tensor.py 71.2 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
24
from ..framework import _current_expected_place, convert_np_dtype_to_dtype_, _non_static_mode, _varbase_creator, device_guard, _in_legacy_dygraph, in_dygraph_mode, _get_paddle_place
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
W
wanghuancoder 已提交
35
from paddle import _C_ops
Y
Yu Yang 已提交
36 37

__all__ = [
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
64 65 66
]


X
xuwei06 已提交
67
def create_tensor(dtype, name=None, persistable=False):
68
    """
W
wangchaochaohu 已提交
69
    Create a variable, which will hold a Tensor with data type dtype.
70 71

    Args:
W
wangchaochaohu 已提交
72 73 74 75
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
76
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
77
            default value is False.
78 79

    Returns:
W
wangchaochaohu 已提交
80
        Variable: The tensor to be created according to dtype.
81 82 83 84

    Examples:
        .. code-block:: python

85
          import paddle.fluid as fluid
86 87
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
88 89 90 91
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
92
    helper = LayerHelper("create_tensor", **locals())
93 94 95
    return helper.create_variable(name=helper.name,
                                  dtype=dtype,
                                  persistable=persistable)
Y
Yu Yang 已提交
96 97


98 99
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
100
                     name=None,
101 102 103 104
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
105
	:api_attr: Static Graph
S
swtkiwi 已提交
106

107
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
108 109 110 111 112
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

113 114 115 116 117 118 119
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
120 121 122
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
123
        default_initializer (Initializer, optional): Initializer for the parameter
124 125

    Returns:
126
        The created parameter.
Y
yuyang18 已提交
127 128

    Examples:
129 130
        .. code-block:: python

131 132 133
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
134
    """
135 136
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
137 138 139
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
140 141 142 143 144 145 146 147 148

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
149
    helper = LayerHelper("create_parameter", **locals())
150
    if attr is None:
X
xuwei06 已提交
151
        attr = ParamAttr(name=name)
152
    return helper.create_parameter(attr, shape, convert_dtype(dtype), is_bias,
153 154 155
                                   default_initializer)


156 157 158 159 160 161 162
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
163
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
164

165
    Parameters:
166
        shape (list[int]|tuple[int]): Shape of the variable
167
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
168
                      variable will be filled with it.
169 170
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
171
                           Default: False
172
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
173
                         Default: False
174 175
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
176 177

    Returns:
178
        Variable: The created Variable
F
fengjiayi 已提交
179 180 181 182

    Examples:
        .. code-block:: python

183 184 185
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
186
                                           persistable=True, force_cpu=True, name='new_var')
187
    """
188 189 190
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
191 192 193
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
194 195

    check_dtype(dtype, 'dtype', [
196 197 198 199 200 201 202 203 204 205
        'bool',
        'float16',
        'float32',
        'float64',
        'int8',
        'int16',
        'int32',
        'int64',
        'uint8',
        'uint16',
206 207
    ], 'create_global_var')

Q
Qiao Longfei 已提交
208
    helper = LayerHelper("global_var", **locals())
209 210 211 212 213 214 215 216
    var = helper.create_global_variable(dtype=dtype,
                                        shape=shape,
                                        persistable=persistable,
                                        name=name,
                                        stop_gradient=True)
    helper.set_variable_initializer(var,
                                    initializer=Constant(value=float(value),
                                                         force_cpu=force_cpu))
M
minqiyang 已提交
217

Q
Qiao Longfei 已提交
218 219 220
    return var


221
def cast(x, dtype):
Y
Yu Yang 已提交
222
    """
S
swtkiwi 已提交
223

224
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
225 226
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
227 228

    Args:
229
        x(Tensor): An input N-D Tensor with data type bool, float16,
230
            float32, float64, int32, int64, uint8.
231
        dtype(np.dtype|str): Data type of the output:
232
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
233 234

    Returns:
235
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
236 237 238

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
239

240
            import paddle
241

242 243
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
244
    """
H
hong 已提交
245 246 247 248 249
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        return _C_ops.final_state_cast(x, dtype)

J
Jiabin Yang 已提交
250
    if _non_static_mode():
251 252
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
W
wanghuancoder 已提交
253
        out = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
254
        return out
255

256
    check_variable_and_dtype(x, 'x', [
257 258
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
259
    ], 'cast')
260
    check_dtype(dtype, 'dtype', [
261 262
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
263 264 265
    ], 'cast')

    helper = LayerHelper('cast', **locals())
266 267
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
268 269 270 271 272 273 274
    helper.append_op(type='cast',
                     inputs={'X': [x]},
                     outputs={'Out': [out]},
                     attrs={
                         'in_dtype': x.dtype,
                         'out_dtype': out.dtype
                     })
Y
Yu Yang 已提交
275 276 277
    return out


278
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
279
    """
280
    This OP concatenates the input along the axis.
281 282

    Args:
283 284
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
285 286
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
287
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
288
            as ``axis+R``. Default is 0.
289 290 291
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
292 293

    Returns:
294
        Tensor: A Tensor with the same data type as ``input``.
295 296 297

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
298

299
            import paddle.fluid as fluid
300 301
            import numpy as np

302 303 304 305 306 307
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
308 309 310 311
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
312 313
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
314 315
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
316 317 318 319 320 321 322 323
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
324
    """
325

326 327 328 329 330 331
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
332 333 334
        out = _varbase_creator()
        _C_ops.concat(input, out, 'axis', axis)
        return out
335 336

    if _in_legacy_dygraph():
S
songyouwei 已提交
337 338
        if isinstance(axis, Variable):
            axis = axis.numpy()
339
            axis = axis.item(0)
340 341
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
342 343 344
        out = _varbase_creator()
        _C_ops.concat(input, out, 'axis', axis)
        return out
345

346 347 348 349 350 351 352 353 354
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
355 356
                    "All the Tensors in the input must have the same data type."
                )
357
    else:
358
        input = [input]
359
    check_type(axis, 'axis', (int, Variable), 'concat')
360

361 362 363
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
364 365
            "The data type of axis must be int32 or int64 when axis is a Tensor"
        )
366

367
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
368
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
369 370

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
371 372 373 374
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

375
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
376
                "number of the elements must be 1, but received %s." % len(input)
377
        out_index = helper.create_variable_for_type_inference(dtype="int32")
378 379 380 381 382 383 384 385 386 387
        helper.append_op(type='tensor_array_to_tensor',
                         inputs={'X': input[0]},
                         outputs={
                             'Out': [out],
                             'OutIndex': [out_index]
                         },
                         attrs={
                             'axis': axis,
                             'use_stack': False
                         })
388 389 390 391 392
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
393
        attrs['axis'] = axis
394

395 396 397 398
        helper.append_op(type='concat',
                         inputs=inputs,
                         outputs={'Out': [out]},
                         attrs=attrs)
Y
Yu Yang 已提交
399 400 401
    return out


G
Guo Sheng 已提交
402
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
403
    r"""
G
Guo Sheng 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
454 455

    Args:
G
Guo Sheng 已提交
456 457 458 459 460 461 462
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
463 464

    Returns:
G
Guo Sheng 已提交
465 466 467
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
468 469 470 471

    Examples:
        .. code-block:: python

472
            import paddle.fluid as fluid
473
            import numpy as np
G
Guo Sheng 已提交
474 475 476 477 478 479 480
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
481
    """
J
Jiabin Yang 已提交
482
    if _non_static_mode():
483 484 485 486 487 488 489 490 491 492
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

493 494 495 496 497
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
498
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
499 500
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
501 502 503 504 505 506 507 508 509 510
    helper.append_op(type='tensor_array_to_tensor',
                     inputs={'X': input},
                     outputs={
                         'Out': [out],
                         'OutIndex': [out_index]
                     },
                     attrs={
                         'axis': axis,
                         'use_stack': use_stack
                     })
L
li099 已提交
511 512 513
    return out, out_index


514
def sums(input, out=None):
515
    r"""
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
537 538

    Args:
539 540 541 542
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
543 544

    Returns:
545 546
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
547 548

    Examples:
F
fengjiayi 已提交
549
        .. code-block:: python
K
kavyasrinet 已提交
550

551 552 553 554 555 556 557 558 559
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
560

561 562
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
563
    """
564 565 566 567
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
568
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
569 570
    else:
        check_variable_and_dtype(input, "input", \
571
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
572

Y
Yu Yang 已提交
573 574
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
575 576
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
577
    else:
578 579 580 581 582 583 584 585
        check_variable_and_dtype(out, "out",
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'sums')

    helper.append_op(type='sum',
                     inputs={'X': input},
                     outputs={'Out': out},
                     attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
586 587 588
    return out


F
fengjiayi 已提交
589
def assign(input, output=None):
590
    """
S
swtkiwi 已提交
591

592
    The OP copies the :attr:`input` to the :attr:`output`.
593

594
    Parameters:
595 596 597 598
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
599
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
600
            be created as :attr:`output`. Default: None.
601 602

    Returns:
603
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
604 605 606

    Examples:
        .. code-block:: python
607

608
          import paddle
609
          import numpy as np
610
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
611 612 613 614
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
615 616 617
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
618
    """
Y
Yu Yang 已提交
619
    helper = LayerHelper('assign', **locals())
620 621 622
    check_type(input, 'input',
               (Variable, numpy.ndarray, list, tuple, float, int, bool),
               'assign')
623 624
    is_inplace = True if output is not None else False

625 626 627 628
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
629 630
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
J
Jiabin Yang 已提交
631
    # but _non_static_mode()==False under @to_static, which means
632 633 634
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
635
        if _non_static_mode():
C
chentianyu03 已提交
636 637 638 639 640 641 642 643 644
            if in_dygraph_mode() and output is None:
                output = _C_ops.final_state_assign(input)
            else:
                if output is None:
                    if _in_legacy_dygraph():
                        output = core.VarBase()
                    else:
                        output = core.eager.Tensor()
                _C_ops.assign(input, output)
645 646 647 648 649 650 651 652
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
653 654 655
            helper.append_op(type='assign',
                             inputs={'X': [input]},
                             outputs={'Out': [output]})
X
xuwei06 已提交
656
    elif isinstance(input, numpy.ndarray):
657 658 659 660 661
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
662
        dtype = convert_np_dtype_to_dtype_(input.dtype)
663 664 665 666 667 668 669 670
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
671 672
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
673
            values = [int(v) for v in input.flat]
674
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
675
            value_name = "fp32_values"
676
            values = [float(v) for v in input.flat]
677
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
678
            value_name = "int32_values"
679
            values = [int(v) for v in input.flat]
680 681 682
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
683
        else:
684 685
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
686
                "the data type of 'input' must be bool, float32, int32 or int64, but "
687
                "received %s." % convert_dtype(dtype))
688 689 690
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
691 692 693 694 695 696 697 698
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
            _C_ops.final_state_assign_value_(output, list(input.shape), dtype,
                                             values, _current_expected_place())
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
699 700
            _C_ops.assign_value(output, 'shape', list(input.shape), 'dtype',
                                dtype, value_name, values)
701
        else:
702 703 704
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
705 706 707 708 709 710 711
            helper.append_op(type='assign_value',
                             outputs={'Out': [output]},
                             attrs={
                                 'dtype': dtype,
                                 'shape': list(input.shape),
                                 value_name: values
                             })
X
xuwei06 已提交
712

J
Jiabin Yang 已提交
713
    if is_inplace and _non_static_mode():
714
        output._bump_inplace_version()
715

Y
Yu Yang 已提交
716 717 718
    return output


719
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
720
    """
S
swtkiwi 已提交
721

W
wangchaochaohu 已提交
722
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
723
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
724

T
tianshuo78520a 已提交
725
    The attribute `stop_gradient` of the created Tensor is set to True.
726 727

    Args:
728 729 730
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
731
        dtype(np.dtype|str): Data type of the output Tensor which can
732
            be float16, float32, float64, uint8, int16, int32, int64.
733 734 735 736 737 738
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
739 740
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
741 742

    Returns:
743
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
744

745 746 747
    Examples:
        .. code-block:: python

748
          import paddle.fluid as fluid
749
          # attr shape is a list which doesn't contain  Tensor.
750 751
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
752
          # data1=[[5], [5]] data2=[[5], [5]]
753

754
          # attr shape is a list which contains Tensor.
755
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
756
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
757

758
          # attr shape is a Tensor.
759
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
760
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
761
          
762
          # attr value is a Tensor.
W
wangchaochaohu 已提交
763 764
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
765
    """
766

W
wangchaochaohu 已提交
767
    attrs = {'force_cpu': force_cpu}
768
    dtype = convert_dtype(dtype)
769
    if not isinstance(value, Variable):
770
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
771
            attrs['str_value'] = str(int(value))
772
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
773 774
        else:
            attrs['str_value'] = str(float(value))
775
            attrs['value'] = float(value)
776

J
Jiabin Yang 已提交
777
    if _non_static_mode():
778 779 780 781 782
        if out is None and in_dygraph_mode():
            #Currently, final state mode don't support out is None.
            place = _current_expected_place()
            if force_cpu:
                place = core.CPUPlace()
783 784 785 786
            if isinstance(shape, (list, tuple)):
                for item in shape:
                    if not isinstance(item, Variable):
                        shape = list(
787 788 789
                            map(
                                lambda x: x.numpy().flat[0]
                                if isinstance(x, Variable) else x, shape))
790
                        break
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808

            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)
            out = _C_ops.final_state_full(shape, float(value), dtype, place)
            out.stop_gradient = True
            return out

        else:
            shape = utils.convert_shape_to_list(shape)
            if out is None:
                out = _varbase_creator(dtype=dtype)

            if isinstance(value, Variable):
                if dtype in ['uint8', 'int16', 'int32', 'int64']:
                    attrs['str_value'] = str(int(value.numpy().item(0)))
                else:
                    attrs['str_value'] = str(float(value.numpy().item(0)))

809 810 811
            _C_ops.fill_constant(out, 'value', float(value), 'force_cpu',
                                 force_cpu, 'dtype', out.dtype, 'str_value',
                                 attrs['str_value'], 'shape', shape)
812 813
            out.stop_gradient = True
            return out
814

815 816 817
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
818 819
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
820 821
        inputs['ValueTensor'] = value

822
    check_shape(shape)
823 824
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32',
825
        'int64', 'complex64', 'complex128'
826
    ], 'fill_constant')
827
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
828

829 830 831 832 833
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
834 835 836 837
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='fill_constant')
L
liym27 已提交
838

Y
Yu Yang 已提交
839
    if out is None:
X
Xin Pan 已提交
840
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
841
    attrs['dtype'] = out.dtype
842 843 844 845 846
    helper.append_op(type='fill_constant',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
Y
Yu Yang 已提交
847 848 849 850
    out.stop_gradient = True
    return out


851
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
852
@templatedoc()
Y
Yu Yang 已提交
853 854 855 856 857
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
858 859
                                  output_dim_idx=0,
                                  force_cpu=False):
860
    """
T
tianshuo78520a 已提交
861
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
862 863 864 865
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
866 867

    Args:
W
wangchaochaohu 已提交
868 869 870 871 872 873 874 875 876 877 878
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
879
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
880 881

    Returns:
W
wangchaochaohu 已提交
882
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
883 884 885 886 887

    Examples:

        .. code-block:: python

888
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
889
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
890
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
891
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
892

893
    """
894 895 896 897 898 899 900
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
901 902 903
        out = _C_ops.final_state_full_batch_size_like(input, shape, dtype,
                                                      value, input_dim_idx,
                                                      output_dim_idx, place)
904 905 906
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
907
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
908
    out = helper.create_variable_for_type_inference(dtype=dtype)
909 910 911 912 913 914
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
915
        'force_cpu': force_cpu
916 917 918 919 920
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
921 922 923 924
    helper.append_op(type='fill_constant_batch_size_like',
                     inputs={'Input': input},
                     outputs={'Out': [out]},
                     attrs=attrs)
Y
Yu Yang 已提交
925 926 927 928
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
929 930
def argmin(x, axis=0):
    """
931 932 933
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
934

S
sneaxiy 已提交
935 936
    **argmin**

937 938
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
939 940

    Args:
941 942 943 944 945
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
946

S
sneaxiy 已提交
947
    Returns:
948
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
949

S
sneaxiy 已提交
950 951
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
952

953
            import paddle.fluid as fluid
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
981
    """
982 983 984
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
985
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
986
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
987 988 989 990
    helper.append_op(type='arg_min',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
991
    out.stop_gradient = True
S
sneaxiy 已提交
992 993 994 995 996 997 998
    return out


def argmax(x, axis=0):
    """
    **argmax**

999 1000
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
1001 1002

    Args:
1003 1004 1005 1006 1007
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
1008

S
sneaxiy 已提交
1009
    Returns:
1010
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
1011

S
sneaxiy 已提交
1012 1013
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1014

1015
            import paddle.fluid as fluid
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
1043
    """
1044 1045 1046
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
1047
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
1048
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1049 1050 1051 1052
    helper.append_op(type='arg_max',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
1053
    out.stop_gradient = True
S
sneaxiy 已提交
1054 1055 1056
    return out


1057
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
1058
    """
1059 1060 1061
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
1062

1063 1064 1065
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
1066 1067

    Args:
1068 1069 1070 1071 1072
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
1073 1074 1075
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
1076 1077 1078
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1079 1080

    Returns:
1081 1082 1083
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1084 1085 1086 1087

    Examples:
        .. code-block:: python

1088
            import paddle.fluid as fluid
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1130
    """
1131 1132 1133
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1134
    helper = LayerHelper("argsort", **locals())
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
    out = helper.create_variable_for_type_inference(dtype=input.dtype,
                                                    stop_gradient=True)
    ids = helper.create_variable_for_type_inference(VarDesc.VarType.INT64,
                                                    stop_gradient=True)
    helper.append_op(type='argsort',
                     inputs={'X': input},
                     outputs={
                         'Out': out,
                         'Indices': ids
                     },
                     attrs={
                         'axis': axis,
                         'descending': descending
                     })
Y
Yibing Liu 已提交
1149 1150 1151
    return out, ids


Y
Yang Yu 已提交
1152
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1153
    """
1154 1155
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1156

1157
    Parameters:
1158
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1159
        dtype (np.dtype|str): Data type of output Tensor, it supports
1160
            bool, float16, float32, float64, int32 and int64.
1161 1162
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1163
            Default: False.
1164 1165

    Returns:
1166
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1167 1168 1169 1170

    Examples:
        .. code-block:: python

1171
          import paddle.fluid as fluid
1172 1173 1174 1175 1176
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1177 1178 1179 1180
    """
    return fill_constant(value=1.0, **locals())


1181
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1182
    """
1183 1184
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1185

1186
    Parameters:
1187
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1188
        dtype (np.dtype|str): Data type of output Tensor, it supports
1189
            bool, float16, float32, float64, int32 and int64.
1190 1191
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1192
            Default: False.
1193 1194
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1195 1196

    Returns:
1197
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1198 1199 1200 1201

    Examples:
        .. code-block:: python

1202
          import paddle.fluid as fluid
1203
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1204 1205 1206 1207
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1208 1209
    """
    return fill_constant(value=0.0, **locals())
1210 1211


F
fengjiayi 已提交
1212 1213
def reverse(x, axis):
    """
1214 1215 1216
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1217

1218
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1219

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1244
    Parameters:
1245 1246
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1247 1248
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1249 1250
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1251 1252

    Returns:
1253
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1254 1255 1256 1257

    Examples:
        .. code-block:: python

1258
          import paddle.fluid as fluid
1259 1260 1261 1262
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1273
    """
1274 1275 1276
    check_variable_and_dtype(x, 'x',
                             ('float32', 'float64', 'int32', 'int64', 'uint8'),
                             'reverse')
1277
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1278 1279
    if isinstance(axis, int):
        axis = [axis]
W
wanghuancoder 已提交
1280 1281 1282 1283 1284
    if in_dygraph_mode():
        if x.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            return _C_ops.final_state_reverse_array(x, axis)
        else:
            return _C_ops.final_state_reverse(x, axis)
F
fengjiayi 已提交
1285
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1286
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1287 1288 1289 1290
    helper.append_op(type='reverse',
                     inputs={'X': x},
                     outputs={'Out': [out]},
                     attrs={'axis': axis})
F
fengjiayi 已提交
1291 1292 1293
    return out


1294 1295 1296 1297 1298 1299 1300
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1301 1302 1303
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1304 1305
    """
    helper = LayerHelper("save", **locals())
1306 1307 1308 1309 1310 1311 1312
    helper.append_op(type="save",
                     inputs={"input": x},
                     outputs={},
                     args={
                         "file_path": file_path,
                         "overwrite": overwrite
                     })
1313 1314 1315 1316 1317 1318 1319


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1320 1321
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1322
        file_path(str): The file path where variables will be saved.
1323
        overwrite(bool): Whether or not cover the given file when it has already
1324 1325
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1326 1327 1328 1329 1330 1331 1332 1333

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1334
            import paddle.fluid as fluid
1335 1336 1337 1338 1339 1340 1341
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1342 1343
    """
    helper = LayerHelper("save_combine", **locals())
1344 1345 1346 1347 1348 1349 1350
    helper.append_op(type="save_combine",
                     inputs={"input": x},
                     outputs={},
                     args={
                         "file_path": file_path,
                         "overwrite": overwrite
                     })
1351 1352 1353 1354


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1355
    Loads a list of variable from a single file.
1356 1357 1358 1359 1360 1361

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
1362 1363 1364 1365
    helper.append_op(type="load_combine",
                     inputs={},
                     output={"Out": out},
                     args={"file_path": file_path})
1366 1367 1368 1369 1370 1371 1372


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1373
       x (Tensor): The Tensor to be checked.
1374 1375

    Returns:
S
Steffy-zxf 已提交
1376
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1377 1378 1379 1380
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1381 1382
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1383
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1384
          # [False]
1385

1386
    """
J
Jiabin Yang 已提交
1387
    if _non_static_mode():
W
wanghuancoder 已提交
1388
        return _C_ops.isinf(x)
S
Steffy-zxf 已提交
1389

1390
    check_type(x, 'x', (Variable), 'has_inf')
1391
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1392
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1393 1394 1395 1396 1397 1398 1399 1400 1401
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1402
       x (Tensor): The Tensor to be checked.
1403 1404

    Returns:
S
Steffy-zxf 已提交
1405
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1406 1407 1408 1409
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1410 1411
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1412
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1413
          # [False]
1414

1415
    """
J
Jiabin Yang 已提交
1416
    if _non_static_mode():
W
wanghuancoder 已提交
1417
        return _C_ops.isnan(x)
S
Steffy-zxf 已提交
1418

1419
    check_type(x, 'x', (Variable), 'has_nan')
1420
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1421
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1422 1423 1424 1425 1426 1427
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1428

1429 1430 1431 1432
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1433
        x(Tensor): The Tensor to be checked.
1434 1435

    Returns:
N
Noel 已提交
1436
        Tensor: The tensor storing the output, contains a bool value.
1437 1438 1439 1440 1441

    Examples:

        .. code-block:: python

N
Noel 已提交
1442 1443 1444 1445 1446 1447
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1448
    """
1449 1450
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1451
    helper = LayerHelper("isfinite", **locals())
1452

1453
    out = helper.create_variable_for_type_inference(dtype='bool')
1454 1455
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1456 1457


1458
def range(start, end, step, dtype, name=None):
W
whs 已提交
1459
    """
1460
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1461

1462 1463
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1464

1465 1466
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1467

L
Liufang Sang 已提交
1468
    Parameters:
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1492 1493 1494 1495 1496

    examples:

        .. code-block:: python

1497
            import paddle.fluid as fluid
W
whs 已提交
1498

1499 1500
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1501

1502 1503 1504 1505 1506
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
1507 1508 1509 1510 1511
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1512 1513
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1514

W
whs 已提交
1515
    if not isinstance(start, Variable):
1516
        with device_guard("cpu"):
1517
            start = fill_constant([1], dtype, start, force_cpu=True)
1518 1519
    elif start.dtype != dtype:
        start = cast(start, dtype)
1520

W
whs 已提交
1521
    if not isinstance(end, Variable):
1522
        with device_guard("cpu"):
1523
            end = fill_constant([1], dtype, end, force_cpu=True)
1524 1525
    elif end.dtype != dtype:
        end = cast(end, dtype)
1526

W
whs 已提交
1527
    if not isinstance(step, Variable):
1528
        with device_guard("cpu"):
1529
            step = fill_constant([1], dtype, step, force_cpu=True)
1530 1531
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1532

Z
zyfncg 已提交
1533 1534 1535 1536
    if in_dygraph_mode():
        return _C_ops.final_state_arange(start, end, step, dtype,
                                         _current_expected_place())

Z
zyfncg 已提交
1537
    if _in_legacy_dygraph():
J
Jiawei Wang 已提交
1538 1539 1540
        out = _C_ops.range(start, end, step)
        out.stop_gradient = True
        return out
W
whs 已提交
1541

1542 1543 1544
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1545
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
1546 1547 1548 1549 1550 1551 1552
    helper.append_op(type='range',
                     inputs={
                         'Start': start,
                         'End': end,
                         'Step': step
                     },
                     outputs={'Out': out})
1553
    out.stop_gradient = True
1554 1555
    if out_shape is not None:
        out.desc.set_shape(out_shape)
W
whs 已提交
1556
    return out
Z
zhoukunsheng 已提交
1557 1558


1559
def linspace(start, stop, num, dtype=None, name=None):
1560
    r"""
1561
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1562 1563

    Args:
1564 1565 1566 1567
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1568
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1569
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1570
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1571
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1572 1573
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1574 1575

    Returns:
1576
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1577 1578
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1579

Z
zhoukunsheng 已提交
1580
    Examples:
Z
zhoukunsheng 已提交
1581 1582
        .. code-block:: python

1583 1584 1585
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1586 1587

    """
1588 1589
    if dtype is None:
        dtype = 'float32'
1590 1591 1592
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1593 1594
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1595 1596
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1597
    if not isinstance(start, Variable):
1598 1599
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1600
    if not isinstance(stop, Variable):
1601 1602
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1603
    if not isinstance(num, Variable):
1604 1605
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1606
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1607 1608
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)
1609 1610 1611
    if in_dygraph_mode():
        return _C_ops.final_state_linspace(tensor_start, tensor_stop,
                                           tensor_num, dtype)
1612 1613
    helper = LayerHelper("linspace", **locals())

1614 1615 1616
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1617
    if isinstance(start, Variable):
1618 1619
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1620 1621
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1622

1623
    if isinstance(stop, Variable):
1624 1625
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1626 1627 1628 1629 1630 1631
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1632 1633 1634 1635
    if ((stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]) or (
                (stop_dtype == "int64" or start_dtype == "int64")
                and out_dtype == "int32"):
1636 1637 1638 1639
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1640 1641

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1642

1643 1644 1645 1646 1647 1648 1649 1650
    helper.append_op(type='linspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
1651 1652
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1653
    return out
1654 1655


Z
zhoukunsheng 已提交
1656 1657
def zeros_like(x, out=None):
    """
1658
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1659 1660 1661
    with `x`.

    Args:
1662 1663 1664 1665 1666 1667
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1668 1669

    Returns:
1670 1671 1672
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1673 1674 1675 1676

    Examples:
        .. code-block:: python

1677
          import paddle.fluid as fluid
1678
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1679 1680
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1681 1682
    """

1683 1684 1685
    check_variable_and_dtype(x, "x",
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'ones_like')
Z
zhoukunsheng 已提交
1686 1687 1688
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1689 1690 1691
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1692
            'zeros_like')
1693

1694 1695 1696
    helper.append_op(type='fill_zeros_like',
                     inputs={'X': [x]},
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1697 1698
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1699 1700


1701
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1702
def diag(diagonal):
1703
    r"""
1704 1705 1706
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1707

1708
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1709 1710

    Args:
1711 1712
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1713 1714

    Returns:
1715 1716
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1717 1718 1719 1720 1721 1722 1723

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1724 1725 1726

          import paddle.fluid as fluid
          import numpy as np
1727 1728 1729
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1730 1731

    """
1732 1733 1734
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1735 1736 1737 1738 1739 1740 1741
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

1742 1743 1744
    helper.append_op(type='diag',
                     inputs={'Diagonal': [diagonal]},
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1745 1746 1747

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1748 1749


1750 1751 1752 1753 1754
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1755
    """
1756
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1757 1758 1759

    Args:
        num_rows(int): the number of rows in each batch tensor.
1760 1761
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1762 1763
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1764
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1765 1766 1767 1768
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1769 1770

    Returns:
1771
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1772 1773 1774 1775 1776

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1777 1778
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1779
          #  [0, 1, 0]
1780 1781
          #  [0, 0, 1]]

1782
          data = fluid.layers.eye(2, 3, dtype='int32')
1783
          # [[1, 0, 0]
1784
          #  [0, 1, 0]]
1785 1786

          data = fluid.layers.eye(2, batch_shape=[3])
1787 1788 1789 1790 1791
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1792 1793
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1794 1795 1796 1797 1798
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1799

R
Ruibiao Chen 已提交
1800 1801 1802 1803
    if in_dygraph_mode():
        out = _C_ops.final_state_eye(num_rows, num_columns, dtype,
                                     _current_expected_place())
    elif _in_legacy_dygraph():
W
wanghuancoder 已提交
1804 1805
        out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                         num_columns)
1806 1807 1808 1809 1810 1811 1812
    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
1813 1814 1815 1816 1817 1818 1819 1820 1821
        helper.append_op(type='eye',
                         inputs={},
                         outputs={'Out': [out]},
                         attrs={
                             'num_rows': num_rows,
                             'num_columns': num_columns,
                             'dtype': dtype
                         },
                         stop_gradient=True)
1822 1823

    if batch_shape is not None:
1824 1825 1826
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
J
Jiabin Yang 已提交
1827
        if _non_static_mode():
W
wanghuancoder 已提交
1828 1829
            out = _C_ops.reshape(out, 'shape', re_shape)
            return _C_ops.expand(out, None, 'expand_times', expand_times)
1830

1831 1832
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1833
        for batch_val in (batch_shape):
1834 1835
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1836 1837 1838 1839 1840 1841

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1842 1843 1844
    return out


Z
zhoukunsheng 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1857
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1868 1869 1870
    check_variable_and_dtype(x, "x",
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'ones_like')
Z
zhoukunsheng 已提交
1871 1872 1873 1874

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1875 1876 1877 1878
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
1879 1880 1881 1882
    helper.append_op(type='fill_any_like',
                     inputs={'X': [x]},
                     attrs={'value': 1.0},
                     outputs={'Out': [out]})
Z
zhoukunsheng 已提交
1883
    return out
Y
yaoxuefeng 已提交
1884 1885 1886 1887 1888 1889


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)