tensor.py 71.3 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
24
from ..framework import _current_expected_place, convert_np_dtype_to_dtype_, _non_static_mode, _varbase_creator, device_guard, _in_legacy_dygraph, in_dygraph_mode, _get_paddle_place
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
W
wanghuancoder 已提交
35
from paddle import _C_ops
Y
Yu Yang 已提交
36 37

__all__ = [
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
64 65 66
]


X
xuwei06 已提交
67
def create_tensor(dtype, name=None, persistable=False):
68
    """
W
wangchaochaohu 已提交
69
    Create a variable, which will hold a Tensor with data type dtype.
70 71

    Args:
W
wangchaochaohu 已提交
72 73 74 75
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
76
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
77
            default value is False.
78 79

    Returns:
W
wangchaochaohu 已提交
80
        Variable: The tensor to be created according to dtype.
81 82 83 84

    Examples:
        .. code-block:: python

85
          import paddle.fluid as fluid
86 87
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
88 89 90 91
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
92
    helper = LayerHelper("create_tensor", **locals())
93 94 95
    return helper.create_variable(name=helper.name,
                                  dtype=dtype,
                                  persistable=persistable)
Y
Yu Yang 已提交
96 97


98 99
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
100
                     name=None,
101 102 103 104
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
105
	:api_attr: Static Graph
S
swtkiwi 已提交
106

107
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
108 109 110 111 112
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

113 114 115 116 117 118 119
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
120 121 122
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
123
        default_initializer (Initializer, optional): Initializer for the parameter
124 125

    Returns:
126
        The created parameter.
Y
yuyang18 已提交
127 128

    Examples:
129 130
        .. code-block:: python

131 132 133
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
134
    """
135 136
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
137 138 139
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
140 141 142 143 144 145 146 147 148

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
149
    helper = LayerHelper("create_parameter", **locals())
150
    if attr is None:
X
xuwei06 已提交
151
        attr = ParamAttr(name=name)
152
    return helper.create_parameter(attr, shape, convert_dtype(dtype), is_bias,
153 154 155
                                   default_initializer)


156 157 158 159 160 161 162
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
163
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
164

165
    Parameters:
166
        shape (list[int]|tuple[int]): Shape of the variable
167
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
168
                      variable will be filled with it.
169 170
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
171
                           Default: False
172
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
173
                         Default: False
174 175
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
176 177

    Returns:
178
        Variable: The created Variable
F
fengjiayi 已提交
179 180 181 182

    Examples:
        .. code-block:: python

183 184 185
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
186
                                           persistable=True, force_cpu=True, name='new_var')
187
    """
188 189 190
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
191 192 193
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
194 195

    check_dtype(dtype, 'dtype', [
196 197 198 199 200 201 202 203 204 205
        'bool',
        'float16',
        'float32',
        'float64',
        'int8',
        'int16',
        'int32',
        'int64',
        'uint8',
        'uint16',
206 207
    ], 'create_global_var')

Q
Qiao Longfei 已提交
208
    helper = LayerHelper("global_var", **locals())
209 210 211 212 213 214 215 216
    var = helper.create_global_variable(dtype=dtype,
                                        shape=shape,
                                        persistable=persistable,
                                        name=name,
                                        stop_gradient=True)
    helper.set_variable_initializer(var,
                                    initializer=Constant(value=float(value),
                                                         force_cpu=force_cpu))
M
minqiyang 已提交
217

Q
Qiao Longfei 已提交
218 219 220
    return var


221
def cast(x, dtype):
Y
Yu Yang 已提交
222
    """
S
swtkiwi 已提交
223

224
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
225 226
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
227 228

    Args:
229
        x(Tensor): An input N-D Tensor with data type bool, float16,
230
            float32, float64, int32, int64, uint8.
231
        dtype(np.dtype|str): Data type of the output:
232
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
233 234

    Returns:
235
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
236 237 238

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
239

240
            import paddle
241

242 243
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
244
    """
H
hong 已提交
245 246 247 248 249
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        return _C_ops.final_state_cast(x, dtype)

J
Jiabin Yang 已提交
250
    if _non_static_mode():
251 252
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
W
wanghuancoder 已提交
253
        out = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
254
        return out
255

256
    check_variable_and_dtype(x, 'x', [
257 258
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
259
    ], 'cast')
260
    check_dtype(dtype, 'dtype', [
261 262
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
263 264 265
    ], 'cast')

    helper = LayerHelper('cast', **locals())
266 267
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
268 269 270 271 272 273 274
    helper.append_op(type='cast',
                     inputs={'X': [x]},
                     outputs={'Out': [out]},
                     attrs={
                         'in_dtype': x.dtype,
                         'out_dtype': out.dtype
                     })
Y
Yu Yang 已提交
275 276 277
    return out


278
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
279
    """
280
    This OP concatenates the input along the axis.
281 282

    Args:
283 284
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
285 286
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
287
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
288
            as ``axis+R``. Default is 0.
289 290 291
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
292 293

    Returns:
294
        Tensor: A Tensor with the same data type as ``input``.
295 296 297

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
298

299
            import paddle.fluid as fluid
300 301
            import numpy as np

302 303 304 305 306 307
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
308 309 310 311
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
312 313
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
314 315
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
316 317 318 319 320 321 322 323
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
324
    """
325

326 327 328 329 330 331
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
332 333 334
        out = _varbase_creator()
        _C_ops.concat(input, out, 'axis', axis)
        return out
335 336

    if _in_legacy_dygraph():
S
songyouwei 已提交
337 338
        if isinstance(axis, Variable):
            axis = axis.numpy()
339
            axis = axis.item(0)
340 341
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
342 343 344
        out = _varbase_creator()
        _C_ops.concat(input, out, 'axis', axis)
        return out
345

346 347 348 349 350 351 352 353 354
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
355 356
                    "All the Tensors in the input must have the same data type."
                )
357
    else:
358
        input = [input]
359
    check_type(axis, 'axis', (int, Variable), 'concat')
360

361 362 363
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
364 365
            "The data type of axis must be int32 or int64 when axis is a Tensor"
        )
366

367
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
368
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
369 370

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
371 372 373 374
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

375
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
376
                "number of the elements must be 1, but received %s." % len(input)
377
        out_index = helper.create_variable_for_type_inference(dtype="int32")
378 379 380 381 382 383 384 385 386 387
        helper.append_op(type='tensor_array_to_tensor',
                         inputs={'X': input[0]},
                         outputs={
                             'Out': [out],
                             'OutIndex': [out_index]
                         },
                         attrs={
                             'axis': axis,
                             'use_stack': False
                         })
388 389 390 391 392 393 394 395 396
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

397 398 399 400
        helper.append_op(type='concat',
                         inputs=inputs,
                         outputs={'Out': [out]},
                         attrs=attrs)
Y
Yu Yang 已提交
401 402 403
    return out


G
Guo Sheng 已提交
404
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
405
    r"""
G
Guo Sheng 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
456 457

    Args:
G
Guo Sheng 已提交
458 459 460 461 462 463 464
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
465 466

    Returns:
G
Guo Sheng 已提交
467 468 469
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
470 471 472 473

    Examples:
        .. code-block:: python

474
            import paddle.fluid as fluid
475
            import numpy as np
G
Guo Sheng 已提交
476 477 478 479 480 481 482
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
483
    """
J
Jiabin Yang 已提交
484
    if _non_static_mode():
485 486 487 488 489 490 491 492 493 494
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

495 496 497 498 499
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
500
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
501 502
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
503 504 505 506 507 508 509 510 511 512
    helper.append_op(type='tensor_array_to_tensor',
                     inputs={'X': input},
                     outputs={
                         'Out': [out],
                         'OutIndex': [out_index]
                     },
                     attrs={
                         'axis': axis,
                         'use_stack': use_stack
                     })
L
li099 已提交
513 514 515
    return out, out_index


516
def sums(input, out=None):
517
    r"""
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
539 540

    Args:
541 542 543 544
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
545 546

    Returns:
547 548
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
549 550

    Examples:
F
fengjiayi 已提交
551
        .. code-block:: python
K
kavyasrinet 已提交
552

553 554 555 556 557 558 559 560 561
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
562

563 564
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
565
    """
566 567 568 569
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
570
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
571 572
    else:
        check_variable_and_dtype(input, "input", \
573
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
574

Y
Yu Yang 已提交
575 576
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
577 578
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
579
    else:
580 581 582 583 584 585 586 587
        check_variable_and_dtype(out, "out",
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'sums')

    helper.append_op(type='sum',
                     inputs={'X': input},
                     outputs={'Out': out},
                     attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
588 589 590
    return out


F
fengjiayi 已提交
591
def assign(input, output=None):
592
    """
S
swtkiwi 已提交
593

594
    The OP copies the :attr:`input` to the :attr:`output`.
595

596
    Parameters:
597 598 599 600
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
601
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
602
            be created as :attr:`output`. Default: None.
603 604

    Returns:
605
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
606 607 608

    Examples:
        .. code-block:: python
609

610
          import paddle
611
          import numpy as np
612
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
613 614 615 616
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
617 618 619
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
620
    """
Y
Yu Yang 已提交
621
    helper = LayerHelper('assign', **locals())
622 623 624
    check_type(input, 'input',
               (Variable, numpy.ndarray, list, tuple, float, int, bool),
               'assign')
625 626
    is_inplace = True if output is not None else False

627 628 629 630
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
631 632
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
J
Jiabin Yang 已提交
633
    # but _non_static_mode()==False under @to_static, which means
634 635 636
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
637
        if _non_static_mode():
C
chentianyu03 已提交
638 639 640 641 642 643 644 645 646
            if in_dygraph_mode() and output is None:
                output = _C_ops.final_state_assign(input)
            else:
                if output is None:
                    if _in_legacy_dygraph():
                        output = core.VarBase()
                    else:
                        output = core.eager.Tensor()
                _C_ops.assign(input, output)
647 648 649 650 651 652 653 654
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
655 656 657
            helper.append_op(type='assign',
                             inputs={'X': [input]},
                             outputs={'Out': [output]})
X
xuwei06 已提交
658
    elif isinstance(input, numpy.ndarray):
659 660 661 662 663
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
664
        dtype = convert_np_dtype_to_dtype_(input.dtype)
665 666 667 668 669 670 671 672
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
673 674
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
675
            values = [int(v) for v in input.flat]
676
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
677
            value_name = "fp32_values"
678
            values = [float(v) for v in input.flat]
679
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
680
            value_name = "int32_values"
681
            values = [int(v) for v in input.flat]
682 683 684
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
685
        else:
686 687
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
688
                "the data type of 'input' must be bool, float32, int32 or int64, but "
689
                "received %s." % convert_dtype(dtype))
690 691 692
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
693 694 695 696 697 698 699 700
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
            _C_ops.final_state_assign_value_(output, list(input.shape), dtype,
                                             values, _current_expected_place())
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
701 702
            _C_ops.assign_value(output, 'shape', list(input.shape), 'dtype',
                                dtype, value_name, values)
703
        else:
704 705 706
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
707 708 709 710 711 712 713
            helper.append_op(type='assign_value',
                             outputs={'Out': [output]},
                             attrs={
                                 'dtype': dtype,
                                 'shape': list(input.shape),
                                 value_name: values
                             })
X
xuwei06 已提交
714

J
Jiabin Yang 已提交
715
    if is_inplace and _non_static_mode():
716
        output._bump_inplace_version()
717

Y
Yu Yang 已提交
718 719 720
    return output


721
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
722
    """
S
swtkiwi 已提交
723

W
wangchaochaohu 已提交
724
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
725
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
726

T
tianshuo78520a 已提交
727
    The attribute `stop_gradient` of the created Tensor is set to True.
728 729

    Args:
730 731 732
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
733
        dtype(np.dtype|str): Data type of the output Tensor which can
734
            be float16, float32, float64, uint8, int16, int32, int64.
735 736 737 738 739 740
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
741 742
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
743 744

    Returns:
745
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
746

747 748 749
    Examples:
        .. code-block:: python

750
          import paddle.fluid as fluid
751
          # attr shape is a list which doesn't contain  Tensor.
752 753
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
754
          # data1=[[5], [5]] data2=[[5], [5]]
755

756
          # attr shape is a list which contains Tensor.
757
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
758
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
759

760
          # attr shape is a Tensor.
761
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
762
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
763
          
764
          # attr value is a Tensor.
W
wangchaochaohu 已提交
765 766
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
767
    """
768

W
wangchaochaohu 已提交
769
    attrs = {'force_cpu': force_cpu}
770
    dtype = convert_dtype(dtype)
771
    if not isinstance(value, Variable):
772
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
773
            attrs['str_value'] = str(int(value))
774
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
775 776
        else:
            attrs['str_value'] = str(float(value))
777
            attrs['value'] = float(value)
778

J
Jiabin Yang 已提交
779
    if _non_static_mode():
780 781 782 783 784
        if out is None and in_dygraph_mode():
            #Currently, final state mode don't support out is None.
            place = _current_expected_place()
            if force_cpu:
                place = core.CPUPlace()
785 786 787 788
            if isinstance(shape, (list, tuple)):
                for item in shape:
                    if not isinstance(item, Variable):
                        shape = list(
789 790 791
                            map(
                                lambda x: x.numpy().flat[0]
                                if isinstance(x, Variable) else x, shape))
792
                        break
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)
            out = _C_ops.final_state_full(shape, float(value), dtype, place)
            out.stop_gradient = True
            return out

        else:
            shape = utils.convert_shape_to_list(shape)
            if out is None:
                out = _varbase_creator(dtype=dtype)

            if isinstance(value, Variable):
                if dtype in ['uint8', 'int16', 'int32', 'int64']:
                    attrs['str_value'] = str(int(value.numpy().item(0)))
                else:
                    attrs['str_value'] = str(float(value.numpy().item(0)))

811 812 813
            _C_ops.fill_constant(out, 'value', float(value), 'force_cpu',
                                 force_cpu, 'dtype', out.dtype, 'str_value',
                                 attrs['str_value'], 'shape', shape)
814 815
            out.stop_gradient = True
            return out
816

817 818 819
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
820 821
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
822 823
        inputs['ValueTensor'] = value

824
    check_shape(shape)
825 826
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32',
827
        'int64', 'complex64', 'complex128'
828
    ], 'fill_constant')
829
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
830

831 832 833 834 835
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
836 837 838 839
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='fill_constant')
L
liym27 已提交
840

Y
Yu Yang 已提交
841
    if out is None:
X
Xin Pan 已提交
842
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
843
    attrs['dtype'] = out.dtype
844 845 846 847 848
    helper.append_op(type='fill_constant',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
Y
Yu Yang 已提交
849 850 851 852
    out.stop_gradient = True
    return out


853
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
854
@templatedoc()
Y
Yu Yang 已提交
855 856 857 858 859
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
860 861
                                  output_dim_idx=0,
                                  force_cpu=False):
862
    """
T
tianshuo78520a 已提交
863
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
864 865 866 867
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
868 869

    Args:
W
wangchaochaohu 已提交
870 871 872 873 874 875 876 877 878 879 880
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
881
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
882 883

    Returns:
W
wangchaochaohu 已提交
884
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
885 886 887 888 889

    Examples:

        .. code-block:: python

890
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
891
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
892
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
893
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
894

895
    """
896 897 898 899 900 901 902
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
903 904 905
        out = _C_ops.final_state_full_batch_size_like(input, shape, dtype,
                                                      value, input_dim_idx,
                                                      output_dim_idx, place)
906 907 908
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
909
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
910
    out = helper.create_variable_for_type_inference(dtype=dtype)
911 912 913 914 915 916
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
917
        'force_cpu': force_cpu
918 919 920 921 922
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
923 924 925 926
    helper.append_op(type='fill_constant_batch_size_like',
                     inputs={'Input': input},
                     outputs={'Out': [out]},
                     attrs=attrs)
Y
Yu Yang 已提交
927 928 929 930
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
931 932
def argmin(x, axis=0):
    """
933 934 935
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
936

S
sneaxiy 已提交
937 938
    **argmin**

939 940
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
941 942

    Args:
943 944 945 946 947
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
948

S
sneaxiy 已提交
949
    Returns:
950
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
951

S
sneaxiy 已提交
952 953
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
954

955
            import paddle.fluid as fluid
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
983
    """
984 985 986
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
987
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
988
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
989 990 991 992
    helper.append_op(type='arg_min',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
993
    out.stop_gradient = True
S
sneaxiy 已提交
994 995 996 997 998 999 1000
    return out


def argmax(x, axis=0):
    """
    **argmax**

1001 1002
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
1003 1004

    Args:
1005 1006 1007 1008 1009
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
1010

S
sneaxiy 已提交
1011
    Returns:
1012
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
1013

S
sneaxiy 已提交
1014 1015
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1016

1017
            import paddle.fluid as fluid
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
1045
    """
1046 1047 1048
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
1049
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
1050
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1051 1052 1053 1054
    helper.append_op(type='arg_max',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
1055
    out.stop_gradient = True
S
sneaxiy 已提交
1056 1057 1058
    return out


1059
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
1060
    """
1061 1062 1063
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
1064

1065 1066 1067
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
1068 1069

    Args:
1070 1071 1072 1073 1074
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
1075 1076 1077
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
1078 1079 1080
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1081 1082

    Returns:
1083 1084 1085
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1086 1087 1088 1089

    Examples:
        .. code-block:: python

1090
            import paddle.fluid as fluid
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1132
    """
1133 1134 1135
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1136
    helper = LayerHelper("argsort", **locals())
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    out = helper.create_variable_for_type_inference(dtype=input.dtype,
                                                    stop_gradient=True)
    ids = helper.create_variable_for_type_inference(VarDesc.VarType.INT64,
                                                    stop_gradient=True)
    helper.append_op(type='argsort',
                     inputs={'X': input},
                     outputs={
                         'Out': out,
                         'Indices': ids
                     },
                     attrs={
                         'axis': axis,
                         'descending': descending
                     })
Y
Yibing Liu 已提交
1151 1152 1153
    return out, ids


Y
Yang Yu 已提交
1154
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1155
    """
1156 1157
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1158

1159
    Parameters:
1160
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1161
        dtype (np.dtype|str): Data type of output Tensor, it supports
1162
            bool, float16, float32, float64, int32 and int64.
1163 1164
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1165
            Default: False.
1166 1167

    Returns:
1168
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1169 1170 1171 1172

    Examples:
        .. code-block:: python

1173
          import paddle.fluid as fluid
1174 1175 1176 1177 1178
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1179 1180 1181 1182
    """
    return fill_constant(value=1.0, **locals())


1183
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1184
    """
1185 1186
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1187

1188
    Parameters:
1189
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1190
        dtype (np.dtype|str): Data type of output Tensor, it supports
1191
            bool, float16, float32, float64, int32 and int64.
1192 1193
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1194
            Default: False.
1195 1196
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1197 1198

    Returns:
1199
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1200 1201 1202 1203

    Examples:
        .. code-block:: python

1204
          import paddle.fluid as fluid
1205
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1206 1207 1208 1209
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1210 1211
    """
    return fill_constant(value=0.0, **locals())
1212 1213


F
fengjiayi 已提交
1214 1215
def reverse(x, axis):
    """
1216 1217 1218
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1219

1220
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1221

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1246
    Parameters:
1247 1248
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1249 1250
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1251 1252
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1253 1254

    Returns:
1255
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1256 1257 1258 1259

    Examples:
        .. code-block:: python

1260
          import paddle.fluid as fluid
1261 1262 1263 1264
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1275
    """
1276 1277 1278
    check_variable_and_dtype(x, 'x',
                             ('float32', 'float64', 'int32', 'int64', 'uint8'),
                             'reverse')
1279
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1280 1281
    if isinstance(axis, int):
        axis = [axis]
W
wanghuancoder 已提交
1282 1283 1284 1285 1286
    if in_dygraph_mode():
        if x.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            return _C_ops.final_state_reverse_array(x, axis)
        else:
            return _C_ops.final_state_reverse(x, axis)
F
fengjiayi 已提交
1287
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1288
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1289 1290 1291 1292
    helper.append_op(type='reverse',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
F
fengjiayi 已提交
1293 1294 1295
    return out


1296 1297 1298 1299 1300 1301 1302
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1303 1304 1305
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1306 1307
    """
    helper = LayerHelper("save", **locals())
1308 1309 1310 1311 1312 1313 1314
    helper.append_op(type="save",
                     inputs={"input": x},
                     outputs={},
                     args={
                         "file_path": file_path,
                         "overwrite": overwrite
                     })
1315 1316 1317 1318 1319 1320 1321


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1322 1323
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1324
        file_path(str): The file path where variables will be saved.
1325
        overwrite(bool): Whether or not cover the given file when it has already
1326 1327
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1328 1329 1330 1331 1332 1333 1334 1335

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1336
            import paddle.fluid as fluid
1337 1338 1339 1340 1341 1342 1343
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1344 1345
    """
    helper = LayerHelper("save_combine", **locals())
1346 1347 1348 1349 1350 1351 1352
    helper.append_op(type="save_combine",
                     inputs={"input": x},
                     outputs={},
                     args={
                         "file_path": file_path,
                         "overwrite": overwrite
                     })
1353 1354 1355 1356


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1357
    Loads a list of variable from a single file.
1358 1359 1360 1361 1362 1363

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
1364 1365 1366 1367
    helper.append_op(type="load_combine",
                     inputs={},
                     output={"Out": out},
                     args={"file_path": file_path})
1368 1369 1370 1371 1372 1373 1374


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1375
       x (Tensor): The Tensor to be checked.
1376 1377

    Returns:
S
Steffy-zxf 已提交
1378
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1379 1380 1381 1382
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1383 1384
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1385
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1386
          # [False]
1387

1388
    """
J
Jiabin Yang 已提交
1389
    if _non_static_mode():
W
wanghuancoder 已提交
1390
        return _C_ops.isinf(x)
S
Steffy-zxf 已提交
1391

1392
    check_type(x, 'x', (Variable), 'has_inf')
1393
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1394
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1395 1396 1397 1398 1399 1400 1401 1402 1403
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1404
       x (Tensor): The Tensor to be checked.
1405 1406

    Returns:
S
Steffy-zxf 已提交
1407
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1408 1409 1410 1411
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1412 1413
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1414
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1415
          # [False]
1416

1417
    """
J
Jiabin Yang 已提交
1418
    if _non_static_mode():
W
wanghuancoder 已提交
1419
        return _C_ops.isnan(x)
S
Steffy-zxf 已提交
1420

1421
    check_type(x, 'x', (Variable), 'has_nan')
1422
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1423
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1424 1425 1426 1427 1428 1429
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1430

1431 1432 1433 1434
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1435
        x(Tensor): The Tensor to be checked.
1436 1437

    Returns:
N
Noel 已提交
1438
        Tensor: The tensor storing the output, contains a bool value.
1439 1440 1441 1442 1443

    Examples:

        .. code-block:: python

N
Noel 已提交
1444 1445 1446 1447 1448 1449
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1450
    """
1451 1452
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1453
    helper = LayerHelper("isfinite", **locals())
1454

1455
    out = helper.create_variable_for_type_inference(dtype='bool')
1456 1457
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1458 1459


1460
def range(start, end, step, dtype, name=None):
W
whs 已提交
1461
    """
1462
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1463

1464 1465
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1466

1467 1468
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1469

L
Liufang Sang 已提交
1470
    Parameters:
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1494 1495 1496 1497 1498

    examples:

        .. code-block:: python

1499
            import paddle.fluid as fluid
W
whs 已提交
1500

1501 1502
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1503

1504 1505 1506 1507 1508
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
1509 1510 1511 1512 1513
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1514 1515
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1516

W
whs 已提交
1517
    if not isinstance(start, Variable):
1518
        with device_guard("cpu"):
1519
            start = fill_constant([1], dtype, start, force_cpu=True)
1520 1521
    elif start.dtype != dtype:
        start = cast(start, dtype)
1522

W
whs 已提交
1523
    if not isinstance(end, Variable):
1524
        with device_guard("cpu"):
1525
            end = fill_constant([1], dtype, end, force_cpu=True)
1526 1527
    elif end.dtype != dtype:
        end = cast(end, dtype)
1528

W
whs 已提交
1529
    if not isinstance(step, Variable):
1530
        with device_guard("cpu"):
1531
            step = fill_constant([1], dtype, step, force_cpu=True)
1532 1533
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1534

Z
zyfncg 已提交
1535 1536 1537 1538
    if in_dygraph_mode():
        return _C_ops.final_state_arange(start, end, step, dtype,
                                         _current_expected_place())

Z
zyfncg 已提交
1539
    if _in_legacy_dygraph():
J
Jiawei Wang 已提交
1540 1541 1542
        out = _C_ops.range(start, end, step)
        out.stop_gradient = True
        return out
W
whs 已提交
1543

1544 1545 1546
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1547
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
1548 1549 1550 1551 1552 1553 1554
    helper.append_op(type='range',
                     inputs={
                         'Start': start,
                         'End': end,
                         'Step': step
                     },
                     outputs={'Out': out})
1555
    out.stop_gradient = True
1556 1557
    if out_shape is not None:
        out.desc.set_shape(out_shape)
W
whs 已提交
1558
    return out
Z
zhoukunsheng 已提交
1559 1560


1561
def linspace(start, stop, num, dtype=None, name=None):
1562
    r"""
1563
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1564 1565

    Args:
1566 1567 1568 1569
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1570
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1571
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1572
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1573
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1574 1575
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1576 1577

    Returns:
1578
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1579 1580
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1581

Z
zhoukunsheng 已提交
1582
    Examples:
Z
zhoukunsheng 已提交
1583 1584
        .. code-block:: python

1585 1586 1587
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1588 1589

    """
1590 1591
    if dtype is None:
        dtype = 'float32'
1592 1593 1594
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1595 1596
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1597 1598
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1599
    if not isinstance(start, Variable):
1600 1601
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1602
    if not isinstance(stop, Variable):
1603 1604
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1605
    if not isinstance(num, Variable):
1606 1607
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1608
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1609 1610
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)
1611 1612 1613
    if in_dygraph_mode():
        return _C_ops.final_state_linspace(tensor_start, tensor_stop,
                                           tensor_num, dtype)
1614 1615
    helper = LayerHelper("linspace", **locals())

1616 1617 1618
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1619
    if isinstance(start, Variable):
1620 1621
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1622 1623
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1624

1625
    if isinstance(stop, Variable):
1626 1627
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1628 1629 1630 1631 1632 1633
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1634 1635 1636 1637
    if ((stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]) or (
                (stop_dtype == "int64" or start_dtype == "int64")
                and out_dtype == "int32"):
1638 1639 1640 1641
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1642 1643

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1644

1645 1646 1647 1648 1649 1650 1651 1652
    helper.append_op(type='linspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
1653 1654
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1655
    return out
1656 1657


Z
zhoukunsheng 已提交
1658 1659
def zeros_like(x, out=None):
    """
1660
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1661 1662 1663
    with `x`.

    Args:
1664 1665 1666 1667 1668 1669
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1670 1671

    Returns:
1672 1673 1674
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1675 1676 1677 1678

    Examples:
        .. code-block:: python

1679
          import paddle.fluid as fluid
1680
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1681 1682
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1683 1684
    """

1685 1686 1687
    check_variable_and_dtype(x, "x",
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'ones_like')
Z
zhoukunsheng 已提交
1688 1689 1690
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1691 1692 1693
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1694
            'zeros_like')
1695

1696 1697 1698
    helper.append_op(type='fill_zeros_like',
                     inputs={'X': [x]},
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1699 1700
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1701 1702


1703
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1704
def diag(diagonal):
1705
    r"""
1706 1707 1708
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1709

1710
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1711 1712

    Args:
1713 1714
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1715 1716

    Returns:
1717 1718
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1719 1720 1721 1722 1723 1724 1725

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1726 1727 1728

          import paddle.fluid as fluid
          import numpy as np
1729 1730 1731
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1732 1733

    """
1734 1735 1736
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1737 1738 1739 1740 1741 1742 1743
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

1744 1745 1746
    helper.append_op(type='diag',
                     inputs={'Diagonal': [diagonal]},
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1747 1748 1749

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1750 1751


1752 1753 1754 1755 1756
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1757
    """
1758
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1759 1760 1761

    Args:
        num_rows(int): the number of rows in each batch tensor.
1762 1763
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1764 1765
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1766
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1767 1768 1769 1770
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1771 1772

    Returns:
1773
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1774 1775 1776 1777 1778

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1779 1780
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1781
          #  [0, 1, 0]
1782 1783
          #  [0, 0, 1]]

1784
          data = fluid.layers.eye(2, 3, dtype='int32')
1785
          # [[1, 0, 0]
1786
          #  [0, 1, 0]]
1787 1788

          data = fluid.layers.eye(2, batch_shape=[3])
1789 1790 1791 1792 1793
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1794 1795
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1796 1797 1798 1799 1800
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1801

R
Ruibiao Chen 已提交
1802 1803 1804 1805
    if in_dygraph_mode():
        out = _C_ops.final_state_eye(num_rows, num_columns, dtype,
                                     _current_expected_place())
    elif _in_legacy_dygraph():
W
wanghuancoder 已提交
1806 1807
        out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                         num_columns)
1808 1809 1810 1811 1812 1813 1814
    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
1815 1816 1817 1818 1819 1820 1821 1822 1823
        helper.append_op(type='eye',
                         inputs={},
                         outputs={'Out': [out]},
                         attrs={
                             'num_rows': num_rows,
                             'num_columns': num_columns,
                             'dtype': dtype
                         },
                         stop_gradient=True)
1824 1825

    if batch_shape is not None:
1826 1827 1828
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
J
Jiabin Yang 已提交
1829
        if _non_static_mode():
W
wanghuancoder 已提交
1830 1831
            out = _C_ops.reshape(out, 'shape', re_shape)
            return _C_ops.expand(out, None, 'expand_times', expand_times)
1832

1833 1834
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1835
        for batch_val in (batch_shape):
1836 1837
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1838 1839 1840 1841 1842 1843

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1844 1845 1846
    return out


Z
zhoukunsheng 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1859
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1870 1871 1872
    check_variable_and_dtype(x, "x",
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'ones_like')
Z
zhoukunsheng 已提交
1873 1874 1875 1876

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1877 1878 1879 1880
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
1881 1882 1883 1884
    helper.append_op(type='fill_any_like',
                     inputs={'X': [x]},
                     attrs={'value': 1.0},
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1885
    return out
Y
yaoxuefeng 已提交
1886 1887 1888 1889 1890 1891


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)