
58 59
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
60
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
61 62
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
63 64


65 66
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
67
                     name=None,
68 69 70 71
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
72
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
73 74 75 76 77
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

78 79 80 81 82 83 84
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
85 86 87
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
88
        default_initializer (Initializer, optional): Initializer for the parameter
89 90

    Returns:
91
        The created parameter.
Y
yuyang18 已提交
92 93

    Examples:
94 95
        .. code-block:: python

96
            import paddle.fluid as fluid
97 98
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
99
    """
Q
Qiao Longfei 已提交
100
    helper = LayerHelper("create_parameter", **locals())
101
    if attr is None:
X
xuwei06 已提交
102
        attr = ParamAttr(name=name)
103 104 105 106
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


107 108 109 110 111 112 113
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
114
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
115

116 117 118
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
119
                      variable will be filled with it.
120 121
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
122
                           Default: False
123
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
124
                         Default: False
125 126
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
127 128

    Returns:
129
        Variable: The created Variable
F
fengjiayi 已提交
130 131 132 133

    Examples:
        .. code-block:: python

134
            import paddle.fluid as fluid
135 136 137
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                          persistable=True, force_cpu=True, name='new_var')
138
    """
Q
Qiao Longfei 已提交
139 140
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
141 142 143 144 145
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
146 147 148
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
149

Q
Qiao Longfei 已提交
150 151 152
    return var


153
def cast(x, dtype):
Y
Yu Yang 已提交
154
    """
155 156 157
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
158 159

    Args:
160 161 162 163
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
            bool, float15, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
164 165

    Returns:
166
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
167 168 169

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
170

171
            import paddle.fluid as fluid
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
194 195
    """
    helper = LayerHelper('cast', **locals())
196 197
    check_variable_and_dtype(
        x, 'x',
198 199
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
X
Xin Pan 已提交
200
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
201 202 203 204 205 206 207 208 209
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


210
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
211
    """
212 213
    **Concat**

214
    This OP concatenates the input along the axis.
215 216

    Args:
217 218
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
219
        axis(int32|Variable, optional):  A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range
220 221 222 223 224
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
225 226

    Returns:
227
        Variable: A Tensor with the same data type as input's.
228 229 230

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
231

232
            import paddle.fluid as fluid
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
255
    """
256 257 258 259 260 261 262 263 264 265

    if in_dygraph_mode():
        inputs = {'X': input}
        if not isinstance(axis, int):
            raise TypeError(
                "Input 'axis' in concat must be int in Dygraph mode.")
        attrs = {'axis': axis}
        outs = core.ops.concat(inputs, attrs)
        return outs['Out'][0]

266 267 268 269 270
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
271
    for id, x in enumerate(input):
272 273
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
274 275
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'concat')
    check_type(axis, 'axis', (int, Variable), 'concat')
276

277
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
278
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
302 303 304
    return out


G
Guo Sheng 已提交
305
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
306
    """
G
Guo Sheng 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
357 358

    Args:
G
Guo Sheng 已提交
359 360 361 362 363 364 365
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
366 367

    Returns:
G
Guo Sheng 已提交
368 369 370
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
371 372 373 374

    Examples:
        .. code-block:: python

375
            import paddle.fluid as fluid
376
            import numpy as np
G
Guo Sheng 已提交
377 378 379 380 381 382 383
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
384
    """
L
li099 已提交
385
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
386 387 388
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
389
        type='tensor_array_to_tensor',
L
li099 已提交
390 391 392
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
393 394
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
395 396 397
    return out, out_index


398
def sums(input, out=None):
F
fengjiayi 已提交
399
    """
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
421 422

    Args:
423 424 425 426
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
427 428

    Returns:
429 430
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
431 432

    Examples:
F
fengjiayi 已提交
433
        .. code-block:: python
K
kavyasrinet 已提交
434

435 436 437 438 439 440 441 442 443
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
444

445 446
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
447 448 449
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
450 451
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
452 453 454 455 456
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
457 458 459
    return out


F
fengjiayi 已提交
460
def assign(input, output=None):
461
    """
462
    The OP copies the :attr:`input` to the :attr:`output`.
463

464 465 466 467 468
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
469 470

    Returns:
471
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
472 473 474

    Examples:
        .. code-block:: python
475

476
          import paddle.fluid as fluid
477 478 479 480 481 482
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
483
    """
Y
Yu Yang 已提交
484
    helper = LayerHelper('assign', **locals())
485
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
486
    if isinstance(input, Variable):
487 488 489
        check_dtype(input.dtype, 'input',
                    ['float32', 'float64', 'int32', 'int64', 'bool'], 'assign',
                    '(When the type of input in assign is Variable.)')
490 491 492
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
493
        helper.append_op(
R
robot 已提交
494
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
495 496
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
497
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
498
            value_name = "fp32_values"
499
            values = [float(v) for v in input.flat]
500
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
501
            value_name = "int32_values"
502
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
503
        else:
504 505 506 507
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be float32 or int32, but "
                "received %s." % convert_dtype(dtype))
508 509 510
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
511 512 513
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
514 515 516 517 518 519
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
520
                value_name: values
X
xuwei06 已提交
521 522
            })

Y
Yu Yang 已提交
523 524 525
    return output


Q
QI JUN 已提交
526
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
527
    """
W
wangchaochaohu 已提交
528
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
529
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
530

T
tianshuo78520a 已提交
531
    The attribute `stop_gradient` of the created Tensor is set to True.
532 533

    Args:
534 535 536 537
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
W
wangchaochaohu 已提交
538 539 540
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
        value(float): The constant value used to initialize the Tensor to be created.
T
tianshuo78520a 已提交
541
        force_cpu(True): data should be on CPU if it's true, default value is False.
W
wangchaochaohu 已提交
542 543 544
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
545 546

    Returns:
W
wangchaochaohu 已提交
547 548 549 550 551
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
552 553 554 555

    Examples:
        .. code-block:: python

556
          import paddle.fluid as fluid
557 558 559 560 561 562 563 564 565 566 567 568
          # attr shape is a list which doesn't contain Variable Tensor.
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
          # data1=[[0], [0]] data2=[[5], [5]]

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
Y
Yu Yang 已提交
569
    """
570 571 572 573 574 575 576 577 578 579 580 581
    attrs = {
        'value': float(value),
        'force_cpu': force_cpu or force_init_on_cpu()
    }

    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))

    if in_dygraph_mode():
        if isinstance(shape, (list, tuple)):
L
Leo Chen 已提交
582
            if utils._contain_var(shape):
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
                raise TypeError(
                    "The type of 'shape' in fill_constant must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
            attrs['shape'] = shape
        else:
            raise TypeError(
                "The type of 'shape' in fill_constant must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))
        if out is None:
            out = _varbase_creator(dtype=dtype)
        attrs['dtype'] = out.dtype
        outputs = {'Out': [out]}
        outs = core.ops.fill_constant({}, attrs, outputs)
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
599
    helper = LayerHelper("fill_constant", **locals())
600 601 602 603
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
L
liym27 已提交
604 605 606 607 608 609
    inputs = {}
    attrs = {
        'value': float(value),
        'force_cpu': force_cpu or force_init_on_cpu()
    }

610 611 612 613 614
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))

L
liym27 已提交
615 616 617 618 619 620 621 622 623 624 625
    def _get_attr_shape(list_shape):
        attr_shape = []
        for idx, dim in enumerate(list_shape):
            if isinstance(dim, Variable):
                attr_shape.append(-1)
            else:
                attr_shape.append(dim)
        return attr_shape

    def _get_shape_tensor(list_shape):
        new_shape_tensor = []
626
        for idx, dim in enumerate(list_shape):
L
liym27 已提交
627 628
            if isinstance(dim, Variable):
                dim.stop_gradient = True
629 630 631 632
                check_dtype(
                    dim.dtype, 'shape[' + str(idx) + ']', ['int32', 'int64'],
                    'fill_constant',
                    '(When type of shape in fill_constant is list or tuple.)')
633 634
                if convert_dtype(dim.dtype) == 'int64':
                    dim = cast(x=dim, dtype='int32')
L
liym27 已提交
635 636 637 638 639 640 641 642 643
                new_shape_tensor.append(dim)
            else:
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    if isinstance(shape, Variable):
        shape.stop_gradient = True
644 645
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'fill_constant',
                    '(When type of shape in fill_constant is Variable.)')
646 647
        if (convert_dtype(shape.dtype) == 'int64'):
            shape = cast(shape, 'int32')
L
liym27 已提交
648 649 650 651 652 653
        inputs["ShapeTensor"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, (
            "The size of 'shape' in fill_constant can't be zero, "
            "but received %s." % len(shape))
        attrs["shape"] = _get_attr_shape(shape)
L
Leo Chen 已提交
654
        if utils._contain_var(shape):
L
liym27 已提交
655 656
            inputs['ShapeTensorList'] = _get_shape_tensor(shape)

Y
Yu Yang 已提交
657
    if out is None:
X
Xin Pan 已提交
658
        out = helper.create_variable_for_type_inference(dtype=dtype)
659
    else:
660 661 662 663 664
        check_dtype(
            dtype, 'create data type',
            convert_dtype(out.dtype), 'fill_constant',
            '(The create data type in fill_constant must be the same with out data type.)'
        )
L
liym27 已提交
665
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
666 667
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
668
        inputs=inputs,
Y
Yu Yang 已提交
669
        outputs={'Out': [out]},
L
liym27 已提交
670
        attrs=attrs,
M
minqiyang 已提交
671
        stop_gradient=True)
Y
Yu Yang 已提交
672 673 674 675
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
676
@templatedoc()
Y
Yu Yang 已提交
677 678 679 680 681
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
682 683
                                  output_dim_idx=0,
                                  force_cpu=False):
684
    """
T
tianshuo78520a 已提交
685
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
686 687 688 689
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
690 691

    Args:
W
wangchaochaohu 已提交
692 693 694 695 696 697 698 699 700 701 702
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
703
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
704 705

    Returns:
W
wangchaochaohu 已提交
706
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
707 708 709 710 711

    Examples:

        .. code-block:: python

712
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
713
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
714
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
715
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
716

717
    """
Y
Yu Yang 已提交
718
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
719
    out = helper.create_variable_for_type_inference(dtype=dtype)
720 721 722 723 724 725 726 727 728 729 730 731
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
        'force_cpu': force_cpu or force_init_on_cpu()
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
732 733 734 735
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
736
        attrs=attrs)
Y
Yu Yang 已提交
737 738 739 740
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
741 742 743 744
def argmin(x, axis=0):
    """
    **argmin**

745 746
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
747 748

    Args:
749 750 751 752 753
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
754

S
sneaxiy 已提交
755
    Returns:
756
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
757

S
sneaxiy 已提交
758 759
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
760

761
            import paddle.fluid as fluid
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
789 790
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
791
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
792 793 794 795 796
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
797
    out.stop_gradient = True
S
sneaxiy 已提交
798 799 800 801 802 803 804
    return out


def argmax(x, axis=0):
    """
    **argmax**

805 806
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
807 808

    Args:
809 810 811 812 813
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
814

S
sneaxiy 已提交
815
    Returns:
816
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
817

S
sneaxiy 已提交
818 819
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
820

821
            import paddle.fluid as fluid
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
849 850
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
851
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
852 853 854 855 856
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
857
    out.stop_gradient = True
S
sneaxiy 已提交
858 859 860
    return out


861
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
862
    """
863 864 865
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
866 867

    Args:
868 869 870 871 872
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
873 874 875
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
876 877 878
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
879 880

    Returns:
881 882 883
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
884 885 886 887

    Examples:
        .. code-block:: python

888
            import paddle.fluid as fluid
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
930 931
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
932 933 934 935
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
936 937 938 939
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
940
                 'Indices': ids},
941 942
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
943 944 945
    return out, ids


Y
Yang Yu 已提交
946
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
947
    """
948 949
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
950

951 952 953 954 955 956 957
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
958 959

    Returns:
960
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
961 962 963 964

    Examples:
        .. code-block:: python

965
          import paddle.fluid as fluid
966
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
967
    """
C
chengduozh 已提交
968 969 970 971
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
972 973 974
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
975
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
976
    """
977 978
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
979

980 981 982 983 984 985 986
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
987 988

    Returns:
989
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
990 991 992 993

    Examples:
        .. code-block:: python

994
          import paddle.fluid as fluid
995
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
996
    """
997 998 999
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')
Y
Yu Yang 已提交
1000
    return fill_constant(value=0.0, **locals())
1001 1002


F
fengjiayi 已提交
1003 1004
def reverse(x, axis):
    """
1005
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1006

1007 1008 1009 1010 1011
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
1012 1013

    Returns:
1014
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1015 1016 1017 1018

    Examples:
        .. code-block:: python

1019
          import paddle.fluid as fluid
1020 1021 1022 1023
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
1024 1025 1026 1027
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1028
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1029 1030
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1031
        inputs={'X': x},
F
fengjiayi 已提交
1032 1033 1034 1035 1036
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1037 1038 1039 1040 1041 1042 1043
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1044 1045 1046
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1062 1063
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1064
        file_path(str): The file path where variables will be saved.
1065
        overwrite(bool): Whether or not cover the given file when it has already
1066 1067
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1068 1069 1070 1071 1072 1073 1074 1075

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1076
            import paddle.fluid as fluid
1077 1078 1079 1080 1081 1082 1083
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1096
    Loads a list of variable from a single file.
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1108 1109 1110 1111 1112 1113 1114


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1115
       x (Variable): The Tensor/LoDTensor to be checked.
1116 1117

    Returns:
L
liu zhengxi 已提交
1118
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1119 1120 1121 1122 1123 1124 1125 1126
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1127 1128
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1129
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1130 1131 1132 1133 1134 1135 1136 1137 1138
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1139
       x (Variable): The Tensor/LoDTensor to be checked.
1140 1141

    Returns:
L
liu zhengxi 已提交
1142
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1143 1144 1145 1146 1147 1148 1149 1150
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1151 1152
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1153
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1168 1169 1170 1171 1172

    Examples:

        .. code-block:: python

1173
            import paddle.fluid as fluid
1174 1175 1176
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1177
            out = fluid.layers.isfinite(var)
1178 1179
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
1180
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1181 1182
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1192 1193 1194 1195
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1196
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1197 1198 1199
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1200
                                  distance between two adjacent values, out[i+1] - out[i].
1201
        dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1202

L
Liufang Sang 已提交
1203 1204 1205
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1206 1207 1208 1209 1210

    examples:

        .. code-block:: python

1211
             import paddle.fluid as fluid
W
whs 已提交
1212 1213 1214 1215 1216
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

1217 1218 1219 1220
    check_dtype(dtype, 'create data type',
                ['float32', 'float64', 'int32', 'int64'], 'range')

    dtype = convert_dtype(dtype)
W
whs 已提交
1221 1222
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1223 1224 1225 1226 1227
    elif convert_dtype(start.dtype) != dtype:
        # make sure that start, end, step has the same dtype as
        # `dtype`
        start = cast(x=start, dtype=dtype)

W
whs 已提交
1228 1229
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
1230 1231 1232
    elif convert_dtype(end.dtype) != dtype:
        end = cast(x=end, dtype=dtype)

W
whs 已提交
1233 1234
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)
1235 1236
    elif convert_dtype(step.dtype) != dtype:
        step = cast(x=step, dtype=dtype)
W
whs 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1246
    out.stop_gradient = True
W
whs 已提交
1247
    return out
Z
zhoukunsheng 已提交
1248 1249


Z
zhoukunsheng 已提交
1250 1251
def linspace(start, stop, num, dtype):
    """
1252
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1253 1254

    Args:
1255 1256 1257 1258 1259 1260 1261
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1262 1263

    Returns:
1264 1265 1266
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1267

Z
zhoukunsheng 已提交
1268
    Examples:
Z
zhoukunsheng 已提交
1269 1270
        .. code-block:: python

1271
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1272 1273
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1294 1295


Z
zhoukunsheng 已提交
1296 1297
def zeros_like(x, out=None):
    """
1298
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1299 1300 1301
    with `x`.

    Args:
1302 1303 1304
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
T
tianshuo78520a 已提交
1305
            The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1306 1307

    Returns:
1308 1309
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1310 1311 1312 1313

    Examples:
        .. code-block:: python

1314
          import paddle.fluid as fluid
1315
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1316 1317
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1327 1328 1329 1330


def diag(diagonal):
    """
1331
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1332 1333

    Args:
1334 1335
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1336 1337

    Returns:
1338 1339
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1340 1341 1342 1343 1344 1345 1346

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1347 1348 1349

          import paddle.fluid as fluid
          import numpy as np
1350 1351 1352
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1368 1369


1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1382 1383
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1384 1385

    Returns:
1386
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1387 1388 1389 1390 1391

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1392 1393
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1394
          #  [0, 1, 0]
1395 1396
          #  [0, 0, 1]]

1397
          data = fluid.layers.eye(2, 3, dtype='int32')
1398
          # [[1, 0, 0]
1399
          #  [0, 1, 0]]
1400 1401

          data = fluid.layers.eye(2, batch_shape=[3])
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1454
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out