tensor.py 64.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import six
17
from six.moves import reduce
Y
Yu Yang 已提交
18
from ..layer_helper import LayerHelper
19
from ..param_attr import ParamAttr
20
from ..initializer import Initializer
21
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
22
from ..framework import Variable
23
from ..initializer import Constant
24
from ..core import VarDesc
25
from .. import core
26
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
27
from . import utils
28
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
29
from paddle.utils import deprecated
X
xuwei06 已提交
30
import numpy
31
import warnings
32
from .utils import check_shape
Y
Yu Yang 已提交
33 34

__all__ = [
L
li099 已提交
35 36 37
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
38
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
Y
yaoxuefeng 已提交
39
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye', 'triu'
Y
Yu Yang 已提交
40 41 42
]


X
xuwei06 已提交
43
def create_tensor(dtype, name=None, persistable=False):
44
    """
W
wangchaochaohu 已提交
45
    Create a variable, which will hold a Tensor with data type dtype.
46 47

    Args:
W
wangchaochaohu 已提交
48 49 50 51
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
52
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
53
            default value is False.
54 55

    Returns:
W
wangchaochaohu 已提交
56
        Variable: The tensor to be created according to dtype.
57 58 59 60

    Examples:
        .. code-block:: python

61
          import paddle.fluid as fluid
62 63
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
64 65 66 67
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
68
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
69 70
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
71 72


73 74
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
75
                     name=None,
76 77 78 79
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
80
	:api_attr: Static Graph
S
swtkiwi 已提交
81

82
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
83 84 85 86 87
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

88 89 90 91 92 93 94
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
95 96 97
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
98
        default_initializer (Initializer, optional): Initializer for the parameter
99 100

    Returns:
101
        The created parameter.
Y
yuyang18 已提交
102 103

    Examples:
104 105
        .. code-block:: python

106 107 108
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
109
    """
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
129
    helper = LayerHelper("create_parameter", **locals())
130
    if attr is None:
X
xuwei06 已提交
131
        attr = ParamAttr(name=name)
132 133
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
134 135 136
                                   default_initializer)


137 138 139 140 141 142 143
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
144
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
145

146 147 148
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
149
                      variable will be filled with it.
150 151
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
152
                           Default: False
153
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
154
                         Default: False
155 156
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
157 158

    Returns:
159
        Variable: The created Variable
F
fengjiayi 已提交
160 161 162 163

    Examples:
        .. code-block:: python

164 165 166
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
167
                                           persistable=True, force_cpu=True, name='new_var')
168
    """
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
186 187
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
188 189 190 191 192
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
193 194 195
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
196

Q
Qiao Longfei 已提交
197 198 199
    return var


200
def cast(x, dtype):
Y
Yu Yang 已提交
201
    """
202 203 204
	:alias_main: paddle.cast
	:alias: paddle.cast,paddle.tensor.cast,paddle.tensor.manipulation.cast
	:old_api: paddle.fluid.layers.cast
S
swtkiwi 已提交
205

206 207 208
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
209 210

    Args:
211 212 213
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
214
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
215 216

    Returns:
217
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
218 219 220

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
221

222
            import paddle.fluid as fluid
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
245
    """
246 247
    check_variable_and_dtype(
        x, 'x',
248 249
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
250 251 252 253 254 255
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
256
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
257 258 259 260 261 262 263 264 265
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


266
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
267
    """
268
    This OP concatenates the input along the axis.
269 270

    Args:
271 272
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
273 274
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
275
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
276
            as ``axis+R``. Default is 0.
277 278 279
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
280 281

    Returns:
282
        Tensor: A Tensor with the same data type as ``input``.
283 284 285

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
286

287
            import paddle.fluid as fluid
288 289
            import numpy as np

290 291 292 293 294 295
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
296 297 298 299
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
300 301
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
302 303
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
304 305 306 307 308 309 310 311
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
312
    """
313 314

    if in_dygraph_mode():
S
songyouwei 已提交
315 316
        if isinstance(axis, Variable):
            axis = axis.numpy()
317
            axis = axis.item(0)
318
        return core.ops.concat(input, 'axis', axis)
319

320 321 322 323 324 325 326 327 328 329 330
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
331
        input = [input]
332
    check_type(axis, 'axis', (int, Variable), 'concat')
333

334 335 336 337 338
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

339
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
340
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
341 342 343

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
344
                "number of the elements must be 1, but received %s." % len(input)
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
364 365 366
    return out


G
Guo Sheng 已提交
367
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
368
    """
G
Guo Sheng 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
419 420

    Args:
G
Guo Sheng 已提交
421 422 423 424 425 426 427
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
428 429

    Returns:
G
Guo Sheng 已提交
430 431 432
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
433 434 435 436

    Examples:
        .. code-block:: python

437
            import paddle.fluid as fluid
438
            import numpy as np
G
Guo Sheng 已提交
439 440 441 442 443 444 445
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
446
    """
447 448 449 450 451 452 453 454 455 456 457
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

458 459 460 461 462
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
463
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
464 465 466
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
467
        type='tensor_array_to_tensor',
L
li099 已提交
468 469 470
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
471 472
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
473 474 475
    return out, out_index


476
def sums(input, out=None):
F
fengjiayi 已提交
477
    """
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
499 500

    Args:
501 502 503 504
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
505 506

    Returns:
507 508
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
509 510

    Examples:
F
fengjiayi 已提交
511
        .. code-block:: python
K
kavyasrinet 已提交
512

513 514 515 516 517 518 519 520 521
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
522

523 524
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
525
    """
526 527 528 529 530 531 532 533 534
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
535 536
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
537 538
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
539 540 541 542
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
543 544 545 546 547
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
548 549 550
    return out


F
fengjiayi 已提交
551
def assign(input, output=None):
552
    """
553 554 555
	:alias_main: paddle.nn.functional.assign
	:alias: paddle.nn.functional.assign,paddle.nn.functional.common.assign
	:old_api: paddle.fluid.layers.assign
S
swtkiwi 已提交
556

557
    The OP copies the :attr:`input` to the :attr:`output`.
558

559 560
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
561
            float16, float32, float64, int32 and int64.
562 563
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
564 565

    Returns:
566
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
567 568 569

    Examples:
        .. code-block:: python
570

571
          import paddle.fluid as fluid
572 573 574 575 576 577
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
578
    """
Y
Yu Yang 已提交
579
    helper = LayerHelper('assign', **locals())
580
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
581
    if isinstance(input, Variable):
582 583 584 585
        check_dtype(
            input.dtype, 'input',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
586 587 588
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
589
        helper.append_op(
R
robot 已提交
590
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
591 592
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
593 594 595 596
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
597
            value_name = "fp32_values"
598
            values = [float(v) for v in input.flat]
599
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
600
            value_name = "int32_values"
601
            values = [int(v) for v in input.flat]
602 603 604
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
605
        else:
606 607
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
608
                "the data type of 'input' must be bool, float32, int32 or int64, but "
609
                "received %s." % convert_dtype(dtype))
610 611 612
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
613 614 615
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
616 617 618 619 620 621
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
622
                value_name: values
X
xuwei06 已提交
623 624
            })

Y
Yu Yang 已提交
625 626 627
    return output


628
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
629
    """
630
	:alias_main: paddle.fill_constant
631
	:alias: paddle.tensor.fill_constant, paddle.tensor.creation.fill_constant
S
swtkiwi 已提交
632

W
wangchaochaohu 已提交
633
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
634
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
635

T
tianshuo78520a 已提交
636
    The attribute `stop_gradient` of the created Tensor is set to True.
637 638

    Args:
639 640 641
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
642
        dtype(np.dtype|str): Data type of the output Tensor which can
W
wangchaochaohu 已提交
643
            be float16, float32, float64, int32, int64.
644 645 646 647 648 649
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
650 651
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
652 653

    Returns:
654
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
655

656 657 658
    Examples:
        .. code-block:: python

659
          import paddle.fluid as fluid
660
          # attr shape is a list which doesn't contain  Tensor.
661 662
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
663
          # data1=[[5], [5]] data2=[[5], [5]]
664

665
          # attr shape is a list which contains Tensor.
666
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
667
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
668

669
          # attr shape is a Tensor.
670
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
671
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
672
          
673
          # attr value is a Tensor.
W
wangchaochaohu 已提交
674 675
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
676
    """
677

W
wangchaochaohu 已提交
678
    attrs = {'force_cpu': force_cpu}
679
    dtype = convert_dtype(dtype)
680
    if not isinstance(value, Variable):
681
        if dtype in ['int64', 'int32']:
W
wangchaochaohu 已提交
682
            attrs['str_value'] = str(int(value))
683
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
684 685
        else:
            attrs['str_value'] = str(float(value))
686
            attrs['value'] = float(value)
687 688

    if in_dygraph_mode():
689
        shape = utils.convert_shape_to_list(shape)
690 691
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
692 693

        if isinstance(value, Variable):
694
            if dtype in ['int64', 'int32']:
695
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
696
            else:
697
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
698

699 700
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
701 702
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
703 704 705
        out.stop_gradient = True
        return out

706 707 708
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
709 710
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
711 712
        inputs['ValueTensor'] = value

713
    check_shape(shape)
714
    check_dtype(dtype, 'dtype',
715 716 717
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
718

719 720 721 722 723
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
724
    utils.get_shape_tensor_inputs(
725
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
726

Y
Yu Yang 已提交
727
    if out is None:
X
Xin Pan 已提交
728
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
729
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
730 731
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
732
        inputs=inputs,
Y
Yu Yang 已提交
733
        outputs={'Out': [out]},
L
liym27 已提交
734
        attrs=attrs,
M
minqiyang 已提交
735
        stop_gradient=True)
Y
Yu Yang 已提交
736 737 738 739
    out.stop_gradient = True
    return out


740
@deprecated(since='1.8.0', update_to="paddle.fill_constant")
Y
yuyang18 已提交
741
@templatedoc()
Y
Yu Yang 已提交
742 743 744 745 746
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
747 748
                                  output_dim_idx=0,
                                  force_cpu=False):
749
    """
T
tianshuo78520a 已提交
750
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
751 752 753 754
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
755 756

    Args:
W
wangchaochaohu 已提交
757 758 759 760 761 762 763 764 765 766 767
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
768
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
769 770

    Returns:
W
wangchaochaohu 已提交
771
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
772 773 774 775 776

    Examples:

        .. code-block:: python

777
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
778
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
779
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
780
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
781

782
    """
Y
Yu Yang 已提交
783
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
784
    out = helper.create_variable_for_type_inference(dtype=dtype)
785 786 787 788 789 790
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
791
        'force_cpu': force_cpu
792 793 794 795 796
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
797 798 799 800
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
801
        attrs=attrs)
Y
Yu Yang 已提交
802 803 804 805
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
806 807
def argmin(x, axis=0):
    """
808 809 810
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
811

S
sneaxiy 已提交
812 813
    **argmin**

814 815
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
816 817

    Args:
818 819 820 821 822
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
823

S
sneaxiy 已提交
824
    Returns:
825
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
826

S
sneaxiy 已提交
827 828
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
829

830
            import paddle.fluid as fluid
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
858
    """
859 860 861
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
862
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
863
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
864 865 866 867 868
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
869
    out.stop_gradient = True
S
sneaxiy 已提交
870 871 872 873 874 875 876
    return out


def argmax(x, axis=0):
    """
    **argmax**

877 878
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
879 880

    Args:
881 882 883 884 885
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
886

S
sneaxiy 已提交
887
    Returns:
888
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
889

S
sneaxiy 已提交
890 891
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
892

893
            import paddle.fluid as fluid
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
921
    """
922 923 924
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
925
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
926
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
927 928 929 930 931
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
932
    out.stop_gradient = True
S
sneaxiy 已提交
933 934 935
    return out


936
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
937
    """
938 939 940
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
941

942 943 944
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
945 946

    Args:
947 948 949 950 951
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
952 953 954
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
955 956 957
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
958 959

    Returns:
960 961 962
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
963 964 965 966

    Examples:
        .. code-block:: python

967
            import paddle.fluid as fluid
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1009
    """
1010 1011 1012
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1013
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1014 1015 1016 1017
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1018 1019 1020 1021
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1022
                 'Indices': ids},
1023 1024
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1025 1026 1027
    return out, ids


Y
Yang Yu 已提交
1028
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1029
    """
1030 1031
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1032

1033
    Parameters:
1034
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1035
        dtype (np.dtype|str): Data type of output Tensor, it supports
1036
            bool, float16, float32, float64, int32 and int64.
1037 1038
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1039
            Default: False.
1040 1041

    Returns:
1042
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1043 1044 1045 1046

    Examples:
        .. code-block:: python

1047
          import paddle.fluid as fluid
1048 1049 1050 1051 1052
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1053 1054 1055 1056
    """
    return fill_constant(value=1.0, **locals())


1057
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1058
    """
1059 1060
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1061

1062
    Parameters:
1063
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1064
        dtype (np.dtype|str): Data type of output Tensor, it supports
1065
            bool, float16, float32, float64, int32 and int64.
1066 1067
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1068
            Default: False.
1069 1070
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1071 1072

    Returns:
1073
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1074 1075 1076 1077

    Examples:
        .. code-block:: python

1078
          import paddle.fluid as fluid
1079
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1080 1081 1082 1083
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1084 1085
    """
    return fill_constant(value=0.0, **locals())
1086 1087


F
fengjiayi 已提交
1088 1089
def reverse(x, axis):
    """
1090 1091 1092
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1093

1094
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1120
    Parameters:
1121 1122
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1123 1124
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1125 1126
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1127 1128

    Returns:
1129
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1130 1131 1132 1133

    Examples:
        .. code-block:: python

1134
          import paddle.fluid as fluid
1135 1136 1137 1138
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1149
    """
1150 1151 1152
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1153 1154 1155
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1156
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1157 1158
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1159
        inputs={'X': x},
F
fengjiayi 已提交
1160 1161 1162 1163 1164
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1165 1166 1167 1168 1169 1170 1171
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1172 1173 1174
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1190 1191
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1192
        file_path(str): The file path where variables will be saved.
1193
        overwrite(bool): Whether or not cover the given file when it has already
1194 1195
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1196 1197 1198 1199 1200 1201 1202 1203

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1204
            import paddle.fluid as fluid
1205 1206 1207 1208 1209 1210 1211
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1224
    Loads a list of variable from a single file.
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1236 1237 1238 1239 1240 1241 1242


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1243
       x (Tensor): The Tensor to be checked.
1244 1245

    Returns:
S
Steffy-zxf 已提交
1246
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1247 1248 1249 1250
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1251 1252 1253 1254
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
          res = paddle.has_inf(data)
          # [False]
1255

1256
    """
S
Steffy-zxf 已提交
1257 1258 1259
    if in_dygraph_mode():
        return core.ops.isinf(x)

1260
    check_type(x, 'x', (Variable), 'has_inf')
1261
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1262
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1263 1264 1265 1266 1267 1268 1269 1270 1271
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1272
       x (Tensor): The Tensor to be checked.
1273 1274

    Returns:
S
Steffy-zxf 已提交
1275
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1276 1277 1278 1279
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1280 1281 1282 1283
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
          res = paddle.has_nan(data)
          # [False]
1284

1285
    """
S
Steffy-zxf 已提交
1286 1287 1288
    if in_dygraph_mode():
        return core.ops.isnan(x)

1289
    check_type(x, 'x', (Variable), 'has_nan')
1290
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1291
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1292 1293 1294 1295 1296 1297
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
1298 1299 1300
	:alias_main: paddle.isfinite
	:alias: paddle.isfinite,paddle.tensor.isfinite,paddle.tensor.logic.isfinite
	:old_api: paddle.fluid.layers.isfinite
S
swtkiwi 已提交
1301

1302 1303 1304 1305 1306 1307 1308 1309
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1310 1311 1312 1313 1314

    Examples:

        .. code-block:: python

1315
            import paddle.fluid as fluid
1316 1317 1318
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1319
            out = fluid.layers.isfinite(var)
1320
    """
1321 1322
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1323
    helper = LayerHelper("isfinite", **locals())
1324

1325
    out = helper.create_variable_for_type_inference(dtype='bool')
1326 1327
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1328 1329


1330
def range(start, end, step, dtype, name=None):
W
whs 已提交
1331
    """
1332
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1333

1334 1335
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1336

1337 1338
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1339

L
Liufang Sang 已提交
1340
    Parameters:
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1364 1365 1366 1367 1368

    examples:

        .. code-block:: python

1369
            import paddle.fluid as fluid
W
whs 已提交
1370

1371 1372
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1373

1374 1375 1376 1377 1378 1379 1380
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1381

W
whs 已提交
1382
    if not isinstance(start, Variable):
1383 1384
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start)
1385 1386
    elif start.dtype != dtype:
        start = cast(start, dtype)
1387

W
whs 已提交
1388
    if not isinstance(end, Variable):
1389 1390
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end)
1391 1392
    elif end.dtype != dtype:
        end = cast(end, dtype)
1393

W
whs 已提交
1394
    if not isinstance(step, Variable):
1395 1396
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step)
1397 1398
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1399

1400 1401
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1402

1403 1404 1405 1406
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1407 1408 1409 1410 1411
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1412
        outputs={'Out': out})
1413
    out.stop_gradient = True
W
whs 已提交
1414
    return out
Z
zhoukunsheng 已提交
1415 1416


1417
def linspace(start, stop, num, dtype=None, name=None):
Z
zhoukunsheng 已提交
1418
    """
1419
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1420 1421

    Args:
1422 1423 1424 1425
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1426
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1427
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1428
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1429
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1430 1431
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1432 1433

    Returns:
1434
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1435 1436
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1437

Z
zhoukunsheng 已提交
1438
    Examples:
Z
zhoukunsheng 已提交
1439 1440
        .. code-block:: python

1441
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1442 1443
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1444 1445

    """
1446 1447
    if dtype is None:
        dtype = 'float32'
1448 1449 1450
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1451 1452
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1453 1454
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1455
    if not isinstance(start, Variable):
1456 1457
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1458
    if not isinstance(stop, Variable):
1459 1460
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1461
    if not isinstance(num, Variable):
1462 1463
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1464
    if in_dygraph_mode():
1465 1466
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1467 1468 1469

    helper = LayerHelper("linspace", **locals())

1470 1471 1472
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1473
    if isinstance(start, Variable):
1474 1475
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1476 1477
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1478

1479
    if isinstance(stop, Variable):
1480 1481
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1482 1483 1484 1485 1486 1487
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1488 1489 1490 1491 1492 1493 1494 1495
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1496 1497

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1498 1499 1500

    helper.append_op(
        type='linspace',
1501 1502 1503 1504
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1505 1506
        outputs={'Out': [out]})
    return out
1507 1508


Z
zhoukunsheng 已提交
1509 1510
def zeros_like(x, out=None):
    """
1511
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1512 1513 1514
    with `x`.

    Args:
1515 1516 1517 1518 1519 1520
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1521 1522

    Returns:
1523 1524 1525
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1526 1527 1528 1529

    Examples:
        .. code-block:: python

1530
          import paddle.fluid as fluid
1531
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1532 1533
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1534 1535
    """

1536 1537
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1538 1539 1540
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1541 1542 1543
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1544
            'zeros_like')
1545

Z
zhoukunsheng 已提交
1546 1547 1548 1549
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1550 1551


1552
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1553 1554
def diag(diagonal):
    """
1555 1556 1557
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1558

1559
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1560 1561

    Args:
1562 1563
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1564 1565

    Returns:
1566 1567
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1568 1569 1570 1571 1572 1573 1574

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1575 1576 1577

          import paddle.fluid as fluid
          import numpy as np
1578 1579 1580
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1581 1582

    """
1583 1584 1585
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1598 1599


1600 1601 1602 1603 1604
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1605
    """
1606
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1607 1608 1609

    Args:
        num_rows(int): the number of rows in each batch tensor.
1610 1611
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1612 1613
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1614
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1615 1616 1617 1618
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1619 1620

    Returns:
1621
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1622 1623 1624 1625 1626

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1627 1628
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1629
          #  [0, 1, 0]
1630 1631
          #  [0, 0, 1]]

1632
          data = fluid.layers.eye(2, 3, dtype='int32')
1633
          # [[1, 0, 0]
1634
          #  [0, 1, 0]]
1635 1636

          data = fluid.layers.eye(2, batch_shape=[3])
1637 1638 1639 1640 1641
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1642 1643
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1644 1645 1646 1647 1648
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1671 1672

    if batch_shape is not None:
1673 1674 1675 1676 1677 1678 1679
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
            return core.ops.expand(out, 'expand_times', expand_times)

1680 1681
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1682
        for batch_val in (batch_shape):
1683 1684
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1685 1686 1687 1688 1689 1690

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1691 1692 1693
    return out


Z
zhoukunsheng 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1706
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1717 1718
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1719 1720 1721 1722

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1723 1724 1725 1726
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1727 1728 1729 1730 1731 1732
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1733 1734 1735 1736 1737 1738


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)